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INVARIANT MEASURE FOR THE STOCHASTIC NAVIER–STOKES
EQUATIONS IN UNBOUNDED 2D DOMAINS

BY ZDZISŁAW BRZEŹNIAK1, ELŻBIETA MOTYL1 AND MARTIN ONDREJAT2

University York, University of Łódź and Czech Academy of Sciences

Building upon a recent work by two of the authors and J. Seidler on bw-
Feller property for stochastic nonlinear beam and wave equations, we prove
the existence of an invariant measure to stochastic 2-D Navier–Stokes (with
multiplicative noise) equations in unbounded domains. This answers an open
question left after the first author and Y. Li proved a corresponding result in
the case of an additive noise.

1. Introduction. A classical method of proving the existence of an invari-
ant measure for a Markov proceess is the celebrated Krylov–Bogoliubov method.
Originally, it was used for Markov processes with values in locally compact state
spaces, for example, finite dimensional Euclidean spaces; see, for example, [26]
and [33]. In recent years, it has been successfully generalized to Markov processes
with nonlocally compact state spaces, for example, infinite dimensional Hilbert
and Banach spaces; see, for instance, the books by Da Prato and Zabczyk [18, 19],
a paper [5] by the first named authour and Gatarek for stochastic reaction diffusion
equations in a Banach space framework and a fundamental paper by Flandoli [20]
for the case of 2-dimensional Navier–Stokes equations with additive noise. One
should also mention here a somehow reverse problem, found, for instance, in the
stochastic quantisation approach of Parisi and Wu [35], of constructing a Markov
process with certain properties given an “a priori invariant measure”. In the context
of stochastic partial differential equations, this approach has been successfully im-
plemented by Da Prato and Debussche for 2-dimensional Navier–Stokes equations
with periodic boundary conditions driven by space time white noise in [16] and for
the 2-D stochastic quantization equation in [17].

The latter method is related to the approach by Dirichlet forms as, for instance,
in [2]. In the field of deterministic dynamical systems, the so-called Avez method
(see [3] and [28]), is also popular. It seems that the first of these methods when
used in order to prove the existence of an invariant measure for Markov processes
generated by SPDEs one requires the existence of an auxiliary set, which is com-
pactly embedded into the state space and in which the Markov process eventually
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lives. Thus, it has so far been restricted to SPDEs of parabolic type (giving nec-
essary conditions with smoothing effect) and in bounded domains (providing the
needed compactness via the Rellich theorem).

On the other hand, as a byproduct of results obtained by Yuhong Li and the first
named author in [8], about the existence of a compact absorbing set for stochas-
tic 2-dimensional Navier–Stokes equations with additive noise in a certain class
of unbounded domains, there exists an invariant measure for the Markov process
generated by such equations. This, to the best of the authors’ knowledge, provides
the first example of nontrivial SPDEs without the previously required compactness
assumption possessing an invariant measure. A posteriori, one can see that behind
the proof is the continuity of the corresponding solution flow with respect to the
weak topologies; see Example 1.1.

It is has been discovered in [29], Proposition 3.1, that a bw-Feller semigroup
has an invariant probability measure provided the set

(1.1)
{

1

Tn

∫ Tn

0
P ∗

s ν ds;n ≥ 1
}

is tight on (H, bw). However, it is far from straightforward to identify stochastic
PDEs for which the associated transition semigroups are bw-Feller. This has been
recently done for SPDEs of hyperbolic type (i.e., second order in time) such as
beam and nonlinear wave equations in [12], but see also [25] for another approach
to a similar problem. The aim of this work is to show that the general approach
proposed in that paper is also applicable to stochastic Navier–Stokes equations in
unbounded domains. In the case of bounded domains, the first such a result has
been obtained by Flandoli in the celebrated paper [20]. A similarity between the
equations studied in [12] and the current paper is that the linear generator has
no compact resolvent. However, in the current situation, the generator is sectorial
contrary to the former case. However, the smoothing of the semigroup is rather
used to counterweight the nonsmoothness of the nonlinearity.

On the other hand, in [29] Maslowski and Seidler proposed to use the of weak
topologies to the proof of the existence of invariant measures but the applications
of the proposed theory had limited scope.

These two papers, that is, [29] and [8] have inspired us to investigate this matter
further.

Moreover, while working on the existence of solutions to geometric wave equa-
tions it has become apparent to us that the methods of using very fine techniques in
order to overcome the difficulty arising from having only weak a’priori estimates
should also allow one to prove the sequentially weak Feller property required by
the Maslowski and Seidler approach. This made it possible to prove the existence
of invariant measure for SPDEs of hyperbolic type as, for instance, wave and beam;
see the recent paper [12] by the Seidler and the first and third authors.

The aim of the current work is to show that the approach worked out in [12]
combined with the method of proving the existence of stochastic Navier–Stokes
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equations in general domains developed recently by the first and second authors
(see, for instance, [9]) indeed can lead to a proof of the existence of an invariant
measure for stochastic 2-dimensional Navier–Stokes equations with multiplicative
noise (and additive as well) in unbounded domains, and thus generalising the pre-
viously mentioned result [8].

Let us stress that the general result proved in Sections 5–10 of [12] does not
apply directly to stochastic NSEs. Instead, we propose a scheme which is general
enough that it should be applicable to other equations. Let us describe it in more
detail. In a domain O ⊂ R

2 satisfying the Poincaré inequality, we consider the
following stochastic Navier–Stokes equations in the functional form:

(1.2)

⎧⎪⎪⎨
⎪⎪⎩

du(t) + Au(t) dt + B
(
u(t), u(t)

)
dt

= f dt + G
(
u(t)

)
dW(t), t ∈ [0, T ],

u(0) = u0,

where A is the Stokes operator, u0 ∈ H, f ∈ V′ and we use the standard notation;
see the parts of the paper around equation (3.2). In particular, W = (W(t))t≥0 is
a cylindrical Wiener process on a separable Hilbert space K defined on a ceratin
probability space and the nonlinear diffusion coefficient G satisfy some natural
assumptions. It is known (but we provide an independent proof of this fact) that
the above problem has a unique global solution u(t;u0), t ≥ 0. The corresponding
semigroup (Pt )t≥0 is Markov; see Proposition 6.1. This semigroup is defined by
the formula [see (6.2)]

(1.3) (Ptϕ)(u0) = E
[
ϕ
(
u(t;u0)

)]
, t ≥ 0, u0 ∈ H,

for any bounded Borel function ϕ ∈ Bb(H). Then (see Proposition 6.2) we prove
that this semigroup is bw-Feller, that is, for every t > 0 and every bounded se-
quentially weakly continuous function φ : H → R, the function Ptφ : H → R is
also bounded sequentially weakly continuous.

The idea of the proof of the last result can be traced to recent papers by all three
of us in which we proved the existence of weak martingale solutions to the stochas-
tic geometric wave and Navier–Stokes and equations developed respectively in
[10, 11] and [9].

Finally, our main result, that is, Theorem 6.5 about the existence of an invariant
measure for the semigroup (Pt )t≥0, follows provided some natural assumptions,
as inequality (G2) holds with λ0 = 0, that is, for some3 ρ ≥ 0,

(1.4)
∣∣G(u)

∣∣2
T2(K,H) ≤ (2 − η)‖u‖2 + ρ, u ∈ V,

guaranteeing the uniform boundedness in probability, are satisfied; see Corol-
lary 6.4.

3Throughout the entire paper, we use the symbol T2 to denote the space of Hilbert–Schmidt oper-
ators between corresponding Hilbert spaces.
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In proving Proposition 6.2, the continuity/stability result contained in Theo-
rem 5.9 plays an essential role.

We will present now the earlier promised example based on the paper [8].

EXAMPLE 1.1. If ϕ = (ϕt )t≥0 is a deterministic dynamical system on a
Hilbert space H, then one can define the corresponding Markov semigroup by

(1.5)
[
Pt(f )

]
(x) := f

(
ϕt(x)

)
, t ≥ 0, x ∈ H.

Suppose that the semiflow is sequentially weakly continuous in the following
sense:

(1.6) If tn → t ∈R+, xn → x weakly in H then ϕtn(xn) → ϕt(x) weakly in H.

Note that the above condition is satisfied for the deterministic 2-d Navier–Stokes
equations; see [39] and also [8], Lemma 7.2.

Then the assertion of Theorem 9.4 in [12] holds. Indeed, let us choose and fix a
bounded sequentially weakly continuous function f : H →R, a sequence (tn) → t

and a sequence (xn) such that xn → x weakly in H. Then by assumption (1.6)
ϕtn(xn) → ϕt(x) weakly in H and since f is sequentially weakly continuous we
infer that [

Ptn(f )
]
(xn) = f

(
ϕtn(xn)

) → f
(
ϕt(x)

) = Ptf (x).

The condition guaranteeing the existence of an invariant measure (see [12], The-
orem 10.1) now reads as follows. There exists x ∈ H such for every ε > 0, there
exists R > 0 such that

(1.7) lim sup
t→∞

1

t

∫ t

0
1|ϕs(x)|H≥R ds ≤ ε

which is obviously satisfied provided the dynamical system ϕ = (ϕt )t≥0 is
bounded at infinity, that is, there exists x ∈ H and R > 0 such that |ϕs(x)|H ≤ R

for all s ≥ 0. It is well known that this condition holds for the deterministic 2-d
Navier–Stokes equations in a Poincaré domain (as well as for the damped Navier–
Stokes equations in the whole space R

2. Thus, we conclude, that in those cases,
there exists an invariant measure. Of course, these are known results; the purpose
of this example is only to elucidate our paper by showing that it is also applicable
to these cases.

Let us point out that [8], Lemma 7.2, played an important role in that paper.
We believe that the result described in this example holds also for the random

dynamical system from [8]. In this way, we will get an alternative proof of the
result existence of an invariant measure proved in that paper.

The weak continuity property (1.6) has also been investigated [4, 8, 15, 39]. In
the first three of these references, the weak-to-weak continuity is an important tool
in proving the existence of an attractor for deterministic 2D Navier–Stokes equa-
tions in unbounded domains, where, as we pointed out earlier, the compactness of
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the embedding from the Sobolev space H 1 to L2 does not hold. A similar type
of continuity (weak to strong) is encountered in the proof of the large deviation
principle for SPDEs; see, for instance, [6], Lemma 6.3, for the case of stochastic
Landau–Lifshitz equations. It might be interesting to understand in the relationship
between these two types of continuity.

Let us finish the Introduction with a brief description of the content of the pa-
per. Section 2 is devoted to recalling some basic notation and information. In Sec-
tion 3, we recall the fundamental facts about Navier–Stokes equations. This section
is based on a similar presentation in [9]; however, in the present paper, we make
some modifications. In Section 4, we formulate and prove the convergence result
for a sequence of martingale solutions of the stochastic NSEs; see, for instance,
Theorems 4.9 and 4.11. The results of Section 4 hold both in 2- and 3-dimensional
possibly unbounded domains. Let us stress this again; these two results are for
sequence of martingale solutions of the stochastic NSEs. In the case when these
are replaced by strong solutions of the corresponding Galerkin approximations,
the corresponding results have been proved in [9]; see also Theorem 4.8 in the
present paper. In Section 5, we recall the main results from [9] in the special case
of 2-dimensional domains. Besides, we prove Theorem 5.9, needed in the main
section, and being the counterpart of Theorem 4.11 for the 2-dimensional case.
Theorems 4.9, 4.11 and 5.9 generalize [8], Lemmata 7.1 and 7.2. In Section 6, we
state and prove the main result of this paper, that is, the existence of invariant mea-
sures for stochastic Navier–Stokes equations in 2-dimensional Poincaré, possibly
unbounded, domains with multiplicative noise.

2. Preliminaries. The following introductory section is for the reader’s con-
venience, and hence relies heavily on paper [9] by the first two named authors.

Let O ⊂ R
d , where d = 2,3, be an open connected subset with smooth bound-

ary ∂O. For p ∈ [1,∞) by Lp(O,Rd), we denote the Banach space of (equiva-
lence classes) of Lebesgue measurable R

d -valued pth power integrable functions
on the set O. The norm in Lp(O,Rd) is given by

|u|Lp :=
(∫

O

∣∣u(x)
∣∣p dx

) 1
p

, u ∈ Lp(O,Rd).
By L∞(O,Rd), we denote the Banach space of Lebesgue measurable essentially
bounded R

d -valued functions defined on O with the norm defined by

|u|L∞ := esssup
{∣∣u(x)

∣∣, x ∈ O
}
, u ∈ L∞(

O,Rd).
If p = 2, then L2(O,Rd) is a Hilbert space with the inner product given by

(u,v)L2 :=
∫
O

u(x) · v(x) dx, u,v ∈ L2(O,Rd).
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By H 1(O,Rd) = H 1,2(O,Rd), we will denote the Sobolev space consisting of
all u ∈ L2(O,Rd) for which there exist weak derivatives Diu ∈ L2(O,Rd), i =
1, . . . , d . It is a Hilbert space with the inner product given by

(u,v)H 1 := (u,v)L2 + (∇u,∇v)L2, u,v ∈ H 1(O,Rd),
where (∇u,∇v)L2 := ∑d

i=1
∫
O Diu(x) · Div(x) dx. Let C∞

c (O,Rd) denote the
space of all Rd -valued functions of class C∞ with compact supports contained
in O. We will use the following classical spaces:

V := {
u ∈ C∞

c

(
O,Rd) : divu = 0

}
,

H := the closure of V in L2(O,Rd
)
,

V := the closure of V in H 1(O,Rd
)
.

In the space H, we consider the inner product and the norm inherited from
L2(O,Rd) and denote them by (·, ·)H and | · |H, respectively, that is,

(u,v)H := (u,v)L2, |u|H := |u|L2(O), u,v ∈ H.

In the space V, we consider the inner product inherited from H 1(O,Rd), that is,

(2.1) (u,v)V := (u,v)L2 + ((u,v)),

where

(2.2) ((u,v)) := (∇u,∇v)L2, u,v ∈ V.

Note that the norm in V satisfies

(2.3) |u|2V := |u|2 + |∇u|2
L2, v ∈ V.

We will often use the notation ‖ · ‖ for the seminorm

‖u‖2 := ((u,u)) = (∇u,∇u)L2, u ∈ V.

A domain O satisfying the Poincaré inequality, that is, there exists a constant
C > 0 such that

(2.4) C

∫
O

ϕ2 dξ ≤
∫
O

|∇ϕ|2 dξ for all ϕ ∈ H 1
0 (O)

will be called a Poincaré domain. It is well known that, in the case when O is a
Poincaré domain, the inner product in the space V inherited from H 1(O,Rd), that
is, (u,v)V := (u,v)L2 + ((u,v)) is equivalent to the following one:

(2.5) (u,v)P := ((u,v)), u,v ∈ V.

In the sequel, if O is a Poincaré domain, then in the space V we consider the inner
product ((·, ·)) given by (2.2) and the corresponding norm ‖ · ‖.
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Denoting by 〈·, ·〉 the dual pairing between V and V′, that is, 〈·, ·〉 := V′ 〈·, ·〉V,
by the Lax–Milgram theorem, there exists a unique bounded linear operator A :
V → V′ such that we have the following equality:

(2.6) 〈Au,v〉 = ((u,v)), u,v ∈ V.

The operator A is closely related to the Stokes operator A defined by

(2.7)
D(A) = {u ∈ V : Au ∈ H},

Au = Au if u ∈ D(A).

The Stokes operator A is a nonnegative self-adjoint operator in H. Moreover, if O
is a 2D or 3D Poincaré domain [see (4.11) below], then A is strictly positive. We
will not use the Stokes operator as in this paper we will be concerned only with
the weak solutions to the stochastic Navier–Stokes equations, which in particular
do not take values in the domain D(A) of A.

Let us consider the following tri-linear form:

(2.8) b(u,w,v) =
∫
O

(u · ∇w)vdx.

We will recall fundamental properties of the form b. By the Sobolev embedding
theorem (or Gagliardo–Nirenberg inequality), we have (see, for instance, [43],
Lemmata III.3.3 and III.3.5)

(2.9) |u|L4(O) ≤ 21/4|u|1− d
4

L2(O)
|∇u|

d
4
L2(O)

, u ∈ H
1,2
0 (O), for d = 2,3,

by applying the Hölder inequality, we obtain the following estimates:∣∣b(u,w,v)
∣∣ = ∣∣b(u,v,w)

∣∣ ≤ |u|L4 |w|L4 |∇v|L2(2.10)

≤ c|u|V‖w‖V‖v‖V, u,w,v ∈ V(2.11)

for some positive constant c. Thus, the form b is continuous on V; see also [43].
Moreover, if we define a bilinear map B by B(u,w) := b(u,w, ·), then by in-
equality (2.11) we infer that B(u,w) ∈ V′ for all u,w ∈ V and, by the Gagliardo–
Nirenberg inequality (2.9) that the following inequality holds, for d = 2,3:∣∣B(u,w)

∣∣
V′ ≤ c1|u|L4 |w|L4 ≤ c2|u|1− d

4
L2 |∇u|

d
4
L2 |w|1− d

4
L2 |∇w|

d
4
L2,

≤ c3‖u‖V‖w‖V, u,w ∈ V.

In particular, the mapping B : V × V → V′ is bilinear and continuous.
Let us also recall the following properties of the form b (see Temam [43],

Lemma II.1.3):

(2.12) b(u,w,v) = −b(u,v,w), u,w,v ∈ V.

In particular,

(2.13)
〈
B(u,v),v)

〉 = b(u,v,v) = 0, u,v ∈ V.

We will need the following Fréchet topologies.
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DEFINITION 2.1. By L2
loc(O,Rd) = L

2
loc, we denote the space of all Lebesgue

measurable R
d -valued functions v such that

∫
K |v(x)|2 dx < ∞ for every compact

subset K ⊂ O. In this space, we consider the Fréchet topology generated by the
family of seminorms:

pR :=
(∫

OR

∣∣v(x)
∣∣2 dx

) 1
2
, R ∈ N,

where (OR)R∈N is an increasing sequence of open bounded subsets of O with
smooth boundaries and such that

⋃
R∈NOR = O. 4

By Hloc, we denote the space H endowed with the Fréchet topology inherited
from the space L2

loc(O,Rd).

Let us, for any s > 0, define the following standard scale of Hilbert spaces:

Vs := the closure of V in Hs
(
O,Rd

)
.

If s > d
2 + 1 then by the Sobolev embedding theorem,

Hs−1(O,Rd) ↪→ Cb

(
O,Rd) ↪→ L∞(

O,Rd).
Here, Cb(O,Rd) denotes the space of continuous and bounded R

d -valued func-
tions defined on O. If u,w ∈ V and v ∈ Vs with s > d

2 + 1, then for some constant
c > 0, ∣∣b(u,w,v)

∣∣ = ∣∣b(u,v,w)
∣∣ ≤ |u|L2 |w|L2 |∇v|L∞ ≤ c|u|L2 |w|L2 |v|Vs .

We have the following well-known result used in the proof of [9], Lemma 5.4.

LEMMA 2.2. Assume that s > d
2 + 1. Then there exists a constant C > 0 such

that

(2.14)
∣∣B(u,v)

∣∣
V′

s
≤ C|u|H|v|H, u,v ∈ V.

Hence, in particular, there exists a unique bilinear and bounded map B̃ : H×H →
V′

s such that B(u,v) = B̃(u,v) for all u,v ∈ V.
In what follows, the map B̃ will be denoted by B as well.

3. Stochastic Navier–Stokes equations. We begin this section with listing all
the main assumptions.

ASSUMPTION 3.1. We assume that the following objects are given:

(H.1) A separable Hilbert space K;

4Such sequence (OR)R∈N always exists since it is sufficient to consider as OR a smoothed out
version of the set O ∩ B(0,R); see, for instance, [40] and references therein.
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(H.2) a map G : V → T2(K,H) that:
(i) is Lipschitz continuous, that is, there exists a constant L > 0 such that

(G1)
∣∣G(u1) − G(u2)

∣∣
T2(K,H) ≤ L‖u1 − u2‖V, u1, u2 ∈ V,

(ii) for some constants λ0, ρ and η ∈ (0,2],
(G2)

∣∣G(u)
∣∣2
T2(K,H) ≤ (2 − η)‖u‖2 + λ0|u|2H + ρ, u ∈ V,

(iii) extends to a measurable map G : H → T2(K,V′) such that for some
C > 0

(G3)
∥∥G(u)

∥∥2
T2(K,V′) ≤ C

(
1 + |u|2H

)
, u ∈ H,

(iv) and, for every ψ ∈ V the function

(G4) ψ∗∗G : Hloc � u �→ {
K � y �→ V′

〈
G(u)y,ψ

〉
V ∈ R

} ∈ K′

is continuous;
(H.3) a real number p such that

(3.1) p ∈
[
2,2 + η

2 − η

)
,

where we put η
2−η

= ∞ when η = 2;
(H.4) a Borel probability measure μ0 on H such that

∫
H |x|pμ0(dx) < ∞ is given

and f ∈ L
p
loc([0,∞);V ′);

(H.5) an linear operator A : V → V′ satisfying equality (2.6).

Now we state definition of a martingale solution of equation (3.2). We really
need to consider the infinite time interval, that is, [0,∞); however, we need also to
state some of the results on the interval [0, T ], where T > 0 is fixed. Thus, in the
following definition we distinguish between the two cases of solution on a finite
interval [0, T ] and on [0,∞).

DEFINITION 3.2. Let us assume Assumption 3.1. Let T > 0 be fixed. We say
that there exists a martingale solution of the following stochastic Navier–Stokes
equations (in an abstract form) on the interval [0, T ]:

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

du(t) +Au(t) dt + B
(
u(t), u(t)

)
dt

= f (t) dt + G
(
u(t)

)
dW(t), t ≥ 0,

L
(
u(0)

) = μ0,

iff there exist:

• a stochastic basis (
̂, F̂, F̂, P̂) with a complete filtration F̂ = {F̂t }t∈[0,T ],
• a K-cylindrical Wiener process Ŵ = (Ŵ )t∈[0,T ]
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• and an F̂-progressively measurable process u : [0, T ]×
̂ → H with P̂-a.e. paths
satisfying

(3.3) u(·,ω) ∈ C
([0, T ],Hw

)∩ L2(0, T ;V)

such that

the law on H of u(0) is equal to μ0

and, for all t ∈ [0, T ] and all v ∈ V ,

(
u(t), v

)
H +

∫ t

0

〈
Au(s), v

〉
ds +

∫ t

0

〈
B
(
u(s)

)
, v

〉
ds

= (
u(0), v

)
H +

∫ t

0

〈
f (s), v

〉
ds +

〈∫ t

0
G
(
u(s)

)
dŴ(s), v

〉
, P̂-a.s.

(3.4)

and

(3.5) Ê

[
sup

t∈[0,T ]
∣∣u(t)

∣∣2
H +

∫ T

0

∣∣∇u(t)
∣∣2 dt

]
< ∞.

If all the above conditions are satisfied, then the system

(
̂, F̂, F̂, P̂, Ŵ , u)

will be called a martingale solution to problem (3.2) on the interval [0, T ] with the
initial distribution μ0.

A system (
̂, F̂, F̂, P̂, Ŵ , u) will be called a martingale solution to problem
(3.2) with the initial distribution μ0 iff all the above conditions are defined with
the interval [0, T ] being replaced by [0,∞) and the condition (3.3) is replaced by

(3.6) u(·,ω) ∈ C
([0,∞),Hw

)∩ L2
loc
([0,∞);V

)
,

and inequality (3.5) holds for every T > 0.
Here, Hw denotes the Hilbert space H endowed with the weak topology and

C([0, T ],Hw) and C([0,∞),Hw) denote the spaces of H valued weakly continuous
functions defined on [0, T ] and [0,∞), respectively.

In the case when μ0 is equal to the law on H of a given random variable u0 :

 → H then, somehow incorrectly, a martingale solution to problem (3.2) will
also be called a martingale solution to problem (3.2) with the initial data u0. Fully
correctly, it should be called a martingale solution to problem (3.2) with the initial
data having the same law as u0. In particular, in this case we require that the laws
on H of u0 and u(0) are equal.

If no confusion seems likely, a system (
̂, F̂, F̂, P̂, Ŵ , u) from Definition 3.2
will be called martingale solutions.
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REMARK 3.3. Let us recall the following observation from [9]. Since ‖u‖ :=
|∇u|L2 and 〈Au,u〉 = ((u,u)) := (∇u,∇u)L2 , we have

(2 − η)‖u‖2 = 2〈Au,u〉 − η‖u‖2, u ∈ V.

Hence, inequality (G2) can be written equivalently in the following form:

(G2′) 2〈Au,u〉 − ∥∥G(u)
∥∥2
T2(K,H) ≥ η‖u‖2 − λ0|u|2H − ρ, u ∈ V.

Inequality (G2′) is the same as considered by Flandoli and Ga̧tarek in [21] for
stochastic NSEs in bounded domains. The assumption η = 2 corresponds to the
case when the noise term does not depend on ∇u. We will prove that the set of
measures induced on appropriate space by the solutions of the Galerkin equations
is tight provided that the map G from part (H.2) of Assumption 3.1 satisfies in-
equalities (G3) and (G2). Inequality (G3) and condition (G4) from part (H.2) of
Assumption 3.1 will be important in passing to the limit as n → ∞ in the Galerkin
approximation. Condition (G4) is essential in the case of unbounded domain O.
It is worth mentioning that the following example of the noise term, analyzed in
details in [9], Section 6, is covered by part (H.2) of Assumption 3.1.

EXAMPLE 3.4. Let us consider the noise term written classically as

(3.7)
[
G(u)

]
(t, x) dW(t) :=

∞∑
i=1

[(
bi(x) · ∇)

u(t, x) + ci(x)u(t, x)
]
dβi(t),

where

βi, i ∈ N, are i.i.d. standard R-valued Brownian motions,

bi : O →R
d, i ∈ N, are functions of class C∞ class,

ci : O →R, i ∈ N, are functions of C∞—of class,

are given. Assume that

(3.8) C1 :=
∞∑
i=1

(‖bi‖2
L∞ + ‖divbi‖2

L∞ + ‖ci‖2
L∞

)
< ∞

and there exists a ∈ (0,2] such that for all ζ = (ζ1, . . . , ζd) ∈ R
d and all x ∈ O,

(3.9)
∞∑
i=1

d∑
j,k=1

b
j
i (x)bk

i (x)ζj ζk ≤ 2
d∑

j,k=1

δjkζj ζk − a|ζ |2 = (2 − a)|ζ |2.

This noise term can be reformulated in the following manner. Let K := l2(N),
where l2(N) denotes the space of all sequences (hi)i∈N ⊂ R such that

∑∞
i=1 h2

i <
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∞. It is a Hilbert space with the scalar product given by (h, k)l2 := ∑∞
i=1 hiki ,

where h = (hi) and k = (ki) belong to l2(N). Putting

(3.10) G(u)h =
∞∑
i=1

[
(bi · ∇)u + ciu

]
hi, u ∈ V, h = (hi) ∈ l2(N),

we infer that the mapping G fulfils all conditions stated in assumption (H.2); see
[9], Section 6, for details.

REMARK 3.5. Let us explain that via the isomorphism between the space V
and its dual V′, condition (H.2)(iii) in Assumption 3.1 is understood in the usual
sense, that is, for every orthonormal basis (ek) ⊂ K∑

k

∣∣G(u)(ek)
∣∣2
V′ ≤ C

(
1 + |u|2H

)
, u ∈ H.

In fact, conditions (H.2)(iii) and (iv) in Assumption 3.1 can be replaced by the
following more general:

(iii′) The map G : V → T2(K,H) extends to a measurable map g : H → L(K,V′)
such that for some C > 0 for every u ∈ H

(G3′) sup
v∈V,‖v‖V≤1

sup
k∈K,‖k‖K≤1

∣∣V′
〈
g(u)(k), v

〉
V

∣∣2 ≤ C
(
1 + |u|2H

)
.

(iv′) and, for every ψ ∈ V the function

(G4′) ψ∗∗g : Hloc � u �→ {
K � y �→ V′

〈
g(u)y,ψ

〉
V ∈ R

} ∈ K′

is continuous.

REMARK 3.6. Note that by Definition 3.2 every solution to problem (3.2)
satisfies equality (3.4) for all v ∈ V . However, equality (3.4) holds not only for
v ∈ V but also for all v ∈ V. Indeed, this follows from the density of V in the
space V and the fact that each term in (3.4) is well defined and continuous with
respect to v ∈ V. This remark is important while using Itô’s formula in the proof
of Lemma 5.8.

REMARK 3.7. Let assumptions (H.1)–(H.5) be satisfied. If the system
(
̂, F̂, F̂, P̂, Ŵ , u) is a martingale solution of problem (3.2) on the interval [0,∞),
then P̂-a.e. paths of the process u(t), t ∈ [0,∞), are V′-valued continuous func-
tions, that is, for P̂-a.e. ω ∈ 
̂

(3.11) u(·,ω) ∈ C
([0,∞),V′),

and equality (3.4) can be rewritten as the following one, understood in the space V′:

u(t) +
∫ t

0
Au(s) ds +

∫ t

0
B
(
u(s)

)
ds

= u(0) +
∫ t

0
f (s) ds +

∫ t

0
G
(
u(s)

)
dŴ (s), t ∈ [0,∞).

(3.12)
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PROOF. Let us fix any T > 0. Let us notice that since the map G satisfies
inequality (G3) in Assumption 3.1, by inequality (3.5) we infer that

Ê

[∫ T

0

∣∣G(
u(s)

)∣∣2
T2(K,V′) ds

]
≤ CÊ

[∫ T

0

(
1 + ∣∣u(s)

∣∣2
H

)
ds

]
< ∞.

Thus, the process μ defined by

μ(t) :=
∫ t

0
G
(
u(s)

)
dŴ(s), t ∈ [0, T ],

is a V′-valued square integrable continuous martingale.

REMARK. The process μ is an H-valued square integrable continuous martin-
gale as well.

PROOF OF REMARK. Since the map G satisfies inequality (G2) in Assump-
tion 3.1, using inequality (3.5) we deduce that

Ê

[∫ T

0

∣∣G(
u(s)

)∣∣2
T2(K,H) ds

]
≤ Ê

[∫ T

0

[
(2 − η)

∥∥u(s)
∥∥2 + λ0

∣∣u(s)
∣∣2
H + ρ

]
ds

]
< ∞.

Thus, μ(t), t ∈ [0, T ], is an H-valued square integrable continuous martingale. �

In the framework of Remark 3.7, by the regularity assumption (3.3), we infer
that for P̂-a.e. ω ∈ 
̂

Au(·,ω) ∈ L2(0, T ;V′), B
(
u(·,ω), u(·,ω)

) ∈ L4/3(0, T ;V′).
By assumption (H.3), in particular, f ∈ Lp(0, T ;V′). Hence, for P̂-a.e. ω ∈ 
̂ the
functions

[0, T ] � t �→
∫ t

0
Au(s,ω)ds ∈ V′,

[0, T ] � t �→
∫ t

0
B(u(s,ω),

(
u(s,ω)

)
ds ∈ V′,

[0, T ] � t �→
∫ t

0
f (s) ds ∈ V′

are well defined and continuous. Using (3.4), we infer that for P̂-a.e. ω ∈ 
̂

u(·,ω) ∈ C
([0, T ],V′)

and for every t ∈ [0, T ] equality (3.12) holds. Since T > 0 has been chosen in an
arbitrary way, regularity condition (3.11) and equality (3.12) hold. The proof of
the claim is thus complete. �
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4. The continuous dependence of the solutions on the initial state and the
external forces in 2D and 3D domains. In this section, we will concentrate on
martingale solutions to problem (3.2) on a fixed interval [0, T ]. The main result
is Theorem 4.11. We will also need some modification of Theorem 5.1 in [9],
contained in Theorem 4.8.

As in [9], in the proofs we will use the following structure. Let us fix s > d
2 + 1

and notice that the space Vs is dense in V and the natural embedding Vs ↪→ V is
continuous. By [22], Lemma 2.5 (see also [9], Lemma C.1), there exists a separable
Hilbert space U such that U is a dense subset of Vs and

(4.1) the natural embedding ιs : U ↪→ Vs is compact.

Then we also have

(4.2) U ↪→ Vs ↪→ H ∼= H′ ↪→ V′
s ↪→ U ′,

where H′ and U ′ are the dual spaces of H and U , respectively, H′ being identified
with H and the dual embedding H′ ↪→ U ′ is compact as well.

In the next definition, we will recall definition of a topological space ZT that
plays an important role in our approach; see page 1629 and Section 3 in [9].

To define the space ZT , we will need the following four spaces:

C
([0, T ],U ′) := the space of continuous functions u : [0, T ] → U ′

with the topology induced by the norm

|u|C([0,T ],U ′) := sup
t∈[0,T ]

∣∣u(t)
∣∣
U ′,

L2
w(0, T ;V) := the space L2(0, T ;V) with the weak topology,

L2(0, T ;Hloc) := the space of all measurable functions u : [0, T ] → H

such that for all R ∈ N

pT,R(u) :=
(∫ T

0

∫
OR

∣∣u(t, x)
∣∣2 dx dt

) 1
2

< ∞
with the topology generated by the seminorms

(pT,R)R∈N.

Let Hw denote the Hilbert space H endowed with the weak topology and let us put

C
([0, T ];Hw

) := the space of weakly continuous functions u : [0, T ] → H

endowed with the weakest topology such that for all h ∈ H

the mappings C
([0, T ];Hw

) � u �→ (
u(·), h)H ∈ C

([0, T ];R)
are continuous.
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DEFINITION 4.1. For T > 0, let us put

(4.3) ZT := C
([0, T ];U ′)∩ L2

w(0, T ;V) ∩ L2(0, T ;Hloc) ∩ C
([0, T ];Hw

)
and let TT be the supremum of the corresponding four topologies, that is, the small-
est topology on ZT such that the four natural embeddings from ZT are continuous.
The space ZT will also considered with the Borel σ -algebra, that is, the smallest
σ -algebra containing the family TT .

The following auxiliary result which is needed in the proof of Theorem 4.11,
cannot be deduced directly from the Kuratowski theorem [27]; see Counterexam-
ple C.4 in Appendix C.

LEMMA 4.2. Assume that T > 0. Then the following fours sets: C([0, T ];H)∩
ZT , C([0, T ];V)∩ZT , L2(0, T ;V )∩ZT and C([0, T ];V′)∩ZT are Borel subsets
of ZT and the corresponding embedding tranforms Borel sets into Borel subsets
of ZT . Moreover, the following R+ ∪ {+∞}-valued functions:

ZT � u �→
⎧⎨
⎩

sup
s∈[0,T ]

∣∣u(s)
∣∣2
H, if u ∈ C

([0, T ];H
)∩ZT ,

∞, otherwise,

ZT � u �→
⎧⎪⎨
⎪⎩
∫ T

0

∥∥u(s)
∥∥2

ds, if u ∈ L2(0, T ;V) ∩ZT ,

∞ otherwise,

are Borel.

PROOF. Because C([0, T ];U ′) ∩ L2(0, T ;Hloc) is a Polish space, by the Ku-
ratowski theorem C([0, T ];H) is Borel subset of C([0, T ];U ′) ∩ L2(0, T ;Hloc).
Hence, the intersection C([0, T ];H) ∩ ZT is a Borel subset of the intersection
C([0, T ];U ′) ∩ L2(0, T ;Hloc) ∩ZT which happens to be equal to ZT .

We can argue in the same way in the case of the spaces C([0, T ];V) ∩ ZT and
C([0, T ];V′) ∩ZT .

The proof in case the space L2(0, T ;V) is analogous; one needs to begin with
an observation that by the Kuratowski theorem the set L2(0, T ;V) is Borel subset
of L2(0, T ;Hloc). We have used a fact that a product of Borel set in C([0, T ];U ′)∩
L2(0, T ;Hloc) and the set ZT is a Borel subset of the latter.

The same argument applies to the proof that iT and jT map Borel subsets of
their corresponding domains to Borel sets in ZT . The last part of the lemma is a
consequence Proposition C.2. �
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4.1. Tightness criterion and Jakubowski’s version of the Skorokhod theorem.
One of the main tools in this section is the tightness criterion in the space ZT

defined in identity (4.3). We will use a slight generalization of the criterion stated in
Corollary 3.9 from [9]; compare with the proof of Lemma 5.4 therein. Namely, we
will consider the sequence of stochastic processes defined on their own probability
spaces. Let (
n,Fn,Fn,Pn), n ∈ N, be a sequence of probability spaces with the
filtration Fn = (Fn,t )t≥0.

COROLLARY 4.3 (Tightness criterion). Assume that (Xn)n∈N is a sequence of
continuous Fn-adapted U ′-valued processes defined on 
n and such that

sup
n∈N

En

[
sup

s∈[0,T ]
∣∣Xn(s)

∣∣2
H

]
< ∞,(4.4)

sup
n∈N

En

[∫ T

0

∥∥Xn(s)
∥∥2

ds

]
< ∞,(4.5)

(a) and for every ε > 0 and for every η > 0 there exists δ > 0 such that for every
sequence (τn)n∈N of [0, T ]-valued Fn-stopping times one has

(4.6) sup
n∈N

sup
0≤θ≤δ

Pn

{∣∣Xn(τn + θ) − Xn(τn)
∣∣
U ′ ≥ η

} ≤ ε.

Let P̃n be the law of Xn on the Borel σ -field B(ZT ). Then for every ε > 0 there
exists a compact subset Kε of ZT such that

sup
n∈N

P̃n(Kε) ≥ 1 − ε.

The proof of Corollary 4.3 is essentially the same as the proof of [9], Corol-
lary 3.9.

If the sequence (Xn)n∈N satisfies condition (a), then we say that it satisfies the
Aldous condition [A] in U ′ on [0,T]. If it satisfies condition (a) for each T > 0, we
say that it satisfies the Aldous condition [A] in U ′.

Obviously, the class of U ′-valued processes satisfying the Aldous condition is
a real vector space. Below we will formulate a sufficient condition for the Aldous
condition. This idea has been used in the proof of Lemma 5.4 in [9] but it has not
been formulated in such a way.

LEMMA 4.4. Assume that Y is a separable Banach space, σ ∈ (0,1] and that
(un)n∈N is a sequence of continuous Fn-adapted Y -valued processes indexed by
[0, T ] for some T > 0, such that

(a′) there exists C > 0 such that for every θ > 0 and for every sequence (τn)n∈N
of [0, T ]-valued Fn-stopping times with one has

(4.7) En

[∣∣un(τn + θ) − un(τn)
∣∣
Y

] ≤ Cθσ .

Then the sequence (un)n∈N satisfies the Aldous condition [A] on [0, T ].
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PROOF. Let us fix η > 0 and ε > 0. By the Chebyshev inequality and the
estimate (4.7), we obtain

Pn

({∣∣un(τn + θ) − un(τn)
∣∣
Y ≥ η

}) ≤ 1

η
En

[∣∣un(τn + θ) − un(τn)
∣∣
Y

]

≤ C · θσ

η
, n ∈ N.

Let us δ := [η·ε
C

] 1
σ . Then we have

sup
n∈N

sup
1≤θ≤δ

Pn

{∣∣un(τn + θ) − un(τn)
∣∣
Y ≥ η

} ≤ ε.

This completes the proof of Lemma 4.4. �

REMARK 4.5. As can be seen in (4.3), the space ZT is defined as an intersec-
tion of four spaces, one of them being the space C([0, T ];U ′). The latter space
plays, in fact, only an auxiliary role. Let us recall that the space U (see (4.1)
and [9], Section 2.3) is important in the construction of the solutions to stochastic
Navier–Stokes equations via the Galerkin method in the case of an unbounded do-
main, that is, when the embedding V ⊂ H is not compact. (In the case of a bounded
domain, we can take, for example, U := Vs for sufficiently large s.) In particular,
the orthonormal basis of the space H, which we use in the Galerkin method is
contained in U , so the Galerkin solutions “live in” the space U .

With the space U in hand, in [9] we prove an appropriate compactness and
tightness criteria in the space ZT ; see [9], Lemma 3.3 and Corollary 3.9. Let us
emphasize that in order to prove the relative compactness of an appropriate set in
the Fréchet space L2(0, T ;Hloc) first we need to prove a certain generalization of
the classical Dubinsky theorem; see [9], Lemma 3.1, where the space C([0, T ];U ′)
is used. This result is related to the Aldous condition in the space U ′ in the tightness
criterion, (4.6) in Corollary 4.3 and [9], Corollary 3.9(c).

We will use Corollary 4.3 to prove Theorems 4.9 and 4.11 below. Even though
the presence of the space C([0, T ];U ′) in the definition of the space ZT is natural
in the context of the Galerkin approximation solutions, its presence in the context
of Theorems 4.9 and 4.11 where we consider sequences of the solutions of the
Navier–Stokes equations seems to be unnecessary. However, again because of the
lack of the compactness of the embedding V ⊂ H to prove tightness in Theorem 4.9
we still use Corollary 4.3 in its original form.

In the proofs of the theorems on the existence of a martingale solution and on
the continuous dependence of the data, we use a version of the Skorokhod theo-
rem for nonmetric spaces. For convenience of the reader, let us recall the following
Jakubowski’s [24] version of the Skorokhod theorem; see also Brzeźniak and On-
dreját [11].
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THEOREM 4.6 (Theorem 2 in [24]). Let (X , τ ) be a topological space such
that there exists a sequence (fm) of continuous functions fm : X → R that sepa-
rates points of X . Let (Xn) be a sequence of X -valued Borel random variables.
Suppose that for every ε > 0 there exists a compact subset Kε ⊂X such that

sup
n∈N

P
({Xn ∈ Kε}) > 1 − ε.

Then there exists a subsequence (Xnk
)k∈N, a sequence (Yk)k∈N of X -valued Borel

random variables and an X -valued Borel random variable Y defined on some
probability space (
,F,P) such that

L(Xnk
) = L(Yk), k = 1,2, . . . ,

and for all ω ∈ 
:

Yk(ω)
τ−→ Y(ω) as k → ∞.

Note that the sequence (fm) defines another, weaker topology on X . However,
this topology restricted to σ -compact subsets of X is equivalent to the original
topology τ . Let us emphasize that thanks to the assumption on the tightness of
the set of laws {L(Xn), n ∈ N} on the space X the maps Y and Yk , k ∈ N, in
Theorem 4.6 are measurable with respect to the Borel σ -field in the space X .

The following result has been proved in the proof of [9], Corollary 3.12, for the
spaces ZT .

LEMMA 4.7. The topological space ZT satisfies the assumptions of Theo-
rem 4.6.

4.2. The existence and properties of martingale solutions on [0, T ]. We will
concentrate on martingale solutions to problem (3.2) on a fixed interval [0, T ]. The
following result is a slight generalisation of Theorem 5.1 in [9]. In comparison to
[9], the deterministic initial state has been replaced by the random one satisfying
assumption (H.3). However, our attention will be focused on the estimates satisfied
by the solutions of the Navier–Stokes equations. We claim that there exists a so-
lution u satisfying estimate Ê[supt∈[0,T ] |u(t)|qH] ≤ C1(p, q) for every q ∈ [2,p],
(and not only for q = 2 as stated in inequality (5.1) in [9]). Moreover, we anal-
yse what is the relation between the constant C1(p, q) and the initial state u0 and
the external forces f . The same concerns the estimate on Ê[∫ T

0 ‖u(t)‖2 dt]. These
results generalize [9], Theorem 5.1. In the second part of Theorem 4.8, we will
prove another estimate on u in the case when O is a 2D or 3D Poincaré domain;
see (4.11) below. This estimate will be of crucial importance in the proof of ex-
istence of an invariant measure in 2D case. The proof of Theorem 4.8 is based
on the Galerkin method. The analysis of the Galerkin equations is postponed to
Appendix A. Recall also that in assumption (H.3) we have put η

2−η
= ∞ when

η = 2.
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THEOREM 4.8. Let assumptions (H.1)–(H.5) be satisfied. In particular, we
assume that p satisfies (3.1), that is,

p ∈
[
2,2 + η

2 − η

)
,

where η ∈ (0,2] is given in assumption (H.2).

(1) For every T > 0 and R1,R2 > 0 if μ0 is a Borel probability measure on H,
f ∈ Lp([0,∞);V′) satisfy

∫
H |x|pμ0(dx) ≤ R1 and |f |Lp(0,T ;V′) ≤ R2, then

there exists a martingale solution (
̂, F̂, F̂, P̂, Ŵ , u) to problem (3.2) with the
initial law μ0 which satisfies the following estimates: for every q ∈ [1,p],
there exist constants C1(p, q) and C2(p), depending also on T , R1 and R2,
such that

(4.8) Ê

(
sup

s∈[0,T ]
∣∣u(s)

∣∣q
H

)
≤ C1(p, q),

putting C1(p) := C1(p,p), in particular,

(4.9) Ê

(
sup

s∈[0,T ]
∣∣u(s)

∣∣p
H

)
≤ C1(p),

and

(4.10) Ê

[∫ T

0

∣∣∇u(s)
∣∣2
L2 ds

]
≤ C2(p).

(2) Moreover, if O is a Poincaré domain and the map G satisfies inequality
(G2) in Assumption 3.1 with λ0 = 0, then there exists a martingale solution
(
̂, F̂, F̂, P̂, u) of problem (3.2) satisfying additionally the following inequal-
ity for every T > 0:

(4.11)
η

2
Ê

[∫ T

0

∣∣∇u(s)
∣∣2
L2 ds

]
≤ Ê

[∣∣u(0)
∣∣2
H

]+ 2

η

∫ T

0

∣∣f (s)
∣∣2
v′ ds + ρT .

The proof of Theorem 4.8 is postponed to Appendix B.

4.3. The continuous dependence. We prove the following results related to
the continuous dependence on the deterministic initial condition and determin-
istic external forces. Roughly speaking, we will show that if (u0,n) ⊂ H and
(fn) ⊂ Lp(0, T ;V′) are sequences of initial conditions and external forces ap-
proaching u0 ∈ H and f ∈ Lp(0, T ,V′), respectively, then a sequence (un) of
martingale solutions of the Navier–Stokes equations with the data (u0,n, fn), satis-
fying inequalities (4.8)–(4.10), contains a subsequence of solutions, on a changed
probability basis, convergent to a martingale solution with the initial condition u0
and the external force f . Note that existence of such solutions un, n ∈ N, is guar-
anteed by Theorem 4.8. This result holds both in 2D and 3D possibly unbounded
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domains with smooth boundaries. Moreover, in the case of 2D domains, because
of the existence and uniqueness of the strong solutions, the stronger result holds.
Namely, the solutions un, n ∈ N, satisfy inequalities (4.8)–(4.10) and not only a
subsequence but the whole sequence of solutions (un) is convergent to the solu-
tion of the Navier–Stokes equation with the data u0 and f . Their proofs are de
facto, modifications of the proofs of corresponding parts of Theorem 5.1 from [9],
where Galerkin approximations are substituted by solutions un, n ∈ N. However,
the last part of the proof is different. Namely, contrary to the case of the Galerkin
aproximations, the martingale M̃n defined by (5.16) in [9] is, in general, not square
integrable. It would be square integrable, for example, if inequality (4.8) held with
some q > 4. This holds in the case, when the noise term does not depend on ∇u

or if we impose such restriction on η that η
2−η

> 4. However, to cover the general
case, this part of the proof is different.

In what follows we do not assume that O is a Poincaré domain.

THEOREM 4.9. Let assumptions (H.1)–(H.3) and (H.5) be satisfied and let
T > 0. Assume that (u0,n)

∞
n=1 is a bounded H-valued sequence and (fn)

∞
n=1 is

a bounded Lp(0, T ;V′)-valued sequence. Let R1 > 0 and R2 > 0 be such that
supn∈N |u0,n|H ≤ R1 and supn∈N ‖fn‖Lp(0,T ;V′) ≤ R2. Let

(
̂n, F̂n, F̂n, P̂n, Ŵn, un)

be a martingale solution of problem (3.2) with the initial data u0,n and the external
force fn and satisfying inequalities (4.8)–(4.10). Then the set of Borel measures
{L(un), n ∈ N} is tight on the space (ZT ,TT ).

PROOF. Let us fix T > 0 and p satisfying condition (3.1). Let (u0,n)n=1 and
(fn)n=1 be bounded H-valued, respectively, Lp(0, T ;V′)-valued, sequences. Let

(
̂n, F̂n, F̂n, P̂n, Ŵn, un)

be a corresponding martingale solution of problem (3.2) with the initial data un
0

and the external force fn, and satisfying inequalities (4.8)–(4.10). Such a solution
exists by Theorem 4.8.

To show that the set of measures {L(un), n ∈ N} are tight on the space (ZT ,TT ),
where ZT is defined in (4.3), we argue as in the proof of Lemma 5.4 in [9] and
apply Corollary 4.3. We first observe that due to estimates (4.8) (with q = 2) and
(4.10), conditions (4.4) and (4.5) of Corollary 4.3 are satisfied. Thus, it is suffi-
cient to prove condition (a), that is, that the sequence (un)n∈N satisfies the Aldous
condition [A]. By Lemma 4.4, it is sufficient to proof the condition (a′).

We have now to choose our steps very carefully as we no longer treat strong so-
lutions to an SDE in a finite dimensional Hilbert space but instead a weak solution
to an SPDE in an infinite dimensional Hilbert space.
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Let (τn)n∈N be a sequence of stopping times taking values in [0, T ]. Since each
process satisfies equation (3.4), by Remark 3.7 we have

un(t) = u0,n −
∫ t

0
Aun(s) ds −

∫ t

0
B
(
un(s)

)
ds +

∫ t

0
fn(s) ds

+
∫ t

0
G
(
un(s)

)
dW(s)

=: Jn
1 + Jn

2 (t) + Jn
3 (t) + Jn

4 (t) + Jn
5 (t), t ∈ [0, T ],

where the above equality is understood in the space V′. Let us choose and θ > 0. It
is sufficient to show that each sequence J n

i of processes, i = 1, . . . ,5 satisfies the
sufficient condition (a′) from Lemma 4.4.

Obviously, the term Jn
1 which is constant in time, satisfies whatever we want.

We will only deal with the other terms. In fact, we will check that the terms
Jn

2 , J n
4 , J n

5 satisfy condition (a′) from Lemma 4.4 in the space Y = V′ and the
term Jn

3 satisfies this condition in Y = V′
s with s > d

2 + 1. Since the embeddings
V′

s ⊂ U ′ and V′ ⊂ U ′ are continuous, we infer that (a′) from Lemma 4.4 holds in
the space Y = U ′, as well.

Ad Jn
2 . Since the linear operator A : V → V′ is bounded, by the Hölder inequal-

ity and (4.10), we have

En

[∣∣Jn
2 (τn + θ) − Jn

2 (τn)
∣∣
V′
]

≤ En

[∫ τn+θ

τn

∣∣Aun(s)
∣∣
V′ ds

]
(4.12)

≤ θ
1
2

(
En

[∫ T

0

∥∥un(s)
∥∥2

ds

]) 1
2 ≤ C2(p) · θ 1

2 .

Ad Jn
3 . Let s > d

2 + 1 Similarly, since B : H × H → V′
s is bilinear and continu-

ous (and hence bounded so that the norm ‖B‖ of B : H × H → V′
s is finite), then

by (4.8) we have the following estimates:

(4.13)

En

[∣∣Jn
3 (τn + θ) − Jn

3 (τn)
∣∣
V′

s

]

= En

[∣∣∣∣
∫ τn+θ

τn

B
(
un(r)

)
dr

∣∣∣∣
V′

s

]

≤ cEn

[∫ τn+θ

τn

∣∣B(
un(r)

)∣∣
V′

s
dr

]
≤ c‖B‖En

[∫ τn+θ

τn

∣∣un(r)
∣∣2
H dr

]

≤ c‖B‖ ·En

[
sup

r∈[0,T ]
∣∣un(r)

∣∣2
H

]
· θ ≤ c‖B‖C1(p,2) · θ.

REMARK. The above argument works as well for d = 3. However for d = 2
we have the following different proof which exploits inequality (2.12) (which is
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valid only in the two-dimensional case):

(4.14)

En

[∣∣Jn
3 (τn + θ) − Jn

3 (τn)
∣∣
V′
]

≤ En

[∫ τn+θ

τn

∣∣B(
un(r)

)∣∣
V′ dr

]

≤ c2En

∫ τn+θ

τn

∣∣un(r)
∣∣
L2

∣∣∇un(r)
∣∣
L2 dr

≤ c2

[
En sup

r∈[τn,τn+θ ]
∣∣un(r)

∣∣2
H

] 1
2
[
En

∫ τn+θ

τn

∣∣∇un(r)
∣∣2
L2 dr

] 1
2
θ

1
2

≤ c2

[
En sup

r∈[0,T ]
∣∣un(r)

∣∣2
H

] 1
2
[
En

∫ T

0

∣∣∇un(r)
∣∣2
L2 dr

] 1
2
θ

1
2

≤ c2
[
C1(p,2)

] 1
2
[
C2(p)

] 1
2 θ

1
2 .

Ad Jn
4 . Since the sequence (fn) is weakly convergent in Lp(0, T ;V′), it is, in

particular, bounded in Lp(0, T ;V′). Using the Hölder inequality, we have

En

[∣∣Jn
4 (τn + θ) − Jn

4 (τn)
∣∣
V′
]

= En

[∣∣∣∣
∫ τn+θ

τn

fn(s) ds

∣∣∣∣
V′

]
(4.15)

≤ θ
p−1
p

(
En

[∫ T

0

∣∣fn(s)
∣∣p
V′ ds

]) 1
p = θ

p−1
p |fn|Lp(0,T ;V′) = c4 · θ p−1

p ,

where c4 := supn∈N |fn|Lp(0,T ;V′).
Ad Jn

5 . By assumption (G3) and inequality (4.8), we obtain the following in-
equalities:

(4.16)

En

[∣∣Jn
5 (τn + θ) − Jn

5 (τn)
∣∣
V′
]

≤ {
En

[∣∣Jn
5 (τn + θ) − Jn

5 (τn)
∣∣2
V′
]} 1

2

=
[
En

∫ τn+θ

τn

∥∥G(
un(s)

)∥∥2
T2(Y,V′) ds

] 1
2

≤
[
C ·En

∫ τn+θ

τn

(
1 + ∣∣un(s)

∣∣2
H

)
ds

] 1
2

≤ [C
(
1 +

[
En

[
sup

s∈[0,T ]
∣∣un(s)

∣∣2
H

])
θ
] 1

2

≤ [
C
(
1 + C1(2)

)
θ
] 1

2 =: c5 · θ 1
2 .

Thus, the proof of Theorem 4.9 is complete. �
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REMARK 4.10. It is easy to be convinced that un take values in ZT but it
is not so obvious to see that in fact un are Borel measurable functions. This is
so because our construction of the martingale solution is based on Jakubowski’s
version of the Skorokhod theorem; see Theorem 4.6 for details.

The main result about the continuous dependence of the solutions of the Navier–
Stokes equations on the initial state and deterministic external forces, which cov-
ers both cases of 2D and 3D domains, is expressed in the following Theorem 4.11.
Stronger version for 2D domains will be formulated in the next section; see Theo-
rem 5.9.

THEOREM 4.11. Let conditions (H.1)–(H.3) and (H.5) of Assumption 3.1 be
satisfied and let T > 0. Assume that (u0,n)

∞
n=1 is an H-valued sequence that is

convergent weakly in H to u0 ∈ H and (fn)
∞
n=1 is an Lp(0, T ;V′)-valued sequence

that is weakly convergent in Lp(0, T ;V′) to f ∈ Lp(0, T ;V′). Let R1 > 0 and
R2 > 0 be such that supn∈N |u0,n|H ≤ R1 and supn∈N ‖fn‖Lp(0,T ;V′) ≤ R2. Let

(
̂n, F̂n, F̂n, P̂nŴn, un)

be a martingale solution of problem (3.2) with the initial data un
0 and the external

force fn and satisfying inequalities (4.8)–(4.10). Then there exist:

• a subsequence (nk)k ,
• a stochastic basis (
̃, F̃, F̃, P̃), where F̃ = {F̃ t }t≥0,
• a cylindrical Wiener process W̃ = W̃ (t), t ∈ [0,∞) defined on this basis,
• and progressively measurable processes ũ, (ũnk

)k≥1 (defined on this basis) with
laws supported in ZT such that

(4.17) ũnk
has the same law as unk

on ZT and ũnk
→ ũ in ZT , P̃-a.s.,

for every q ∈ [1,p]
(4.18) Ẽ

[
sup

s∈[0,T ]
∣∣ũ(s)

∣∣q
H

]
< ∞,

and the system

(
̃, F̃, F̃, P̃, W̃ , ũ)

is a solution to problem (3.2).
In particular, for all t ∈ [0, T ] and all v ∈ V

(
ũ(t),v

)
H − (

ũ(0),v
)
H +

∫ t

0

〈
Aũ(s),v

〉
ds +

∫ t

0

〈
B
(
ũ(s)

)
,v
〉
ds

=
∫ t

0

〈
f (s),v

〉
ds +

〈∫ t

0
G
(
ũ(s)

)
dW̃(s),v

〉
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and

(4.19) Ẽ

[∫ T

0

∥∥ũ(s)
∥∥2

ds

]
< ∞.

PROOF. Since the product topological space ZT × C([0, T ],K) satisfies the
assumptions of Theorem 4.6, by applying it together with Theorem 4.9, there exists
a subsequence (nk), a probability space (
̃, F̃, P̃) and ZT × C([0, T ],K)-valued
Borel random variables (ũ, W̃ ), (ũk, W̃k), k ∈ N such that each W̃ and W̃k , k ∈ N

is an K-valued Wiener process and such that

(4.20) the laws on B
(
ZT × C

([0, T ],K
))

of (unk
,W) and (ũk, W̃k) are equal,

where B(ZT × C([0, T ],K)) is the Borel σ -algebra on ZT × C([0, T ],K), and,
with K̂ being an auxiliary Hilbert space such that K ⊂ K̂ and the natural embedding
K ↪→ K̂ is Hilbert–Schmidt,

(4.21)
(ũk, W̃k) converges to (ũ, W̃ ) in ZT × C

([0, T ], K̂
)

P̃-almost surely on 
̃.

Note that since B(ZT × C([0, T ],K)) ⊂ B(ZT ) × B(C([0, T ],K)), the function u

is ZT Borel random variable.
Define a corresponding sequence of filtrations by

F̃k = (
F̃k(t)

)
t≥0 where F̃k(t) = σ

({(
ũk(s), W̃k(s)

)
, s ≤ t

})
,

(4.22)
t ∈ [0, T ].

To conclude the proof, we need to show that the random variable ũ gives rise
to a martingale solution. The proof of this claim is very similar to the proof of
Theorem 2.3 in [30]. Let us denote the subsequence (ũnk

)k again by (ũn)n.
The few differences are:

(i) The finite dimensional space Hn is replaced by the whole space H. But now,
by Lemma 4.2 the space C([0, T ];V′) ∩ZT is a Borel subset of ZT and since
by Remark 3.7 un ∈ C([0, T ];V′), P-a.s. and ũn and un have the same laws on
ZT , we infer that

ũn ∈ C
([0, T ];V′), n ≥ 1, P̃-a.s.

(ii) The operator Pn has to be replaced by the identity. But this is rather a simpli-
fication as, for instance, we do not need Lemmas 2.3 and 2.4 from [9].

In addition to point (i) above, we have that for every q ∈ [1,p], we have

(4.23) sup
n∈N

Ẽ

(
sup

0≤s≤T

∣∣ũn(s)
∣∣q
H

)
≤ C1(p, q).

Similarly,

ũn ∈ L2(0, T ;V), n ≥ 1,P-a.s.
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and

(4.24) sup
n∈N

Ẽ

[∫ T

0

∥∥ũn(s)
∥∥2

V ds

]
≤ C2(p).

By inequality (4.24), we infer that the sequence (ũn) contains a subsequence, still
denoted by (ũn), convergent weakly in the space L2([0, T ] × 
̃;V). Since by
(4.21) P̃-a.s. ũn → ũ in ZT , we conclude that ũ ∈ L2([0, T ] × 
̃;V), that is,

(4.25) Ẽ

[∫ T

0

∣∣ũ(s)
∣∣2 ds

]
< ∞.

Similarly, by inequality (4.23) with q = p we can choose a subsequence of (ũn)

convergent weak star in the space Lp(
̃;L∞(0, T ;H)) and, using (4.21), infer that

(4.26) Ẽ

[
sup

0≤s≤T

∣∣ũ(s)
∣∣p
H

]
< ∞.

Then, of course, for every q ∈ [1,p],
(4.27) Ẽ

[
sup

0≤s≤T

∣∣ũ(s)
∣∣q
H

]
< ∞.

The remaining proof will be done in two steps.
Step 1. Let us choose and fix s > d

2 +1. We will first prove the following lemma.

LEMMA 4.12. For all ϕ ∈ Vs ,

(a) limn→∞ Ẽ[∫ T
0 |(ũn(t) − ũ(t), ϕ)H|2 dt] = 0,

(b) limn→∞ Ẽ[|(ũn(0) − ũ(0), ϕ)H|2] = 0,
(c) limn→∞ Ẽ[∫ T

0 | ∫ t
0 〈Aũn(s) −Aũ(s), ϕ〉ds|dt] = 0,

(d) limn→∞ Ẽ[∫ T
0 | ∫ t

0 〈B(ũn(s)) − B(ũ(s)), ϕ〉ds|dt] = 0,
(e) limn→∞ Ẽ[∫ T

0 | ∫ t
0 〈fn(s) − f (s), ϕ〉ds|dt] = 0,

(f) limn→∞ Ẽ[∫ T
0 |〈∫ t

0 [G(ũn(s)) − G(ũ(s))]dW̃(s), ϕ〉|2 dt] = 0.

PROOF OF LEMMA 4.12. Let us fix ϕ ∈ Vs .
Ad (a). Since by (4.21) ũn → ũ in C([0, T ];Hw) P̃-a.s., (ũn(·), ϕ)H →

(ũ(·), ϕ)H in C([0, T ];R), P̃-a.s. Hence, in particular, for all t ∈ [0, T ]
lim

n→∞
(
ũn(t), ϕ

)
H = (

ũ(t), ϕ
)
H, P̃-a.s.

Since by (4.23), supt∈[0,T ] |ũn(t)|2H < ∞, P̃-a.s., using the dominated convergence
theorem we infer that

(4.28) lim
n→∞

∫ T

0

∣∣(ũn(t) − ũ(t), ϕ
)
H

∣∣2 dt = 0, P̃-a.s.
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By the Hölder inequality and (4.23) for every n ∈ N and every r ∈ (1,1 + p
2 ],

(4.29)
Ẽ

[∣∣∣∣
∫ T

0

∣∣ũn(t) − ũ(t)
∣∣2
H dt

∣∣∣∣r
]

≤ cẼ

[∫ T

0

(∣∣ũn(t)
∣∣2r
H + ∣∣ũ(t)

∣∣2r
H

)
dt

]

≤ c̃C1(p,2r),

where c, c̃ are some positive constants. To conclude the proof of assertion (a), it is
sufficient to use (4.28), (4.29) and the Vitali theorem.

Ad (b). Since by (4.21) ũn → ũ in C(0, T ;Hw) P̃-a.s. and ũ is continuous at
t = 0, we infer that (ũn(0), ϕ)H → (ũ(0), ϕ)H, P̃-a.s. Now, assertion (b) follows
from (4.23) and the Vitali theorem.

Ad (c). Since by (4.21) ũn → ũ in L2
w(0, T ;V), P̃-a.s., by (2.6) we infer that

P̃-a.s.

lim
n→∞

∫ t

0

〈
Aũn(s), ϕ

〉
ds = lim

n→∞

∫ t

0

((
ũn(s), ϕ

))
ds

=
∫ t

0

((
ũ(s), ϕ

))
ds(4.30)

=
∫ t

0

〈
Aũ(s), ϕ

〉
ds.

By (2.6), the Hölder inequality and estimate (4.24) we infer that for all t ∈ [0, T ]
and n ∈ N

Ẽ

[∣∣∣∣
∫ t

0

〈
Aũn(s), ϕ

〉
ds

∣∣∣∣2
]

= Ẽ

[∣∣∣∣
∫ t

0

((
ũn(s), ϕ

))
ds

∣∣∣∣2
]

≤ c‖ϕ‖2
Vs
Ẽ

[∫ T

0

∥∥ũn(s)
∥∥2

V ds

]
(4.31)

≤ c̃C2(p),

where c, c̃ > 0 are some constants. By (4.30), (4.31) and the Vitali theorem, we
conclude that for all t ∈ [0, T ]

lim
n→∞ Ẽ

[∣∣∣∣
∫ t

0

〈
Aũn(s) −Aũ(s), ϕ

〉
ds

∣∣∣∣
]

= 0.

Assertion (c) follows now from (4.24) and the dominated convergence theorem.
Ad (d). Since by (4.24) and (2.3) the sequence (ũn) is bounded in L2(0, T ;H)

and by (4.21) ũn → ũ in L2(0, T ;Hloc), P̃-a.s., by Lemma B.1 in [9] we infer that
P̃-a.s. for all t ∈ [0, T ] and ϕ ∈ Vs

(4.32) lim
n→∞

∫ t

0

〈
B
(
ũn(s)

)− B
(
ũ(s)

)
, ϕ

〉
ds = 0.
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Using the Hölder inequality, Lemma 2.2 and (4.23) we infer that for all t ∈ [0, T ],
r ∈ (0,

p
2 ] and n ∈N the following inequalities hold:

(4.33)

Ẽ

[∣∣∣∣
∫ t

0

〈
B
(
ũn(s)

)
, ϕ

〉
ds

∣∣∣∣1+r]
≤ Ẽ

[(∫ t

0

∣∣B(
ũn(s)

)∣∣
V′

s
|ϕ|Vs ds

)1+r]

≤ (
c2|ϕ|Vs

)1+r
t rE

[∫ t

0

∣∣ũn(s)
∣∣2+2r
H ds

]

≤ C̃Ẽ

[
sup

s∈[0,T ]
∣∣ũn(s)

∣∣2+2r
H

]

≤ C̃C1(p,2 + 2r).

By (4.32), (4.33) and the Vitali theorem, we obtain for all t ∈ [0, T ]
(4.34) lim

n→∞ Ẽ

[∣∣∣∣
∫ t

0

〈
B
(
ũn(s)

)− B
(
ũ(s)

)
, ϕ

〉
ds

∣∣∣∣
]

= 0.

Using again Lemma 2.2 and estimate (4.23), we obtain for all t ∈ [0, T ] and n ∈ N

Ẽ

[∣∣∣∣
∫ t

0

〈
B
(
ũn(s)

)
, ϕ

〉
ds

∣∣∣∣
]

≤ cẼ
[

sup
s∈[0,T ]

∣∣ũn(s))
∣∣2
H

]
≤ cC1(p,2),

where c > 0 is a constant. Hence, by (4.34) and the dominated convergence theo-
rem, we infer that assertion (d) holds.

Ad (e). Assertion (e) follows because the sequence (fn) converges weakly in
Lp(0, T ;V′) to f and Vs ⊂ V.

Ad (f). Let us notice that for all ϕ ∈ V we have∫ t

0

∥∥〈G(
ũn(s)

)− G
(
ũ(s)

)
, ϕ

〉∥∥2
T2(K̂;R)

ds

=
∫ t

0

∥∥ϕ∗∗G(ũn)(s) − ϕ∗∗G(ũ)(s)
∥∥2
T2(K̂;R)

ds

≤ ∥∥ϕ∗∗G(ũn) − ϕ∗∗G(ũ)
∥∥2
L2([0,T ];T2(K̂;R))

,

where ϕ∗∗G is the map defined by (G4) in assumption (H.2). Since by (4.21) ũn →
ũ in L2(0, T ;Hloc), P̃-a.s., by (G4) we infer that for all t ∈ [0, T ] and ϕ ∈ V:

lim
n→∞

∫ t

0

∥∥〈G(
ũn(s)

)− G
(
ũ(s)

)
, ϕ

〉∥∥2
T2(K̂;R)

ds = 0.(4.35)

By (G3) and (4.23), we obtain the following inequalities for every t ∈ [0, T ], r ∈
(1,1 + p

2 ] and n ∈ N:

Ẽ

[∣∣∣∣
∫ t

0

∥∥〈G(
ũn(s)

)− G
(
ũ(s)

)
, ϕ

〉∥∥2
T2(K̂;R)

ds

∣∣∣∣r
]

≤ cẼ

[
|ϕ|2r

V ·
∫ t

0

{∣∣G(
ũn(s)

)∣∣2r

T2(K̂;V′) + ∣∣G(
ũ(s)

)∣∣2r

T2(K̂;V′)
}
ds

]
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≤ c1Ẽ

[∫ T

0

(
1 + ∣∣ũn(s)

∣∣2r
H + ∣∣ũ(s)

∣∣2r
H

)
ds

]
(4.36)

≤ c̃
{
1 + Ẽ

[
sup

s∈[0,T ]
∣∣ũn(s)

∣∣2r
H + sup

s∈[0,T ]
∣∣ũ(s)

∣∣2r
H

]}

≤ c̃
(
1 + 2C1(p,2r)

)
,

where c, c1, c̃ are some positive constants. Using the Vitali theorem, by (4.35),
(4.36) we infer that for all ϕ ∈ V,

(4.37) lim
n→∞ Ẽ

[∫ t

0

∥∥〈G(
ũn(s)

)− G
(
ũ(s)

)
, ϕ

〉∥∥2
T2(K̂;R)

ds

]
= 0.

Hence, by the properties of the Itô integral we infer that for all t ∈ [0, T ] and
ϕ ∈ V,

(4.38) lim
n→∞ Ẽ

[∣∣∣∣
〈∫ t

0

[
G
(
ũn(s)

)− G
(
ũ(s)

)]
dW̃(s), ϕ

〉∣∣∣∣2
]

= 0.

By the Itô isometry, since the map G satisfies inequality (G3) in part (H.2) of
Assumption 3.1, and estimate (4.23) we have for all ϕ ∈ V, t ∈ [0, T ] and n ∈ N,

Ẽ

[∣∣∣∣
〈∫ t

0

[
G
(
ũn(s)

)− G
(
ũ(s)

)]
dW̃(s), ϕ

〉∣∣∣∣2
]

= Ẽ

[∫ t

0

∥∥〈G(
ũn(s)

)− G
(
ũ(s)

)
, ϕ

〉∥∥2
T2(K̂;R)

ds

]
(4.39)

≤ c
{
1 + Ẽ

[
sup

s∈[0,T ]
∣∣ũn(s)

∣∣2
H + sup

s∈[0,T ]
∣∣ũ(s)

∣∣2
H

]}

≤ c
(
1 + 2C1(p,2)

)
,

where c > 0 is some constant. Thus, by (4.38), (4.39) and the Lebesgue dominated
convergence theorem, we infer that for all ϕ ∈ V,

(4.40) lim
n→∞

∫ T

0
Ẽ

[∣∣∣∣
〈∫ t

0

[
G
(
ũn(s)

)− G
(
ũ(s)

)]
dW̃ (s), ϕ

〉∣∣∣∣2
]

= 0.

To conclude the proof of assertion (f), it is sufficient to notice that since s > d
2 + 1,

Vs ⊂ V, and thus (4.40) holds for all ϕ ∈ Vs . The proof of Lemma 4.12 is thus
complete. �

As a direct consequence of Lemma 4.12, we get the following corollary which
we precede by introducing some auxiliary notation. Analogously to [7] and [30],
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let us denote

�n(ũn, W̃n, ϕ)(t)

:= (
ũn(0), ϕ

)
H −

∫ t

0

〈
Aũn(s), ϕ

〉
ds −

∫ t

0

〈
B
(
ũn(s)

)
, ϕ

〉
ds(4.41)

+
∫ t

0

〈
fn(s), ϕ

〉
ds +

〈∫ t

0
G
(
ũn(s)

)
dW̃n(s), ϕ

〉
, t ∈ [0, T ],

and

�(ũ, W̃ , ϕ)(t)

:= (
ũ(0), ϕ

)
H −

∫ t

0

〈
Aũ(s), ϕ

〉
ds −

∫ t

0

〈
B
(
ũ(s)

)
, ϕ

〉
ds

(4.42)

+
∫ t

0

〈
f (s), ϕ

〉
ds +

〈∫ t

0
G
(
ũ(s)

)
dW̃(s), ϕ

〉
, t ∈ [0, T ].

COROLLARY 4.13. For every ϕ ∈ Vs ,

(4.43) lim
n→∞

∣∣(ũn(·), ϕ)H − (
ũ(·), ϕ)H

∣∣
L2([0,T ]×
̃) = 0

and

(4.44) lim
n→∞

∣∣�n(ũn, W̃n, ϕ) − �(ũ, W̃ , ϕ)
∣∣
L1([0,T ]×
̃) = 0.

PROOF OF COROLLARY 4.13. Assertion (4.43) follows from the equality

∣∣(ũn(·), ϕ)H − (
ũ(·), ϕ)H

∣∣2
L2([0,T ]×
̃)

= Ẽ

[∫ T

0

∣∣(ũn(t) − ũ(t), ϕ
)
H

∣∣2 dt

]

and Lemma 4.12(a). Let us move to the proof of assertion (4.44). Note that by the
Fubini theorem, we have∣∣�n(ũn, W̃n, ϕ) − �(ũ, W̃ , ϕ)

∣∣
L1([0,T ]×
̃)

=
∫ T

0
Ẽ
[∣∣�n(ũn, W̃n, ϕ)(t) − �(ũ, W̃ , ϕ)(t)

∣∣]dt.

To conclude the proof of Corollary 4.13, it is sufficient to note that by Lemma
4.12(b)–(f), each term on the right-hand side of (4.41) tends at least in L1([0, T ]×

̃) to the corresponding term in (4.42). �

Step 2. Since un is a solution of the Navier–Stokes equation, for all t ∈ [0, T ]
and ϕ ∈ V , (

un(t), ϕ
)
H = �n(un,W,ϕ)(t), P-a.s.
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In particular, ∫ T

0
E
[∣∣(un(t), ϕ

)
H − �n(un,W,ϕ)(t)

∣∣]dt = 0.

Since L(un,W) = L(ũn, W̃n),∫ T

0
Ẽ
[∣∣(ũn(t), ϕ

)
H − �n(ũn, W̃n, ϕ)(t)

∣∣]dt = 0.

Moreover, by (4.43) and (4.44)∫ T

0
Ẽ
[∣∣(ũ(t), ϕ

)
H − �(ũ, W̃ , ϕ)(t)

∣∣]dt = 0.

Hence, for l-almost all t ∈ [0, T ] and P̃-almost all ω ∈ 
̃,(
ũ(t), ϕ

)
H − �(ũ, W̃ , ϕ)(t) = 0,

that is, for l-almost all t ∈ [0, T ] and P̃-almost all ω ∈ 
̃,

(4.45)

(
ũ(t), ϕ

)
H +

∫ t

0

〈
Aũ(s), ϕ

〉
ds +

∫ t

0

〈
B
(
ũ(s)

)
, ϕ

〉
ds

= (
ũ(0), ϕ

)
H +

∫ t

0

〈
f (s), ϕ

〉
ds +

〈∫ t

0
G
(
ũ(s)

)
dW̃ (s), ϕ

〉
.

Since a Borel ũ is ZT -valued random variable, in particular ũ ∈ C([0, T ];Hw), that
is, ũ is weakly continuous, we infer that equality (4.45) holds for all t ∈ [0, T ] and
all ϕ ∈ V . Since V is dense in V, equality (4.45) holds for all ϕ ∈ V, as well. Putting
Ã := (
̃, F̃, P̃, F̃), we infer that the system (Ã, W̃ , ũ) is a martingale solution of
equation (3.2). By (4.25) and (4.27), the process ũ satisfies inequalities (4.19) and
(4.18). The proof of Theorem 4.11 is thus complete. �

REMARK 4.14. It seems to us that the same argument works if the space ZT

defined in (4.3) is replaced by a bigger space ẐT defined by

(4.46) ẐT := L2
w(0, T ;V) ∩ L2(0, T ;Hloc) ∩ C

([0, T ];Hw

)
.

In particular, to prove that the sequence (ũn) given in (4.20), whose existence
follows from the Skorokhod theorem, converges to a solution of the Navier–Stokes
equation, it is sufficient to use the convergence of (ũn) in the space ẐT .

5. The case of 2D domains. A special result proved recently in [9] is about
the existence and uniqueness of strong solutions for 2-D stochastic Navier–Stokes
equations in unbounded domains with a general noise.

Let us present the framework and the results. Let us recall Lemma 7.2 from [9].
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LEMMA 5.1. Let d = 2 and assume that all conditions in parts (H.1)–(H.3)
and (H.5) of Assumption 3.1 are satisfied. Assume that μ0 = δu0 for some deter-
ministic u0 ∈ H. Let (
̂, F̂, F̂, Ŵ , P̂, u) be a martingale solution of problem (3.2),
in particular,

(5.1) Ê

[
sup

t∈[0,T ]
∣∣u(t)

∣∣2
H +

∫ T

0

∣∣∇u(t)
∣∣2 dt

]
< ∞.

Then for P̂-almost all ω ∈ 
̂ the trajectory u(·,ω) is equal almost everywhere to a
continuous H-valued function defined on [0, T ]. P̂-a.s. and

u(t) = u0 −
∫ t

0

[
Au(s) + B

(
u(s)

)]
ds +

∫ t

0
f (s) ds

+
∫ t

0
G
(
u(s)

)
dŴ (s), t ∈ [0, T ].

(5.2)

Let us emphasize that equality (5.2) is understood as the one in the space V′;
see Remark 3.7.

The next result is [9], Lemma 7.3.

LEMMA 5.2. Assume that all conditions in parts (H.1)–(H.3) and (H.5) of
Assumption 3.1 are satisfied. In addition, we assume that the Lipschitz constant of
G is smaller than

√
2, that is, the map G satisfies condition (G1) in part (H.2) of

Assumption 3.1 with L <
√

2. Assume that u0 ∈ H. If u1 and u2 are two solutions
of problem (3.2) defined on the same filtered probability space (
̂, F̂, F̂, P̂) and
the same Wiener process Ŵ , then P̂-a.s. for all t ∈ R+, u1(t) = u2(t).

Because from now we will be dealing with the pathwise uniqueness of solutions,
let us formulate the following assumption on the stochastic basis.

ASSUMPTION 5.3. Assume that (
,F,F,P) is a stochastic basis with a filtra-
tion F = {Ft }t≥0 and W = (W(t))t≥0 is a cylindrical Wiener process in a separable
Hilbert space K defined on this stochastic basis.

We will often consider problem (3.2) with the initial data μ0 = δu0 for some
deterministic u0 ∈ H, and hence we explicitly rewrite that problem in the following
way:

(5.3)

⎧⎪⎪⎨
⎪⎪⎩

du(t) +Au(t) dt + B
(
u(t), u(t)

)
dt

= f (t) dt + G
(
u(t)

)
dW(t), t ≥ 0,

u(0) = u0.

To avoid any confusion, a martingale solution to problem (5.3) with initial data
u0 ∈ H, is a martingale solution to problem (3.2) with μ0 = δu0 .
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For the completeness of the exposition, let us also recall a notion of a strong
solution.

DEFINITION 5.4. Assume that u0 ∈ H and f : [0,∞) → V′. Assume As-
sumption 5.3. We say that an F-progressively measurable process u : [0,∞) ×

 → H with P - a.e. paths,

u(·,ω) ∈ C
([0,∞),Hw

)∩ L2
loc
([0,∞);V

)
is a strong solution to problem (5.3), that is,⎧⎪⎪⎨

⎪⎪⎩
du(t) +Au(t) dt + B

(
u(t), u(t)

)
dt

= f (t) dt + G
(
u(t)

)
dW(t), t ≥ 0,

u(0) = u0,

if and only if for all t ∈ [0,∞) and all v ∈ V the following identity holds P-a.s.:

(
u(t),v

)
H +

∫ t

0

〈
Au(s),v

〉
ds +

∫ t

0

〈
B
(
u(s), u(s)

)
,v
〉
ds

= (u0,v)H +
∫ t

0

〈
f (s),v

〉
ds +

〈∫ t

0
G
(
u(s)

)
dW(s),v

〉

and for all T > 0,

(5.4) E

[
sup

t∈[0,T ]
∣∣u(t)

∣∣2
H +

∫ T

0

∣∣∇u(t)
∣∣2 dt

]
< ∞.

Let us recall two basic concepts of uniqueness of the solution, that is, pathwise
uniqueness and uniqueness in law; see [23, 32]. Please note the following differ-
ence between problems (3.2) and (5.3). In the former, a law of the initial data is
prescribed, while in the latter a initial data is given.

DEFINITION 5.5. We say that solutions of problem (5.3) has pathwise unique-
ness property if and only if for all u0 ∈ H and f : [0,∞) → V′ the following
condition holds:

(5.5)

if ui, i = 1,2,are strong solutions of problem (5.3)

on (
,F,F,P,W) satisfying Assumption 5.3,

then P-a.s. for all t ∈ [0,∞), u1(t) = u2(t).

Assume that u0 ∈ H and f : [0,∞) → V′. A solution u to problem (5.3) on
(
,F,F,P,W) satisfying Assumption 5.3, is said to be pathwise unique iff for
every solution ũ to problem (5.3) on the same (
,F,F,P,W), one has

P-a.s. for all t ∈ [0,∞), u(t) = ũ(t).
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DEFINITION 5.6. We say that problem (3.2) has uniqueness in law property iff
for every Borel measure μ on H and every f : [0,∞) → V′ the following condition
holds:

(5.6)
if
(

i,F i ,Fi ,Pi ,W i, ui), i = 1,2,are solutions of problem (3.2)

then LawP1
(
u1) = LawP2

(
u2) on C

([0,∞),Hw

)∩ L2
loc
([0,∞);V

)
,

where LawPi (ui), i = 1,2, are by definition probability measures on C([0,∞),

Hw) ∩ L2
loc([0,∞);V).

COROLLARY 5.7. Assume that conditions (H.1)–(H.3) and (H.5) of As-
sumption 3.1 are satisfied and that the map G satisfies inequality (G1) in part
(H.2) of Assumption 3.1 with a constant L smaller than

√
2. Assume also that

(
,F,F,P,W) satisfies Assumption 5.3. Then for every u0 ∈ H:

(1) There exists a pathwise unique strong solution u on (
,F,F,P,W) of prob-
lem (5.3).

(2) Moreover, if u is a strong solution of problem (5.3) on (
,F,F,P,W), then
for P-almost all ω ∈ 
 the trajectory u(·,ω) is equal almost everywhere to a
continuous H-valued function defined on [0,∞).

(3) The martingale solution of problem (3.2) with μ0 = δu0 is unique in law. In
particular, if (
i,F i ,Fi ,Pi ,W i, ui), i = 1,2 are such solutions to problem
(3.2), then for all t ≥ 0, the laws on H of H-valued random variables u1(t)

and u2(t) coincide.

PROOF. The proof of part (3) given in [9] yields the uniqueness in law in the
trajectory the space C([0,∞),Hw) ∩ L2

loc([0,∞);V); hence, in C([0, T ],Hw) ∩
L2(0, T ;V) for every T > 0. �

Let us emphasize that, by definition, we require a martingale solution of the
Navier–Stokes equation to satisfy inequality (3.5), that is,

Ê

[
sup

t∈[0,T ]
∣∣u(t)

∣∣2
H +

∫ T

0

∣∣∇u(t)
∣∣2 dt

]
< ∞.

In Theorem 4.8, covering both 2D and 3D domains, we proved that there exists
a martingale solution satisfying stronger estimates, that is, (4.8)–(4.11). However,
in the case when O is a 2D domain, we can prove that every martingale solution
satisfies these inequalities.

LEMMA 5.8. Assume that d = 2 and that conditions (H.1)–(H.3) and (H.5)
from Assumption 3.1 are satisfied. Then the following hold:
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(1) For every T > 0, R1 > 0 and R2 > 0 there exist constants C1(p) and C2(p)

depending also on T , R1 and R2 such that if μ0 is a Borel probability measure
on H , f ∈ Lp(0, T ;V′) satisfy

∫
H |x|pμ0(dx) ≤ R1 and |f |Lp(0,T ;V′) ≤ R2,

then every martingale solution of problem (3.2) with the initial data μ0 and
the external force f , satisfies the following estimates:

(5.7) Ê

(
sup

s∈[0,T ]
∣∣u(s)

∣∣p
H

)
≤ C1(p)

and

(5.8) Ê

[∫ T

0

∣∣u(s)
∣∣p−2
H

∣∣∇u(s)
∣∣2 ds

]
≤ C2(p).

In particular,

(5.9) Ê

[∫ T

0

∣∣∇u(s)
∣∣2 ds

]
≤ C2 := C2(2).

(2) Moreover, if O is a Poincaré domain and the map G satisfies inequality (G2)
in part (H.2) of Assumption 3.1 with λ0 = 0 (and with ρ ∈ [0,∞) and η ∈
(0,2]), then the process u satisfies additionally the following inequality for
every t ≥ 0:

(5.10) Ê
[∣∣u(t)

∣∣2
H

]+ η

2
Ê

[∫ t

0

∣∣∇u(s)
∣∣2 ds

]
≤ Ê

[∣∣u(0)
∣∣2
H

]+ 2

η

∫ t

0

∣∣f (s)
∣∣2
v′ ds +ρt.

The proof of Lemma 5.8 is similar to the proof of estimates (5.4), (5.5) and (5.6)
from the Appendix in [9]. The difference is that the solution process u to which
the Itô formula (in a classical form; see, for instance, [23]) was applied was taking
values in a finite dimensional Hilbert space Hn and u was a solution in the most
classical way. Now, un is martingale solution to problem (3.2); see Definition 3.2.

If we assume that d = 2, by Lemma III.3.4, page 198 in [43], we infer that the
regularity assumption (3.3) implies that

B
(
u(·,ω), u(·,ω)

) ∈ L2
loc
([0,∞);V′) for P̂-a.a. ω ∈ 
.

This, however, does not imply that

Ê

∫ T

0

∣∣B(
u(t), u(t)

)∣∣2
V′ dt < ∞

what is necessary in order to apply the infinite dimensional Itô lemma from [34].
Fortunately, we can proceed as in the proof of the uniqueness result, that is,

Lemma 7.3 from [9], that is, introduce a family τN , N ∈ N of the stopping times
defined by

(5.11) τN := inf
{
t ∈ [0,∞) : ∣∣u(t)

∣∣
H ≥ N

}
, N ∈ N,
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and then consider a stopped process u(t ∧ τN), t ≥ 0. Note that with this definition
of the stopping time τN , we have

Ê

∫ T ∧τN

0

∣∣B(
u(t), u(t)

)∣∣2
V′ dt ≤ CN2

Ê

∫ T

0

∥∥u(t)
∥∥2

dt < ∞.

REMARK. If d = 3, then

B
(
u(·,ω), u(·,ω)

) ∈ L4/3(0, T ;V′) for P̂-a.a. ω ∈ 
.

Thus, in this case the above procedure with the stopping time τN does not help.

PROOF OF LEMMA 5.8. Let us fix p satisfying condition (3.1). As in the proof
of Lemma A.1, we apply the Itô formula from [34] to the function F defined by

F : H � x �→ |x|pH ∈R.

With the above comments in mind and using Remark 3.6, we have, for t ∈ [0,∞),

∣∣u(t ∧ τN)
∣∣p − ∣∣u(0)

∣∣p =
∫ t∧τN

0

[
p
∣∣u(s)

∣∣p−2〈
u(s),−Au(s) − B

(
u(s)

)+ f (s)
〉

+ 1

2
Tr
[
F ′′(u(s)

)(
G
(
u(s)

)
,G

(
u(s)

))]]
ds

+ p

∫ t∧τN

0

∣∣u(s)
∣∣p−2〈

u(s),G
(
u(s)

)
dŴ (s)

〉
(5.12)

=
∫ t∧τN

0

[
−p

∣∣u(s)
∣∣p−2∥∥u(s)

∥∥2 + p
∣∣u(s)

∣∣p−2〈
u(s), f (s)

〉

+ 1

2
Tr
[
F ′′(u(s)

)(
G
(
u(s)

)
,G

(
u(s)

))]]
ds

+ p

∫ t∧τN

0

∣∣u(s)
∣∣p−2〈

u(s),G
(
u(s)

)
dŴ (s)

〉
.

Proceeding as in the proof of Lemma A.1, we obtain

∣∣u(t ∧ τN)
∣∣p + δ

∫ t∧τN

0

∣∣u(s)
∣∣p−2∣∣∇u(s)

∣∣2 ds

≤ ∣∣u(0)
∣∣p + Kp(λ0, ρ)

∫ t∧τN

0

∣∣u(s)
∣∣p ds + 2ρ

p
t

(5.13)

+ ε−p/2
∫ t∧τN

0

∣∣f (t)
∣∣p
V′ ds

+ p

∫ t

0

∣∣u(s)
∣∣p−2〈

u(s),G
(
u(s)

)
dŴ (s)

〉
, t ∈ [0,∞),

where Kp(λ0, ρ) = p−1
2 [λ0p + 2 + ρ(p − 2)].
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By the definition of the stopping time τN , we infer that the process

μN(t) :=
∫ t∧τN

0

∣∣u(s)
∣∣p−2〈

u(s),G
(
u(s)

)
dŴ(s)

〉
, t ∈ [0,∞)

is a martingale. Indeed, if we define a map

g : V � u �→ {
K � k �→ 〈

u,G(u)k
〉 ∈ H

} ∈ T2(K,R),

then μN(t) = ∫ t∧τN

0 |u(s)|p−2g(u(s)) dW(s) and, since the map G satisfies in-
equality (G2) in part (H.2) of Assumption 3.1, we infer that, for every t ≥ 0,∫ t∧τN

0

∥∥∣∣u(s)
∣∣p−2

g
(
u(s)

)∥∥2
T2(K,R) ds

=
∫ t∧τN

0

∣∣u(s)
∣∣p−2∥∥g(u(s)

)∥∥2
T2(K,R) ds

≤
∫ t∧τN

0

∣∣u(s)
∣∣p−2∣∣u(s)

∣∣2∥∥G(
u(s)

)∥∥2
T2(K,H) ds(5.14)

≤
∫ t∧τN

0

∣∣u(s)
∣∣p[(2 − η)

∣∣∇u(t)
∣∣2 + λ0

∣∣u(t)
∣∣2 + ρ

]
ds

≤ (2 − η)Np
∫ t∧τN

0

∣∣∇u(t)
∣∣2 dt + tNp(λ0N

2 + ρ
)
.

Hence, by inequality (3.5) we infer that

Ê

∫ t∧τN

0

∥∥∣∣u(s)
∣∣p−2

g
(
u(s)

)∥∥2
T2(K,R) ds < ∞, t ≥ 0,

and thus we infer, as claimed, that the process μN is a martingale. Hence,
E[μN(t)] = 0. Let us now fix T > 0. By taking expectation in inequality (5.13)
we infer that

Ê
[∣∣u(t ∧ τN)

∣∣p]
≤ Ê

[∣∣u(0)
∣∣p]

+ Kp(λ0, ρ)

∫ t∧τN

0
Ê
[∣∣u(s)

∣∣p]ds + 2ρ

p
(t ∧ τN) + ε−p/2(t ∧ τN)|f |pV′

≤ Ê
[∣∣u(0)

∣∣p]
+ Kp(λ0, ρ)

∫ t∧τN

0
Ê
[∣∣u(s ∧ τN)

∣∣p]ds + T

(
2ρ

p
+ ε−p/2|f |pV′

)
,

t ∈ [0, T ].
Hence, by the Gronwall lemma there exists a constant

C = Cp(T ,η,λ0, ρ, Ê[|u(0)|p], |f |Lp(0,T ;V′)) > 0 such that

(5.15) Ê
[∣∣u(t ∧ τN)

∣∣p] ≤ C, t ∈ [0, T ].
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Using this bound in (5.13), we also obtain

(5.16) Ê

[∫ T ∧τN

0

∣∣u(s)
∣∣p−2∣∣∇u(s)

∣∣2 ds

]
≤ C

for a new constant C = C̃p(η, Ê|u(0)|p, Ê
∫ T

0 |f (s)|pV′ ds) > 0. Finally, taking the
limit N → ∞ and observing that T ∧ τN → T , by the Lebesgue dominated con-
vergence theorem we infer that for the same constant C we have

sup
t∈[0,T ]

Ê
[∣∣u(t)

∣∣p] ≤ C,(5.17)

Ê

[∫ T

0

∣∣u(s)
∣∣p−2∣∣∇u(s)

∣∣2 ds

]
≤ C.(5.18)

This completes the proof of estimates (5.8) and (5.9). The proof of inequality (5.7)
is the same as the proof of inequality (A.2), and thus omitted.

To prove inequality (5.10) in the case O is a Poincaré domain, we use the same
arguments as the proof of inequality (A.5). This time, however, the solution to the
Galerkin approximating equation is replaced by the stopped process u(t ∧ τN),
t ≥ 0. Let us recall that in the space V we consider the inner product ((·, ·)) given
by (2.2).

By identity (5.12) with p = 2, we have

∣∣u(t ∧ τN)
∣∣2 − ∣∣u(0)

∣∣2 =
∫ t∧τN

0

{
−2

∥∥u(s)
∥∥2 + 2

〈
u(s), f

〉

+ 1

2
Tr
[
F ′′(u(s)

)(
G
(
u(s)

)
,G

(
u(s)

))]}
ds

+ 2
∫ t∧τN

0

〈
u(s),G

(
u(s)

)
dŴ(s)

〉
, t ≥ 0.

Since Ê(
∫ t∧τN

0 〈G(u(s)), u(s) dŴ(s)〉) = 0, we infer that

Ê
∣∣u(t ∧ τN)

∣∣2
H ≤ Ê

[∣∣u(0)
∣∣2
H

]+ Ê

∫ t∧τN

0

{−2
∥∥u(s)

∥∥2 + 2
〈
f (s), u(s)

〉}
ds

+ Ê

∫ t∧τN

0

∣∣G(
u(s)

)∣∣2
T2(K,H) ds.

Taking next the N → ∞ limit, since the map G satisfies inequality (G2) in part
(H.2) of Assumption 3.1 with λ0 = 0, that is,

|G(u(s))|2T2(K,H) ≤ (2 − η)‖u(s)‖2 + �, we get

(5.19)
Ê
∣∣u(t)

∣∣2
H ≤ −ηE

∫ t

0

∥∥u(s)
∥∥2

ds + Ê
[∣∣u(0)

∣∣2
H

]

+ 2Ê
∫ t

0

〈
f (s), u(s)

〉
ds + �t.
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Since 2〈f,u(s)〉 ≤ η
2 |∇u(s)|2 + 2

η
|f |2V′ we infer that

(5.20)

Ê
∣∣u(t)

∣∣2
H ≤ −η

2
Ê

∫ t

0

∥∥u(s)
∥∥2

ds + Ê
[∣∣u(0)

∣∣2
H

]

+ 2

η

∫ t

0

∣∣f (s)
∣∣2
V′ + �t, t ≥ 0.

The proof of inequality (5.10) is thus complete. This completes the proof of
Lemma 5.8. �

Note that if f : [0,∞) → V′ is constant, then f ∈ Lp(0, T ;V′) for every T > 0
and p satisfying condition (H.3) of Assumption 3.1. In this case, we will write
f ∈ V′.

By Theorem 4.11, Corollary 5.7 and Lemma 5.8, we obtain the following result
about the continuous dependence of the solutions to 2D SNSEs with respect to the
initial data and the external forces.

THEOREM 5.9. Let d = 2. Let parts (H.1)–(H.2), (H.5) and (G1) with a con-
stant L smaller than

√
2, of Assumption 3.1, be satisfied. Assume that u0 ∈ H,

f ∈ V′ and that an H-valued sequence (u0,n)
∞
n=1 is weakly convergent in H to u0,

and that an V′-valued sequence (fn)n=1 is weakly convergent in V′ to f . Let

(
n,Fn,Fn,Pn,Wn,un)

be a martingale solution of problem (5.3) on [0,∞) with the initial data u0,n and
the external force fn. Then for every T > 0 there exist:

• a subsequence (nk)k ,
• a stochastic basis (
̃, F̃, F̃, P̃), where F̃ = {F̃ t }t≥0,
• a cylindrical Wiener process W̃ = W̃ (t), t ∈ [0,∞) defined on this basis,
• and F-progressively measurable processes ũ(t), (ũnk

(t))k≥1, t ∈ [0, T ] (defined
on this basis) with laws supported in ZT such that

(5.21) ũnk
has the same law as unk

on ZT and ũnk
→ ũ in ZT , P̃-a.s.

and the system

(5.22) (
̃, F̃, F̃, P̃, W̃ , ũ)

is a martingale solution to problem (5.3) on the interval [0, T ] with the initial law
δu0 . In particular, for all t ∈ [0, T ] and v ∈ V

(
ũ(t),v

)
H − (

ũ(0),v
)
H +

∫ t

0

〈
Aũ(s),v

〉
ds +

∫ t

0

〈
B
(
ũ(s)

)
,v
〉
ds

=
∫ t

0
〈f,v〉ds +

〈∫ t

0
G
(
ũ(s)

)
dW̃(s),v

〉
.
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Moreover, the process ũ satisfies the following inequality for every p satisfying
condition (3.1) and q ∈ [1,p]:

(5.23) Ẽ

[
sup

s∈[0,T ]
∣∣ũ(s)

∣∣q
H

]
+ Ẽ

[∫ T

0

∥∥ũ(s)
∥∥2

ds

]
< ∞.

PROOF. Let p be any exponent satisfying condition (3.1). Since the sequences
(u0,n)

∞
n=1 ⊂ H and (fn)

∞
n=1 ⊂ V′ convergent weakly in H and V′, respectively, we

infer that there exist R1 > 0 and R2 > 0 such that

sup
n∈N

|u0,n|H ≤ R1 and sup
n∈N

‖fn‖V′ ≤ R2.

By Lemma 5.8, we infer that the processes un, n ∈ N, satisfy inequalities (4.8)–
(4.10). Thus the first part of the assertion follows directly from Theorem 4.11.
Inequality (5.23) follows again from Lemma 5.8. The proof of the theorem is thus
complete. �

REMARK 5.10. Although this has not been studied in the present paper, we
believe that methods developed here can be used to study the continuous depen-
dence of the solutions on other parameters entering our equations, for instance, the
linear operator A, the nonlinearity B and the diffusion operator G.

6. Existence of an invariant measure for stochastic NSEs on 2-dimensional
domains. In this section, we assume that d = 2. Since we are interested in the ex-
istence of invariant measures, we assume that the domain O satisfies the Poincaré
condition; see (2.4).5 However, our results are true for general domains for the
stochastic damped Navier–Stokes equations; see, for instance, [14].

Since we assume that O is a Poincaré domain, by the Poincaré inequality [see
(2.4)], the functional given by the formula

(6.1) ‖u‖ = |∇u|L2, u ∈ V,

is a norm in the space V equivalent to the norm given by (2.3).
In the sequel, in the space V we consider the norm given by (6.1).
We aim in this section to prove that, under some natural assumptions, prob-

lem (3.2) has an invariant measure. Let us fix, as in Assumption 5.3, a stochastic
basis (
,F,F,P) with a filtration F = {Ft }t≥0; a canonical cylindrical Wiener
process W = W(t) in a separable Hilbert space K defined on the stochastic basis
(
,F,F,P). We also fix a function G : H → T2(K,V′) satisfying condition (H.2)
in Assumption 3.1 and, in addition, the Lipschitz condition (G1) with a constant
L smaller than

√
2, and inequality (G2) with λ0 = 0. The last assumption on λ0

5It is well known that this condition holds if the domain O is bounded in some direction, that is,

there exists a vector h ∈ R
d such that O ∩ (h +O) =∅.
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corresponds to the fact that in O we consider the norm given by (6.1). In what fol-
lows, the initial data u0 will be an element of the space H. By u(t, u0), t ≥ 0, we
denote the unique solution to the problem (5.3) (defined on the above stochastic
basis satisfying Assumption 5.3).

For any bounded Borel function ϕ ∈ Bb(H) and t ≥ 0, we define

(6.2) (Ptϕ)(u0) = E
[
ϕ
(
u(t, u0)

)]
, u0 ∈ H.

Since by Lemma 5.1 the trajectories u(·, u0) are continuous, (Pt )t≥0 is a stochasti-
cally continuous semigroup on the Banach space Cb(H). This means that for every
ϕ ∈ Cb(H) and u0 ∈ H:

lim
t→0

Ptϕ(u0) = u0.

As a consequence of Corollary 5.7, we have the following result.

PROPOSITION 6.1. The family u(t, u0), t ≥ 0, u0 ∈ H is Markov. In particular,
Pt+s = PtPs for t, s ≥ 0.

The proof of Proposition 6.1 is standard, and thus omitted; see, for example,
[1], [18], Section 9.2, [37], Section 9.7.

PROPOSITION 6.2. The semigroup Pt is bw-Feller, that is, if φ : H → R is a
bounded sequentially weakly continuous function and t > 0, then Ptφ : H → R is
also a bounded sequentially weakly continuous function. In particular, if u0n → u0
weakly in H then

Ptφ(u0n) → Ptφ(u0).

PROOF. Let us choose and fix t > 0, u0 ∈ H and an H-valued sequence (u0n)

that is weakly convergent to u0 in H. Let also φ : H →R be a bounded sequentially
weakly continuous function. Let us choose an auxiliary time T ∈ (t,∞).

Since obviously the function Ptφ : H → R is bounded, we only need to prove
that it is sequentially weakly continuous.

Let un(·) = u(·, u0n), respectively u(·) = u(·, u0), be a strong solution of prob-
lem (5.3) on [0,∞) with the initial data u0n, respectively, u0. We assume that these
processes are defined on the stochastic basis (
,F,F,P,W). By Theorem 5.9,
there exist (depending on T ):

• a subsequence (nk)k ,
• a stochastic basis (
̃, F̃, F̃, P̃), where F̃ = {F̃ s}s∈[0,T ],
• a cylindrical Wiener process W̃ = W̃ (s), s ∈ [0, T ] defined on this basis,
• and an F-progressively measurable processes ũ(s), (ũnk

(s))k≥1, s ∈ [0, T ] (de-
fined on this basis) with laws supported in ZT such that

(6.3) ũnk
has the same law as unk

on ZT and ũnk
→ ũ in ZT , P̃-a.s.
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and the system

(6.4) (
̃, F̃, F̃, P̃, W̃ , ũ)

is a martingale solution to problem (5.3) on the interval [0, T ] with the initial data
u0. In particular, by (6.3), P̃-almost surely

ũnk
(t) → ũ(t) weakly in H.

Since the function φ : H → R is sequentially weakly continuous, we infer that
P̃-a.s.,

φ
(
ũnk

(t)
) → φ

(
ũ(t)

)
in R.

Therefore, since the function φ : H → R is also bounded, by the Lebesgue domi-
nated convergence theorem we infer that

(6.5) lim
k→∞ Ẽ

[
φ
(
ũnk

(t)
)] = Ẽ

[
φ
(
ũ(t)

)]
.

From the equality of laws of ũnk
and unk

, k ∈ N, on the space ZT we infer that

(6.6) Ẽ
[
φ
(
ũnk

(t)
)] = E

[
φ
(
unk

(t)
)] = Ptφ(u0nk

).

Since by assumptions (
,F,F,P,W,u) is a martingale solution of equation (5.3)
with the initial data u0 and (
̃, F̃, F̃, P̃, W̃ , ũ) is also a martingale solution with
the initial of equation (5.3) with the initial data u0 and since the solution of (5.3)
is unique in law, we infer that

the processes u and ũ have the same law on the space Zt .

Hence,

(6.7) Ẽ
[
φ
(
ũ(t)

)] = E
[
φ
(
u(t)

)] = Ptφ(u0).

Thus, by (6.5), (6.6) and (6.7), we infer that

lim
k→∞Ptφ(u0nk

) = Ptφ(u0).

Using the sub-subsequence argument, we infer that the whole sequence
(Ptφ(u0n))n∈N is convergent and

lim
n→∞Ptφ(u0n) = Ptφ(u0),

which completes the proof of Proposition 6.2. �

REMARK 6.3. From inequality (5.10) and the Poincaré inequality (2.4), it fol-
lows that the following inequality holds for the strong solution u of problem (5.3)
defined on the stochastic basis (
,F,F,P,W):

(6.8)
∫ t

0
E
∣∣u(s)

∣∣2
H ds ≤ 2

Cη
|u0|2H + 2

Cη

(
2

η
|f |2V′ + �

)
t, t ≥ 0.
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PROOF OF INEQUALITY (6.8). Let us fix t ≥ 0. By the Poincaré inequality
(2.4) for almost all s ∈ [0, t],

∣∣u(s)
∣∣2
H ≤ 1

C

∣∣∇u(s)
∣∣2
L2 .

By (5.10), in particular, we obtain

η

2
E

∫ t

0

∣∣∇u(s)
∣∣2 ds ≤ |u0|2H +

(
2

η
|f |2V′ + �

)
t.

Hence, we infer that∫ t

0
E
∣∣u(s)

∣∣2
H ds ≤ 1

C
E

∫ t

0

∣∣∇u(s)
∣∣2 ds

≤ 2

Cη
|u0|2H + 2

Cη

(
2

η
|f |2V′ + �

)
t, t ≥ 0,

that is, inequality (6.8) holds. �

Using inequality (6.8), we deduce the following result.

COROLLARY 6.4. Let u0 ∈ H and let u(t), t ≥ 0, be the unique solution to the
problem (5.3) starting from u0. Then there exists T0 ≥ 0 such that for every ε > 0
there exists R > 0 such that

(6.9) sup
T ≥T0

1

T

∫ T

0

(
P ∗

s δu0

)
(H \ B̄R)ds ≤ ε,

where B̄R = {v ∈ H : |v|H ≤ R}.
PROOF. Using the Chebyshev inequality and inequality (6.8), we infer that for

every T ≥ 0 and R > 0,

1

T

∫ T

0

(
P ∗

s δu0

)
(H \ B̄R)ds = 1

T

∫ T

0
P
({∣∣u(s)

∣∣
H > R

})
ds

≤ 1

T R2

∫ T

0
E
∣∣u(s)

∣∣2
H ds

≤ 1

T R2

[
2

Cη
|u0|2H + 2

Cη

(
2

η
|f |2V′ + �

)
T

]

= 1

T R2

2

Cη
|u0|2H + 1

R2

2

Cη

(
2

η
|f |2V′ + �

)
.

Thus, the assertion follows. �

By Proposition 6.2, Corollary 6.4 and the Maslowski–Seidler theorem [29],
Proposition 3.1, we deduce the following main result of our paper.
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THEOREM 6.5. Let O ⊂ R
2 be a Poincaré domain. Let assumptions (H.1)–

(H.2) and (H.5) be satisfied. In addition, we assume that the function G satisfies
condition (G1) with L <

√
2 and inequality (G2) with λ0 = 0. Then there exists an

invariant measure of the semigroup (Pt )t≥0 defined by (6.2), that is, a probability
measure μ on H such that

P ∗
t μ = μ.

REMARK 6.6. In this section, we have used strong solutions. In particular,
in order to show a global inequality (6.8) which was a basis for Corollary 6.4.
However, we could have easily avoided this. For instance, instead of the global in-
equality (6.8) we could prove that every martingale solution (
,F,F,P,W,u) of
equation (5.3) with the initial data u0 on the time interval [0, T ] satisfies inequality
(6.8) for only t ∈ [0, T ] but with constants C, η and ρ independent of T . Let us
also point out that our proof of inequality (6.8) is related to some ideas from the
paper [13] by Chow and Khasminskii.

APPENDIX A: UNIFORM ESTIMATES ON THE SOLUTIONS OF
GALERKIN APPROXIMATING EQUATIONS

Let us recall that the proof of existence of a martingale solution of the Navier–
Stokes equations, given in [9], is based on the Faedo–Galerkin approximation in
the space Hn; see (5.2) in the cited paper. In order to continue, we need to choose
and fix a stochastic basis, and thus we assume that Assumption 5.3 holds. We
also fix an F0-measurable H-valued random variable. Then the nth equation is the
following one in the space Hn:

(A.1)

⎧⎪⎪⎨
⎪⎪⎩

dun(t) = −[
PnAun(t) + Bn

(
un(t)

)− Pnf (t)
]
dt

+ PnG
(
un(t)

)
dW(t), t > 0,

un(0) = Pnu0.

Recall that Hn is a finite dimensional subspace spanned by the n first eigenvectors
of the operator L given by (2.19) in [9], Pn is defined by [9], (2.25), and Bn is
defined on page 1636 in [9]. For details, see [9], Lemmas 2.3 and 2.4. In particu-
lar, Pn restricted to H is the orthogonal projection. The existence of a solution of
equation (A.1) is guaranteed by Lemma 5.2 in [9].

The following result corresponds to Lemma 5.3 from [9]. The proof of esti-
mates (A.2), (A.3) and (A.5), is similar to the proof of estimates (5.4), (5.5) and
(5.6) from Appendix A in [9]. However, we provide the details to indicate the
dependence of appropriate constants on the data, which will be important in the
proof of continuous dependence of the solutions of the Navier–Stokes equations
on the initial state u0 and the external forces f . Moreover, if O is the Poincaré do-
main, we prove a new estimate; see (A.5). This estimate is of crucial importance in
the proof of the existence of invariant measure. Recall that we have put η

2−η
= ∞

when η = 2.
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LEMMA A.1. Let Assumption 5.3 and parts (H.2), (H.3) and (H.5) of Assump-
tion 3.1 be satisfied. In particular, we assume that p satisfies (3.1), that is,

p ∈
[
2,2 + η

2 − η

)
,

where η ∈ (0,2] is given in (H.2).

(1) Then for every T > 0, ν, R1 and R2 there exist constants C1(p), C̃2(p), C2(p),
such that if u0 ∈ Lp(
,F0,H), f ∈ Lp([0,∞);V′) satisfy E[|u0|pH] ≤ R1 and
|f |Lp(0,T ;V′) ≤ R2, then every solution un of Galerkin equation (A.1) with the
initial data u0 and the external force f satisfies the following estimates:

(A.2) sup
n∈N

E

(
sup

s∈[0,T ]
∣∣un(s)

∣∣p
H

)
≤ C1(p)

and

(A.3) sup
n∈N

E

[∫ T

0

∣∣un(s)
∣∣p−2
H

∣∣∇un(s)
∣∣2 ds

]
≤ C̃2(p)

and

(A.4) sup
n∈N

E

[∫ T

0

∣∣∇un(s)
∣∣2 ds

]
≤ C2(p).

(2) Moreover, if O is a Poincaré domain and inequality (G2) holds with λ0 = 0,
then for every t > 0,

sup
n∈N

(
E
[∣∣un(t)

∣∣2
H

]+ η

2
E

[∫ t

0

∣∣∇un(s)
∣∣2 ds

])

≤ E
[|u0|2H

]+ 2

η

∫ t

0

∣∣f (s)
∣∣2
v′ ds + ρt.

(A.5)

PROOF. Let us fix p satisfying condition (3.1). We apply the Itô formula from
[34] to the function F defined by

F : H � x �→ |x|pH ∈ R.

In the sequel, we will omit the subscript H and write | · | := | · |H. Note that

F ′(x) = dxF = p · |x|p−2 · x,∥∥F ′′(x)
∥∥ = ∥∥d2

xF
∥∥ ≤ p(p − 1) · |x|p−2, x ∈ H.

With the above comments in mind, we have, for t ∈ [0,∞),∣∣un(t)
∣∣p − ∣∣un(0)

∣∣p
=

∫ t

0

[
p
∣∣un(s)

∣∣p−2〈
un(s),−Aun(s) − Bn

(
un(s)

)+ Pnf (s)
〉
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+ 1

2
Tr
[
F ′′(un(s)

)(
PnG

(
un(s)

)
,PnG

(
un(s)

))]]
ds

(A.6)

+ p

∫ t

0

∣∣un(s)
∣∣p−2〈

un(s),PnG
(
un(s)

)
dW(s)

〉

=
∫ t

0

[
−p

∣∣un(s)
∣∣p−2∥∥un(s)

∥∥2 + p
∣∣un(s)

∣∣p−2〈
un(s),Pnf (s)

〉

+ 1

2
Tr
[
F ′′(un(s)

)(
PnG

(
un(s)

)
,PnG

(
un(s)

))]]
ds

+ p

∫ t

0

∣∣un(s)
∣∣p−2〈

un(s),PnG
(
un(s)

)
dW(s)

〉
.

Since

Tr
[
F ′′(u)

(
PnG(u),PnG(u)

)] ≤ p(p − 1)|u|p−2 · ∣∣G(u)
∣∣2
T2(K,H), u ∈ V,

and by (G2) ∣∣G(u)
∣∣2
T2(K,H) ≤ (2 − η)|∇u|2 + λ0|u|2 + ρ, u ∈ V,

and since by (2.3) and the Young inequality with exponents 2,
2p

p−2 and p, for
u ∈ V and f ∈ V′,

|u|p−2〈f,u〉 ≤ |u|p−2‖u‖V|f |V′ = |u|p−2(|u|2 + |∇u|2) 1
2 |f |V′

≤ ε

2

(|u|2 + |∇u|2)|u|p−2 +
(

1

2
− 1

p

)
|u|p + ε−p/2

p
|f |pV′

≤ ε

2
|∇u|2|u|p−2 +

(
1 + ε

2
− 1

p

)
|u|p + ε−p/2

p
|f |pV′,

we infer that

∣∣un(t)
∣∣p +

[
p − p

ε

2
− 1

2
p(p − 1)(2 − η)

]∫ t

0

∣∣un(s)
∣∣p−2∣∣∇un(s)

∣∣2 ds

≤ ∣∣un(0)
∣∣+ ∫ t

0

[(
p(1 + ε)

2
− 1

)∣∣un(s)
∣∣p + ε−p/2∣∣f (s)

∣∣p
V′

+ 1

2
p(p − 1)

∣∣un(s)
∣∣p−2 · (λ0

∣∣un(s)
∣∣2 + ρ

)]
ds

+ p

∫ t

0

∣∣un(s)
∣∣p−2〈

un(s),PnG
(
un(s)

)
dW(s)

〉

=
∫ t

0

[(
λ0

2
p(p − 1) + p(1 + ε)

2
− 1

)∣∣un(s)
∣∣p
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+ ρ

2
p(p − 1)

∣∣un(s)
∣∣p−2 + ε−p/2∣∣f (s)

∣∣p
V′

]
ds

+ p

∫ t

0

∣∣un(s)
∣∣p−2〈

un(s),PnG
(
un(s)

)
dW(s)

〉
.

Let us choose ε ∈ (0,1) such that δ = δ(p,η) := p −p ε
2 − 1

2p(p − 1)(2 − η) > 0,
or equivalently,

ε < 1 ∧ [
2 − (p − 1)(2 − η)

]
.

Notice that under condition (3.1) such ε exists. Denote also

Kp(λ0, ρ) := λ0

2
p(p − 1) + p − 1 + ρp

(
1 − 2

p

)
p − 1

2

= p − 1

2

[
λ0p + 2 + ρ(p − 2)

]
.

Thus, since by the Young inequality xp−2 ≤ (1 − 2
p
)xp + 2

p
1p/2 for x ≥ 0, we

obtain ∣∣un(t)
∣∣p + δ

∫ t

0

∣∣un(s)
∣∣p−2∣∣∇un(s)

∣∣2 ds

≤ ∣∣u(0)
∣∣p + Kp(λ0, ρ)

∫ t

0

∣∣un(s)
∣∣p ds + ρ(p − 1)t

+ ε−p/2
∫ t

0

∣∣f (s)
∣∣p
V′ ds

+ p

∫ t

0

∣∣un(s)
∣∣p−2〈

un(s),PnG
(
un(s)

)
dW(s)

〉
, t ∈ [0,∞).

(A.7)

Since un is the solutions of the Galerkin equation, we infer that the process

μn(t) :=
∫ t

0

∣∣un(s)
∣∣p−2〈

un(s),PnG
(
un(s)

)
dW(s)

〉
, t ∈ [0,∞)

is a square integrable martingale. Indeed, if we define a map

g : V � u �→ {
K � k �→ 〈

u,PnG(u)k
〉 ∈ H

} ∈ T2(K,R)

then μn(t) = ∫ t
0 |un(s)|p−2g(un(s)) dW(s), and hence, by assumption (G2) and

the fact that Pn is the orthogonal projection in H we infer that, for every t ≥ 0,∫ t

0

∥∥∣∣un(s)
∣∣p−2

g
(
un(s)

)∥∥2
T2(K,R) ds

=
∫ t

0

∣∣un(s)
∣∣p−2∥∥g(un(s)

)∥∥2
T2(K,R) ds

≤
∫ t

0

∣∣un(s)
∣∣p−2∣∣un(s)

∣∣2∥∥PnG
(
un(s)

)∥∥2
T2(K,H) ds

≤
∫ t

0

∣∣un(s)
∣∣p[(2 − η)

∣∣∇un(t)
∣∣2 + λ0

∣∣un(t)
∣∣2 + ρ

]
ds.

(A.8)



INVARIANT MEASURE FOR THE STOCHASTIC NSES 3191

Hence, by the fact that un is a Galerkin solution we infer that

E

∫ t

0

∥∥∣∣un(s)
∣∣p−2

g
(
un(s)

)∥∥2
T2(K,R) ds < ∞, t ≥ 0,

and thus we infer, as claimed, that the process μn is a square integrable martingale.
Hence, E[μn(t)] = 0. Let us now fix T > 0. By taking expectation in inequality
(A.7), we infer that

E
[∣∣un(t)

∣∣p] ≤ E
[|u0|p]+ Kp(λ0, ρ)

∫ t

0
E
[∣∣un(s)

∣∣p]ds

+ ρ(p − 1)t + ε−p/2
E

∫ t

0

∣∣f (s)
∣∣p
V′ ds

≤ E
[|u0|p]+ Kp(λ0, ρ)

∫ t

0
E
[∣∣un(s)

∣∣p]ds + ρ(p − 1)T

+ ε−p/2
E

∫ T

0

∣∣f (s)
∣∣p
V′ ds, t ∈ [0, T ].

Hence, by the Gronwall lemma there exists a constant
C̃p = C̃p(T , η,λ0, ρ,E[|u0|p],‖f ‖Lp(0,T ;V′)) = C̃p(T , η,λ0, ρ,R1,R2) > 0

such that

E
[∣∣un(t)

∣∣p] ≤ C̃p, t ∈ [0, T ], n ∈ N,

that is,

(A.9) sup
n∈N

sup
t∈[0,T ]

E
[∣∣un(t)

∣∣p] ≤ C̃p.

Using this bound in (A.7), we also obtain

(A.10) sup
n∈N

E

[∫ T

0

∣∣un(s)
∣∣p−2∣∣∇un(s)

∣∣2 ds

]
≤ C̃2(p)

for a new constant C̃2(p) = C2(p,T , η,λ0, ρ,E[|u0|p],‖f ‖Lp(0,T ;V′)) = C̃2(p,

T , η,λ0, ρ,R1,R2). This completes the proof of estimates (A.3). Since E[|u0|2] ≤
(E[|u0|p]) 2

p ≤ R
2/p
1 , we infer that (A.4) holds with another constant C2(p).

Let us move to the proof of estimate (A.2). By the Burkholder–Davis–Gundy
inequality (see [19]), the Schwarz inequality and inequality (G2), there exists a
constant cp such that, for any t ≥ 0,

E

[
sup

0≤s≤t

∣∣∣∣
∫ s

0
p
∣∣un(σ )

∣∣p−2〈
un(σ ),PnG

(
un(σ )

)
dW(σ)

〉∣∣∣∣
]

≤ cp ·E
[(∫ t

0

∣∣un(σ )
∣∣2p−2 · ∣∣PnG

(
un(σ )

)∣∣2
T2(K,H) dσ

) 1
2
]
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≤ cp ·E
[

sup
0≤σ≤t

∣∣un(σ )
∣∣p

2

(∫ t

0

∣∣un(σ )
∣∣p−2 · ∣∣G(

un(σ )
)∣∣2
T2(K,H) dσ

) 1
2
]

≤ 1

2
E

[
sup

0≤s≤t

∣∣un(s)
∣∣p + 1

2
c2
p

∫ t

0

∣∣un(σ )
∣∣p−2 · ∣∣G(

un(σ )
)∣∣2
T2(K,H) dσ

]

≤ 1

2
E

[
sup

0≤s≤t

∣∣un(s)
∣∣p(A.11)

+ 1

2
c2
p

∫ t

0

∣∣un(σ )
∣∣p−2 · [(2 − η)

∣∣un(σ )
∣∣2 + λ0

∣∣un(σ )
∣∣2 + ρ

]
dσ

]

≤ 1

2
E

[
sup

0≤s≤t

∣∣un(s)
∣∣p]+ 1

2
c2
p

2ρ

p
t

+ 1

2
c2
p(2 − η)E

[∫ t

0

∣∣un(σ )
∣∣p∥∥un(σ )

∥∥2
dσ

]

+ 1

2
c2
p

(
λ0 + ρ

(
1 − 2

p

))
·E

[∫ t

0

∣∣un(σ )
∣∣p dσ

]
.

Using (A.11) in (A.7), by inequalities (A.9) and (A.10) we infer that

E

[
sup

0≤s≤t

∣∣un(s)
∣∣p]

≤ E
[|u0|p]

+
[
Kp(λ0, ρ) + 1

2
c2
p

(
λ0 + ρ

(
1 − 2

p

))]∫ t

0
E
[∣∣un(s)

∣∣p]ds

+
(

2ρ

p
+ c2

p

ρ

p

)
t + ε−p/2

∫ t

0

∣∣f (s)
∣∣p
V′ ds

+ 1

2
E

[
sup

0≤s≤t

∣∣un(s)
∣∣p]+ 1

2
c2
p(2 − η)E

[∫ t

0

∣∣un(σ )
∣∣p∥∥un(σ )

∥∥2
dσ

]

≤ E
[|u0|p]+

[
Kp(λ0, ρ) + 1

2
c2
p

(
λ0 + ρ

(
1 − 2

p

))]
C̃pt

+ ρ

p

(
2 + c2

p

)
t + ε−p/2

∫ t

0

∣∣f (s)
∣∣p
V′ ds

+ 1

2
E

[
sup

0≤s≤t

∣∣un(s)
∣∣p]+ 1

2
c2
p(2 − η)C2(p), t ≥ 0.

Thus, for a fixed T > 0,

E

[
sup

0≤s≤T

∣∣un(s)
∣∣p] ≤ C1(p),



INVARIANT MEASURE FOR THE STOCHASTIC NSES 3193

where

C1(p) = C1(p,T , η,λ0, ρ,R1,R2)

:= 2R1 + 2
[
Kp(λ0, ρ) + 1

2
c2
p

(
λ0 + ρ

(
1 − 2

p

))]
C̃pT

+ 2
(

2ρ

p
+ c2

p

ρ

p

)
T + 2ε−p/2R2 + c2

p(2 − η)C2(p).

This completes the proof of estimate (A.2).
To prove inequality (A.5), let us assume that O is a Poincaré domain and in-

equality (G2) holds with λ0 = 0. Recall that now in the space V we consider the
inner product ((·, ·)) given by (2.2). By identity (A.6) from the previous proof with
p = 2, we have

∣∣un(t)
∣∣2 − ∣∣u(0)

∣∣2 =
∫ t

0

{
−2

∥∥un(s)
∥∥2 + 2

〈
un(s), f (s)

〉

+ 1

2
Tr
[
F ′′(un(s)

)(
G
(
un(s)

)
,G

(
un(s)

))]}
ds

+ 2
∫ t

0

〈
un(s),PnG

(
un(s)

)
dW(s)

〉
, t ≥ 0.

Since E(
∫ t

0 〈PnG(un(s)), un(s) dW(s)〉) = 0, we infer that

E
∣∣un(t)

∣∣2
H ≤ E

[|u0|2H
]+E

∫ t

0

{−2
∥∥un(s)

∥∥2 + 2
〈
f (s), un(s)

〉}
ds

+E

∫ t

0

∣∣PnG
(
un(s)

)∣∣2
T2(K,H) ds.

Using assumption (G2) with λ0 = 0, i.e., |G(un(s))|2T2(K,H) ≤ (2−η)‖un(s)‖2 +�,
we get

(A.12)
E
∣∣u(t)

∣∣2
H ≤ −ηE

∫ t

0

∥∥un(s)
∥∥2

ds +E
[|u0|2H

]

+ 2E
∫ t

0

〈
f (s), u(s)

〉
ds + �t.

Since 2〈f,u〉 ≤ η
2 |∇un|2 + 2

η
|f |2V′ , for u ∈ V,f ∈ V′, we infer that

(A.13)

E
∣∣un(t)

∣∣2
H ≤ −η

2
E

∫ t

0

∥∥un(s)
∥∥2

ds +E
[|u0|2H

]

+ 2

η

∫ t

0

∣∣f (s)
∣∣2
V′ + �t, t ≥ 0.

The proof of inequality (A.5) is thus complete. �
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APPENDIX B: PROOF OF THEOREM 4.8

Similar to the proof of Theorem 5.1 in [9], the present proof is based on the
Galerkin method. We will use the fact the the laws of the Galerkin solutions form
a tight set of probability measures on ZT . We will use the Jakubowski’s version of
the Skorokhod Theorem 4.6, as well. However, some details are different.

Let us fix positive numbers T , R1 and R2. Let us assume that μ is a Borel prob-
ability measure on H, f ∈ Lp([0,∞);V′) which satisfy

∫
H |x|pμ(dx) ≤ R1 and

|f |Lp(0,T ;V′) ≤ R2. Similar to the previous section, we choose and fix a stochas-
tic basis, and thus we assume that Assumption 5.3 holds. We also fix an F0-
measurable H-valued random variable whose law is equal to μ.

As in the proof of [9], Theorem 5.1, let (un)n∈N be a sequence of the solu-
tions of the Galerkin equations. Then the set of laws {L(un, n ∈ N} is tight on the
space (ZT , σ (TT )), where σ(TT ) denotes the topological σ -field. By Theorem 4.6,
there exists a subsequence (nk), a probability space (
̃, F̃, P̃) and, on this space
ZT -valued random variables u, ũnk

, k ∈ N, and a sequence of K-valued Wiener
processes W̃ , W̃nk

, k ∈ N such that

the variables (unk
,W) and (ũnk

, W̃nk
) have the same laws

on the Borel σ -algebra B
(
ZT × C

([0, T ],K
))(B.1)

and

(B.2) (ũnk
, W̃nk

) converges to (u, W̃ ) in ZT × C
([0, T ];K

)
almost surely on 
̃.

In particular,

(B.3) ũnk
converges to u in ZT almost surely on 
̃.

We will denote the subsequence (ũnk
, W̃nk

) again by (ũn, W̃n). Define a corre-
sponding sequence of filtrations by

(B.4) F̃n = (F̃n,t )t≥0 where F̃n,t = σ
{(

ũn(s), W̃n(s)
)
, s ≤ t

}
, t ∈ [0, T ].

To obtain (4.8), we modify the proof from [9] at pages 1650–1651. Namely, using
Lemma A.1, we infer that the processes ũn, n ∈ N, satisfy the following inequali-
ties:

(B.5) sup
n∈N

Ẽ

(
sup

s∈[0,T ]
∣∣ũn(s)

∣∣p
H

)
≤ C1(p)

and

(B.6) sup
n∈N

Ẽ

[∫ T

0

∣∣∇ũn(s)
∣∣2
L2 ds

]
≤ C2(p).

Let us emphasize that the constants C1(p) and C2(p), being the same as in
Lemma A.1, depend on T , R1 and R2. Using inequality (B.5), we choose a
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subsequence, still denoted by (ũn), convergent weak star in the space Lp(
̃;
L∞(0, T ;H)) and infer that

(B.7) E

[
sup

s∈[0,T ]
∣∣u(s)

∣∣p
H

]
≤ C1(p)

and that the limit process u satisfies (B.7), as well. This completes the proof of
inequality (4.9). To prove (4.8), let us fix q ∈ [1,p). Notice that for every t ∈ [0, T ]∣∣u(t)

∣∣q = (∣∣u(t)
∣∣p)q/p ≤

(
sup

t∈[0,T ]
∣∣u(t)

∣∣p)q/p
.

Thus, supt∈[0,T ] |u(t)|q ≤ (supt∈[0,T ] |u(t)|p)
q/p , and so by the Hölder inequality

E

[
sup

t∈[0,T ]
∣∣u(t)

∣∣q] ≤ E

[(
sup

t∈[0,T ]
∣∣u(t)

∣∣p)q/p]

≤
(
E

[
sup

t∈[0,T ]
∣∣u(t)

∣∣p])q/p ≤ (
C1(p)

)q/p
,

which means that inequality (4.8) holds with the constant C1(p, q) := (C1(p))q/p .
By inequality (B.6), we infer that the sequence (ũn) contains further subse-

quence, denoted again by (ũn), convergent weakly in the space L2([0, T ] × 
̃;V)

to u. Moreover, it is clear that

(B.8) Ẽ

[∫ T

0

∣∣∇u(s)
∣∣2
L2 ds

]
≤ C2(p)

and the process u satisfies (4.10).
To prove the second part of the theorem, we assume that O is a Poincaré do-

main and inequality (G2) holds with λ0 = 0. In this case, by Lemma A.1, instead
of inequality (B.6) we can use the following one corresponding to the uniform
estimates (A.5):

(B.9)
η

2
sup
n∈N

E

[∫ T

0

∣∣∇ũn(s)
∣∣2
L2 ds

]
≤ E

[|u0|2H
]+ 2

η

∫ T

0

∣∣f (s)
∣∣2
v′ ds + ρT ,

choose a subseqence convergent weakly in the space L2([0, T ]×
̃;V) to u and in-
fer that the limit process satisfies the same estimate, which proves estimate (4.11).
We will prove that the system (
̃, F̃, F̃, P̃, u) is a martingale solution of problem
(3.2).

Step 1. Let us fix ϕ ∈ U . Analogously to [7] and [30], let us denote

(B.10)

�n(ũn, W̃n, ϕ)(t) := (
ũn(0), ϕ

)
H −

∫ t

0

〈
PnAũn(s), ϕ

〉
ds

−
∫ t

0

〈
Bn

(
ũn(s)

)
, ϕ

〉
ds +

∫ t

0

〈
fn(s), ϕ

〉
ds

+
〈∫ t

0
PnG

(
ũn(s)

)
dW̃n(s), ϕ

〉
, t ∈ [0, T ],
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and

(B.11)

�(u, W̃ ,ϕ)(t)

:= (
u(0), ϕ

)
H −

∫ t

0

〈
Au(s), ϕ

〉
ds −

∫ t

0

〈
B
(
u(s)

)
, ϕ

〉
ds

+
∫ t

0

〈
f (s), ϕ

〉
ds +

〈∫ t

0
G
(
u(s)

)
dW̃(s), ϕ

〉
, t ∈ [0, T ].

Using Lemma 2.4(c) from [9] (see also [30], Lemma 5.4), we can prove the
following lemma analogous to Lemma 4.12.

LEMMA B.1. For all ϕ ∈ U :

(a) limn→∞ Ẽ[∫ T
0 |(ũn(t) − u(t), ϕ)H|2 dt] = 0,

(b) limn→∞ Ẽ[|(ũn(0) − u(0), ϕ)H|2] = 0,
(c) limn→∞ Ẽ[∫ T

0 | ∫ t
0 〈PnAũn(s) −Au(s), ϕ〉ds|dt] = 0,

(d) limn→∞ Ẽ[∫ T
0 | ∫ t

0 〈Bn(ũn(s)) − B(u(s)), ϕ〉ds|dt] = 0,
(e) limn→∞ Ẽ[∫ T

0 | ∫ t
0 〈Pnfn(s) − f (s), ϕ〉ds|dt] = 0,

(f) limn→∞ Ẽ[∫ T
0 |〈∫ t

0 [PnG(ũn(s)) − G(u(s))]dW̃(s), ϕ〉|2 dt] = 0.

Directly from Lemma B.1, we get the following corollary.

COROLLARY B.2. For every ϕ ∈ U ,

(B.12) lim
n→∞

∣∣(ũn(·), ϕ)H − (
u(·), ϕ)H

∣∣
L2([0,T ]×
̃) = 0

and

(B.13) lim
n→∞

∣∣�n(ũn, W̃n, ϕ) − �(u, W̃ ,ϕ)
∣∣
L1([0,T ]×
̃) = 0.

PROOF. Assertion (B.12) follows from the equality

∣∣(ũn(·), ϕ)H − (
ũ(·), ϕ)H

∣∣2
L2([0,T ]×
̃)

= Ẽ

[∫ T

0

∣∣(ũn(t) − ũ(t), ϕ
)
H

∣∣2 dt

]

and Lemma 4.12(a). To prove (B.13), let us note that, by the Fubini theorem, we
have ∣∣�n(ũn, W̃n, ϕ) − �(u, W̃ ,ϕ)

∣∣
L1([0,T ]×
̃)

=
∫ T

0
Ẽ
[∣∣�n(ũn, W̃n, ϕ)(t) − �(u, W̃ ,ϕ)(t)

∣∣]dt.

To complete the proof of (B.13), it is sufficient to note that by Lemma B.1(b)–(f),
each term on the right-hand side of (B.10) tends at least in L1([0, T ] × 
̃) to the
corresponding term in (B.11). �
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Step 2. Since un is a solution of the Galerkin equation, for all t ∈ [0, T ] and
ϕ ∈ U (

un(t), ϕ
)
H = �n(un,W,ϕ)(t), P-a.s.

In particular, ∫ T

0
E
[∣∣(un(t), ϕ

)
H − �n(un,W,ϕ)(t)

∣∣]dt = 0.

Since L(un,W) = L(ũn, W̃n), using (B.12) and (B.13) we infer that∫ T

0
Ẽ
[∣∣(u(t), ϕ

)
H − �(u, W̃ ,ϕ)(t)

∣∣]dt = 0.

Hence, for l-almost all t ∈ [0, T ] and P̃-almost all ω ∈ 
̃

(B.14)
(
u(t), ϕ

)
H − �(u, W̃ ,ϕ)(t) = 0.

Since u is ZT -valued random variable, in particular u ∈ C([0, T ];Hw), that is, u

is weakly continuous, we infer that equality (B.14) holds for all t ∈ [0, T ] and all
ϕ ∈ U . Since U is dense in V, equality (B.14) holds for all ϕ ∈ V, as well. Putting
Ã := (
̃, F̃, P̃, F̃), by (B.14) and (B.11) we infer that the system (Ã, W̃ , u) is a
martingale solution of equation (3.2). The proof of Theorem 4.8 is thus complete.

APPENDIX C: KURATOWSKI THEOREM

The following is the classical form of the celebrated Kuratowski theorem.

THEOREM C.1 (Kuratowski theorem). Assume that X1,X2 are two Pol-
ish spaces with their Borel σ -fields denoted respectively by B(X1),B(X2). If
φ : X1 −→ X2 is an injective Borel measurable map, then for any E1 ∈ B(X1),
E2 := φ(E1) ∈ B(X2).

Let us formulate a simple corollary to the above result.

PROPOSITION C.2. Suppose that X1,X2 are two topological spaces with
their Borel σ -fields denoted respectively by B(X1),B(X2). Suppose that φ :
X1 −→ X2 is an injective Borel measurable map such that for any E1 ∈ B(X1),
E2 := φ(E1) ∈ B(X2). Then if g : X1 → R is a Borel measurable map then a
function f : X2 →R defined by

(C.1) f (x2) =
{
g
(
φ−1(x2)

)
, if x2 ∈ φ(X1),

∞, if x2 ∈ X2 \ φ(X1),

is also Borel measurable.
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PROOF. Note that g = f ◦ φ:

f −1(A) = φ
[
g−1(A)

]
, A ⊂ R.

Thus, if A ∈ B(R), then by assumptions g−1(A) ∈ B(X1). Hence, by Theorem C.1
we infer that φ[g−1(A)] ∈ B(X2), and thus by the equality above, we infer that
f −1(A) ∈ B(X2). The proof is complete. �

One may wonder if the following a generalisation of the above result to non-
Polish spaces is valid.

THEOREM C.3. Let X1 and X2 be a topological spaces such that for each
i = 1,2 there exists a sequence {fi,m} of continuous functions fi,m : Xi → R that
separate points of Xi . Let us denote by Si the σ -algebra generated by the maps
{fi,m}. If φ : X1 −→ X2 is an injective measurable map, then for any E1 ∈ S1,
E2 := φ(E1) ∈ S2.

The following counterexample shows that the answer to the above question is
“no”.

COUNTEREXAMPLE C.4. (1) Define fk(x) = e2ikxπ , x ∈ [0,1), for every in-
teger k (trigonometric functions).

(2) Let X1 be a non-Borel subset of [0,1) equipped with the euclidean metric.
(3) Let X2 denote [0,1) with the Euclidean metric.
(4) Denote by f 1

k the restriction of fk to X1.
(5) Then f 1

k are continuous and separate points in X1.
(6) Then fk are continuous and separate points in X2.
(7) σ(fk) = Borel(X2) by Stone–Weierstrass.
(8) σ(f 1

k ) = {A ∩ X1 : A ∈ σ(fk)} = {A ∩ X1 : A ∈ Borel(X2)} = Borel(X1).
(9) Let ϕ : X1 → X2 be the identity mapping.

(10) ϕ is a continuous injection.
(11) ϕ[X1] is not Borel in X2.
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