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Canonical correlation analysis is a classical technique for exploring the
relationship between two sets of variables. It has important applications in
analyzing high dimensional datasets originated from genomics, imaging and
other fields. This paper considers adaptive minimax and computationally
tractable estimation of leading sparse canonical coefficient vectors in high
dimensions. Under a Gaussian canonical pair model, we first establish sep-
arate minimax estimation rates for canonical coefficient vectors of each set
of random variables under no structural assumption on marginal covariance
matrices. Second, we propose a computationally feasible estimator to attain
the optimal rates adaptively under an additional sample size condition. Fi-
nally, we show that a sample size condition of this kind is needed for any
randomized polynomial-time estimator to be consistent, assuming hardness
of certain instances of the planted clique detection problem. As a byprod-
uct, we obtain the first computational lower bounds for sparse PCA under the
Gaussian single spiked covariance model.

1. Introduction. Canonical correlation analysis (CCA) [20] is a classical and
important tool in multivariate statistics [1, 27]. For two random vectors X € R?
and Y € R™, at the population level, CCA finds successive vectors u; € R” and
v;j € R™ (called canonical coefficient vectors) that solve

max a/Exyb,
a,b

(D subjectto a'Eya=b'E,b=1,
a'Su; =b'Syv =0, VO<I<j—1,

where X, = Cov(X), ¥y = Cov(Y), Z,y = Cov(X, Y), up =0 and vo = 0. Since
our primary interest lies in the covariance structure among X and Y, we assume
that their means are zeros from here on. Then the linear combinations (u/jX , v;. Y)
are the jth pair of canonical variates. This technique has been widely used in
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various scientific fields to explore the relationship between two sets of variables.
In practice, one does not have knowledge about the population covariance, and X,
2y and X,y are replaced by their sample versions M E and & xy in (1).

Recently, there have been growing interests in applymg CCA to analyzing high-
dimensional datasets, where the dimensions p and m could be much larger than the
sample size n. It has been well understood that classical CCA breaks down in this
regime [4, 16, 21]. Motivated by genomics, neuroimaging and other applications,
people have become interested in seeking sparse leading canonical coefficient vec-
tors. Various estimation procedures imposing sparsity on canonical coefficient vec-
tors have been developed in the literature, which are usually termed sparse CCA.
See, for example, [3, 19, 23, 29, 33, 36, 37].

The theoretical aspect of sparse CCA has also been investigated in the literature.
A useful model for studying sparse CCA is the canonical pair model proposed
in [13]. In particular, suppose there are r pairs of canonical coefficient vectors (and
canonical variates) among the two sets of variables, then the model reparameterizes
the cross-covariance matrix as

2) ExyzExUAV/Ey, where U/EXU=V/ZyV=Ir.
Here, U =[uy,...,u,]and V =[vy, ..., v,] collect the canonical coefficient vec-
tors and A =diag(Ay,...,A,) with 1 > A > --- > A, > 0 are the ordered canon-

ical correlations. Let S, = supp(U) and S, = supp(V) be the indices of nonzero
rows of U and V. One way to impose sparsity on the canonical coefficient vectors
is to require the sizes of S, and S, to be small, namely |S,| < s, and |S,| < s,
for some s, < p and s, < m. Under this model, Gao et al. [16] showed that the
minimax rate for estimating U and V under the joint loss function || uov' —uv’ ||12:
is

em
3) (r(su + 5v) + sy log —I—sv log —)

)\2 Su Sy

However, to achieve the rate, Gao et al. [16] used a computationally infeasible and
nonadaptive procedure, which requires exhaustive search of all possible subsets
with the given cardinality and the knowledge of s, and s,. Moreover, it is unclear
from (3) whether the estimation error of U depends on the sparsity and the ambient
dimension of V and vice versa.

The goal of the present paper is to study three fundamental questions in sparse
CCA: (1) What are the minimax rates for estimating the canonical coefficient vec-
tors on the two sets of variables separately? (2) Is there a computationally efficient
and sparsity-adaptive method that achieves the optimal rates? (3) What is the price
one has to pay to achieve the optimal rates in a computationally efficient way?

1.1. Main contributions. We now introduce the main contributions of the
present paper from three different viewpoints as suggested by the three questions
we have raised.
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Separate minimax rates. The joint loss [|UV' — UV’ ||% studied by [16] charac-
terizes the joint estimation error of both U and V. In this paper, we provide a finer
analysis by studying individual estimation errors of U and V under a natural loss
function that can be interpreted as prediction error of canonical variates. The exact
definition of the loss functions is given in Section 2. Separate minimax rates are
obtained for U and V. In particular, we show that the minimax rate of convergence
in estimating U depends only on n, r, A, p and s, but not on either m or s,. Con-
sequently, if U is sparser than V, then convergence rate for estimating U can be
faster than that for estimating V. Such a difference is not reflected by the joint loss,
since its minimax rate (3) is determined by the slower of the rates of estimating U
and V.

Adaptive estimation. As pointed out in [13] and [16], sparse CCA is a more
difficult problem than the well-studied sparse PCA. A naive application of sparse
PCA algorithm to sparse CCA can lead to inconsistent results [13]. The additional
difficulty in sparse CCA mainly comes from the presence of the nuisance param-
eters X, and X, which cannot be estimated consistently in a high-dimensional
regime in general. Therefore, our goal is to design an estimator that is adaptive
to both the nuisance parameters and the sparsity levels. Under the canonical pair
model, we propose a computationally efficient algorithm. The algorithm has two
stages. In the first stage, we propose a convex program for sparse CCA based on
a tight convex relaxation of a combinatorial program in [16] by considering the
smallest convex set containing all matrices of the form AB’ with both A and B
being rank-r orthogonal matrices. The convex program can be efficiently solved
by the Alternating Direction Method with Multipliers (ADMM) [10, 14]. Based
on the output of the first stage, we formulate a sparse linear regression problem in
the second stage to improve estimation accuracy, and the final estimator Uand V
can be obtained via a group-Lasso algorithm [38]. Under the sample size condition
that

4) n > Csysylog(p +m) /22

for some sufficiently large constant C > 0, we show U and V recover the true
canonical coefficient matrices U and V within optimal error rates adaptively with
high probability. A Matlab implementation of the proposed estimator is available
at http://www-stat.wharton.upenn.edu/~zongming/software/SCCALab.zip.

Computational lower bound. We require the sample size condition (4) for the
adaptive procedure to achieve optimal rates of convergence. Assuming hardness
of certain instances of the Planted Clique detection problem, we provide a com-
putational lower bound to show that a condition of this kind is unavoidable for
any computationally feasible estimation procedure to achieve consistency. Up to
an asymptotically equivalent discretization which is necessary for computational
complexity to be well defined, our computational lower bound is established di-
rectly for the Gaussian canonical pair model used throughout the paper.
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An analogous sample size condition has been imposed in the sparse PCA litera-
ture [12, 22, 25, 32], namely n > Cs?log p/A? where s is the sparsity of the lead-
ing eigenvector and XA the gap between the leading eigenvalue and the rest of the
spectrum. Berthet and Rigollet [6] showed that if there existed a polynomial-time
algorithm for a generalized sparse PCA detection problem while such a condition
is violated, the algorithm could be made (in randomized polynomial-time) into a
detection method for the Planted Clique problem in a regime where it is believed
to be computationally intractable. However, both the null and the alternative hy-
potheses in the sparse PCA detection problem were generalized in [6] to include all
multivariate distributions whose quadratic forms satisfy certain uniform tail prob-
ability bounds and so the distributions need not be Gaussian or having a spiked
covariance structure [22]. The same remark also applies to the subsequent work
on sparse PCA estimation [34]. Hence, the computational lower bound in sparse
PCA was only established for such enlarged parameter spaces. As a byproduct of
our analysis, we establish the desired computational lower bound for sparse PCA
in the Gaussian single spiked covariance model.

1.2. Organization. After an introduction to notation, the rest of the paper is or-
ganized as follows. In Section 2, we formulate the sparse CCA problem by defin-
ing its parameter space and loss function. Section 3 presents separate minimax
rates for estimating U and V. Section 4 proposes a two-stage adaptive estimator
that is shown to be minimax rate optimal under an additional sample size con-
dition. Section 5 shows a condition of this kind is necessary for all randomized
polynomial-time estimator to achieve consistency by establishing new computa-
tional lower bounds for sparse PCA and sparse CCA. Section 6 presents proofs
of theoretical results in Section 4. Implementation details of the adaptive proce-
dure, numerical studies, additional proofs and further discussion are deferred to
the supplement [17].

1.3. Notation. For any t € Z,, [t] denotes the set {1,2,...,¢}. For any set
S, |S| denotes its cardinality and S¢ its complement. For any event E, 1(g} de-
notes its indicator function. For any a,b € R, [a] denotes the smallest integer
no smaller than a, |a] the largest integer no larger than a, a v b = max(a, b)
and a A b = min(a, b). For a vector u, |lu|| =,/>; ul.z, lullo = >_; 1,20y, and
lulli = )_; lu;|. For any matrix A = (a;;) € RP*K A;. denotes its ith row and
supp(A) = {i € [p] : || A;.|| > 0}, the index set of nonzero rows, is called its sup-
port. For any subset J C [p] x [k], Ay = (a;j1{i, j)es)) € RP*k is obtained by
keeping all entries in J and replacing all entries in J¢ with zeros. We write A, ,
for Ay, xs, and Ay, j,)c for Ay, xs,)c. Notice that A = Ay, x[k] € RP*K while
A,. stands for the corresponding nonzero submatrix of size |Ji| x k. In addition,
P4 € RP*P stands for the projection matrix onto the column space of A, O(p, k)
denotes the set of all p x k orthogonal matrices and O (k) = O (k, k). Further-
more, 0;(A) stands for the ith largest singular value of A and opax(A) = 01(A),
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Omin(A) = 0prk(A). The Frobenius norm and the operator norm of A are ||A||p =

Vi aizj and || Allop = 01(A), respectively. The /; norm and the nuclear norm are
Al = X5 laij| and [[A]l« = >_; 0i (A), respectively. If A is a square matrix, its
trace is Tr(A) = Y _; a;;. For two square matrices A and B, we writte A < Bif B— A
is positive semidefinite. For any positive semi-definite matrix A, A!/? denotes its
principal square root that is positive semi-definite and satisfies A'/>?A!/? = A. The
trace inner product of two matrices A, B € RP*k is (A, B) = Tr(A’B). Given a
random element X, £(X) denotes its probability distribution. The symbol C and
its variants Cy, C’, etc. are generic constants and may vary from line to line, un-
less otherwise specified. The symbols P and [E stand for generic probability and
expectation when the distribution is clear from the context.

2. Problem formulation.

2.1. Parameter space. Consider a canonical pair model where the observed
pairs of measurement vectors (X l/ Ylf Y,i=1,...,n are ii.d. from a multivariate
Gaussian distribution Ny, (0, X) where

b)) by
> — X xyi| ,
E

with the cross-covariance matrix Xy, satisfying (2). We are interested in the situ-
ation where the leading canonical coefficient vectors are sparse. One way to quan-
tify the level of sparsity is to bound how many nonzero rows there are in the U and
V matrices. This notion of sparsity has been used previously in both sparse PCA
[12, 32] and sparse CCA [16] problems when one seeks multiple sparse vectors
simultaneously.

Recall that for any matrix A, supp(A) collects the indices of nonzero rows in A.
Adopting the above notion of sparsity, we define F (s, sy, p, m, r, A; M) to be the
collection of all covariance matrices X with the structure (2) satisfying:

1. U eRP* and V € R™* with |supp(U)| < s, and [supp(V)| < su;
(5) 2. omin(Zy) Aomin(Ey) = M~ and omax () V omax(Zy) < M
3. Ar>iand i <1-—M7L
The probability space we consider is
P, sy, Sy, p,m, r, A; M)
(6) = (X5 Y)Y (X0 7)) 2 (XYY 5 Ny (0, )
with £ € F(sy, sy, p,m,r,1; M)},

where n is the sample size. We shall allow sy, sy, p, m, r, A to vary with n, while
M > 1 is restricted to be an absolute constant.
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2.2. Prediction loss. From now on, the presentation of definitions and results
will focus on U only since those for V can be obtained via symmetry. Given an es-
timator U = [@1, ..., u,] of the leading canonical coefficient vectors for X, a nat-
ural way of assessing its quality is to see how well it predicts the values of the
canonical variables U’'X* € R” for a new observation X* which is independent of
and identically distributed as the training sample used to obtain U. This leads us
to consider the following loss function:

2
9

(7) LU, U)= inf E*|WUX*-UX*
WeOo(r)

where E* means taking expectation only over X* and so L(U, U) is still a random
quantity due to the randomness of U. Since L(U, U) is the expected squared error
for predicting the canonical variables U’ X* via U’ X*, we refer to it as prediction
loss from now on. The introduction of an r x r orthogonal matrix W is unavoid-
able. To see this, we can simply consider the case where A; =--- =X, = X in (2),
then we can replace the pair (U, V) in (2) by (UW, VW) for any W € O(r). In
other words, the canonical coefficient vectors are only determined up to a joint
orthogonal transform. If we work out the [&* part in the definition (7), then the loss
function can be equivalently defined as

(8) LU, U)= inf T[(UW —U)S,(UW —U)].
WeO(r)

By symmetry, we can define L(V,V) by simply replacing U, U, X* and = in
(7) and (8) with V, V, Y* and X,. An attractive feature of the loss function (7) is
its invariance with respect to linear transformations on X and Y. If each X; and
Y; are transformed to RX; and T'Y; for any invertible matrices R and 7', then the
canonical coefficient matrices become R~'U and T~!V, respectively. Thus, the
value of the loss (7) does not change if we replace U and U with R-'U and R™!U.
Careful readers might realize that an arbitrary linear transform R may change the
sparsity pattern of U. However, if R is diagonal, the sparsity pattern is preserved.
So the sparse CCA problem paired with the loss (7) is insensitive to any scale
change of the variables.

A related loss function is ||Pg — Py ||12: measuring the difference between two
subspaces. By Proposition 9.2 in the supplementary material [17], we have || Py —
Py ||% < CL(U, U) for some constant C > 0 only depending on M. Moreover,
the loss (7) contains more information on the difference between U and U. To
see this, let Xy = I, U € O(p,r) and U =2U. Then | Py — PU||}2; = 0, while
L(U,U) = infyeor | Z2*OW — U)IIE = infweoe)(Sr — TH(W)) =7 > 0. In
this paper, we will focus on the loss L(U, U) while providing brief remarks on
results for || Py — PU||}2:.
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3. Minimax rates. We first provide a minimax upper bound using a combi-
natorial optimization procedure, and then show that the resulting rate is optimal by
further providing a matching minimax lower bound.

Let (X}, Y/) e RPT™ i =1,...,n,beiid. observations following N1, (0, X)
for some ¥ € F(sy, sy, p, m, r, A; M). For notational convenience, we assume the
sample size is divisible by three, that is, n = 3n¢ for some n¢ € N.

Procedure. To obtain minimax upper bound, we propose a two-stage combi-
natorial optimization procedure. We split the data into three equal size batches

Do = (X, ¥})'}i2y D1 = (X} Y)Y}, 1 and Dy = (X[, Y)Y }}_p,, 1 and de-
note the sample covariance matrices computed on each batch by f)(cj ), fy ) and
54 for j €{0,1,2}.

In the first stage, we find (ﬁ O V(O)) which solves the following program:

max T(L'SOR),
LeRPXr ReRmxr Y

©) subjectto L'SOL = R’f§O)R =1 and
supp(L)| <su,  [supp(R)| < 5.

In the second stage, we further refine the estimator for U by finding um solving

min T(L'EWL) —2Tr(L'SDVO)
(10) LeRpP*r Y
subject to  |supp(L)| < s,.

The final estimator is a normalized version of U (D defined as
(11) (’]:(’](1)(((’](1))/20)(’](1))—1/2
P .

The purpose of sample splitting employed in the above procedure is to facilitate
the proof.

Theory and discussion. The program (9) was first proposed in [16] as a spar-
sity constrained version of the classical CCA formulation. However, the resulting
estimator will have a convergence rate that involves the sparsity level s, and the
ambient dimension m of the V matrix [16], Theorem 1, which is sub-optimal. The
second stage in the procedure is thus proposed to further pursue the optimal es-
timation rates. First, if we were given the knowledge of V, then the least square
solution of regressing V'Y € R” on X € R? is

UA =argminE|Y'V — X'L|*
LeRpP*r

(12) =argminTr(L'S L) — 2Tr(L'Zy, V) + Tr(V'E, V)
LGRI)XF

=argminTr(L'S,L) —2Tr(L'E,, V),
LeRpxr
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where the expectation is with respect to the distribution (X', Y')" ~ N4, (0, X).
The second equality results from taking expectation over each of the three terms
in the expansion of the square Euclidean norm, and the last equality holds since
Tr(V'X, V) does not involve the argument to be optimized over. In fact, from the
canonical pair model, one can easily derive a regression interpretation of CCA,
V'Y = AU'X + E, where E ~ N (0, I, — A?). Then (10) is a least square formu-
lation of the regression interpretation. However, CCA is different from regression
because the response V'Y depends on an unknown V. Comparing (10) with (12),
it is clear that (10) is a sparsity constrained version of (12) where the knowledge
of V and the covariance matrix X are replaced by the initial estimator VO and
sample covariance matrix from an independent sample. Therefore, UM can be
viewed as an estimator of U A. Hence, a final normalization step is taken in (11)
to transform it to an estimator of U.
We now state a bound for the final estimator (11).

THEOREM 3.1. Assume

1 ep em
(13) —(r(su-l—sv)—i—sulog——i—svlog— <c

n Su Sy
for some sufficiently small constant ¢ > 0. Then there exist constants C,C’ > 0
only depending on c such that

~ C
(14) L0, U) < —2su<r+log @>,
ni Sy
with P-probability at least 1 — exp(—C'(s, + log(ep/sy))) — exp(—C’(sy +
log(em/sy))) uniformly over P € P(n, sy, sy, p,m,r, A; M).

REMARK 3.1. The paper assumes that M is a constant. However, the mini-
max upper bound of Theorem 3.1 does not depend on M even if M is allowed to
grow with n. To be specific, assume the eigenvalues of X, are bounded in the inter-
val [M1, M>]. The convergence rate of L(l7, U) would still be nl?su (r +log %),
because the dependence on M1, M> has been implicitly built into the prediction
loss. On the other hand, a convergence rate for the loss || Py — PU||% would be
(%) ﬁsu (r +log %), with an extra factor of the condition number of X.

Under assumption (13), Theorem 3.1 achieves a convergence rate for the pre-
diction loss in U that does not depend on any parameter related to V, though
the probability tail still involves m and s,. However, it can be shown that
exp(—C'(sy + log(em/sy))) < m=C'/ 2 and so the corresponding term in the tail
probability goes to 0 as long as m — oo. The optimality of this upper bound can
be justified by the following minimax lower bound.
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THEOREM 3.2. Assume thatr < % Then there exists some constant C > 0
only depending on M and an absolute constant co > 0, such that

~ C
inf sup IP’{L(U, U)>cy A —Su <r + log %)} > 0.8,
U Pep ni Su

where P =P(n, sy, Sy, p,m,r, A; M).

By Theorems 3.1 and 3.2, the rate in (14), whenever it is upper bounded by a
constant, is the minimax rate of the problem.

4. Adaptive and computationally efficient estimation. Section 3 deter-
mines the minimax rates for estimating U under the prediction loss. However, there
are two drawbacks of the procedure (9)—(11). One is that it requires the knowledge
of the sparsity levels s, and s,. It is thus not adaptive. The other is that in both
stages one needs to conduct exhaustive search over all subsets of given sizes in the
optimization problems (9) and (10), and hence the computation cost is formidable.

In this section, we overcome both drawbacks by proposing a two-stage convex
program approach towards sparse CCA. The procedure is named CoLaR, standing
for Convex program with group-Lasso Refinement. It is not only computationally
feasible but also achieves the minimax estimation error rates adaptively over a
large collection of parameter spaces under an additional sample size condition.
The issues related to this additional sample size condition will be discussed in
more detail in the subsequent Section 5.

4.1. Estimation scheme. The basic principle underlying the computationally
feasible estimation scheme is to seek tight convex relaxations of the combinatorial
programs (9)—(10). We introduce convex relaxations for the two stages in order.
As in Section 3, we assume that the data is split into three batches Dy, D1 and D>
of equal sizes and for j =0, 1, 2, let 5 )(Cj ) , 5 ;j ) and i(cfv) be defined as before.

First stage. By the definition of trace inner product, the objective function in
(9) can be rewritten as Tr(L/ixyR) = (ixy, LR’). Since it is linear in F = LR/,
this suggests treating LR’ as a single argument rather than optimizing over L and
R separately. Next, the support size constraints | supp(L)| < s, | supp(R)| < sy
imply that the vector €9 norm ||LR’||p < sysy. Applying the convex relaxation of
£o norm by £ norm and including it as a Lagrangian term, we are led to consider
a new objective function:

(15) max (SO, F)—plIFl|i,

FeRpxm
where F serves as a surrogate for LR', || F||; = Zie[p]’je[m] | F;j| denotes the vec-
tor £; norm of the matrix argument, and p is a penalty parameter controlling
sparsity. The program (15) is the maximization problem of a concave function,
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which becomes a convex program if the constraint set is convex. Under the iden-
tity F = LR’, the normalization constraint in (9) reduces to

16)  (EDPFEM) 20, ={AB :Ac0(p.r), B O(m,r).

Naturally, we relax it to (2)(60) Y2 F (f);o))l/ 2 ¢ C, where
(17) Cr={G eRP":||Glx <7, [Gllop < 1} = conv(O,)

is the smallest convex set containing O,.. The relation (17) is stated in the proof of
Theorem 3 of [35]. Combining (15)-(17), we use the following convex program
for the first stage in our adaptive estimation scheme:

ma f(o),F— F
Jmax (X0 F)=plFlh

. SON1/2 (S (0))1/2 SON1/2 (S0 1/2
subjectto  [(E(7) ZF(ED) 2, < [E)PFED) ], <1

Implementation of (18) is discussed in Section 10 in the supplement [17].

(18)

REMARK 4.1. A related but different convex relaxation was proposed in [32]
for the sparse PCA problem, where the set of all rank r projection matrices (which
are symmetric) is relaxed to its convex hull—the Fantope {P : Tr(P) =r,0 < P <
I}. Such an idea is not directly applicable in the current setting due to the asym-
metric nature of the matrices included in the set O, in (16).

REMARK 4.2. The risk of the solution to (18) for estimating UV’ is sub-
optimal compared to the optimal rates determined in [16]; see Theorem 4.1 below.
Nonetheless, it leads to a reasonable estimator for the subspaces spanned by the
first r left and right canonical coefficient vectors under a sample size condition,
which is sufficient for achieving the optimal estimation rates for U and V in a
further refinement stage to be introduced below. Although it is possible that some
other penalty function rather than the ¢; penalty in (18) could also achieve this
goal, £1 is appealing due to its simplicity.

Second stage. Now we turn to the convex relaxation to (10) in the second stage.
By the discussion following Theorem 3.1, if we view the rows of L as groups, then
(10) becomes a least square problem with a constrained number of active groups.
A well-known convex relaxation for such problems is the group-Lasso [38], where
the number of active groups constraint is relaxed by bounding the sum of £, norms
of the coefficient vector of each group. Let A be the solution to (18) and U@ (resp.,
V) be the matrix consisting of its first r left (resp., right) singular vectors. Thus,
in the second stage of the adaptive estimation scheme, we propose to solve the
following group-Lasso problem:

P
(1 _min T(L'EOL) ~ 2L EDVO) +pu Yo IL .
j=1
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where Zfz 1 IL ;.|| is the group sparsity penalty, defined as the sum of the £, norms
of all the row vectors in L, and p,, is a penalty parameter controlling sparsity. The
group sparsity penalty is crucial, since if one uses an ¢; penalty instead, only a
sub-optimal rate can be achieved. Suppose the solution to (19) is UD, then our
final estimator in the adaptive estimation scheme is its normalized version

(20) 0=0M(@®)sPo®)~
As before, sample splitting is only used for technical arguments in the proof. Sim-
ulation results in Section 11 in the supplement [17] show that using the whole

dataset repeatedly in (18)—(20) yields satisfactory performance and the improve-
ment by the second stage is considerable.

4.2. Theoretical guarantees. We first state the upper bound for the solution A
to the convex program (18).

THEOREM 4.1. Assume that

susy log(p +m)
A2

for some sufficiently large constant C1 > 0. Then there exist positive con-

stants y1,ys and C,C’ only depending on M and Cy, such that when p =

y«/log(p +m)/n fory €[y1, 2],
|A-uv|i=c

1) n>C

’

susylog(p +m)
ni2

with P-probability at least 1 — exp(—C’(s,, + log(ep/s,))) — exp(—C’(sy +

log(em/sy))) for any P € P(n, sy, sy, p,m, r, A; M).

’

The error bound in Theorem 4.1 can be much larger than the optimal rate for
joint estimation of UV’ established in [16]. Nonetheless, under the sample size
condition (21), it still ensures that A is close to UV’ in Frobenius norm distance.
This fact, together with the proposed refinement scheme (19)—(20), guarantees the
optimal rates of convergence for the estimator (20) as stated in the following theo-
rem.

THEOREM 4.2. Assume (21) holds for some sufficiently large C1 > 0. Then
there exist constants y and y, only depending on C| and M such that if we set

p =vy'Vlog(p +m)]/n and p, = y,+/(r +logp)/n for any y'" € [y, C2y] and

)/L: € [Yu, Cayul for some absolute constant C > 0, there exist a constants C, C' >
0 only depending on Cy, C> and M, such that

s, (r +1log p)

ni2 ’
with P-probability at least 1 — exp(—C’(s, + log(ep/sy))) — exp(—C’(sy +
log(em/sy))) — exp(—C’'(r + log(p A m))) uniformly over P € P(n, sy, sy, p,
m,r,A; M).

LU, U)<C
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REMARK 4.3. The result of Theorem 4.2 assumes a constant M. Explicit de-
pendence on the eigenvalues of the marginal covariance can be tracked even when
M is diverging. Assuming the eigenvalues of X, all lie in the interval [M1, M>],

then the convergence rate of L (l7 , U) would be (%)2 W and a convergence

rate of || P — Py ||% would be (%)“NI%. Compared with Remark 3.1, there

is an extra factor (%)2, which is also present for the Lasso error bounds [7, 28].
Evidence has been given in the literature that such an extra factor can be intrinsic
to all polynomial-time algorithms [39].

Although both Theorems 4.1 and 4.2 assume Gaussian distributions, a scrutiny
of the proofs shows that the same results hold if the Gaussian assumption is weak-
ened to sub-Gaussian. By Theorem 3.2, the rate in Theorem 4.2 is optimal. By
Theorems 4.1 and 4.2, the choices of the penalty parameters p and p, in (18) and
(19) do not depend on s, or s,. Therefore, the proposed estimation scheme (18)—
(20) achieves the optimal rate adaptively over sparsity levels. A full treatment of
adaptation to M is beyond the scope of the current paper, though it seems pos-
sible in view of the recent proposals in [5, 11, 31]. A careful examination of the
proofs shows that the dependence of p and p, on M is through || X, ||(1,{)2|| Xy ||(1){,2
and || Xy [|lop, respectively. When p and m are bounded from above by a constant
multiple of n, we can upper bound the operator norms by the sample counterparts
to remove the dependence of these penalty parameters on M. We conclude this
section with two more remarks.

REMARK 4.4. The group sparsity penalty used in the second stage (19) plays
an important role in achieving the optimal rate s, (r + log p)/(nA?). Except for the
extra A~2 term, this convergence rate is a typical one for group Lasso [24]. If we
simply use an £; penalty, then we will obtain the rate rs, log p/(nA?), which is
clearly sub-optimal.

REMARK 4.5. Comparing Theorem 3.1 with Theorem 4.2, the adaptive es-
timation scheme achieves the optimal rates of convergence for a smaller collec-
tion of parameter spaces of interest due to the more restrictive sample size condi-
tion (21). We examine the necessity of this condition in more details in Section 5
below.

5. Computational lower bounds. In this section, we provide evidence that
the sample size condition (21) imposed on the adaptive estimation scheme in The-
orems 4.1 and 4.2 is probably unavoidable for any computationally feasible esti-
mator to be consistent. To be specific, we show that for a sequence of parameter
spaces in (5)—(6), if the condition is violated, then any computationally efficient
consistent estimator of sparse canonical coefficients leads to a computationally ef-
ficient and statistically powerful test for the Planted Clique detection problem in a
regime where it is believed to be computationally intractable.
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Planted clique. Let N be a positive integer and k € [N]. We denote by
G(N, 1/2) the Erd6s—Rényi graph on N vertices where each edge is drawn inde-
pendently with probability 1/2, and by G(N, 1/2, k) the random graph generated
by first sampling from G(N, 1/2) and then selecting k vertices uniformly at ran-
dom and forming a clique of size k on these vertices. For an adjacency matrix
A € {0, 1}N*N of an instance from either G(N, 1/2) or G(N, 1/2, k), the Planted
Clique detection problem of parameter (N, k) refers to testing the following hy-
potheses:

(22) HS :A~G(N,1/2) vs. HP:A~G(N,1/2,k).

It is widely believed that when k = O(N 1728y " the problem (22) cannot be
solved by any randomized polynomial-time algorithm. In the rest of the paper, we
formalize the conjectured hardness of Planted Clique problem into the following
hypothesis.

HYPOTHESIS A. For any sequence k = k(N ) such that limsupy _, o, 11(;)511:/ < %
and any randomized polynomial-time test \r,

W

liminf(P 6y +P 0 (1 =) =

Evidence supporting this hypothesis has been provided in [15, 30]. Compu-
tational lower bounds in several statistical problems have been established by as-
suming the above hypothesis and its close variants, including sparse PCA detection
[6] and estimation [34] in classes defined by a restricted covariance concentration
condition, submatrix detection [26] and community detection [18].

Necessity of the sample size condition (21). Under Hypothesis A, the necessity
of condition (21) is supported by the following theorem.

THEOREM 5.1.  Suppose that Hypothesis A holds and that as n — oo, p =m
satisfying 2n < p < n® for some constant a > 1, s, = s, n(logn)’ < cs;'for some

sufficiently small ¢ > 0, and A = m If, for some § € (0, 1),
1-6 1
23) liming S _loglp+m)
n—00 na2

then for any randomized polynomial-time estimator u,

1 1
(24) liminf sup P{L(ﬁ, u) > —} > -,
=00 Pep(n,sy,sv, pom,1,1;3) 300 4

Comparing (21) with (23), we see that subject to a sub-polynomial factor, the
condition (21) is necessary to achieve consistent sparse CCA estimation within
polynomial time complexity.
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REMARK 5.1. The statement in Theorem 5.1 is rigorous only if we assume
the computational complexities of basic arithmetic operations on real numbers and
sampling from univariate continuous distributions with analytic density functions
are all ®(1) [9]. To be rigorous under the probabilistic Turing machine model
[2], we need to introduce appropriate discretization of the problem and be more
careful with the complexity of random number generation. To convey the key ideas
in our computational lower bound construction, we focus on the continuous case
throughout this section and defer the formal discretization arguments to Section 8
in the supplement [17].

We divide the reduction argument leading to Theorem 5.1 into two parts. In the
first part, we show Hypothesis A implies the computational hardness of the sparse
PCA problem under the Gaussian spiked covariance model. In the second part, we
show computational hardness of sparse PCA implies that of sparse CCA as stated
in Theorem 5.1.

5.1. Hardness of sparse PCA under Gaussian spiked covariance model.
Gaussian single spiked model [22] refers to the distribution N, (0, ¥) where
Y =100’ 4 I,,. Here, 6 is the eigenvector of unit length and 7 > 0 is the eigen-
value. Define the following Gaussian single spiked model parameter space for
sparse PCA:

Q(n,s, p,A)
iid.
(25) = (LW, ..., Wa): Wi "= N, (0,760 + 1),
1010 <5, 7 €A, 3A]}.
The minimax estimation rate for & under the loss || P — Py ||12: is él—;ls log %; see,

for instance, [12]. However, to achieve the above minimax rate via computationally
efficient methods such as those proposed in [8, 12, 25], researchers have required

2
the sample size to satisfy n > C SIA# for some sufficiently large constant C > 0.
Moreover, no computationally efficient estimator is known to achieve consistency
when the sample size condition is violated. As a first step toward the establishment

of Theorem 5.1, we show that Hypothesis A implies hardness of sparse PCA under
528 log p

> 0 for some

Gaussian spiked covariance model (25) when liminf,,_
6 >0.

Previous computational lower bounds for sparse PCA in [6, 34] cannot be used
here directly because they are only valid for parameter spaces defined via the re-
stricted covariance concentration (RCC) condition. As pointed out in [34], such
parameter spaces include (but are not limited to) all sub-Gaussian distributions
with sparse leading eigenvectors and the covariance matrices need not be of the
spiked form X = t06’ 4 I,,. Therefore, the Gaussian single spiked model param-

eter space defined in (25) only constitutes a small subset of such RCC parameter
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spaces. The goal of the present subsection is to establish the computational lower
bound for the Gaussian single spiked model directly.

Suppose we have an estimator 0=0(Wi,..., Wy) of the leading sparse eigen-
vector, we propose the following reduction scheme to transform it into a test
for (22). We first introduce some additional notation. Consider integers k and N.
Define

k k
26 Sy = —, - -
(26) NENT TN T 45N og V)2
For any 1 € R, let ¢, denote the density function of the N (i, 1) distribution, and
let

- 1
(27) ¢/L = 5(‘15/1 + ¢—u)

denote the density function of the Gaussian mixture %N (w, 1) + %N (—u, 1).
Next, let @y be the restriction of the N (0, 1) distribution on the interval

[—3+/log N, 34/log N]. For any |u| < 3+/nylog N, define two probability dis-
tributions ¥, o and F, 1 with densities

28)  fuo() = Mo(do(x) — 8y [Bu () — G014 =3 iog )
29 fu1®) = Mi(do) + 8y [Bu () — G011 <3 i)

where the M;’s are normalizing constants such that [ f,; =1 for i =0, 1. It
can be verified that f, ; are properly defined probability density function when
|| < 3+4/nnlog N. For details, see Lemma 7.4 in the supplement [17].

With the foregoing definition, the proposed reduction scheme can be summa-
rized as Algorithm 1. Here, the starting point is the adjacency matrix A of the
random graph, and the reduction is well defined for all instances of N > 12n and
p = 2n.

We now explain how the reduction achieves its goal. For simplicity, focus on

the case where p =2n. Let € = (¢1, ..., &2,) € {0, 1}?" where ¢; is the indicator
of whether the ith row of Ag (defined in Step 2 of Algorithm 1) belongs to the
planted clique or not, and y = (y1, ..., y2,) the indicators of the columns of Ag.

We discuss the distributions of W when A ~ HOG and H lG , respectively.

When A ~ HOG , the &;’s and y;’s are all zeros. In this case, we can verify that the
entries of W are mutually independent and for each (i, j) the marginal distribution
of W;; is close to the N (0, 1) distribution (cf., Lemma 7.1 in the supplement [17]).
Hence, the rows of W are close to i.i.d. random vectors from the N, (0, I),) dis-
tribution. Since § = §(W1, ..., W) is independent of {W,-}izin e the LHS of (33)
is close in distribution to a x2 random variable scaled by n which concentrates
around its expected value one. Indeed, it is upper bounded by 1 + O (y/log(n)/n)

with high probability.



SPARSE CCA 2089

Algorithm 1: Reduction from planted clique to sparse PCA (in Gaussian sin-
gle spiked model)

Input:

1. Graph adjacency matrix A € {0, 1}V*V;

2. Estimator 8 for the leading eigenvector 6.

Output: A solution to the hypothesis testing problem (22).

1 Initialization. Generate i.i.d. random variables &, . . ., &, ~ ®. Set
1/2 .
(30) =k, i=1,....2n.

2 Gaussianization. Generate two matrices By, B] € R¥"*2" where
conditioning on the y;’s, all the entries are mutually independent satisfying

(31) L((Bo)ijlpi) = Fuo and  L((B1)ijlmi) = Fui-
Let Ag € {0, 1}2*2" be the lower—left 21 x 2n submatrix of the matrix A.
Generate a matrix W =[W{,..., W} 1 € R2"%P where for each i € [2n], if
j €[2n], we set
(32) Wij = (Bo)ij(1 — (A0)ij) + (B1)ij(Ao)ij-
If2n < j < p, welet W;; j be an independent draw from N (0, 1).

3 Test Construction. Let § = 9(W1, ..., W) be the estimator of the leading

eigenvector by treating {W;}?_, as data. It is normalized to be a unit vector.
We reject HOG if

2n
(33) ( > WW) >1+ an

i=n+1

IfA~ HIG , then the (i, j)th entry of A is an edge in the planted clique if and

only if &; = y; = 1. Moreover, the joint distribution of {e1, ..., &, ¥1,..., V2n)
is close to that of 4n i.i.d. Bernoulli random variables {21, ..., €2, V1, ..., Y2u}
with success probability §y = k/N. For simplicity, suppose that these indicators
are indeed i.i.d. Bernoulli(§y) variables {1, ..., %2, Y1, ..., Y2»}. Then one can

show that conditioning on ¥; = 0, for any i € [2n], the conditional distribution
of (W;;|y; = 0), after integrating over the conditional distribution of &;, u; and
(Ag)ij, is approximately N (0, 1). In contrast, conditioning on ¥; =1, for any i €
[2n], the conditional distribution of (W;;|¥; = 1) is approximately N (0, 1 + ny).
Therefore, conditioning on ¥ the distribution of the W;’s is close to that of 2n i.i.d.
random vectors sampled from

N,(0,760"+ I,) where 0 = 7/||7|| and T = ny[|7]|%,
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that is, a Gaussian spiked covariance model in (25). Here, the leading eigenvector
¢ has sparsity level |supp(6)| = |supp(y)| = X_; ¥, which concentrates around
its mean value néy < k if N < n. Thus, if 6 estimates 0 well, then the LHS of (33)
approximately follows a noncentral X,f distribution scaled by »n (with noncentrality
parameter determined by k and n), which exceeds 1 4 kny /4 with high probability
under the alternative hypothesis. Hence, Algorithm 1 is expected to yield a test
with small error for the Planted Clique problem (22) when fisa good estimator.
Under the conditions of Theorem 5.2 below, kny can be as small as C/logn/n
for some constant C > 0.

The materialization of the foregoing discussion leads to the following result
which demonstrates quantitatively that a decent estimator of the leading sparse
eigenvector results in a good test [by applying the reduction (30)—(33)] for the
Planted Clique detection problem (22).

<

5
THEOREM 5.2. For some sufficiently small constant ¢ > 0, assume N(k;%m

c,cN <n<N/12 and p > 2n. Then, for any 0 such that

, 1
(34) sup QillPs— Pollg> st =B,
QeQ(n,3k/2, p.knw /2) 3

the test Y defined by (30)—(33) satisfies
4n /
]P’Hé;glf +IFDHIG(1 —Y)< B+ N + C(n—1 + N 14 € k)’
for sufficiently large n with some constants C, C' > 0.

If the estimator 8 is uniformly consistent over Q(n, 3k/2, p, kny/2), then B is
close to zero. Hence, the conclusion of Theorem 5.2 implies that for appropriate
growing sequences of n, N and k, the testing error for (22) can be made smaller
than any fixed nonzero probability. Further invoking Hypothesis A, we obtain the
following computational lower bounds for sparse PCA.

THEOREM 5.3. Suppose that Hypothesis A holds and that as n — 00, 2n <
p < n for some constant a > 1, n(logn)> < cs* for some sufficiently small ¢ > 0,

_ s
and A = 3030n (log(120)% If for some § € (0, 2),

2—6
]
(35) Liminfl— 8P

0,
n—o00 n)LZ

then for any randomized polynomial-time estimator 0,

1 1
(36) liminf  sup Q{HPA— Pyl% > —} > —.
"0 QeQ(n,s,p,i) ¢ K 4



SPARSE CCA 2091

Algorithm 2: Reduction from sparse PCA to sparse CCA

Input:
1. Observations Wy, ..., W, € R?;
2. Estimator # of the first leading canonical correlation coefficient u.
Output: An estimator 6 of the leading eigenvector of L(W7).
1 Generate i.i.d. random vectors Zi, ..., Z, ~ N,(0, I,). Set

1 1
V2 V2
2 Compute 4 =u(X1, Yy, ..., X, Yy). Set

39 X = Wi+ Z2;), Y; Wi = Z;), i=1,...,n.

(40) O=06(W,....,W,) =i/lal.

In addition to estimation, we can also consider the following sparse PCA detec-

tion problem: Let Q denote the joint distribution of Wy, ..., W,, and we want to
test
(37) Hy:QeQn,s,p,0) vs. H:QeQ(n,s, p,A).

The space Q(n, s, p, 0) contains only one distribution Qy where W; i N,(0,1p).
Given any testing procedure ¢ = ¢(Wy,..., W,), we can obtain a solution to
(22) by replacing the third step in Algorithm 1 with the direct testing result of
¢ (Wi, ..., W,). Following the lines of the proof of Theorem 5.3, we have the fol-
lowing theorem.

THEOREM 5.4. Under the same condition of Theorem 5.3, for any random-
ized polynomial-time test ¢ for testing (37),

(38) 1iminf(<@0¢+ sup @(1—¢))z
n—>00 QeQm,s,p,r)

=

REMARK 5.2. Theorems 5.3-5.4 are the first computational lower bounds for
sparse PCA that are valid in the setting of Gaussian single spiked covariance mod-
els (25).

5.2. Hardness of sparse CCA. In the second step, we show that computational
hardness of sparse PCA under Gaussian spiked covariance model implies the de-
sired result in Theorem 5.1. We propose the reduction in Algorithm 2.

To see why Algorithm 2 is effective, one can verify that if W; R (0, 700"+
1), then (X!, ¥/)' " N\, (0, ) where

A1) Sy=3, = %99’ 1y By =S (av) T,
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with u =v = \/f/gzﬁ’ A= f/rz/.ZH- This is a special case of the Gaussian canon-
ical pair model (2). Thus, the leading eigenvector of W; aligns with the leading
canonical coefficient vectors of (X;, Y;). Exploiting this connection, we obtain the

following theorem.
THEOREM 5.5. Consider p =m, s, = s, and A < 1. Then for any u such that

1
(42) sup ]P’{L(ﬁ, u) > —} < B,
PeP(n,sy,sv,p,m,1,1/3;3) 300

the estimator 6 defined by Algorithm 2 satisfies

1
sup @{uPa— Pol2 > 5} < 8.
QeQ(n,s,p,r)

If we start with an estimator u of the leading canonical coefficient vector, then
we can construct the reduction from Planted Clique to sparse CCA directly by
essentially following the steps in Algorithm 1 while using Algorithm 2 to construct
6 from @ in the third step. Finally, the desired Theorem 5.1 is a direct consequence
of Theorems 5.3 and 5.5.

6. Proofs. This section presents proofs of Theorems 4.1 and 4.2. The proofs
of the other theoretical results are given in the supplement [17].

6.1. Proof of Theorem 4.1. Before presenting the proof, we state some tech-
nical lemmas. The proofs of all the lemmas are given in Section 9.3 in the
supplement [17]. First, observe that the estimator is normalized with respect

to f)(co) and §§0)’ while the truth U and V is normalized with respect to X,
and X,. To address this issue, we normalize the truth with respect to by )(CO) and
fﬁo) to obtain U = U(U/’E\)(CO)U)_U2 and V = V(V/§§O)V)_l/2. Also define
A=U'S ,(CO)U W2AW iﬁo) V)72, For notational convenience, define

1 ep 1 em
43) Enu = —(su + log —), Eny = —<sv + log —)
n Su n Sv

The following lemma bounds the normalization effect.

LEMMA 6.1.  Assume 6‘%’ u T Eﬁ’u < c for some sufficiently small constant c €
(0, 1). Then there exist some constants C, C' > 0 only depending on ¢ such that

H 2;/2([7 - U) ”()p = an,u, ” 2)1;/2(‘7 - V)”op =< an,v,
”7\ - A”op =< C(sn,u + 8n,v),

with probability at least 1 — exp(—C’(s, + log(ep/sy))) — exp(—C'(sy +
log(em/sy))).
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Using the definitions of U and V, let us state the following lemma, which asserts
that the matrix A = UV’ is feasible to the optimization problem (18).

LEMMA 6.2. Define A=UV'. When A exists, we have
SON1/2 7701 1/2 SON1/2 700 1/2
| PAED) 2, =r and () PAED)?],=1.

As was argued in Section 4.1, the set C, is the convex hull of O,.. The follow-
ing curvature lemma shows that the relaxation C, preserves the restricted strong
convexity of the objective function.

LEMMA 6.3. Let F € O(p,r),G € O(m,r), K e R"*" and D = diag(dy, ...,
dy) withdy > --- > d, > 0. If E satisfies || Ellop < 1 and |E||x <7, then

(44) (FKG',FG' —E)> 7’||FG/ — E|; - IK — D||g|FG' — E|;.

Define
(45) f]xy = i)(co)UA V’i;o).

Lemma 6.4 is instrumental in determining the proper value of the tuning parameter
required in the program (18).

LEMMA 6.4. Assume r+/[log(p +m)]/n < c for some sufficiently small con-
stant ¢ € (0, 1). Then there exist some constants C,C' > 0 only depending on M

and c¢ such that ||§,(C()),) — f]xylloo < C/llog(p + m)]/n, with probability at least
1—(p+m)=C.

We also need a lemma on restricted eigenvalue. For any p.s.d. matrix B, define

u'Bu B u'Bu

B
k)= max , . (k)= min .
Pmar (6) lullo<k,u0 u'u Pmin (k) lullo<k,uz0 u'u

The following lemma is adapted from Lemma 12 in [16], and its proof is omitted.

LEMMA 6.5. Assume %((ku A p)log(ep/(ky A p)) + (ky Am)log(em/(ky A
m))) < c¢ for some sufficiently small constant ¢ > 0. Then there exist some
constants C,C’ > 0 only depending on M and c such that for &,(k,) =
\/(kuAp)log;ep/(kuAp)) and 8, (ky) :\/(kvAm)log(em/(kuAm))

, we have

1 CSuh) < 5F () < % (k) < M + Cu (),

E() $U)
— Cdy(kv) < Ppyiyy (ko) < Pmax (k) < M + Cdy(ky),

with probability at least 1 — exp(—C’(k, A p)log(ep/(ky A p))) —exp(—C'(ky A
m)log(em/(k, Am))), for j =0,1,2.
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Proofs of Lemmas 6.1-6.5 are given in Section 9.3.1 of the supplement [17].

PROOF OF THEOREM 4.1. In the rest of this proof, we denote i,(co), 2;0) and

f)(c(;) by fx, fy and fxy for notational convenience. We also let A = A — A. The
proof consists of two steps. In the first step, we are going to derive an upper bound
for || Xy SI2A 1/ 2 lr. In the second step, we derive a generalized cone condition and

use it to lower bound ||2)1/2A2)1/2
$1/2 5 1/2

|F by a constant multiple of ||A|lr and hence

the upper bound on || X, |l leads to an upper bound on ||A .
Step 1. By Lemma 6.1, U and V are well defined with high probability. Thus,
A is well defined with high probability, and we have

(46) |22 (A= UV 2], < Clenu+ nn)-

with probability at least 1 — exp(—C'(s, + log(ep/sy))) — exp(—=C'(sy +
log(em/sy))). According to Lemma 6.2, A is feasible. Then, by the definition
of A, we have

(Say, A) — pll Al = (sy, A) — pl|All1.
After rearrangement, we have
(47) (B, A) < p(I Al = 1A+ Allr) + (Zxy — Zxy, A),
where X, is defined in (45). For the first term on the RHS of (47), we have
1Al — 1A+ Al = | As,s, 1t — | As,s, + As,s, 11— 1A, s.¢ 1
< 1As,s, 1 — 1A, sp)ell1-

For the second term on the RHS of (47), we have (Xyy — Xyy, A) < ||§xy —
ZxylloollAll1. Thus, when

(48) p =2y — Exylloc,
we have
< 3p P
(49) —(Zxy, A) < THASMSU I — EHA(SMSU)CHL

Using Lemma 6.3, we can lower bound the LHS of (49) as
—(Z4y. A) = (BYPUAV'EY? S (A - HE )

~ e~

(50) < 1/2L~]Av 21/2 ;/Z(Z—Z)§;/2>

S12.7  N$1/2)2 12,7 S
= 5“ |£22(A- DT - 8|22 A - DE,
where 6§ = ||1~\ — AJlr. Combining (49) and (50), we have
-~ -~ 2 -~ o~
S A [SIV2AS2E <30l As,s, Il — pllAcs,sell + 28| S2AT)2]

(52) <3pllAs,s, Il + 28| SV A8 .
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Solving the quadratic equation (52) by Lemma 2 of [12], we have
(53) |SY2AS2 |8 <6l As,s, 11 /A + 482 /22
Combining (51) and (53), we have

0<3pllAs,s, Il — pIIAS, sl +8%/A + 4 |EV2AS2 R

(54) )
<90l As,5, 1l = Pl A5l + 5622,

which gives rise to the generalized cone condition that we are going to use in
Step 2. Finally, by the bound [[Ag, s, [l1 < i/SusvpllAs,s, |IF and (53), we have

(55) |SY2ASY2(E < 6(/5usupll As,s, lIF/Ar + 457 /32,

which completes the first step.
Step 2. By (54), we have obtained the following condition:

(56) A, sl <9 As,s, 11 + 58%/(oAr).

Due to the existence of the extra term 582/(pA,-) on the RHS, we call it a general-
ized cone condition. In this step, we are going to lower bound || A;/ zAf;/ 2||1: by
||A]lr on the generalized cone. Motivated by the argument in [7], let the index set
J1 = {(, jk)}fcz1 in (S, x Sy)¢ corr~esp0nd to the entries with the largest ab~solute
values in A, and we define the set J = (S, x Sy) U J;. Now we partition J€¢ into
disjoint subsets J3, ..., Jx of size t (with |Jx| < t), such that J; is the set of (dou-
ble) indices corresponding to the entries of ¢ largest absolute values in A outside

JuU Ulj;é J;. By the triangle inequality,

|22 A% 2]

K
= DN DD DIV I
k=2

—~ = I P K
> \/ Bt 51+ Dby (50 + DI AFIE =y bt (b () 1 A, I
k=2

By the construction of Ji, we have

K K
DNARIE =V 1A, oo
k=2 k=2

K
(57) <t 123 A h =T A, s
k=2
582 5,5 582
—1/2< uSv A
<i712(9) As,s, 11 + )59 1Al + ,
r / prr/t
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where we have used the generalized cone condition (56). Hence, we have the lower
bound

| i;/ZAi;/z |g = xill Aglle = 282/ (pAra/1),

with

k1= \/ G5+ D0 0 = 9" BFH O 0,

K2 = 5\/ ¢max(t)¢max(t)-

Taking t = c1s,s, for some sufficiently large constant ¢; > 1, with high probabil-
ity, k1 can be lower bounded by a positive constant x¢ only depending on M. To see
this, observe that by Lemma 6.5, (58) can be lower bounded by the difference of
VM=TZC8,2c15,50)0VM—T = C8,2c1545,) and 9¢] /> /M + C8,(C15450) X
M + C8,(cy5,5,), where 8, and 8, are defined as in Lemma 6.5. It is sufficient
to show that &, (2c1s,5y), Sv(2c184Sy), Su(c15,8y) and &, (c1s,$y) are sufficiently
small to get a positive absolute constant «g. For the first term, when 2cys,s, < p,

it is bounded by M and is sufficiently small under the assumption (13).
2(,’1Su

(58)

When 2c¢;s,s, > p, it is bounded by v and is also sufficiently small under
(13). The same argument also holds for the other terms. Similarly, x; can be upper
bounded by some constant.

Together with (55), this brings the inequality

IAFIE < Cr(/5usop /A AFIIE + C2(82 /3% + (82 /(oA v/D))).

Solving this quadratic equation, we have

2 2 2 2
SySy P 1) )
59 A~2<C<”” +_+<—>).
(59) | J”F— )»% )\% p)\r\/;
By (57), we have
(60) 1A <§||A T T N i
Je F_k:2 JIIF = P JIF p}\rﬁ-

Summing (59) and (60), we obtain a bound for || A|g. According to Lemma 6.4,

we may choose p = y+/[log(p + m)]/n for some large v, so that (48) holds with
high probability. By Lemma 6.1, § < C/r(s, + s, +log(p +m))/n < C'p/t
with high probability. Hence,

(61) [AllF < C/susvp/Ar,

with high probability. This completes the second step. Finally, the triangle inequal-
ity leads to |[A — UV'|lg < |[Allg + |A — UV’||g. By (46) and (61), the proof is
complete. [
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6.2. Proof of Theorem 4.2. Define U* = UAV’EyV(O) and A=U" — U*.

LEMMA 6.6. Assume rﬂ# < ¢ for some sufficiently small constant c €
(0, 1). Then there exist some constants C, C' > 0 only depending on M and c such
that maxi<j<, ||[§,(C;)V(O) - f,(cl)U*]j. | < C/(r +1og p)/n, with probability at
least 1 —exp(—C’(r + log p)).

The proof of Lemma 6.6 is given in Section 9.3.1 of the supplement [17].

PROOF OF THEOREM 4.2. In the rest of this proof, we denote f)(cl), fﬁl) and

i(cly) by M iy and fxy for simplicity of notation. These covariance matrices
depend on D, while the estimator V() depends on Dy. Hence, V© is independent
of the sample covariance matrices occurring in this proof. The proof consists of
three steps. In the first step, we derive a bound for Tr(A’X, A). In the second step,
we derive a cone condition and use it to obtain a bound for || Al|r by arguing that
Tr(é’ >xA) upper bounds ||A|lr. In the last step, we derive the desired bound for
LU, U). _ o _

Step 1. By definition of U, we have Tr(UMYZ,UD) — 2Tr(UD) x
SoVO) + aXP_ 1001 < WMWY EUY - 2T(UH'ELVO) +
Ou Z?Z nl U}“ |. After rearrangement, we have

p
(62) T(A'S A) < pu Y _[|US] = U + Ap ]+ 2T[A (2, VO — Z,U%)].
j=1
For the first term on the RHS of (62), we have

p
(1A B 1N DB [ BB [ VA B B ViV
j:l JESu jeSu jGS,s
<> A=Y 1Al
JjeSu JESS

For the second term on the RHS of (62), we have

-~

p
(A (2, VO - 2,U0%) < (Z ||A,~.||> max [[Z,,V© -, 0%]
j=1

)

1<j<p J

where [-];. means the jth row of the corresponding matrix. When

(63) oy =4 1I£Ja§p||[§xy‘7(0) - ix U*]j. )
we have
3

(64) TH(A'S A) <

P J%
52 A =5 2 A

jesu jess
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Since 3 jes, 1Al < /Suy/ 2 jes, ||Aj.||2, (64) can be upper bounded by

3 u
(65) Tr(A'S,A) < fp IS A2,
JE€Su

This completes the first step.
Step 2. The inequality (64) implies the cone condition

(66) Do IAI=3) 1AL
jGSC JESu
Let the index set J; = {j1, ..., j;} in S} correspond to the rows with the largest £,
norm in A, and we define the extended support S. = S, U Ji. Now we partition
S,; into disjoint subsets Ja, ..., Jx of size ¢t (with |Jg| < t), such that Ji 1s~the
set of indices corresponding to the ¢ rows with largest {2 norm in A outside S, U
USZ3 7). Observe that Tr(A'E, A) = [n~'/2X A}, where X =[X1,..., X, €
R"*P denotes the data matrix. By the triangle inequality, we have
-1/2 —1/2y A~ -1/2
[n = 2X Al = |2 X Ay flp = 3|2 X A g
k>2

> 8 (50 + DIAZ, Ik — VoEi® 3 1A jullr,

k>2

where for a subset B C [p], Ap+ = (A;j1jieB, jerr)), and

(67) Z||A1k*||F<meax||A, ||<fZ A

k>2 k>2 k>2 jeJr—1
—1/2 —1/2
<t V2N A =372 A
jESe JESu

) S
(68) 53,/7” > IIAj.||2§3,/7“IIA§M*IIF
JESU

In the above derivation, we have used the construction of J; and the cone condition

(66). Hence, [ ™2X Allp = | Ag,  Ir with ic = g2 (s + 1) — 3,/% g (1)

In view of Lemma 6.5, taking ¢ = c1s, for some sufficiently large constant cy, w1th
high probability, ¥ can be lower bounded by a positive constant xg only depending
on M. Combining with (65), we have

(69) ||A§L{*||F = C\/Elou/(z’((%)'
By (67)—-(68), we have

1
(70)  NAG, exllF < Y IIA e < 3Vsu /1l A3, I < 3c) /2 IAg llIF-
k>2
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Summing (69) and (70), we have ||Al|g < C /s, p. By Lemma 6.6, we may choose
Ou = Yur/ r“% for some large y,, so that (63) holds with high probability. Hence,

Al < Ci/s,(r +1og p)/n with high probability. This completes the second
step.

Step 3. Using the same argument in Step 2 of the proof of Theorem 3.1 (see
supplementary material [17]), we obtain the desired bound for L(U, U). The proof
is complete. [

SUPPLEMENTARY MATERIAL

Supplement to ‘“Sparse CCA: Adaptive estimation and computational bar-
riers” (DOI: 10.1214/16-AO0S1519SUPP; .pdf). The supplement presents addi-
tional proofs and technical details, implementation detail of (18), and numerical
studies.
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