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1 Introduction

We would first like to sincerely thank the Editors of Bayesian Analysis for inviting this
work to be discussed, and for the many discussants who provided interesting and insight-
ful feedback on this work: Bobby Gramacy, Christopher Hans, Luca Martino, Rafael B.
Stern, Francisco Louzada, Scotland C. Leman, Andrew Hoegh, Reihaneh Entezari, Radu
V. Craiu, Jeffrey S. Rosenthal, A. Mohammadi, M. C. Kaptein and O. Chkrebtii. Thank
you! As there were many shared themes amongst the discussants, our rejoinder is orga-
nized along the following topics: Alternatives to Metropolis–Hastings, Data Subsetting,
Reversible-Jump MCMC (RJMCMC), Priors and Adaptation.

2 Alternatives to Metropolis–Hastings

Many discussants proposed alternatives to the Metropolis–Hastings approach to sam-
pling the posterior, including Multiple Try Metropolis and Combinatorial Sequential
Monte Carlo (Martino et al., 2016), the Multiset Sampler (Leman and Hoegh, 2016),
Birth–Death MCMC (Mohammadi and Kaptein, 2016) and Parallel Tempering
(Chkrebtii, 2016). Generally, these algorithms are “blind” in the sense that they do not
exploit the structure of tree-space explicitly to try and move efficiently amongst good
trees. However, since they are designed to improve the sampling of general MCMC al-
gorithms they are more widely applicable, albeit possibly with increased computational
cost. In combination with the moves proposed in this work one might reasonably expect
to see further improvements, or at least faster convergence of the sampler.

2.1 Multiple Try Metropolis

We agree with the suggestions of Martino et al. (2016) to also consider introducing
more general sampling algorithms designed to improve mixing, such as Multiple Try
Metropolis (MTM) or Combinatorial Sequential Monte Carlo (C-SMC), or combining
some of these algorithms with ideas introduced in the paper. The tradeoff of using these
general algorithms to improve mixing is usually computational cost which we would
prefer to avoid, but good combinations of methods could likely improve things further.
In particular, the MTM method seems likely to be a good candidate, and we thank the
discussant for this suggestion.

In the MTM method (Martino and Read, 2013; Liu et al., 2000), instead of a single
proposal being drawn at each Metropolis–Hastings step, a sample of k states are pro-
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posed and one is selected according to appropriately calculated weights that maintain
the detailed balance condition. Following Liu et al. (2000), the steps are:

1. Draw k proposals τ1, . . . , τk from Q(τ, ·) and compute w(τj , τ) for each j =
1, . . . , k.

2. Select τ ′ = τj with probability proportional to w(τj , τ).

3. Draw k−1 “reference points” τ∗1 , . . . , τ
∗
j−1, τ

∗
j+1, . . . , τ

∗
k fromQ(τ ′, ·) and set τ∗j = τ

and compute w(τ∗j , τ
′) for each j = 1, . . . , k.

4. Accept the proposal τ ′ with probability

α = min

{
1,

∑k
j=1 w(τj , τ)∑k
j=1 w(τ

∗
j , τ

′)

}
.

In the standard MTM approach (Liu et al., 2000), w(τ, τ ′) = π(τ)Q(τ, τ ′)λ(τ, τ ′)
for a suitable user-specified function λ(τ, τ ′) (more variations are explored in Martino
and Read (2013)). The idea then of the MTM is to more adequately explore the space
around the current state τ in order to choose proposals τ ′ that have larger weight.

A natural fit for the MTM idea in tree sampling is in the dimension-changing
birth/death and rotate proposals. These both choose proposals uniformly at random,
which is likely an inefficient choice. For instance, of the possible trees constructed by
the rotation proposal, one is uniformly selected at random. Birth/Death moves are
similarly simplistic in their approach to choosing tree topology in the sense that the
terminal (or next-to-terminal) node to perform a Birth/Death is uniformly selected at
random. Implementing MTM for these proposals would allow the choice to be done with
non-uniform weight, which may further improve the acceptance of dimension-changing
moves. While there would be a computational cost to pay, it may be manageable in
some cases, such as BART where trees are constrained to be a reasonable size by the
depth-penalizing prior.

2.2 Birth–Death MCMC

The suggestion by Mohammadi and Kaptein (2016) of a continuous-time approximation
of RJMCMC is a very interesting one, and is not an approach that has been considered
in any capacity by those working in Bayesian tree models as far as we know. While
making use of these ideas in Bayesian regression trees may require greater modification
than it initially appears, such an unexplored approach is bound to lead to interesting
developments.

In the approach outlined in Mohammadi and Wit (2015), the discussants consider
undirected graphical models G = (V,E) where V = 1, . . . , p is the set of nodes and
E ⊂ V × V is the set of existing edges while the set of non-existing edges is defined
as Ē. They define a Gaussian graphical model as

MG = {Np(0,Σ)|K = Σ−1 ∈ PG},
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where PG denotes the space of p× p matrices with entries (i, j) = 0 for all e ∈ Ē. The
continuous-time Birth/Death process is defined via the birth rate

βe(K) =
P (G+e,K+e \ (kij , kji)|data)

P (G,K \ kjj |data)
, for each e ∈ Ē,

and death rate

δe(K) =
P (G−e,K−e \ kjj |data)
P (G,K \ (kij , kjj)|data)

, for each e ∈ E.

Based on these rates, the Birth–Death MCMC iterates the following steps:

1. Calculate the Birth rates βe(K) and β(K) =
∑

e∈Ē βe(K)

2. Calculate the Death rates δe(K) and δ(K) =
∑

e∈E δe(K)

3. Calculate the waiting time W (K)

4. Simulate the Birth/Death jump

5. Sample a new precision matrix, K

whereW (K) = 1
β(K)+δ(K) , P (birth at edge e) = W (K)βe(K) and P (death at edge e) =

W (K)δe(K).

The difficulty would seem to lie in particular with step (1) in the algorithm as this
calculation involves a sum over all edges not currently in the tree. In the Gaussian
graphical model defined by Mohammadi and Wit (2015), the size of this space is finite
since p is assumed fixed, known. But in Bayesian regression trees, the dimensionality of
tree-space is potentially infinite.

Another aspect is how one chooses which edges to birth/death. In the graphical
model described, birth/death can occur at any edge but for trees we require connect-
edness to the existing tree structure. Such a constraint may be able to be incorporated
into the general framework described in Mohammadi and Wit (2015), but does not
appear to be a straightforward implementation of the method described which assumes
birth/death of an edge occurs independently of the others. Nonetheless, we do agree
that this would be a very unique and fresh perspective on the sampling problem.

2.3 The Multiset Sampler

Another good suggestion is the Multiset Sampler (MSS) recommendation of Leman and
Hoegh (2016). In this approach, instead of sampling directly from the distribution of
interest, one samples instead from the equally-weighted mixture

π∗(f |x, y) = C
∑

(t,m)∈f

p(t,m|x, y),
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where k denotes how many elements are in the Multiset in the MSS. The user selected
parameter k denotes how many simultaneous states exist in the MSS. Thus, k in some
sense allows for one to account for more multi-modal posteriors, with increasing k
able to handle posteriors of greater complexity. Expectations of interest can then be
extracted from π∗(f |x, y) as discussed in Kim and MacEachern (2015). A limitation is
the increased computations required. For instance, calculating posterior expectations
requires the calculation of weights for the entire collection of trees – for BART this
would be m×k weights for each posterior draw if the same multiset size is used for each
tree in BART. Nonetheless, we agree that the MSS is another good choice for improving
mixing. For the single-tree case, Leman et al. (2009) demonstrated improvements over
the Bayesian CART algorithm of Chipman et al. (1998). Furthermore, since the MSS
algorithm also depends on a proposal distribution, we agree that combining the MSS
with the proposals discussed in the paper may lead to further improvements.

2.4 Parallel Tempering

Finally, Chkrebtii (2016) suggests applying the parallel tempering algorithm of Geyer
(1991). We agree that this is also a good suggestion. Since the parallel tempering al-
gorithm also depends on proposals, we can combine the results of this paper with this
general algorithm to realize further improvements in mixing. We thank the discus-
sant for presenting this algorithm in the context of Bayesian regression trees. We also
note that parallel tempering has been explored in other tree models, as mentioned
by Gramacy (2016) who previously devised a related importance tempering approach
(Gramacy et al., 2010).

3 Data Subsetting

Another alternative to the Metropolis–Hastings sampler falls under data-subsetting par-
allel algorithms, such as the LISA method recently proposed in Entezari et al. (2016)
which builds on ideas introduced in the Consensus Monte Carlo algorithm of Scott et al.
(2016). These approaches split the dataset into equal-sized subsets, independently run
an MCMC algorithm to learn the posterior on each subset, and then recombine the
subset posteriors in some way to form an overall estimate of the posterior. Such data
subsetting methods often do in fact make use of standard MCMC algorithms in each
batch, but gain computing efficiency from their “embarrassingly-parallel” construction,
assuming the recombining of posteriors after the MCMC algorithms have completed
can be performed efficiently and accurately. As a side effect, because each subset is an-
alyzed independently, better exploration of the model space may be achieved compared
to fitting the model using a single MCMC run on all the data.

The LISA algorithm partitions the entire dataset of size N into K batches of ap-
proximately equal size and then samples the j = 1, . . . ,K sub-posteriors,

πj,LISA(�θ|�y(j)) ∝
(
f(�y(j)|�θ)

)K

p(�θ),
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which are then recombined in some fashion. Entezari et al. (2016) demonstrate simi-
lar statistical performance as BART on the Friedman test function with N = 20,000
observations and K = 30 batches, while achieving a 10-fold computational speedup.
We wholeheartedly welcome such incredibly useful (and practical!) developments for
analyzing big datasets, and as with some of the other alternatives suggested by other
discussants, one would expect that combining methods would lead to further improve-
ments.

A possible challenge with such batch-wise data-parallel methods is how one should
choose the number of batches, K. For the example given, the jth sub-posterior is trained
using a dataset size of ∼ 666 observations for the 5-dimensional Freidman regression
problem. A priori, it is unclear if this is a “good” choice or not (or if it even matters).
Some alternatives avoid this issue, such as the single-chain data-parallel algorithm of
Pratola et al. (2014), which relies on low-dimensional sufficient statistics to limit the
communication overhead in parallel computations.

4 Reversible-Jump MCMC

Gramacy (2016) correctly points out that the defacto assumption in the paper is of
terminal-node conjugacy, which greatly simplifies the sampling of tree-space. While this
is a common, widely-used trick in the Bayesian tree literature, it is not always a fea-
sible assumption. A particular example is the popular treed Gaussian Process (GP)
model of Gramacy and Lee (2008). In their approach to birth/death proposals, Gra-
macy and Lee (2008) make use of a simple dimension-changing RJMCMC proposal
mechanism to jointly sample the tree structure and the smoothness parameters of the
GP correlation function. Given a GP correlation function R(xi,xj |d) for hyperparame-
ters d = (d1, . . . , dD) they perform birth proposals by choosing one of the new nodes to
randomly inherit the parents’ correlation parameters, while the other child draws from
the prior, i.e.

d(1) = ud+ (1− u)d∗

d(2) = (1− u)d+ ud∗

u ∼ Bernoulli(0.5)

d∗ ∼ π(d),

which they show has unit Jacobian in the RJ-MCMC accept/reject calculation. Analo-
gously, in a death proposal, one of the child-nodes’ correlation parameters is uniformly
chosen at random to be retained in the lower-dimensional model while the other is
discarded.

In the case of rotate, extending this simple framework may be challenging for a
few reasons. First, arriving at a good RJ-MCMC framework can be non-trivial and,
unfortunately, depend on the type of bottom-node model being explored. Second, when
the change of dimension is greater than 1 we necessarily have a greater number of
parameters to jointly propose, which is increasingly more difficult. In some sense, this
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problem is also present in Gramacy and Lee (2008) as there are D correlation length-
scale parameters to handle in dimension-changing moves. Gramacy and Lee (2008)
simplify this by avoiding scalar proposals in such moves.

The notion of locality can be important in getting RJ-MCMC proposals to work well.
In the case of rotate, there are a few ways one might exploit the structure of a rotate
move to implement RJ-MCMC. First, looking back at Figure 3 in the paper (which
is reproduced below), it is clear that after the first rotate, Tq and Tr are unchanged
unless a merge along Xj occurs. Therefore, deterministically mapping terminal node
parameters of Tq, Tr in rotate proposals is often possible. One should also note that, of
all the merge types that are possible, only one (type 3) reduces the effective number
of terminal nodes in the merged tree. In other words, there may be a large degree of
overlap between terminal nodes of the original and rotated tree, effectively reducing
the number of “new” parameters to be handled. This suggests a similar approach to
handling rotate proposals as the RJ-MCMC algorithm of Gramacy and Lee (2008).

The parts that need more careful handling are TL
s and TR

s that arise as a result
of splitting. Note that if the rules in Ts do not include the variable Xi (top-right of
Figure 3) then the number of terminal nodes in TL

s and TR
s equals the number of

terminal nodes in the original Ts, so the dimension has increased by a possibly large
amount (ignoring possible merges with Tq, Tr along Xj). On the other hand, if the rules
in Ts consist of only the variable Xi then the total number of terminal nodes in TL

s ∪TR
s

may not be much larger than Ts alone. In fact, the dimension may increase by as little
as a single terminal node, which would suggest a procedure similar to the birth case of
Gramacy and Lee (2008).

Given these insights on the rotate proposal, a general procedure along the following
lines may be feasible:

• For all terminal nodes in the rotated tree, say {η′a, η′b, . . .}, repeat the following
steps:

1. Find the nearest terminal node {ηa, ηb, . . .} in the original tree (we suggest
a procedure to do this below).
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2. Propose a new parameter value m′
j according to some mapping g. Typically,

g may involve a deterministic assignment, a draw from the prior, or perhaps
a draw from some other distribution (e.g. Brooks et al. (2011) outline many
advanced approaches such as mixtures and regression-based ideas).

Assuming the move from (T,M) → (T ′,M ′) increases dimension by δ = |M ′|−|M | > 0,
the accept-reject calculation for such a procedure must be modified from the original
equation (4) of the paper to:

min

(
1,

π(T ′)π(M ′|T ′)pr(T
′)p1sp

2
sL(T

′,M ′)

π(T )π(M |T )pr(T )p1mp2mL(T,M)qδ(M∗)

∣∣∣∂g(M,M∗)
∂(M,M∗)

∣∣∣),

where the new state M ′ = g(M,M∗) where M∗ is generated from known δ-dimensional
distribution qδ(M

∗) (the reverse move would be generated deterministically with inverse
acceptance probability). Here, L(T,M) may simply be the likelihood, or it may be a
partially integrated likelihood when some, but not all, terminal node parameters can be
analytically integrated out.

In step 1, we mean only terminal nodes that are within the subtree being affected
by the rotate move (other nodes would be updated by the usual MH step for the
parameters). Of these nodes, by nearest terminal node we mean nodes that are arrived
at by similar mappings – i.e. the sequence of rules from the tree root to terminal node
η′j defines a subregion in covariate space that is (nearly) equivalent to the sequence of
rules from tree root to some terminal node, say ηi, in the original tree. This is most
easily accommodated by applying labels, say a, b, . . . , in terminal nodes before rotation
and then matching nodes according to labels.

For instance, if two terminal nodes labelled a and b, say ηa, ηb with parameters
ma,mb are merged in the rotate proposal, the label of the merged terminal node is ab.
Calling this node in the merged tree η′ab with parameterm′

ab, one could deterministically
determine m′

ab by randomly choosing to assign it ma or mb from the “nearest” nodes in
the original tree, which are ηa, ηb. Similarly, if a terminal node ηa is duplicated in the
rotate proposal, the label of the duplicated nodes may be a1, a2. Then one can generate
the proposals for parameters m′

a1,m
′
a2 of nodes η′a1, η

′
a2 in the rotated tree by randomly

selecting one of the parameters to be assigned ma and the other to be generated from
some distribution q, i.e.

m′
a1 = uma + (1− u)m∗

m′
a2 = (1− u)ma + um∗

u ∼ Bernoulli(0.5)

m∗ ∼ q.

Therefore, in the typical case there is a clear analogy to the birth/death RJ-MCMC
proposal of Gramacy and Lee (2008). However, in the worst case one must more carefully
track the labelled nodes. For instance, it is possible for node ηa in the original tree to be
duplicated and one copy to be merged with either node b or c in the rotated tree, giving
either nodes η′a, η

′
ab or η′a, η

′
ac in the rotated tree (although unlikely, such a situation
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could occur if TL
s = TR

s = Ts in Figure 3 and then a non-trivial merge occurs along one of
the Xj < b subtrees). The easiest approach in the first case may be to deterministically
assign m′

a = ma and m′
ab = mb (similarly for the second case), although more elaborate

schemes might be preferred.

Besides the situation just described, one may desire more elaborate proposal schemes
in general as a means to improve performance. Without elaborating, we make some
suggestions that may be helpful to consider. First, if no data maps to η′j , this suggests
drawing m′

j from the prior. If the number of observations mapping to η′j , say n′
j , is

the same as in the original tree, say node ηi with ni observations, then a deterministic
mapping (or something very near the original tree’s value mi) is suggested. Another
alternative is to consider a mixture between mi and the prior distribution, with weights
that are adjusted by the relative proportion of observations remaining in the rotated
terminal node.

One might also like to leverage the tree’s recursive dividing of covariate space in
an alternative nearest-neighbour approach by finding the sibling terminal node of η′j in
the rotated tree, say η′k, that shares the same parent (i.e. p(η′j) = p(η′k)). If node η′k
corresponded to node ηi in the original tree according to our labelling scheme, this might
suggest a mixture involving mi. In the Gaussian case, mixture proposals in RJ-MCMC
have been previously explored, see for instance Richardson and Green (1997).

Nearest-neighbour ideas leveraging the division of covariate space induced by trees
may also be useful in regular MH proposals, such as the updating of GP correlation
parameters in perturb proposals as mentioned by Gramacy (2016). For RJ-MCMC,
leveraging existing ideas as much as possible is likely beneficial, requiring one to only
decide what information should enter the RJ-MCMC proposal motivated by the struc-
tural rearrangements induced by the rotate move. Still, such “automatic” RJ-MCMC
mechanisms are likely to be tedious to implement, and may not be suitable in all prob-
lems.

5 Priors

Comments on prior distributions in tree models also received some attention by the
discussants (Gramacy, 2016; Chkrebtii, 2016). We agree that this is an area where
much improvement can be made, and is one we have put considerable thought into as
well. Gramacy (2016) asks why the CGM prior (Chipman et al., 1998) is so popular.
A better way of framing the question is to ask what the CGM prior means. Penalizing
tree depth essentially implies a less variable, or less complex, response behaviour as well
as a preference against high-order interactions. The sum-of-trees BART model allows
for more complex response behaviours so long as the additive representation is plausible,
while still preferring a low (or no) order of interactions. Clearly, this prior allows one to
constrain the type of solution desired.

Further (or alternative) constraints are certainly viable. Gramacy (2016) notes that
the prior of Denison et al. (1998) penalizes the number of splits, while the prior of Wu
et al. (2007) additionally adds a preference for balanced trees. These approaches can
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also limit the complexity of the response. We agree with Gramacy (2016) that the CGM
prior seems preferred in practice. In some sense, the direct penalization of number of
terminal nodes (or splits) is a very CART-like perspective while the CGM prior seems
more akin to a function-space view of the world. Yet in certain single-tree situations,
perhaps ones prior preference may vary (or may not include any of the standard choices).

Chkrebtii (2016) suggests to limit the total number of variables allowed to split. We
agree that this is a very interesting idea, implying a variable-selection prior in the spirit
of the Lasso (Tibshirani, 1996; Hans, 2009). In the regression setting of BART, it may
also be preferable to specify a prior on the number of trees rather than having it fixed.
One might also explore a prior on the number of unique variables each tree is allowed
to split on (e.g. 90% of trees can split on ≥ 1 variable, 50% on ≥ 2 variables, 20% on
≥ 3 variables, etc), thereby allowing one to decompose variability along main effects,
2-way interactions, and so on. Clearly there is much that can be explored!

6 Adaptation

Hans (2016) points out the possibility of adapting further aspects of the proposal mech-
anisms developed in the paper, specifically the change-of-variable proposal. We agree
this is possible and perhaps very useful in certain problems. For instance, one may want
to propose a change of variable at some internal node ηj that exploits local properties
of the data rather than the global covariate correlation. If we denote P to be the global
transition proposal probabilities based on the Spearman rank correlation assumed in
Equation (7) of the paper, and P(j) to be a locally-dependent transition matrix, then
one possibility would be to form

P̃ = ρP+ (1− ρ)P(j)

(subsequently suitably normalized) for some ρ ∈ (0, 1). One might then form P(j) based
on some data-free local measure of covariate correlation (for instance), and adapt the
scalar weight ρ as the algorithm learns the local properties of the data at each node. The
challenge is in forming such a P (j) at each interior node in a computationally efficient
manner. Such a general and efficient procedure may be difficult to arrive at. We agree
that Hans (2016)’s suggestion of the method of Smith and Kohn (2005) would also be
an interesting avenue to explore.
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