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OBLIQUELY REFLECTED BROWNIAN MOTION IN NONSMOOTH
PLANAR DOMAINS
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DONALD MARSHALL2,∗ AND KAVITA RAMANAN3,†

University of Washington∗ and Brown University†

We construct obliquely reflected Brownian motions in all bounded sim-
ply connected planar domains, including nonsmooth domains, with general
reflection vector fields on the boundary. Conformal mappings and excursion
theory are our main technical tools. A key intermediate step, which may be of
independent interest, is an alternative characterization of reflected Brownian
motions in smooth bounded planar domains with a given field of angles of
oblique reflection on the boundary in terms of a pair of quantities, namely an
integrable positive harmonic function, which represents the stationary distri-
bution of the process, and a real number that represents, in a suitable sense,
the asymptotic rate of rotation of the process around a reference point in the
domain. Furthermore, we also show that any obliquely reflected Brownian
motion in a simply connected Jordan domain can be obtained as a suitable
limit of obliquely reflected Brownian motions in smooth domains.
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1. Introduction. Obliquely reflected Brownian motion (ORBM) arises nat-
urally in some applied probabilistic models, for example, in queuing theory; see
Ramanan (2006), Williams (1998) and the references therein. This part of the the-
ory of ORBMs is mostly concerned with processes confined to the positive orthant
of the Euclidean space with constant reflection direction on each face. ORBMs in
nonsmooth (fractal) domains serve as a toy model for some biological phenomena
[see Hołyst et al. (2000)]. In this paper, we will construct and investigate ORBMs
in bounded simply connected planar domains, including nonsmooth domains, with
variable and possibly nonsmooth reflection directions. Conformal mappings will
be our main technical tool. The construction of ORBM in a general nonsmooth do-
main is difficult because the process (if it exists) is nonsymmetric and, therefore,
the (symmetric) Dirichlet form approach [see Chen (1993), Fukushima (1967) and
the references therein], very successful in the case of normally reflected Brownian
motion, is not applicable to ORBM with general nonsmooth reflection directions.

A conceptual problem with obliquely reflected Brownian motion is that the
oblique reflection represents, in heuristic terms, a slight push away from the bound-
ary accompanied by a proportional push along the boundary. In fractal domains,
the concepts of “normal” direction at a boundary point and moving “along” the
boundary do not have a meaning according to classical definitions. Hence, describ-
ing and classifying ORBMs in such nonsmooth domains requires a new approach.
The key to our study is the observation that ORBMs in smooth domains can be
fully and uniquely classified using two “parameters”—an integrable positive har-
monic function h and a real number μ0. The harmonic function h represents the
density of the stationary distribution of the process and the real number μ0 repre-
sents, in an appropriate sense, the asymptotic rate of rotation around a reference
point in the domain. This alternative characterization of ORBM will allow us to
construct and investigate ORBM in nonsmooth planar domains with general reflec-
tion on the boundary. More specifically, we will first show in Theorems 3.2 and 3.5
that h and μ0 provide a parametrization of ORBMs in the unit disc alternative to
the reflection vector field on the boundary. Then we will show in Theorems 3.17–
3.19 how ORBMs in nonsmooth domains can be constructed and classified.

Yet another “parametrization” of ORBMs in simply connected domains is given
by “rotation rates” μ(z) of the process around points z in the domain. Every func-
tion μ(z) representing rotation rates is harmonic but not every harmonic function
μ(z) represents rotation rates for an ORBM.

We will also discuss some ORBMs with degenerate (“tangential”) “reflection”
along the boundary. The infinitely strong tangential push generates jumps along
the boundary, a feature not normally associated with models labeled “Brownian.”
We will show that ORBMs with “degenerate” boundary behavior are processes
that recently appeared in the probabilistic literature in a different context.

The present paper can be viewed as a first step in a much more ambitious
project to define ORBMs in d-dimensional nonsmooth domains with d ≥ 2. In
the two-dimensional case, especially in simply connected domains, one can give a
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meaning to the “angle of reflection” even in domains with fractal boundary by ap-
proximating the boundary with continuous curves, defining the angle of reflection
on these curves, then defining the corresponding ORBMs and finally passing to
the limit (see Theorem 3.19 below). The same program is questionable in higher-
dimensional domains. It is not clear how to define the direction of reflection on a
fractal boundary or how to define the direction of reflection on a sequence of ap-
proximating smooth surfaces in a “consistent” way. We believe that our approach
via the stationary density [see Kang and Ramanan (2014) for a characterization of
stationary distributions of ORBMs in d-dimenesional piecewise smooth domains]
and appropriate “rotations about (d − 2)-dimensional sets” may be the right ap-
proach to the high-dimensional version of the problem but we leave it for a future
project.

There are two classes of domains to which some of our results should extend
in a fairly straightforward way: unbounded simply connected planar domains and
finitely connected bounded planar domains. These generalizations are also left for
a future article.

Some results for ORBM in multidimensional domains were obtained in Dupuis
and Ishii (1993, 2008), Ramanan (2006), Williams (1998) under rather restrictive
assumptions about smoothness of the boundary of the domain and/or the direction
of reflection. The theory of nonsymmetric Dirichlet forms was used to construct
families of ORBMs in Duarte (2012), Kim, Kim and Yun (1998) under fairly strong
assumptions. A fairly explicit formula for the stationary distribution for ORBM
in a smooth planar domain was derived in Harrison, Landau and Shepp (1985).
Some results on convergence of ORBMs have been recently obtained in Sarantsev
(2016a, 2016b) but the setting of those papers is considerably different from ours.

The article is organized as follows. Section 2 contains a review of some basic
probabilistic and analytic facts used in the article. It also contains a theorem relat-
ing reflection vector fields on the boundary of a domain and harmonic functions
inside the domain; this theorem is the fundamental analytic ingredient of our argu-
ments. Our main results are stated in Section 3. Their proofs are given in Section 4.
Our proofs are based in part on ideas developed in Burdzy and Marshall (1993).

2. Preliminaries.

2.1. Reflected Brownian motion. We will identify C and R2. Let B(x, r) =
{z ∈ R2 : |x−z| < r} and D∗ = B(0,1). Suppose that D ⊂C is a bounded open set
with smooth boundary and θ : ∂D → (−π/2, π/2) is a Borel measurable function
satisfying supx∈∂D |θ(x)| < π/2. Let n(x) denote the unit inward normal vector at
x ∈ ∂D and let t(x) = e−iπ/2n(x) be the unit vector tangent to ∂D at x.

Let vθ (x) = n(x) + tan θ(x)t(x), let B be standard two-dimensional Brownian
motion and consider the following Skorokhod equation:

Xt = x0 + Bt +
∫ t

0
vθ (Xs) dLs for t ≥ 0.(2.1)
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Here, x0 ∈ D and L is the local time of X on ∂D. In other words, L is a non-
decreasing continuous process that does not increase when X is in D, that is,∫∞

0 1D(Xt) dLt = 0, almost surely. If θ is C2 then equation (2.1) has a unique
pathwise solution (X,L) such that Xt ∈ D for all t ≥ 0, by Dupuis and Ishii
(1993), Corollary 5.2 [see also Dupuis and Ishii (2008)]. The process X is a con-
tinuous strong Markov process on D∗, and is called obliquely reflected Brownian
motion in D with reflecting vector field vθ . When θ ≡ 0, that is, when vθ = n, X

is called normally reflected Brownian motion in D. The goal of this paper is to
construct and characterize obliquely reflected Brownian motions when θ is nons-
mooth and can possibly take values in [−π/2, π/2], and when ∂D is also possibly
nonsmooth.

Consider the case when D = D∗ and recall that we are assuming that θ is mea-
surable and ‖θ‖∞ < π/2. Then one can show that (2.1) has a unique pathwise solu-
tion using the decomposition of the process in D∗ into the radial and angular parts,
and an argument similar to that in [Lions and Sznitman (1984), Remark 4.2(ii)].
In both cases discussed above, the ORBM X is a strong Markov process. Since X

does not visit the origin as it behaves like a Brownian motion inside the disk D∗,
applying Itô’s formula to Yt = f (Xt) with f (x) = |x|, we obtain

(2.2) dYt = dWt + 1

Yt

dt − dLt ,

where Wt = ∫ t0 Xs|Xs | · dBs is a one-dimensional Brownian motion. Note that Lt in-
creases only when Yt = 1. Thus, Yt is a 2-dimensional Bessel process in (0,1]
reflected at 1. It is known [see Bass and Chen (2005)] that the one-dimensional
SDE (2.2) has a unique strong solution and all its weak solutions have the same
distribution. It follows that the distribution of (|X|,L) is independent of the re-
flection angle θ . Theorem 3.5 proved below implies that this property continues to
hold for ORBMs in D∗ with nonsmooth reflection angles θ including those that
could be tangential in some subset of the boundary ∂D∗.

It is known that [see Theorem 3.1(ii) below] the submartingale problem formu-
lation of ORBM is equivalent to the one given above. Let C be the family of all
real functions f ∈ C2(D) such that

∂

∂n
f (x) + tan θ(x)

∂

∂t
f (x) ≥ 0, x ∈ ∂D.

We will say that {Pz : z ∈ D} is a solution of the submartingale problem defining
an ORBM with the angle of reflection θ if Pz(X0 = z) = 1 for every z ∈ D, and

f (Xt) − 1

2

∫ t

0
�f (Xs) ds, t ≥ 0,(2.3)

is a submartingale under Pz for every z ∈ D and f ∈ C.
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2.2. Review of excursion theory. We will use excursion theory of Brownian
motion in our characterization of obliquely reflected Brownian motion. This sec-
tion contains a brief review of the excursion theory needed in this paper. See, for
example, Maisonneuve (1975) for the foundations of the theory in the abstract set-
ting and Burdzy (1987) for the special case of excursions of Brownian motion.
Although Burdzy (1987) does not discuss reflected Brownian motion, all of the
results we will use from that book readily apply in the present context.

Let Px denote the distribution of the process X with X0 = x, defined by (2.1) or
(2.3), and let Ex be the corresponding expectation. Let PD

x denote the distribution
of Brownian motion starting from x ∈ D and killed upon exiting D.

An “exit system” for excursions of an ORBM X from ∂D is a pair (L∗
t ,H

x)

consisting of a positive continuous additive functional L∗
t of X and a family of

“excursion laws” {Hx}x∈∂D . Let � denote the “cemetery” point outside D and let
C be the space of all functions f : [0,∞) → D ∪ {�} that are continuous and take
values in D on some interval [0, ζ ), and are equal to � on [ζ,∞). For x ∈ ∂D,
the excursion law Hx is a σ -finite (positive) measure on C, such that the canonical
process is strong Markov on (t0,∞), for every t0 > 0, with transition probabilities
PD

� . Moreover, Hx gives zero mass to paths that do not start from x. We will be
concerned only with the “standard” excursion laws; see Definition 3.2 of Burdzy
(1987). For every x ∈ ∂D, there exists a unique standard excursion law Hx in D,
up to a multiplicative constant.

Excursions of X from ∂D will be denoted e or es , that is, if s < u, Xs,Xu ∈ ∂D,
and Xt /∈ ∂D for t ∈ (s, u) then es = {es(t) = Xt+s, t ∈ [0, u − s)}, ζ(es) = u − s

and es(t) = � for t ≥ ζ . By convention, et ≡ � if inf{s > t : Xs ∈ ∂D} = t .
Let σt = inf{s ≥ 0 : L∗

s > t} and Eu = {es : s < σu}. Let I be the set of left end-
points of all connected components of (0,∞)\{t ≥ 0 : Xt ∈ ∂D}. The following is
a special case of the exit system formula of Maisonneuve (1975). For every x ∈ D,
every bounded predictable process Vt and every universally measurable function
f : C → [0,∞) that vanishes on excursions et identically equal to �, we have

Ex

[∑
t∈I

Vt · f (et )

]
= Ex

[∫ ∞
0

VσsH
X(σs)(f ) ds

]
(2.4)

= Ex

[∫ ∞
0

VtH
Xt (f ) dL∗

t

]
.

Here and elsewhere, Hx(f ) = ∫C f dHx . Informally speaking, (2.4) says that the
right continuous version Et+ of the process of excursions is a Poisson point process
on the local time scale with variable intensity H �(f ).

The normalization of the exit system is somewhat arbitrary, for example, if
(L∗

t ,H
x) is an exit system and c ∈ (0,∞) is a constant then (cL∗

t , (1/c)Hx) is
also an exit system. One can even make c dependent on x ∈ ∂D. Theorem 7.2 of
Burdzy (1987) shows how to choose a “canonical” exit system; that theorem is
stated for the usual planar Brownian motion but it is easy to check that both the
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statement and the proof apply to normally reflected Brownian motion (i.e., ORBM
with θ ≡ 0). According to that result, if D is Lipschitz then we can take L∗

t to be
the continuous additive functional LX whose Revuz measure is a constant multi-
ple of the surface area measure dx on ∂D and Hx’s to be standard excursion laws
normalized so that

Hx(A) = lim
δ↓0

1

δ
PD

x+δn(x)(A),(2.5)

for any event A in a σ -field generated by the process on an interval [t0,∞), for
any t0 > 0. The Revuz measure of LX is the measure dx/(2|D|) on ∂D, that is, if
the initial distribution of X is the uniform probability measure μ on D, then

Eμ

[∫ 1

0
1A(Xs) dLX

s

]
=
∫
A

dx

2|D| ,(2.6)

for any Borel set A ⊂ ∂D. It has been shown in Burdzy, Chen and Jones (2006)
that L∗

t = LX
t .

Let Kx(·) denote the Poisson kernel for D∗, that is, Kx(·) vanishes continuously
on ∂D∗ \ {x} and is harmonic and strictly positive in D∗. We normalize Kx so that
Kx(0) = 1 for all x. It is easy to see that the following equality holds up to a
multiplicative constant:∫

A
Kx(y) dy = lim

δ↓0

1

δ
ED∗

x+δn(x)

[∫ ∞
0

1A(Xs) ds

]
, A ⊂ D∗.(2.7)

In view of (2.5), this means that Kx(·) is (a constant multiple of) the density of the
expected occupation measure for the excursion law Hx , that is,∫

A
Kx(y) dy = Hx

(∫ ∞
0

1A(Xs) ds

)
, A ⊂ D∗.(2.8)

We omitted the multiplicative constant in (2.7) and (2.8) because it is equal to 1;
see the proof of Theorem 3.12(ii).

2.3. Analytic preliminaries. Recall that B(x, r) = {z ∈ R2 : |x − z| < r} and
D∗ := B(0,1). Let θ : ∂D∗ → [−π/2, π/2] be a Borel measurable function. Typ-
ically, |dx| will refer to the arc length measure on ∂D∗ and dz will refer to the
two-dimensional Lebesgue measure on D∗. The notation |A| will represent either
the arc length measure of A ⊂ ∂D∗ or the two-dimensional Lebesgue measure of
A ⊂ D∗; the meaning should be clear from the context. Let ‖ ·‖L1(D) denote the L1

norm for real functions on an open bounded set D with respect to two-dimensional
Lebesgue measure dz on D and let L1(D) be the family of real functions in D with
finite L1 norm. We will abbreviate ‖ · ‖L1(D∗) as ‖ · ‖1. Similar conventions will
apply to L∞ = L∞(∂D∗) with respect to the measure |dx| on ∂D∗. As usual, we
identify functions that are equal to each other a.e. |dx| on ∂D∗.
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For a function f and constant c, the notation f �≡ c will mean that f is not
identically equal to c. If f is harmonic and nonnegative in D∗ then

‖f ‖1 =
∫ 1

0

∫ 2π

0
f
(
reit )dtr dr = πf (0).

If the nontangential limit of f (z) at x ∈ ∂D∗ exists, we denote it by
NT-limz→x f (z). If f ∈ L1(∂D∗) then the harmonic extension of f to D∗, given
by the Poisson integral, has nontangential limits equal to f a.e. We will follow the
usual convention of using the same letter f to denote the harmonic extension. If f

is harmonic in D∗, let f̃ denote the harmonic conjugate of f that vanishes at 0.
Define

T = {θ ∈ L∞(∂D∗) : ‖θ‖∞ ≤ π/2, θ �≡ π/2, and θ �≡ −π/2
}
,

B= {θ : θ is harmonic in D∗ and
∣∣θ(z)
∣∣< π/2 for all z ∈ D∗

}
,

H = {(h,μ0) : h is harmonic in D∗, h(z) > 0

for all z ∈ D∗,‖h‖1 = πh(0) = 1 and μ0 ∈R
}

and

R = {μ : μ is harmonic in D∗ and its harmonic conjugate μ̃(z) > −1

for all z ∈ D∗
}
.

The following theorem relates these spaces. See (2.23), (2.24) and Corollary 2.5
for additional formulae.

THEOREM 2.1. There are one-to-one correspondences

T ↔ B, θ(x) ↔ θ(z);
H ↔ R,

(
h(z),μ0

)↔ μ(z);
B↔ H, θ(z) ↔ (h(z),μ0

);
given by

θ(z) = Re
∫
∂D∗

x + z

x − z
θ(x)

|dx|
2π

,(2.9)

θ(x) = NT-lim
z→x

θ(z) a.e. |dx|,(2.10)

μ(z) = μ0 − πh̃(z),(2.11)

h(z) = (μ̃(z) + 1
)
/π and μ0 = μ(0),(2.12)

h(z) = eθ̃(z) cos θ(z)

π cos θ(0)
and μ0 = tan θ(0) and(2.13)

θ(z) = − arg
(
h(z) + ih̃(z) − iμ0/π

)
.(2.14)
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Moreover,

μ(z) = πh(z) tan θ(z)
(2.15)

= 1

2
lim
r↑1

∫
|x|=r

Re
(

x + z

x − z

)
h(x) tan θ(x)|dx|

and

θ(z) = − arg
(
h(z) − iμ(z)/π

)
.(2.16)

PROOF. The subject of analytic and harmonic functions on the disk and their
boundary values has a long history. An eminently readable reference for back-
ground material on this subject is given in the first three introductory chapters of
Hoffman (1962).

Nontangential limits give the correspondence between T and B. If θ ∈ B, then
θ has a nontangential limit at almost every x ∈ ∂D∗, which we will call θ(x). The
limit function θ(x) ∈ L∞(∂D∗), and ‖θ‖∞ ≤ π/2. Moreover, since 1

2π
Re x+z

x−z
is

the Poisson kernel on ∂D∗ for z ∈ D∗, we have that

θ(z) + iθ̃ (z) =
∫
∂D∗

x + z

x − z
θ(x)

|dx|
2π

.(2.17)

In fact, if θ is any function in L∞ bounded by π/2 then the right-hand side (2.17)
defines an analytic function on D∗ whose real part is harmonic on D∗, bounded
by π/2 and has nontangential limit function θ(x), a.e. Since

∫
∂D∗ θ(x)

|dx|
2π

= θ(0),
we have θ(x) �≡ π/2 and θ(x) �≡ −π/2 a.e. if and only if |θ(0)| < π/2 and by the
maximum principle, this occurs if and only if |θ(z)| < π/2 for all z ∈ D∗.

If (h,μ0) ∈ H, then μ defined by (2.11) is harmonic on D∗, with μ(0) = μ0,
and h(z) = (μ̃(z) + 1)/π , since πh(0) = 1 and ˜̃h = h(0) − h. Since h > 0, we
conclude that μ̃ > −1 and μ ∈ R. If μ ∈ R, and if h is given by (2.12) then it is easy
to verify that (h,μ0) ∈ H. This proves the one-to-one correspondence between
functions in H and R.

The proof for the correspondence between B and H, (2.15)–(2.16), as well as
useful formulae for the corresponding harmonic conjugates are presented in the
next two lemmas.

LEMMA 2.2. There is a one-to-one correspondence between B and H, θ ↔
(h,μ0), given by

θ + iθ̃ = i log(h + ih̃ − iμ0/π) − i log
((√

1 + μ2
0

)
/π
)

and(2.18)

h + ih̃ = e−i(θ+iθ̃ )

π cos θ(0)
+ i

tan θ(0)

π
and μ0 = tan θ(0).(2.19)
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PROOF. If (h,μ0) ∈ H then the right-hand side of (2.18) defines an analytic
function S(h,μ0)(z) on D∗ with

ReS(h,μ0)(z) = − arg(h + ih̃ − iμ0/π) ∈ (−π/2, π/2)

and S(h,μ0)(0) = − arg(1 − iμ0), which is purely real. Thus, S(h,μ0) = θ + iθ̃

for some θ ∈ B. Likewise, if θ ∈ B then the right-hand side of the first equa-
tion in (2.19) defines an analytic function, T (θ)(z), on D∗ with ReT (θ)(z) =
eθ̃(z) cos θ(z)/(π cos θ(0)) > 0 and ReT (θ)(0) = 1/π . Setting μ0 = tan θ(0) we
conclude that if h ≡ ReT (θ) then (h,μ0) ∈ H. Moreover, it is straightforward to
verify that, given (h,μ0) ∈H, if θ is defined by (2.18) then

h = ReT (θ) and μ0 = tan θ(0).

Alternatively, given θ ∈ B, if (h,μ0) is defined by (2.19) then

θ = ReS(h,μ0).

This proves the one-to-one correspondence in Lemma 2.2. �

The equality in (2.16) of Theorem 2.1 follows immediately from (2.14) and
(2.11). The first equality in (2.15) of Theorem 2.1 follows by taking real and imag-
inary parts in (2.19), then applying (2.11). The second equality in (2.15) follows
from the Poisson integral formula on the circle of radius r < 1 because μ is har-
monic by (2.11).

This completes the proof of Theorem 2.1. �

The next lemma relates μ ∈ R to both h and θ via a Mobius transformation. It
will be used in the proof of Theorem 3.15.

LEMMA 2.3. Suppose (h,μ0) ∈ H, θ ∈ B, and μ ∈ R with (h,μ0) ↔ θ ↔ μ.
If φ is a one-to-one analytic map of D∗ onto D∗ then

θ ◦ φ ∈ B↔
(

h ◦ φ

‖h ◦ φ‖1
,
μ(φ(0))

‖h ◦ φ‖1

)
∈ H.(2.20)

PROOF. First observe that if f is harmonic then (f + if̃ ) ◦ φ − if̃ (φ(0)) is
analytic with imaginary part vanishing at 0, so that

f̃ ◦ φ = f̃ ◦ φ − f̃
(
φ(0)
)
.(2.21)

Evaluating the real part of (2.19) at z = φ(0) we obtain

‖h ◦ φ‖1 = πh
(
φ(0)
)= eθ̃(φ(0)) cos θ(φ(0))

cos θ(0)
.(2.22)
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Set h1 = h ◦ φ/‖h ◦ φ‖1 = h ◦ φ/πh(φ(0)). Then composing (2.19) with φ and
using (2.21) and (2.11),

h1 + ih̃1 = h ◦ φ + ih̃ ◦ φ − ih̃(φ(0))

‖h ◦ φ‖1

= exp(−i(θ + iθ̃ ) ◦ φ)

‖h ◦ φ‖1π cos θ(0)
+ i

π

(
tan θ(0) − πh̃(φ(0))

‖h ◦ φ‖1

)

= exp(−i(θ ◦ φ + iθ̃ ◦ φ))

π cos θ(φ(0))
+ iμ(φ(0))

π‖h ◦ φ‖1
. �

By (2.19) and (2.9), the correspondence between (h,μ0) ∈ H, μ ∈ R, and θ ∈ T

can also be written as

h(z) = Re
(exp(−i

∫
∂D∗

x+z
x−z

θ(x)
|dx|
2π

)

π cos(
∫
∂D∗ θ(x)

|dx|
2π

)

)
and

(2.23)

μ0 = tan
(∫

∂D∗
θ(x)

|dx|
2π

)
,

μ(z) = −π Im
(exp(−i

∫
∂D∗

x+z
x−z

θ(x)
|dx|
2π

)

π cos(
∫
∂D∗ θ(x)

|dx|
2π

)

)
.(2.24)

We would like to have a similar formula for μ and θ in terms of h, but the
situation is a little more complicated for boundary values of positive harmonic
functions. A function h is positive and harmonic on D∗ if and only if

h(z) =
∫
∂D∗

Re
(

x + z

x − z

)
σ(dx),(2.25)

for some positive finite (regular Borel) measure σ on ∂D∗. The measures
h(rx)|dx| converge weakly to σ(dx) as r ↑ 1. The function h has a nontangential
limit at almost every x ∈ ∂D∗, which we will call h(x), but h(z) is not necessarily
the Poisson integral of h(x). In fact, h → +∞ radially σs -a.e., where σs is the
singular component of the Radon–Nikodym decomposition of σ with respect to
the length measure |dx| on ∂D∗. It is true, however, that a harmonic function f

has nontangential limits f (x) a.e. and satisfies

f (z) + if̃ (z) =
∫
∂D∗

x + z

x − z
f (x)

|dx|
2π

(2.26)

if and only if

lim
r↑1

∫
∂D∗

∣∣f (rx) − f (x)
∣∣|dx| = 0.(2.27)

Given a function f defined on ∂D∗ which is integrable |dx|, if we define f (z) for
z ∈ D∗ via (2.26) then f satisfies (2.27). See Hoffman (1962), pages 32–33.
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If for some p > 1,

sup
r<1

∫
∂D∗

∣∣f (rx)
∣∣p|dx| < ∞,(2.28)

or if

sup
r<1

∫
∂D∗

∣∣(f + if̃ )(rx)
∣∣|dx| < ∞

then (2.27) holds. See Hoffman (1962), pages 33 and 51.

EXAMPLE 2.4. A good example to keep in mind is

h(z) = 1

π
Re
(

1 + z

1 − z

)
.(2.29)

Then h(x) = 0 for x ∈ ∂D∗ \ {1}. So h cannot be the Poisson integral of its bound-
ary values. Nevertheless, if θ ↔ (h,0) then since θ is bounded, it satisfies (2.28),
and hence satisfies (2.27). In fact, θ(x) = −π/2 for x ∈ ∂D∗ with Imx > 0 and
θ(x) = π/2 for x ∈ ∂D∗ with Imx < 0, so that

θ(z) + iθ̃ (z) = i log
1 + z

1 − z
=
∫
∂D∗

x + z

x − z
θ(x)|dx|/(2π).

If h satisfies (2.27), where (h,μ0) ∈ H ↔ θ ∈B, then we can recover θ directly
from the boundary values of h and μ0. A similar result holds for μ. The following
corollary will be used later to interpret μ(z) as a “rotation rate” about the point
z ∈ D∗.

COROLLARY 2.5. Suppose (h,μ0) ∈ H ↔ θ(z) ∈ B↔ θ(x) ∈ T ↔ μ ∈ R.

(i) If h satisfies (2.27) then for z ∈ D∗

θ(z) = − arg
(∫

∂D∗

x + z

x − z
h(x)

|dx|
2π

− iμ0/π

)
.(2.30)

(ii) If h(z) tan θ(z) or h̃(z) satisfy (2.27), then

μ0 = μ(0) = 1

2

∫
∂D∗

h(x) tan θ(x)|dx| and(2.31)

μ(z) = 1

2

∫
∂D∗

Re
(

x + z

x − z

)
h(x) tan θ(x)|dx|(2.32)

= 1

2

∫
∂D∗

h

(
x + z

1 + zx

)
tan θ

(
x + z

1 + zx

)
|dx|.(2.33)
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PROOF. (i) follows from the discussion above and (2.18).
(ii) Note that since μ = μ0 −πh̃(z) = πh(z) tan θ(z), for z ∈ D∗, it follows that

h(z) tan θ(z) satisfies (2.27) if and only if h̃(z) satisfies (2.27). Equations (2.31)
and (2.32) follow from (2.11), (2.15), and (2.26). Finally, equation (2.33) follows
from (2.32) and a change of variables. �

REMARK 2.6. (i) The maps (h,μ0) → θ and θ → (h,μ0) are continuous un-
der the topologies of uniform convergence on compact subsets of D∗ and (D∗,R).

(ii) For functions in B, uniform convergence on compact subsets of D∗
is equivalent to pointwise bounded convergence in D∗ and is also equiva-
lent to weak-* convergence (of the corresponding boundary value functions) in
L∞(∂D∗), as elements of the dual space of L1(∂D∗). But this convergence is
not equivalent to pointwise bounded a.e. convergence on ∂D∗. For example, if
θk(z) = − arg(1 + zk/2), then θk ↔ (hk,0), with hk = Re(1 + zk/2). The func-
tions θk converge to 0, uniformly on compact subsets of D∗, pointwise boundedly
on D∗, and weak-* on ∂D∗. However, θk does not contain a subsequence converg-
ing pointwise on any subarc in ∂D∗.

(iii) The function θ is a constant function if and only if h ≡ 1/π and μ0 = tan θ .
It is tempting to extend the definition of T to include θ ≡ π/2 by saying θ ≡ π/2
corresponds to h ≡ 1/π and μ0 = +∞. However, we would lose the continuity of
the correspondence. Indeed if (h,μn), (g,μn) ∈ H with μn → +∞ and g �= h, let
θ2n ↔ (h,μ2n) and θ2n+1 ↔ (g,μ2n+1). Then θn converges to π/2 uniformly on
compact subsets of D∗, but the corresponding elements of H do not converge.

(iv) If the pair (h,μ0) corresponds to θ , then (h(z̄),−μ0) corresponds to
−θ(z̄). This follows from Lemma 2.2 since f is analytic if and only if f (z̄) is
analytic. But (h,−μ0) does not correspond to −θ , unless h ≡ 1/π . Indeed, if
(h,−μ0) does correspond to −θ then

−(θ + iθ̃ ) = i log
(
h + ih̃ − i(−μ0)/π

)− i log
√

1 + μ2
0/π.

Adding this equation to (2.18), we obtain

0 = i log
(
(h + ih̃)2 + μ2

0/π
2)− 2i log

√
1 + μ2

0/π,

and thus h + ih̃ is constant. Since (h,μ0) ∈ H, we have h ≡ h(0) = 1/π .
(v) Equation (2.30) fails for the example θ ↔ (h,0) ∈ H where h is given

by (2.29).

EXAMPLE 2.7. Let F = φ + iφ̃ =
√

log(1 − z2). We claim we can choose
the branch of the square root so that F is analytic on D∗, with φ continuous on
D∗ and φ̃ not bounded above or below. By Theorem 2.1 and the definition of
R, there is no (h,μ0) ∈ H so that φ = μ, where μ ↔ (h,μ0). In fact, there do
not exist any a, b ∈ R, b �= 0 and (h,μ0) ∈ H such that a + bφ = μ. To see the
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claim, we set g(z) = (log(1 − z))/z. Then g is analytic on a simply connected
neighborhood of D∗ \ {1} and nonvanishing, and hence has an analytic square root
k. Then F(z) ≡ zk(z2) is analytic on a neighborhood of D∗ \ {±1} and satisfies
F(z)2 = log(1−z2). Thus, φ and φ̃ are continuous and smooth on D∗\{±1}. Since
φ2 − φ̃2 = log |1 − z2| → −∞ as z → ±1, we conclude φ̃2 → ∞ as z → ±1. But
2φφ̃ = arg(1 − z2) is bounded, so we must have φ → 0 as z → ±1. Thus, φ is
continuous on D∗, and φ̃ is unbounded. Since F is odd, φ̃ is neither bounded
above nor below.

EXAMPLE 2.8. Consider the harmonic function φ(z) = Re z in D∗ with
boundary values φ(eit ) = cos t , 0 ≤ t < 2π . If a, b ∈ R, with b �= 0, set μ =
a + bφ = a + b Re z. Then μ̃ = b Im z > −1 for all z ∈ D∗ if and only if |b| ≤ 1.
By the equivalence of R and H given in Theorem 2.1, μ = a + bφ corresponds to
some (h,μ0) ∈ H if and only if |b| ≤ 1.

If φ is harmonic on D∗ and if φ̃ is bounded, then for a, b ∈ R with b �= 0, the
function μ = a + bφ has harmonic conjugate bφ̃. So for sufficiently small b, we
have μ̃ > −1 which implies μ ∈ R and a + bφ ↔ (h,μ0) ∈ H for some (h,μ0).
Since μ̃(0) = 0, we have that inf φ̃ < 0 < sup φ̃ so that for |b| sufficiently large
μ = a + bφ fails to be in R. So in some sense, membership in R depends on the
“oscillation” of the harmonic function on D∗, but not its mean. The next proposi-
tion gives a more precise version. Its proof is elementary, but it will be useful for
understanding our (later) description of rotation rates and stationary distributions
for ORBMs.

PROPOSITION 2.9. Suppose φ is (real-valued and) harmonic in D∗. Set

K− = inf
z∈D∗

φ̃(z) and K+ = sup
z∈D∗

φ̃(z).

If a, b ∈ R with −1/|K+| ≤ b ≤ 1/|K−|, then there is a unique (h,μ0) ∈ H such
that

a + bφ(z) = μ(z),(2.34)

where μ and (h,μ0) are related as in Theorem 2.1. Conversely, if b < −1/|K+|
or b > 1/|K−| then there do not exist any a ∈ R and (h,μ0) ∈ H such that (2.34)
holds.

In the statement of Proposition 2.9, we allow the possibility that K+ is infinite,
in which case we interpret 1/|K+| as equal to zero. A similar statement holds for
|K−|.

PROOF OF PROPOSITION 2.9. Note that K− ≤ 0 ≤ K+ since φ̃(0) = 0. If
b ∈ R and if −1/|K+| ≤ b ≤ 1/|K−|, set μ = a + bφ. Then μ̃(z) = bφ̃(z) ≥ −1.



2984 BURDZY, CHEN, MARSHALL AND RAMANAN

Since μ̃(0) = 0, the maximum principle implies that μ̃(z) > −1 for all z ∈ D∗, so
that μ ∈ R. The corresponding (h,μ0) ∈H is given by (2.12) of Theorem 2.1.

Conversely if (h,μ0) ∈ H corresponds to μ = a + bφ ∈ R as in Theorem 2.1,
then μ̃(z) = bφ̃(z) > −1. But this implies b ≥ −1/ sup φ̃(z) and b ≤ 1/| inf φ̃(z)|.

�

If a real-valued function is slightly better than continuous, then its harmonic
conjugate is continuous and hence bounded. For a function f : ∂D∗ → R, we
define the modulus of continuity of f by ωf (a) = sup|s−t |<a |f (eis) − f (eit )|.
We say that f is Dini continuous if

∫ b
0 (ωf (a)/a) da < ∞ for some b > 0. If f is

Dini continuous then f̃ is continuous and, therefore, bounded; see Garnett (2007),
Theorem III.1.3.

THEOREM 2.10. Suppose that θ ∈ T, (h,μ0) ∈ H, and μ ∈ R correspond to
each other as in Theorem 2.1. See also (2.23) and (2.24).

(i) If θ is Dini continuous on ∂D∗, then h and μ extend to be continuous on D∗.
If μ is Dini continuous on ∂D∗, then h is continuous on D∗ and θ is continuous on
D∗ \Z, where Z = {x ∈ ∂D∗ : h(x) = μ(x) = 0}. Similarly, if h is Dini continuous
on ∂D∗, then μ is continuous on D∗, and θ is continuous on D∗ \ Z. In each of
these cases, h and h̃ satisfy (2.27), so that the conclusions of Corollary 2.5 hold.

(ii) Suppose that ω is an increasing continuous concave function on [0, π/2]
such that ω(0) = 0, ω(π/2) = π/4, and

∫ π/2
0

ω(a)
a

da = ∞. Then there exists θ ∈ T

such that its modulus of continuity ωθ(a) = ω(a) for a ∈ [0, π/2] and both h and
μ are unbounded.

PROOF. (i) By Garnett (2007), Theorem III.1.3, if θ is Dini continuous then
the harmonic conjugate θ̃ is continuous on D∗. Hence, F(z) = exp(θ̃(z)− iθ(z)) is
continuous and so is h + ih̃ by (2.19). Hence, h and μ = μ0 − πh̃ are continuous.
The remaining statements in (i) follow from (2.11), (2.12) and (2.18) and Garnett
(2007), Corollary III.1.4. In each of the cases in (i), h and h̃ are continuous on D∗,
and hence satisfy (2.27).

(ii) We give here an example based on Garnett (2007), page 101. Suppose that
ω is increasing and concave on [0, π/2] with ω(0) = 0, ω(π/2) = π/4, and∫ π/2

0

(
ω(t)/t

)
dt = ∞.(2.35)

Set

α(t) =

⎧⎪⎪⎨⎪⎪⎩
ω(t), if 0 ≤ t ≤ π/2,

ω(π − t), if π/2 ≤ t ≤ π,

0, if − π < t < 0.
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For 0 ≤ x < y ≤ π , write x = ty, 0 < t < 1, and so y − x = (1 − t)y. Since ω is
concave and α(0) = ω(0) = 0,

tα(y) ≤ α(x) and (1 − t)α(y) ≤ α(y − x).

Adding these inequalities, we obtain α(y) − α(x) ≤ α(y − x). Since α(π) = 0,
replacing α(t) by α(π − t) in the above argument, we also have that α(x)−α(y) ≤
α(y − x). If x < 0 < y < π with |x − y| < π/2, then

α(y) − α(x) = α(y) ≤ α
(
y + |x|)= α(y − x).

Set θ(eit ) = −α(t). Then θ ∈ T, because |α| ≤ π/4, and ωθ(a) = ωα(a) = ω(a)

for 0 ≤ a ≤ π/2.
Let b(r) = cos−1(1+r

2 ). Then for r ∈ (0,1),

θ̃ (r) = − 1

2π

∫ π

0
Im
(

eit + r

eit − r

)
α(t) dt

≥ 1

2π

∫ π

b(r)

2r sin t

|eit − r|2 α(t) dt.

Since |eit − 1| ≥ |eit − r| when cos t ≤ (1 + r)/2, we have that

θ̃ (r) ≥ − r

2π

∫ π

b(r)
Im
(

eit + 1

eit − 1

)
α(t) dt = r

2π

∫ π

b(r)

α(t)

tan t/2
dt,

which increases to +∞ as r → 1. So θ̃ (r) is not bounded above. Because θ

is continuous on ∂D∗ with θ(1) = 0, θ(z) extends to be continuous on D∗ and
cos θ(r) → 1 as r → 1, so by (2.13) h is also unbounded. �

Theorem 2.10(ii) implies that if θ ∈ T is not Dini continuous on ∂D∗, then h

and μ may not be extended continuously to D∗. The next proposition examines
the situation when θ is as large as possible on an interval of ∂D∗.

PROPOSITION 2.11. Suppose I is an open arc in ∂D∗, and suppose θ ∈ T ↔
(h,μ0) ∈ H.

(i) If θ(x) = π/2 a.e. on I , then f = h + ih̃ − iμ0/π extends to be analytic in
a neighborhood of D∗ ∪ I with h = 0 on I . The same conclusion holds if θ(x) =
−π/2 a.e. on I .

(ii) If h extends to be continuous on D∗ ∪ I with h = 0 on I , then f = h+ ih̃−
iμ0/π extends to be analytic in a neighborhood of D∗ ∪ I with at most one zero
eit0 ∈ I . If f �= 0 on I , then θ ≡ π/2 or θ ≡ −π/2 on I . If f (eit0) = 0 for some
eit0 ∈ I , then θ(eit ) = −π/2 for eit ∈ I with t < t0 and θ(eit ) = π/2 for eit ∈ I

with t > t0.



2986 BURDZY, CHEN, MARSHALL AND RAMANAN

PROOF. (i) Suppose θ(x) = π/2 a.e. on I . For z ∈ D∗ set F(z) = θ(z) −
π/2 + iθ̃ (z). Then by (2.17)

F(z) =
∫
∂D∗

x + z

x − z

(
θ(x) − π/2

) |dx|
2π

(2.36)

=
∫
∂D∗\I

x + z

x − z

(
θ(x) − π/2

) |dx|
2π

.

The right-hand side of (2.36) defines an analytic function on C \ (∂D∗ \ I ). By
(2.19), f ≡ h + ih̃ − iμ0/π extends to be analytic in a neighborhood of D∗ ∪ I .
Also by (2.36)

ReF(z) = θ − π/2 =
∫
∂D∗\I

1 − |z|2
|x − z|2

(
θ(x) − π/2

) |dx|
2π

.

If y ∈ I , then 1−|z|2
|x−z|2 → 0 uniformly in x ∈ ∂D∗ \ I as z → y. Thus, ReF(z) =

θ(z) − π/2 → 0 as z → y ∈ I . Taking real part of (2.19),

h(z) = eθ̃(z) cos θ(z)

π cos θ(0)
,

so by the continuity of θ and θ̃ on D∗ ∪ I , we have h → 0 as z → y ∈ I .
To prove (ii), suppose that h extends to be continuous on D∗ ∪ I with h = 0 on

I . By the Schwarz reflection principle f = h + ih̃ − iμ0/π extends analytically
across I . By the Cauchy–Riemann equations,

∂

∂t
Imf
(
eit )= ∂

∂r
Ref
(
reit )∣∣∣

r=1
= ∂h

∂r
≤ 0

on I since h = 0 on I and h > 0 on D∗. Since Ref = 0 on I , Imf cannot be
constant on any subarc of I , and thus f is a one-to-one map of the arc I onto a
subarc of the imaginary axis, and (ii) follows from (2.30). �

3. Main results. This section contains only statements of the main results of
this paper. The proofs will be given in Section 4. First, in Section 3.1 we estab-
lish results when the domain D is smooth and the angle of reflection θ is C2 and
nontangential everywhere, that is, θ lies in a closed subinterval of (−π/2, π/2).
Theorem 3.1 summarizes results on existence and uniqueness of ORBMs, and
Theorem 3.2 considers ORBMs on the disk D∗ and establishes the probabilistic
interpretation of the quantity (h(z),μ0) corresponding to θ ∈ T, as specified in
Theorem 2.1. ORBMs in D∗ with general reflection angles θ ∈ T are constructed
in Section 3.2. The focus of Section 3.3 (in particular, see Theorem 3.12) is the
case when the reflection vector field is tangential at every point, which leads to
a process referred to as excursion reflected Brownian motion (ERBM). Lastly, in
Section 3.4 (specifically, Theorems 3.15–3.18 therein) we construct ORBMs in
simply connected domains using conformal mappings and then show, in the case
of simply connected bounded Jordan domains, that they can also be obtained as
suitable limits of ORBMs in C2 domains.
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3.1. Smooth D and C2-smooth nontangential θ . We start with a theorem on
existence and uniqueness of ORBM in the simplest case, when the domain is
smooth and the angle of reflection is smooth and takes values in a closed subinter-
val of (−π/2, π/2). The result is essentially known.

THEOREM 3.1. Assume that D ⊂C is a bounded open set with C2 boundary,
and a function θ : ∂D → (−π/2, π/2) is C2.

(i) [Harrison, Landau and Shepp (1985), Theorem 2.6] The submartingale
problem (2.3) has a unique solution which defines a strong Markov process.

(ii) The strong Markov process defined by the Skorokhod equation (2.1) is con-
tinuous and has the same distribution as the process defined by the submartingale
problem (2.3).

(iii) [Kim, Kim and Yun (1998)] The ORBM obtained in (i) and (ii) can also be
constructed by using the nonsymmetric Dirichlet form approach.

It follows from the results in Harrison, Landau and Shepp (1985) that if θ is
C1 then the ORBM X in the unit disc D∗ has a unique stationary distribution
with the density h given by (2.23). The stationary distribution was characterized
in Harrison, Landau and Shepp (1985) in terms of a partial differential equation
in D∗ with appropriate boundary conditions. In Theorem 3.2(ii), we will show a
partial converse, namely, that the stationary distribution characterizes an ORBM
up to a real number that represents the “rotation rate” of X about 0.

Under the assumptions of Theorem 3.1, the ORBM X is continuous, a.s. Con-
sider a fixed z ∈ D∗. Since Xt �= z for all t > 0, a.s. (even if X0 = z), we can
uniquely define the function t → arg(Xt − z) by choosing its continuous version
and making an arbitrary convention that arg(X1 − z) ∈ [0,2π).

Since h is the density of the stationary measure of X and θ is the reflection
angle, (2.31) suggests that μ0 represents one half of the speed of rotation of X

about 0. Hence, one might hope that limt→∞ argXt/t is equal to a constant mul-
tiple of μ0, a.s. Unfortunately, this simple interpretation of μ0 is false because
argXt behaves like a Cauchy process [see Bertoin and Werner (1994), Spitzer
(1958)] and, therefore, the law of large numbers does not hold for argXt . We will
identify μ0 with the speed of rotation using two other representations in Theo-
rem 3.2(ii)–(iii). We need the following definitions to state the representations.
First of all, recall that a random variable has the Cauchy distribution if its den-
sity is 1/(π(1 + x2)) for x ∈ R. Next we will define a new measure of winding
speed which does not include large windings if they occur during a single excur-
sion from the boundary. Recall definitions related to excursions from Section 2.2.
We will say that es belongs to the family EL

t of excursions with “large winding
number” if s + ζ(es) ≤ t and | argXs − argXs+ζ(es )−| > 2π , where Xu− denotes
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the left-hand limit. For z ∈ D∗, let

arg∗ Xt = argXt − ∑
s:es∈EL

t

(argXs+ζ(es )− − argXs),(3.1)

arg∗(Xt − z) = arg(Xt − z)
(3.2)

− ∑
s:es∈EL

t

(
arg(Xs+ζ(es )− − z) − arg(Xs − z)

)
.

THEOREM 3.2. In parts (i)–(iii), we assume that a C2 function θ : ∂D∗ →
(−π/2, π/2) is given.

(i) [Harrison, Landau and Shepp (1985), Theorem 2.18] The density of the
stationary measure for X defined in (2.1) is a positive harmonic function h in D∗
given by (2.23) [see also (2.19)].

(ii) With probability 1, X is continuous and, therefore, argXt is well defined
for t > 0. Let μ0 ∈ R be given by (2.23). For every z ∈ D∗, the distributions of
1
t

argXt − μ0 under Pz converge to the Cauchy distribution when t → ∞.
(iii) For every y ∈ D∗,

lim
t→∞

1

t
arg∗ Xt = μ0, Py-a.s.(3.3)

The formula holds more generally. For any y, z ∈ D∗,

lim
t→∞

1

t
arg∗(Xt − z) = μ(z), Py-a.s.,(3.4)

where μ(z) is given by (2.24).
(iv) Conversely, suppose we are given any μ0 ∈ R and a harmonic function h in

D∗, that is, C2 in D∗, positive on D∗, and satisfies h(0) = 1/π . Let θ ↔ (h,μ0).
Then for every x0 ∈ D∗, there exists a unique in distribution process X satisfying
(2.1) with this θ . Its stationary distribution has density h and (3.3) holds.

REMARK 3.3. (i) We could have defined the family EL
t of excursions es

with a “large winding number” as those satisfying s + ζ(es) ≤ t and | argXs −
argXs+ζ(es )−| > a, where a > 0 is not necessarily 2π . It turns out that (3.3) holds
for any a > 0. The limit in (3.3) holds for any value of a because the only thing
that matters in (3.1) is that the large jumps of the Cauchy-like process argX are
removed. The “remaining part” of this process satisfies the law of large numbers
and has mean μ0t , no matter how large the threshold for the “large jumps” is. We
have chosen a = 2π because this value has a natural geometric interpretation and
is invariant, in a sense, under conformal mappings.

(ii) We will prove (3.4) using (3.23) and a purely analytic argument. Formula
(3.4) has the same heuristic meaning as (2.31) as a rotation rate, except that it rep-
resents the sum (integral) of infinitesimally small increments of the angle around
z, not 0.
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(iii) In view of Theorem 2.1, if the rotation rate μ(z) is known for all z ∈ D∗, it
completely determines θ and h. Moreover, due to the harmonic character of μ(z),
if this function is known in an arbitrarily small nonempty open subset of D∗, this
also determines θ and h.

(iv) Theorem 2.1 and the definition of the function space R show which har-
monic functions μ(z) represent rotation rates for an ORBM. See also Proposi-
tion 2.9. Roughly speaking, μ(z) represents rotation rates for an ORBM if its os-
cillation over D∗ is not too large. There is no restriction, however, on the average
value of μ(z). If μ(z) and μ1(z) represent the rotation rates for two ORBM’s, and
μ(z) = c + μ1(z) for some constant c and all z then μ̃ = μ̃1. By (2.12) of Theo-
rem 2.1, the corresponding stationary densities are the same for both ORBMs.

(v) Parts (ii) and (iii) of Theorem 3.2 are similar in spirit to Le Gall and Yor
(1986), Theorem 7.1, although that paper is concerned with Brownian motion with
drift, not reflection.

3.2. ORBMs on D∗ with general reflection angles θ . Suppose θ ∈ T. Then
θ �≡ π/2 and θ �≡ −π/2, although θ could be tangential on a strict subset of the
boundary ∂D∗. In Theorem 3.5, we show that ORBMs on the disk D∗ associ-
ated with θ can be obtained as limits of ORBMs on D∗ with C2 angles of reflec-
tion, which are well defined by Theorem 3.1. Then in Theorem 3.8 we establish
a conformal invariance property for such ORBMs. If there do exist points on the
boundary at which θ is tangential, the associated ORBM will not in general be
continuous, and thus one has to carefully define the topology in which the above
limit procedure can be carried out.

We start by introducing some relevant notation to define this topology. Let

(3.5) N+
θ = {x ∈ ∂D∗ : θ(x) = π/2

}
, N−

θ = {x ∈ ∂D∗ : θ(x) = −π/2
}
.

Since we identify functions in T that are equal to each other a.e.,∣∣N+
θ

∣∣< 2π and
∣∣N−

θ

∣∣< 2π.(3.6)

We will say that x ∈ IntN+
θ if θ ≡ π/2 a.e. in some neighborhood of x. The def-

inition of IntN−
θ is analogous. For x = eiα ∈ IntN+

θ , let α+ be the largest real
number such that {eit : t ∈ [α,α+)} ⊂ IntN+

θ , and let β+(x) = eiα+
. Similarly, for

x = eiα ∈ IntN−
θ , let α− be the smallest real number such that {eit : t ∈ (α−, α]} ⊂

IntN−
θ , and let β−(x) = eiα−

.
We recall below the definition of the M1 topology introduced by Skorokhod in

Skorohod (1956). We will use the M1 topology rather than the more popular J1
topology because we will be concerned with convergence of continuous processes
to (possibly) discontinuous processes. In the J1 topology, a sequence of continuous
processes cannot converge to a discontinuous process. We will also define an MT

1
topology, appropriate for our setting.
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DEFINITION 3.4. (i) Suppose that 0 < T < ∞ and x : [0, T ] → Rn is a càdlàg
function. The graph 
x is the set consisting of all pairs (a, t) such that 0 ≤ t ≤ T

and a ∈ [x(t−), x(t)] (here [x(t−), x(t)] is the line segment between the left-hand
limit x(t−) and x(t) in Rn). A pair of functions {(y(s), t (s)), s ∈ [0,1]} is a para-
metric representation of 
x if y is continuous, t is continuous and nondecreas-
ing, and (v, u) ∈ 
x if and only if (v, u) = (y(s), t (s)) for some s ∈ [0,1]. We
say that xn converge to x in M1 topology if there exist parametric representations
{(y(s), t (s)), s ∈ [0,1]} of 
x and {(yn(s), tn(s)), s ∈ [0,1]} of 
xn such that

lim
n→∞ sup

s∈[0,1]
∣∣(yn(s), tn(s)

)− (y(s), t (s)
)∣∣= 0.(3.7)

(ii) If x : [0,∞) → Rn then we say that xn(t) converge to x(t) in M1 topol-
ogy if they converge to x on [0, T ] in M1 topology for every 0 < T < ∞. This
is equivalent to the following statement. There exist parametric representations
{(y(s), t (s)), s ∈ [0,∞)} of 
x and {(yn(s), tn(s)), s ∈ [0,∞)} of 
xn such that
for every T ∈ (0,∞),

lim
n→∞ sup

s∈[0,T ]
∣∣(yn(s), tn(s)

)− (y(s), t (s)
)∣∣= 0.(3.8)

(iii) Consider θ ∈ T. We will say that x : [0,∞) → D∗ belongs to Aθ if it is
càdlàg and satisfies the following conditions. For all t ≥ 0, xt− �= xt if and only
if xt− ∈ IntN+

θ ∪ IntN−
θ . Moreover, if xt− ∈ IntN+

θ then xt = β+(xt−). If xt− ∈
IntN−

θ then xt = β−(xt−). Let AT =⋃θ∈T Aθ .
(iv) Assume that θ ∈ T and x ∈ Aθ . If xt− = eiα ∈ IntN+

θ and xt = β+(xt−) =
eiα+

, then we let [xt−, xt ]θ = {eit : t ∈ [α,α+]} be the arc on ∂D∗ between xt− and
xt . Thus, θ(eis) = π/2 for a.e. eis ∈ [xt−, xt ]θ . Similarly, if xt− = eiα ∈ IntN−

θ

and xt = β−(xt−) = eiα−
, then we let [xt−, xt ]θ = {eit : t ∈ [α−, α]}.

We define the graph 
θ
x as the set of all pairs (a, t) such that a = xt if x is

continuous at t and a ∈ [xt−, xt ]θ if xt− �= xt . A pair of functions {(y(s), t (s)), s ∈
[0,∞)} is a parametric representation of 
θ

x if y is continuous, t is continuous
and nondecreasing, and (v, u) ∈ 
θ

x if and only if (v, u) = (y(s), t (s)) for some
s ∈ [0,∞). Suppose that xn ∈ Aθn for some θn ∈ T, n ≥ 1, and x ∈ Aθ for some
θ ∈ T. We say that xn converge to x in MT

1 topology if there exist parametric
representations {(y(s), t (s)), s ∈ [0,∞)} of 
θ

x and {(yn(s), tn(s)), s ∈ [0,∞)} of



θn
xn such that for every T ∈ (0,∞),

lim
n→∞ sup

s∈[0,T ]
∣∣(yn(s), tn(s)

)− (y(s), t (s)
)∣∣= 0.(3.9)

Some càdlàg functions x (e.g., continuous functions) belong to more than one
family Aθ . We leave it to the reader to check that the definitions in (iv) are not
affected by the choice of Aθ .

We will extend the definition of t → argXt to (some) processes that are not
continuous. Although it is impossible to define a continuous version of t → argXt
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for a process X that is discontinuous, we will define a functional {Xt, t ≥ 0} →
{argXt, t ≥ 0} in a way that reflects the structure of jumps in a natural way, lead-
ing to heuristically appealing results. The functional arg will be defined relative
to θ but the dependence will be suppressed in the notation. Consider a function
x ∈ Aθ such that xt �= 0 for all t ≥ 0. Consider any parametric representation
{(y(s), t (s)), s ∈ [0,∞)} of 
θ

x and let s → argy(s) be the continuous version of
argy with argy(0) ∈ [0,2π). We let argxu = argy(s) where s = sup{r : t (r) = u}.
It is elementary to check that this definition of argxu does not depend on the choice
of parametric representation {(y(s), t (s)), s ∈ [0,∞)} of 
θ

x .
Recall the definitions (3.1)–(3.2) and notation introduced in the paragraph pre-

ceding them. We define arg∗ in an analogous way. For z ∈ D∗, let

arg∗ Xt = argXt − ∑
s:es∈EL

t

(argXs+ζ(es )− − argXs),

arg∗(Xt − z) = arg(Xt − z) − ∑
s:es∈EL

t

(
arg(Xs+ζ(es )− − z) − arg(Xs − z)

)
.

THEOREM 3.5. Consider θ ∈ T. There exists a sequence of C2 functions θk :
∂D∗ → (−π/2, π/2) which converges to θ in weak-* topology as elements of the
dual space of L1(∂D∗), that is,

lim
k→∞

∫
∂D∗

f (x)θk(x)|dx| =
∫
∂D∗

f (x)θ(x)|dx| for every f ∈ L1(∂D∗).

Fix such a sequence {θk} and let Xk be defined by the following SDE analogous
to (2.1),

Xk
t = zk + Bt +

∫ t

0
vθk

(
Xk

s

)
dLk

s for t ≥ 0.(3.10)

Assume that zk → z0 ∈ D∗ as k → ∞, z0 �= 0, and recall (3.6).

(i) [Burdzy and Marshall (1993), Theorem 1.1] Xk’s converge weakly in MT
1

topology to a conservative Markov process X on D∗ such that X0 = z0, a.s. More-
over, there is a càdlàg version of X and for this version, X ∈ Aθ , a.s. The pro-
cess {Xt ; t ∈ [0, σ∂D∗)}, where σ∂D∗ := inf{t > 0 : Xt ∈ ∂D∗}, is Brownian motion
killed upon leaving D∗.

(ii) Xk’s converge to X in the sense of finite dimensional distributions.
(iii) The Markov process X has a stationary measure whose density h is given

by (2.23).
(iv) The functional {xs, s ∈ [0,∞)} → {argxs, s ∈ [0,∞)} is a continuous

mapping from the set AT equipped with MT
1 topology to the set of càdlàg func-

tions equipped with the M1 topology. For every t ≥ 0, the distributions of argXk
t

converge to the distribution of argXt .



2992 BURDZY, CHEN, MARSHALL AND RAMANAN

(v) Let μ0 be as in (2.23). Then for every z ∈ D∗, the distributions of
1
t

argXt − μ0 under Pz converge to the Cauchy distribution when t → ∞.
(vi) For every y ∈ D∗, Py -a.s.,

lim
t→∞

1

t
arg∗ Xt = μ0.(3.11)

Moreover, for any y, z ∈ D∗,

lim
t→∞

1

t
arg∗(Xt − z) = μ(z), Py-a.s.,(3.12)

where μ(z) is the harmonic function defined by (2.24).
(vii) Assume that θ ∈ T ↔ (h,μ0) ∈ H. Then for every x ∈ ∂D∗, x ∈ 
θ

X with
probability 1 if and only if∫ 1

0
e−θ̃ (rx) cos θ(rx)

dr

1 − r
(3.13)

=
∫ 1

0

h(rx)/(π cos θ(0))

h(rx)2 + (h̃(rx) − μ0/π)2

dr

1 − r
< ∞.

(viii) Suppose that θ, θ̄k ∈ T and θ̄k converge to θ in weak-* topology. Let X̄k’s
have their distributions determined by θ̄k’s in the same way as X’s distribution is
determined by θ . Assume that X̄k

0 = zk , X0 = z0 and zk → z0 as k → ∞. Then X̄k

converge weakly to X in MT
1 topology.

We will call the process X obtained in Theorem 3.5 ORBM with reflection
angle θ .

REMARK 3.6. (i) Note that the distribution of X in Theorem 3.5(i) does not
depend on the approximating sequence θk because if we have two sequences
{θk} and {θ̄k} converging to θ then we can apply the theorem to the sequence
θ1, θ̄1, θ2, θ̄2, . . . .

(ii) Suppose that z0 ∈ D∗, μ0 ∈ R, and h is positive and harmonic in D∗ with
h(0) = 1/π . By Theorem 2.1, we can find θ ∈ T ↔ (h,μ0) ∈ H. Let X be the
process corresponding to z0 and θ as in Theorem 3.5. Then X has a stationary
distribution with the density h and μ0 is the rate of rotation of X in the sense of
Theorem 3.5(v)–(vi).

(iii) Theorem 3.5 establishes existence of ORBM for all angles θ of oblique
reflection. ORBMs can be uniquely parametrized either by θ ∈ T or by pairs
(h,μ0) ∈H. We will write X ↔ θ or X ↔ (h,μ0).

(iv) If θ = π/2 a.e. on an open arc I ⊂ ∂D∗ then as in the proof of Proposi-
tion 2.11, θ + iθ̃ extends to be analytic across I , and hence so does G = ei(θ+iθ̃ ).
In this case, for x ∈ I ,

lim
r→1

e−θ̃ (rx) cos θ(rx)

r − 1
= Re lim

r→1

G(rx) − G(x)

rx − x
x = ReG′(x)x.(3.14)
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Thus, the integral in (3.13) is finite for each x ∈ I . A similar statement holds if
θ = −π/2 a.e. on I .

Note that the process X itself will not hit a fixed point x ∈ I . The reason is that
X has only a countable number of excursions from the boundary of ∂D∗ and the
distribution of the location of the endpoint of an excursion has a density. Hence,
with probability 1, no excursion will end at x. If an excursion ends at a point in I ,
the process X will jump at that time to an end of the interval where θ = π/2 a.e.
Thus, X itself will avoid x forever but the same argument shows that x ∈ 
θ

X with
probability 1 because 
θ

X contains the arcs between the endpoints of excursions
hitting points inside I and the points to which X jumps at those times.

(v) Let ν be the positive measure on ∂D∗ defined by h(z) = ∫∂D∗ Kx(z)ν(dx),
where Kx(z) is the Poisson kernel for z ∈ D∗. Fix x ∈ ∂D∗ and write

h(rx) = c
1 + r

1 − r
+
∫
∂D∗

1 − r2

|y − rx|2 dσ(y),

where σ is a positive measure with σ({x}) = 0 and c = ν({x}). Then

lim
r→1

(1 − r)h(rx) = 2c(3.15)

as can be seen by splitting the integral into
∫
I + ∫∂D∗\I where x ∈ I and σ(I) < ε.

If c = ν({x}) > 0, then∫ 1

0

h(rx)

h(rx)2 + (h̃(rx) − μ0/π)2

dr

1 − r
≤
∫ 1

0

1

(1 − r)h(rx)
dr < ∞

and so x ∈ 
θ
X with probability 1 by Theorem 3.5(vii), where X ↔ (h,μ0).

(vi) The condition ν({x}) > 0 is stronger than the integrability condition (3.13).
For example, if h(z) = 1

π
Re(1 − z)−p , with 0 < p < 1, then

∫ 1
0

1
(1−r)h(r)

dr <

∞ so that (3.13) holds at x = 1. However, by (3.15), the corresponding positive
measure ν satisfies ν({1}) = 0.

(vii) Suppose μ0 = 0. If h(x) = h(x) for all x ∈ ∂D∗, where x denotes the
complex conjugate of x, then h̃(r) = 0 for −1 < r < 1. In this case, the integral in
(3.13) is finite for x = 1 if and only if∫ 1

0

1

(1 − r)h(r)
dr < ∞.(3.16)

Condition (3.13) can be restated. Set f = Re(1/(h + ih̃ − iμ0/π)). Then f is
harmonic and positive, so there is a positive measure dσ such that

f (z) =
∫
∂D∗

1 − |z|2
|w − z|2 dσ(w).

PROPOSITION 3.7. Condition (3.13) holds for x ∈ ∂D∗ if and only if∫
∂D∗

1

|w − x| dσ(w) < ∞.(3.17)
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For example, suppose E is a closed subset of ∂D∗ of positive length. Let f (y) =
dist(y,E)p for y ∈ ∂D∗, where p ∈ (0,1) is fixed. Then it is not hard to verify that
f ∈ Cp(∂D∗), that is, f is Hölder-continuous with exponent p on ∂D∗. Let the
harmonic extension of f to D∗ be also denoted by f . Thus, the function f + if̃

is analytic on D∗, extends to be continuous on the closed disk D∗, and hence the
zero set Z = {y ∈ ∂D∗ : f (y) = f̃ (y) = 0} ⊂ E has zero length [see Hoffman
(1962), page 51]. Set h + ih̃ = 1/(f + if̃ ). Then h is positive and harmonic on
D∗. Since f ∈ Cp(∂D∗), f̃ ∈ Cp(∂D∗) by Theorem II.3.2 in Garnett and Marshall
(2005). Thus, h = f/(f 2 + f̃ 2) is continuous up to ∂D∗ \ Z, and so h tends to 0
as z → E \Z. The function h tends to a positive number at each point of ∂D∗ \E.
The positive measure σ(dy) = f (y)|dy| on ∂D∗ satisfies (3.17) for each x ∈ E,
since f (y) ≤ |x − y|p for every x ∈ E. Let θ ∈ T ↔ (h,0) ∈ H and X ↔ (h,0)

be the corresponding ORBM. By Theorem 3.5(vii) and Proposition 3.7, for every
x ∈ E, x ∈ 
θ

X with probability 1. Note also that the integral in (3.17) is infinite
for each point x ∈ ∂D∗ \ E, since f is positive and continuous there. So for every
x ∈ ∂D∗ \ E, this ORBM does not hit x with probability 1. The function θ is
continuous on ∂D∗ \ Z, and |θ | < π/2 off E. We can take E to have no interior in
∂D∗, so |θ | < π/2 on a dense open set.

Recall that if f : D∗ → D∗ is a conformal map of D∗ onto itself, then there exist
θ0 ∈ [0,2π) and w0 ∈ D∗ such that f (z) = eiθ0 z−w0

1−w0z
. So in particular f extends

continuously to D∗ as a smooth homeomorphism. The following result establishes
conformal invariance of ORBM on the unit disk.

THEOREM 3.8. Suppose θ ∈ T and X is an ORBM on D∗ with reflection
angle θ . Suppose f : D∗ → D∗ is a conformal map of D∗ onto D∗. Define for
t ∈ [0,∞),

c(t) =
∫ t

0

∣∣f ′(Xs)
∣∣2 ds and Yt = f (Xc−1(t)).(3.18)

Then Y is an ORBM on D∗ with reflection angle θ ◦ f −1 ∈ T. Equivalently, if
(h,μ0) ∈H ↔ θ , then Y is the ORBM on D∗ parametrized by (h̄, μ̄0) ∈ H, where
h̄(z) = h(f −1(z))/(πh(f −1(0))) and μ̄0 = μ(f −1(z))/h(f −1(0)). Here, μ(w)

is the harmonic function defined by (2.24).

3.3. Excursion reflected Brownian motions. We now address the question that
was left unanswered in Section 3.2, namely whether there exists a process on D∗
associated with a purely tangential angle of reflection, for example, θ ≡ π/2. In
Theorem 3.12, we will show that such a process does indeed exist and can be
obtained as a suitable limit of ORBMs in D∗ corresponding to angles of reflection
θ ∈ T. We refer to this process as excursion reflected Brownian motion (ERBM).

We will first define ERBM more generally, in a bounded simply connected do-
main D with variable excursion intensity ν(dx), where ν is a measure on ∂D. Our
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construction resembles a process introduced in Chen and Fukushima (2008), Chen,
Fukushima and Ying (2007), Fukushima and Tanaka (2005) and called “Brownian
motion extended by darning” (BMD), and defined simultaneously in Lawler (2006)
under the name of ERBM. We will use some concepts from excursion theory re-
viewed in Section 2.2.

DEFINITION 3.9. Suppose that ν(dx) is a finite positive measure on ∂D. Let
Hx be the standard Brownian excursion law in D for excursions starting at x ∈ ∂D.
If D = D∗ then we normalize the σ -finite measures Hx , x ∈ ∂D∗, so that all of
them can be obtained from H 1 by rotation around 0. Let � be a cemetery state and
C = CD denote the family of all functions ω : [0,∞) → D ∪ {�} such that ω(0) ∈
∂D, ω is continuous up to its lifetime ζ < ∞, and ω(t) = � for t ≥ ζ . Let λ denote
the Lebesgue measure on R+ = [0,∞) and let P be the Poisson point process on
R+ × C with characteristic measure λ × ∫∂D Hxν(dx). With probability 1, there
are no two points with the same first coordinate so the elements of P may be
unambiguously denoted by (t, et ). Let

ζt = inf
{
s > 0 : et (s) = �

}
.

Let σv =∑s≤v ζs and σv− =∑u<v ζu for v ≥ 0.
Let D∂ := D∪{∂} be a one-point compactification of D obtained by identifying

the usual boundary ∂D with a single point ∂ .
If D = D∗, then the lifetimes of excursions of the process P have the same

structure as those of the symmetric reflected Brownian motion (with the normal
reflection), so σv < ∞ for all v < ∞ and limv→∞ σv = ∞, a.s. For all domains D

for which the last two statements are true, with probability 1, for every t ≥ 0, the
formula r = inf{v ≥ 0 : σv ≥ t} defines a unique r ≥ 0. For t ≥ 0, let

Xt =
{

er (t − σr−), if σr− < σr and t ∈ [σr−, σr),

∂, otherwise.

With probability one, X is a conservative process taking values in D∂ . We will call
the process X (or its distribution) excursion reflected Brownian motion (ERBM)
in D with excursion intensity ν. In general, X is not a Hunt process on D as it does
not have the quasi-left continuity property at the first hitting time of ∂D, which is a
predictable stopping time. However, X is a conservative continuous Hunt process
on D∂ .

REMARK 3.10. (i) If Hx is a standard Brownian excursion law in D and c > 0
is a constant, then cHx is also a standard Brownian excursion law in D. We talked
about “the” standard excursion laws above because all standard excursion laws in
a simply connected domain corresponding to a given boundary point are constant
multiples of each other.
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(ii) For any strictly positive function a(x) on the boundary of D, ERBM cor-
responding to (a(x)ν(dx), (1/a(x))Hx)x∈∂D has the same distribution as ERBM
determined by (ν(dx),Hx)x∈∂D . Hence, one has to specify both ν and the nor-
malization of the excursion laws Hx to identify ERBM uniquely.

(iii) It may be surprising at the first sight but it is easy to see that for any constant
c > 0, (ν(dx),Hx)x∈∂D and (cν(dx),Hx)x∈∂D define the same ERBM. So we
may assume that ν is a probability measure.

(iv) Combining the last two remarks, it is easy to check that if ERBM X can be
represented by (ν(dx),Hx)x∈∂D and also by (ν1(dx),Hx

1 )x∈∂D , then(
ν1(dx),Hx

1
)
x∈∂D ≡ (ca(x)ν(dx),

(
1/a(x)

)
Hx)

x∈∂D

for some positive function a(x) and some positive constant c.
(v) When D is the unit ball D∗, the ERBM in D∗ with excursion intensity ν

being the uniform measure on ∂D∗ has the same distribution as the BMD studied
in Chen and Fukushima (2008), Chen, Fukushima and Ying (2007), Fukushima
and Tanaka (2005); see Chen and Fukushima (2012), Remark 7.6.4, where this
identification is proved when D is the exterior of the unit ball. When D is the
exterior of the unit ball, the process also has the same distribution as the ERBM
introduced in Lawler (2006); see Chen and Fukushima (2015), Example 6.3.

(vi) To make things simple, we will assume in theorems on ERBM that ∂D is
a Jordan curve (in other words, D is a simply connected Jordan domain). This is
equivalent to saying that if f : D∗ → D is a one-to-one and onto analytic mapping
then f can be extended to be continuous and one-to-one on D∗. We believe that all
our results hold for arbitrary bounded simply connected domains because “exotic”
points on the boundary are negligible from the point of view of excursion theory.

(vii) The reader who wishes to learn more about potential theoretic properties
of domains and their relationship to geometric properties may consult Ohtsuka
(1970) for a discussion of “prime ends.” The Martin boundary is presented in Doob
(1984); in particular, the identification of the Martin boundary and prime ends is
mentioned in Doob (1984), 1 XII 3. The Martin topology and boundary in sim-
ply connected planar domains are conformally invariant; see Pommerenke (1975),
Theorem 9.6.

(viii) If D is a Jordan domain and x ∈ ∂D, then the Martin kernel Kx(·) is
the unique, up to a multiplicative constant, positive harmonic function in D that
vanishes everywhere on the boundary except at x. The density of the expected
occupation measure for Hx is a constant multiple of the Martin kernel Kx(·) by
Burdzy (1987), Proposition 3.4.

PROPOSITION 3.11. Suppose D ⊂ C is a bounded simply connected Jordan
domain:

(i) Let X be an ERBM constructed from (ν,Hx)x∈D , where ν is a probability
measure on ∂D. Then X has a unique stationary distribution whose density is
proportional to h(y) = ∫∂D Kx(y)ν(dx).
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(ii) For every positive harmonic function h in D with ‖h‖L1(D) = 1 there exists
an ERBM X with the stationary density h.

We say that a real-valued function f defined on a subset S of Rn is Lipschitz
with constant λ < ∞ if |f (x) − f (y)| ≤ λ|x − y| for all x, y ∈ S. It follows from
the definitions that a Lipschitz function is Dini continuous.

THEOREM 3.12. (i) Consider a sequence of C2 functions θk : ∂D∗ →
(−π/2, π/2) and let Xk be defined by

Xk
t = xk + Bt +

∫ t

0
vθk

(
Xk

s

)
dLk

s for t ≥ 0.(3.19)

Let (hk,μ0,k) ↔ θk as in Lemma 2.2. We make the following assumptions:

(a) θk converge to π/2 almost everywhere.
(b) For some c1 > −π/2 and all x and k, θk(x) ≥ c1.
(c) There exist λ < ∞ and c2 > 0 such that hk restricted to ∂D∗ is Lipschitz

with constant λ for every k, and hk(x) > c2 for every x and k.
(d) There is a finite measure ν(dx) on ∂D∗ such that hk(x) dx → ν(dx) weakly

as measures on ∂D∗, when k → ∞.
(e) limk→∞ dist(xk, ∂D∗) = 0.

Then the processes Xk converge in the sense of finite dimensional distributions to
ERBM X corresponding to (ν(dx),Hx)x∈∂D∗ , where all Hx are obtained from
H 1 by rotation around 0.

(ii) Conversely, suppose that h is harmonic in D∗, Lipschitz on D∗ and positive
on D∗. Then there exists a sequence of C2 functions θk : ∂D∗ → (−π/2, π/2) sat-
isfying conditions (a)–(e) with ν(dx) = h(x) dx on ∂D∗. ORBMs Xk correspond-
ing to θk’s converge in the sense of finite dimensional distributions to an ERBM X

with the stationary density h.

REMARK 3.13. (i) The roles of π/2 and −π/2 in Theorem 3.12 can be re-
versed by replacing θk(x) with −θk(x). See Remark 2.6(iv).

(ii) It is easy to see from Theorems 3.8 and 3.12 that if f : D∗ → D∗ is a con-
formal map and X is an ERBM on D∗ corresponding to (ν(dx),Hx)x∈∂D∗ , then
f (X) is a time-change of ERBM on D∗ corresponding to (ν(dx)◦f −1,Hx)x∈∂D∗ .

(iii) Suppose that there exists λ < ∞ such that hk restricted to ∂D∗ is Lipschitz
with constant λ for every k. Then it is elementary to show that there exists c2 > 0
such that hk(x) > c2 for every x and k if and only if there exists λ1 < ∞ such that
1/hk restricted to ∂D∗ is Lipschitz with constant λ1 for every k.

EXAMPLE 3.14. Theorem 3.12 has many assumptions so it deserves a simple
example to illustrate it. Suppose h(x) and 1/h(x) are positive Lipschitz continuous
functions on ∂D∗ with ‖h‖L1(D∗) = 1. Let h(z) be the harmonic extension of h
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to D∗. Suppose also that μ0,k → ∞ as k → ∞. Then (h,μ0,k) ↔ θk ∈ T as in
Theorem 2.1. If hk = h for all k, then (hk,μ0,k) and θk satisfy assumptions (a)–(e)
of Theorem 3.12.

3.4. ORBMs in simply connected domains. We will use conformal mappings
to construct ORBMs in arbitrary simply connected domains. In the following, we
will usually use X to denote ORBM in the disk D∗ and Y to denote ORBM in
other domains.

THEOREM 3.15. Suppose that f is a one-to-one analytic function mapping
D∗ onto a simply connected domain D ⊂ C. Suppose that θ ∈ T, θ ↔ (h,μ), let
h̄ = h◦f −1 and assume that h̄ is in L1(D). Let X ↔ θ be ORBM in D∗ and define

c(t) =
∫ t

0

∣∣f ′(Xs)
∣∣2 ds for t ≥ 0,(3.20)

ζ = inf
{
t ≥ 0 : c(t) = ∞},(3.21)

Yt = f (Xc−1(t)) for t ∈ [0, ζ ).(3.22)

We will call Y an ORBM in D. The following hold:

(i) With probability 1, ζ = ∞.
(ii) The process Y is an extension of killed Brownian motion in D in the sense

that for every t ≥ 0 and τt = inf{s ≥ t : Ys ∈ ∂D}, the process {Ys, s ∈ [t, τt )}
is Brownian motion killed upon exiting D.

(iii) The process Y has a stationary distribution with density ĥ = h̄/‖h̄‖L1(D).
(iv) Recall that μ is the function given by (2.24). For z ∈ D, let arg∗(Yt − z) =

arg∗(Xc−1(t) − f −1(z)) for all t . Then, for every z ∈ D, a.s.

lim
t→∞

arg∗(Yt − z)

t
= μ(f −1(z))

‖h̄‖L1(D)

.(3.23)

(v) Suppose that μ0 ∈ R and ĥ is a positive harmonic function in D with
‖ĥ‖L1(D) = 1. Then there exists an ORBM Y in D with the following proper-
ties:
(a) The stationary distribution of Y is ĥ(x) dx.
(b) Set g = f −1 and define

b(t) :=
∫ t

0

∣∣(g′(Ys)
∣∣2 ds, t ≥ 0,(3.24)

Xt := g(Yb−1(t)), t ≥ 0,(3.25)

arg∗ Yt := arg∗ Xb(t), t ≥ 0.(3.26)

Since ĥ ◦ f is a positive harmonic function on D∗, ‖ĥ ◦ f ‖1 = πĥ ◦
f (0) < ∞. Set h1 = ĥ ◦f/‖ĥ ◦f ‖1 and let μ ∈ R ↔ (h1,μ0) ∈ H. Then
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X is the ORBM in D∗ parametrized by (h1,μ0) and (3.23) holds with
h̄ = h1 ◦ f −1 = ĥ/‖ĥ ◦ f ‖1.

(vi) (Consistence) If D has a smooth boundary and θ is C2 then the distribution
of Y is the same as that of the process identified in Theorem 3.1(ii) relative to
θ ◦ f −1.

REMARK 3.16. (i) The quantity arg(Yt − z) has a natural interpretation when
Y is continuous, namely, arg(Yt − z) − arg(Y0 − z) is the number of windings of
Y around z over the time interval [0, t]. The quantity arg∗(Yt −z) is obtained from
arg(Yt − z) by discarding (the windings of) all excursions of Y which make more
than a full loop around z (from endpoint to endpoint of the excursion, not within
the excursion). Our definition of EL

s was chosen to make this simple geometric
interpretation of arg∗(Yt − z) possible.

Unfortunately, when Y is not continuous, arg∗(Yt − z) does not have a simple
intuitive interpretation because the definition of arg in D∗ depends on θ .

(ii) The process Y constructed in Theorem 3.15 will be called ORBM in D.
The family of ORBMs in D can be parametrized either in terms of pairs (θ, f ) or
triplets (ĥ,μ0, f ), so we will write Y ↔ (θ, f ) or Y ↔ (ĥ,μ0, f ). The function
f provides a way to parametrize ∂D, in a sense.

(iii) If μ ∈ R ↔ (h,μ0) ∈ H then we say that μ ◦ f −1(z) is the rotation rate
about z ∈ D for the process Y given by (3.22). If μ1 is a harmonic function defined

on D, let μ̃1 be the harmonic conjugate of μ1 vanishing at f (0). Then μ̃1 ◦ f is

a harmonic function on D∗ vanishing at 0 and μ̃1 ◦ f = μ̃1 ◦ f . By Theorems 2.1
and 3.15, μ1 is a rotation rate for an ORBM if and only if μ̃1(z) > −1 for all
z ∈ D.

(iv) Suppose that f is a conformal mapping from a bounded simply connected
planar domain D1 to another bounded simply connected planar domain D2. Let
K(D1,D2, f ) be the family of positive integrable harmonic functions h in D1 such
that h◦f −1 ∈ L1(D2). By Theorems 3.8 and 3.15, f establishes a correspondence
between a subfamily of ORBMs on D1 that have the density of stationary distri-
bution in K(D1,D2, f ) and a subfamily of ORBMs on D2 that have the density
of stationary distribution in K(D2,D1, f

−1). The subfamilies are nonempty be-
cause they always contain normally reflected Brownian motions. Theorem 3.20
below gives some sufficient conditions on the integrability of positive harmonic
functions in domains. The correspondence between ORBMs on different planar
domains need not extend to all ORBMs on either side because the assumption
h̄ ∈ L1(D) of Theorem 3.15 does not hold for some h and f ; see Example 4.1
below.

(v) There exist processes in D that are extensions of Brownian motion in D,
which have a stationary density and a “limiting rate of rotation” μ0 and which are
not ORBMs. An example of such a process is the conformal image of reflected
Brownian motion in D∗ with diffusion on the boundary [see a Ph.D. thesis Card
(2009) devoted to this class of processes].
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THEOREM 3.17. Suppose that D ⊂ C is a simply connected bounded Jordan
domain and f is a conformal mapping from D∗ onto D, which, by Carathéodory’s
theorem, necessarily extends to a homeomorphism from D∗ onto D. Consider a
sequence of C2 functions θk : ∂D∗ → (−π/2, π/2) and processes Xk which sat-
isfy (3.19) and assumptions (a)–(e) of Theorem 3.12. Let (hk,μk) ↔ θk and let
ck(t), ζk and Y k be defined relative to θk, f and Xk as in Theorem 3.15.

Let ν, h and X be defined as in Theorem 3.12. Let c(t), ζ and Y be defined rel-
ative to θ, f and X as in Theorem 3.15. In (i)–(iv) below, h̄ := h ◦ f −1 is assumed
to be in L1(D):

(i) Almost surely, ζk = ∞ for every k ≥ 1 and ζ = ∞.
(ii) The process Y is an ERBM in D corresponding to (ν̄(dx), H̄ x)x∈∂D with

excursion intensity ν̄ defined by ν̄(A) = ν(f −1(A)) for A ⊂ ∂D, and excursion
laws H̄ x normalized so that the density of the expected occupation time for H̄ x is
the Martin kernel Kx(·) in D normalized by Kx(f (0)) = 1.

(iii) Processes Y k converge to Y in the sense of convergence of finite dimen-
sional distributions.

(iv) The process Y has a stationary distribution with the density ĥ = h̄/

‖h̄‖L1(D).
(v) For every positive harmonic function ĥ in D with ‖ĥ‖L1(D) = 1 such that

ĥ ◦ f is Lipschitz on D∗ and strictly positive on ∂D∗, there is a sequence of C2

functions θk : ∂D∗ → (−π/2, π/2) such that Y k and Y can be constructed as
in the initial part of the theorem and the stationary measure for ERBM Y has
density ĥ.

The next two theorems show that ORBM in an arbitrary domain (possibly with
a fractal boundary) can be approximated by ORBMs in smooth domains where the
oblique angle of reflection has a natural interpretation. This provides a justification
of the name “obliquely reflected Brownian motion” for processes in domains with
rough boundaries.

THEOREM 3.18. Suppose that D ⊂ C is a simply connected Jordan domain,
y0 ∈ D and f is a conformal mapping from D∗ onto D which, necessarily, has a
one-to-one continuous extension to D∗. Let Dk be simply connected domains with
smooth boundaries such that y0 ∈ Dk ⊂ Dk+1 ⊂ D for all k and

⋃
k Dk = D. Let

fk : D∗ → Dk be conformal mappings such that f −1
k (y0) = f −1(y0) and fk → f

as k → ∞.
Suppose that μ0 ∈ R, h̄ ∈ L1(D) is positive and harmonic with ‖h̄‖L1(D) =

1, and h̄ ◦ f is strictly positive on ∂D∗. Let Y be the process constructed as in
Theorem 3.15(v), relative to D,f,μ0 and h̄, with Y0 = y0. Let h̄k = h̄/‖h̄‖L1(Dk)

.
Let Y k be defined in the same way that Y was defined, relative to Dk,fk,μ0 and
h̄k , with Y k

0 = y0. Then Y k converge weakly to Y in MT
1 topology.
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The following concrete example shows how one can approximate a gen-
eral ORBM in D by ORBMs in an increasing sequence of smooth domains
with smooth reflection angles. Suppose that Y ↔ (θ, f ) ↔ (h̄,μ0, f ). Take any
strictly increasing sequence of positive numbers rk that increases to 1. Let Dk =
f (B(0, rk)) and fk(z) = f (z/rk). It is easy to see that Dk is a smooth subdo-
main of D and fk is a conformal mapping from B(0, rk) to D. Clearly, hk(z) :=
h̄(f (rkz)) is a positive harmonic function on D∗ that is smooth on D∗. By Theo-
rem 2.1, θk ↔ (hk/hk(0),μ0) is smooth on ∂D∗. Thus, θ̄k(w) = θk(f

−1(w)/rk) ∈
(−π/2, π/2) defines a smooth function on ∂Dk . Let Y k be the ORBM on Dk with
reflection angle θ̄k constructed in Theorem 3.1(ii). Theorem 3.18 asserts that Y k

converge weakly to ORBM Y on D in MT
1 topology.

THEOREM 3.19. Suppose that D ⊂ C is a simply connected Jordan domain,
y0 ∈ D and f : D∗ → D is a conformal mapping which, necessarily, has a one-
to-one continuous extension to D∗. Let Dk be simply connected domains with
smooth boundaries such that y0 ∈ Dk ⊂ Dk+1 ⊂ D for all k and

⋃
k Dk = D.

Let fk : D∗ → Dk be one-to-one analytic functions such that f −1
k (y0) = f −1(y0)

and fk → f as k → ∞.
Suppose that θ : ∂D → (−π/2, π/2) is a continuous function. Let θ∗ : ∂D∗ →

(−π/2, π/2) be defined by θ∗ = θ ◦f . Let Y be ORBM in D, such that Y ↔ (θ∗, f )

and Y0 = y0.
For every k, let gk : ∂Dk → ∂D be a measurable function such that for every

x ∈ ∂Dk , gk(x) = y ∈ ∂D and |x − y| = dist(x, ∂D). Let θk(x) = θ(gk(x)) for
x ∈ ∂Dk . Let Y k be the ORBM in Dk such that Y k ↔ (θk, fk) and Y k

0 = y0. Then
Y k’s converge weakly in M1 topology to Y .

The assumption that h̄ ∈ L1(D) applied in Theorem 3.15 is sufficient but not
necessary. We will sketch an argument illustrating this claim in Example 4.2 below.
In other words, the construction given in Theorem 3.15 generates a process Yt for
all t ≥ 0 for some domains D and functions h̄ such that ‖h̄‖L1(D) = ∞. Of course,
in such a case no constant multiple of h̄(x) dx can be the stationary (probability)
distribution for Y , although it can be an invariant measure.

In view of the assumption of integrability of h̄ made in Theorems 3.15 and 3.18,
it would be useful to have an effective tool to check whether a given harmonic
function is in L1(D). We do not have such a test and we doubt that a universal
test of this kind exists. We do have some sufficient conditions for integrability of
positive harmonic functions. First, recall Theorem 2.10. It contains a criterion for
a harmonic function h in D∗ corresponding to an angle of oblique reflection θ to
be bounded. A “push” h◦f −1 of such function to a bounded simply connected do-
main is also bounded, and hence integrable. Second, Theorem 3.20 below presents
some examples of domains where all positive harmonic functions are integrable.

Recall that a function ψ : R→R is Lipschitz, with constant λ < ∞, if |ψ(x) −
ψ(y)| ≤ λ|x − y| for all x, y ∈ R. A domain D ⊂ R2 is said to be Lipschitz,
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with constant λ, if there exists δ > 0 such that, for every x ∈ ∂D, there exists an
orthonormal basis (e1, e2) and a Lipschitz function ψ : R → R, with constant λ,
such that {

y ∈ B(x, δ) ∩ D
}= {y ∈ B(x, δ) : ψ(〈y, e1〉)< 〈y, e2〉}.

We recall the definition of a John domain following Aikawa (2000). Let
δD(x) = dist(x, ∂D) and x0 ∈ D. We say that D is a John domain with John con-
stant cJ > 0 if each x ∈ D can be joined to x0 by a rectifiable curve γ such that
δD(y) ≥ cJ �(γ (x, y)) for all y ∈ γ , where γ (x, y) is the subarc of γ from x to y

and �(γ (x, y)) is the length of γ (x, y). The first two parts of the following theorem
follow from Theorems 1 and 2 of Aikawa (2000).

THEOREM 3.20. (i) [Aikawa (2000), Theorem 1] If D ⊂R2 is a bounded John
domain with John constant cJ ≥ 7/8 then all positive harmonic functions in D are
in L1(D).

(ii) [Aikawa (2000), Theorem 2] If D ⊂ R2 is a bounded Lipschitz domain with
constant λ < 1 then all positive harmonic functions in D are in L1(D).

(iii) There exists a bounded Lipschitz domain D with constant λ = 1 and a
positive harmonic function h in D which is not in L1(D).

4. Proofs.

PROOF OF THEOREM 3.1. (i) This part is a special case of Harrison, Landau
and Shepp (1985), Theorem 2.6.

(ii) Let X be the unique pathwise solution of (2.1). Then by Itô’s formula,
f (Xt) − 1

2

∫ t
0 �f (Xs) ds is a submartingale under Pz for every z ∈ D and f ∈ C.

Thus, in view of (i), (X,Pz) is the unique solution to the submartingale prob-
lem (2.3).

(iii) This part is known; see, for example, Kim, Kim and Yun (1998). For the
reader’s convenience, we give a sketch of the Dirichlet form approach to the con-
struction of ORBM. The argument given below works in higher dimensions as
well. In C2-smooth domains with C2-smooth reflection angle, it is enough to con-
struct ORBM locally nearly the boundary and then patch the pieces together. Thus,
by locally flattening the boundary, we may and do assume that D = H, the upper
half space. Let v(x) = (v1(x),1) for x ∈ ∂H with v1(x) := tan θ(x). Consider a
nonsymmetric bilinear form (E,F) on L2(H, dz), where

F = {f ∈ L2(H, dz) : ∇f ∈ L2(H, dz)
}
,

E(f, g) =
∫
H

∇f (z) · ∇g(z) dz −
∫
∂H

v1(x)
∂f (x,0)

∂x
g(x,0) dx for f,g ∈ F.

Let E0(f, g) = ∫H ∇f (z) · ∇g(z) dz, and for α > 0,

E0
α(f, g) := E0(f, g) + α(f,g)L2(H;dz) and

Eα(f, g) := E(f, g) + α(f,g)L2(H;dz).
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Observe that for f ∈ C2
c (H̄), by the integration by parts formula,∣∣∣∣∫

∂H
v1(x)

∂f (x,0)

∂x
f (x,0) dx

∣∣∣∣= 1

2

∣∣∣∣∫
∂H

v′
1(x)f (0, x)2 dx

∣∣∣∣
≤ 1

2

∥∥v′
1
∥∥∞∥∥f (x,u)

∥∥2
L2(∂H,dx).

By the boundary trace theorem, for every ε > 0 there is Cε > 0 such that∥∥f (x,u)
∥∥2
L2(∂H,dx) ≤ εE0(f, f ) + Cε‖f ‖2

L2(H;dz)
for f ∈ F.

It follows from the above two displays that there are constants α > 0 and C0 ≥ 1
such that

C−1
0 E0

1(f, f ) ≤ Eα(f, f ) ≤ C0E
0
1(f, f )

for every f ∈ C2
c (H) and hence for every f ∈ F. On the other hand, for f,g ∈

C2
c (H̄),

−
∫
∂H

v1(x)
∂f (x,0)

∂x
g(x,0) dx

= −
∫
∂H

v1(x)

∫ ∞
0

∂

∂y

(
∂f (x, y)

∂x
g(x, y)

)
dy dx

= −
∫
H

v1(x)
∂f (x, y)

∂x

∂g(x, y)

∂y
dy dx −

∫
H

v1(x)g(x, y)
∂2f (x, y)

∂x∂y
dy dx(4.1)

=
∫
H

v1(x)

(
∂f (x, y)

∂x

∂g(x, y)

∂y
− ∂f (x, y)

∂y

∂g(x, y)

∂x

)
dy dx

−
∫
H

v′
1(x)g(x, y)

∂g(x, y)

∂y
dy dx.

Thus, with C1 = 2‖v‖∞,+‖v′‖∞,∣∣∣∣∫
∂H

v1(x)
∂f (x,0)

∂x
g(x,0) dx

∣∣∣∣≤ C1E
0
1(f, f )1/2E0

1(g, g)1/2 for f,g ∈ C2
c (H̄).

Hence, the bilinear form (E,F) satisfies the sector condition: there is a constant
C2 ≥ 1 such that∣∣E(f, g)

∣∣≤ C2Eα(f, f )1/2Eα(g, g)1/2 for f,g ∈ F.

Moreover, by increasing the value of α if needed, we have from (4.1) that for every
f ∈ C2

c (H̄),

E
(
f,f − (0 ∨ f ) ∧ 1

)≥ 0 and Eα

(
f − (0 ∨ f ) ∧ 1, f

)≥ 0.

Thus, (E,F) is a regular nonsymmetric Dirichlet form on L2(H̄;dz). Let X be the
Hunt process on H̄ associated with (E,F). Then one can use stochastic analysis
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for nonsymmetric Dirichlet forms to show that X satisfies the SDE (2.1) for quasi-
every starting point x ∈ H̄ [see Kim, Kim and Yun (1998)]. Since X behaves like
Brownian motion inside H, we can refine the result to allow X to start from every
point x ∈ H and conclude that (2.1) holds for such X. �

PROOF OF THEOREM 3.2. (i) This part of our theorem is a special case of
Harrison, Landau and Shepp (1985), Theorem 2.18.

(ii) Almost sure continuity of X follows from (2.1).
Recall that we are assuming that θ : ∂D∗ → (−π/2, π/2) and θ ∈ C2. It follows

from Garnett and Marshall (2005), Corollary II.3.3, that h is C2−ε on D∗ for every
ε > 0.

Let Q denote the probability measure on D∗ with density h(z). We will show
that

(4.2) EQ

[∫ 1

0
g(Xs) dLs

]
=
∫
∂D∗

g(x)
(
h(x)/2

)
dx

for every continuous function g on ∂D∗. Fix any continuous function g on ∂D∗.
Its harmonic extension to D∗ (also denoted g) is continuous on D∗. Then for
ε ∈ (0,1),

(4.3) EQ

[∫ 1

0

1

ε
1{1−ε<|Xs |<1}g(Xs) ds

]
=
∫
D∗

1

ε
1{1−ε<|z|<1}g(z)h(z) dz.

By continuity and boundedness of g and h, the limit of the right-hand side, as
ε → 0, is equal to

∫
∂D∗ g(x)h(x) dx. It is standard to show that

∫ 1
0

1
ε
1{1−ε<|Xs |<1}×

g(Xs) ds converges to 2
∫ 1

0 g(Xs) dLs in distribution as ε → 0. We claim that the
family {∫ 1

0

1

ε
1{1−ε<|Xs |<1}g(Xs) ds, ε ∈ (0,1/2)

}
(4.4)

is uniformly integrable. Since g is bounded, it suffices to prove uniform integrabil-
ity of the family {∫ 1

0
1
ε
1{1−ε<|Xs |<1} ds, ε ∈ (0,1/2)}. If we denote by La

t the local
time of the two-dimensional Bessel process on [0,1] reflected at 1, then the distri-
bution of

∫ 1
0

1
ε
1{1−ε<|Xs |<1} ds is the same as 1

ε

∫ 1
1−ε L

a
1 da. The last random vari-

able is stochastically majorized by sup{La
1 : a ∈ [1/2,1]} for every ε ∈ (0,1/2).

A version of the Trotter and Ray–Knight theorems shows that La
1 is a diffusion in

a, so sup{La
1 : a ∈ [1/2,1]} is an almost surely finite random variable. Therefore,

the family in (4.4) is uniformly integrable. Taking ε → 0 in (4.3) yields (4.2). It
follows that the Revuz measure of L is 1

2h(x) dx on ∂D∗, relative to the invariant
measure h(z) dz on D∗.

We will now provide a representation of X using a map which is locally con-
formal. Let D− = {z ∈ C : Re z < 0} be the left half-plane and f (z) = exp(z)

the exponential function that maps D− onto D∗ \ {0}. For x ∈ ∂D− such that
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f (x) = z ∈ ∂D∗, define v̂(x) = i tan θ(z) − 1. Note that v̂(x) is a periodic C2-
smooth function on ∂D− with period 2πi. Suppose that x̂0 ∈ D− and B̂ is a two-
dimensional Brownian motion. It is known [see Lions and Sznitman (1984), Theo-
rem 4.3] that there is a pathwise unique solution (X̂, L̂) to the following Skorokhod
SDE:

X̂t = x̂0 + B̂t +
∫ t

0
v̂(X̂s) dL̂s,(4.5)

where X̂ is a continuous process that takes values in D− and L̂ is a continuous
nondecreasing real-valued process with L̂0 = 0 that increases only when X̂t ∈
∂D−. The process X̂ is an ORBM in D− with the oblique angle of reflection θ ◦f .
The Itô formula yields

f (X̂t ) = f (X̂0) +
∫ t

0
f ′(X̂s) dB̂s +

∫ t

0
f ′(X̂s )̂v(X̂s) dL̂s

(4.6)

= f (X̂s) +
∫ t

0
f ′(X̂s) dB̂s +

∫ t

0
vθ

(
f (X̂s)

)
dL̂s,

where f ′ is interpreted as the Jacobian of f . Let

c(t) =
∫ t

0

∣∣f ′(X̂s)
∣∣2 ds.(4.7)

It is not hard to show that c(t) < ∞ for every t > 0, a.s. It follows that

c−1(t) := inf
{
s > 0 : c(s) > t

}
is well defined for every t > 0 and the process Xt := f (X̂c−1(t)) satisfies (2.1) with

Brownian motion Bt := ∫ c−1(t)
0 f ′(X̂s) dB̂s and L := L̂. So X is an ORBM in D∗

with the oblique angle of reflection θ . The exponential function f (z) = exp(z) :
D− → D∗ is neither one-to-one nor onto D∗, but it is locally conformal and maps
∂D− onto ∂D∗ so we will refer to the fact that Xt is an ORBM as conformal
invariance of ORBM.

Let σt = inf{s ≥ 0 : Ls > t} = σ̂t = inf{s ≥ 0 : L̂s > t}, At = argXσt and Ât =
Im X̂σ̂t for t ≥ 0. Then Â and A are indistinguishable processes.

It follows from the uniqueness of the deterministic Skorohod problem that the
process X̄t := X̂t − i

∫ t
0 tan θ(X̂s) dL̂s is a normally reflected Brownian motion

in the left half-plane D−. Hence, if we let Ct = Im X̄(σ̂t ) for t ≥ 0, then Ct is a
Cauchy process with the initial value C0 = Im X̄S̄ = argXS , where S̄ := inf{t > 0 :
X̄t ∈ ∂D−} and S := inf{t > 0 : Xt ∈ ∂D∗}. Clearly, C0 depends only on the initial
starting point of X and is independent of the reflection angle θ . We have

At = Ât = Ct +
∫ σ̂t

0
tan
(
θ(X̂s)

)
dL̂s = Ct +

∫ σt

0
tan
(
θ(Xs)

)
dLs.(4.8)

For u ≥ 0, define

(4.9) Tu = inf{t > u : Xt ∈ ∂D∗},
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with the convention inf∅ := ∞. We obtain from (4.8)

argXt = ALt + argXt − argXTt

= CLt +
∫ t

0
tan
(
θ(Xs)

)
dLs + argXt − argXTt

= Ct + (CLt − Ct) +
∫ t

0
tan
(
θ(Xs)

)
dLs + (argXt − argXTt ).

Hence,

1

t
argXt − μ0 = 1

t
Ct + 1

t
(CLt − Ct) +

(
1

t

∫ t

0
tan
(
θ(Xs)

)
dLs − μ0

)
(4.10)

+ 1

t
(argXt − argXTt ).

By (4.2), EQ[L1] = ∫∂D∗(h(x)/2) dx = 1. It follows from these remarks, (2.31),
(4.2) with g(x) = tan θ(x) and the limit-quotient theorem for additive functionals
[see, e.g., Revuz and Yor (1999), Theorem X 3.12] that for every z ∈ D∗, Pz-a.s.,

lim
t→∞

1

t

∫ t

0
tan
(
θ(Xs)

)
dLs = EQ

[∫ 1

0
tan θ(Xs) dLs

]
(4.11)

=
∫
∂D∗

(1/2) tan θ(x)h(x) dx = μ0,

lim
t→∞

1

t
Lt = 1.(4.12)

Fix an arbitrarily small ε > 0 and any z ∈ D∗ and let

p1(t) = Pz

(| argXt − argXTt | > εt
)
.(4.13)

We will argue that p1(t) is small for large t . Let T ′
u = sup{t ∈ [0, u] : Xt ∈ ∂D∗}

with the convention sup∅ = 0. By the Markov property applied at time t and the
symmetry of Brownian motion,

Pz(argXT ′
t
− argXt > 0) = Pz(argXT ′

t
− argXt < 0) = 1/2.

This and the Markov property applied at time t imply that

Pz

(| argXT ′
t
− argXTt | > εt

)≥ p1(t)/2.(4.14)

For a fixed u > 0, the Cauchy process C is continuous at time u, a.s. Let δ > 0 be
so small that

P
(

sup
1−δ≤u,v≤1+δ

|Cu − Cv| ≥ ε/2
)

< ε.

Then, by scaling, for any t > 0,

P
(

sup
(1−δ)t≤u,v≤(1+δ)t

|Cu − Cv| ≥ εt/2
)

< ε.(4.15)
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By (4.12), we can find t1 so large that for t ≥ t1,

Pz

(
Lt ∈ ((1 − δ)t, (1 + δ)t

))≥ 1 − ε.(4.16)

The jumps of A have the same size as those of C and occur at the same time
because the last integral in (4.8) is a continuous function of t . If the events in
(4.14) and (4.16) occur then C has a jump of size greater than εt at a time s =
Lt ∈ ((1 − δ)t, (1 + δ)t). The probability of this event is greater than p1(t)/2 − ε,
by (4.14) and (4.16). However, by (4.15), this probability is less than ε. Hence,
p1(t)/2 < 2ε and, therefore, p1(t) < 4ε for sufficiently large t . This and (4.13)
imply that, for sufficiently large t ,

Pz

(
1

t
| argXt − argXTt | > ε

)
< 4ε.(4.17)

Another consequence of (4.15) and (4.16) is that |CLt −Ct | ≤ εt with probabil-
ity greater than 1 − 2ε for large t . Thus, for sufficiently large t ,

Pz

(
1

t
|CLt − Ct | > ε

)
< 2ε.(4.18)

It follows from (4.11) that for sufficiently large t ,

Pz

(∣∣∣∣1t
∫ t

0
tan
(
θ(Xs)

)
dLs − μ0

∣∣∣∣> ε

)
< ε.(4.19)

Note that (Ct −C0)/t has the Cauchy distribution. Since ε > 0 is arbitrarily small,
the last observation, (4.10), (4.17), (4.18) and (4.19) imply that the distributions of
1
t

argXt − μ0 converge to the Cauchy distribution as t → ∞.
(iii) Consider a modification of the process C which is left continuous with right

limits. For t ≥ 0, let

�t =∑
s≤t

(Ct+ − Ct)1{|Ct+−Ct |>2π}, C∗
t = Ct − C0 − �t = Ct − argXS − �t.

The process C∗ is a Cauchy process with jumps larger than 2π removed and starts
from C∗

0 = 0. It is elementary to see that C∗
t is a zero mean martingale and a Lévy

process. Hence, the law of large numbers holds for C∗, that is, a.s.,

lim
t→∞C∗

t /t = 0.(4.20)

Note that the jumps removed from C correspond to increments of argX in the sum
on the right-hand side of (3.1). Thus,

arg∗ Xσ(t) = C∗
t +
∫ σ(t)

0
tan
(
θ(Xs)

)
dLs + argXS(4.21)

and

1

t
arg∗ Xσ(t) = 1

t
C∗

t + 1

t

∫ σ(t)

0
tan
(
θ(Xs)

)
dLs + 1

t
argXS.(4.22)
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It follows from (4.12) that, a.s.,

lim
t→∞σ(t)/t = 1.(4.23)

This, (4.11), (4.20) and (4.22) imply that for every z ∈ D∗, Pz-a.s.,

lim
t→∞

1

t
arg∗ Xσ(t) = μ0.(4.24)

We claim that

lim
t→∞Tt/t = 1 a.s.(4.25)

First note that since
∫∞

0 1{Xs∈D∗} dLs = 0, we have by (4.12) that limt→∞ Tt = ∞.
For every ε > 0, Lt − ε < LTt ≤ Lt so

Lt − ε

t
<

LTt

Tt

Tt

t
≤ Lt

t
.

This together with (4.12) establishes the claim (4.25). Combining (4.23), (4.24)
and (4.25) yields

lim
t→∞

1

t
arg∗ XTt = μ0.(4.26)

Next we will argue that (4.26) implies that limt→∞ 1
t

arg∗ Xt = μ0 by using
excursion theory. Recall that Hx denotes the excursion law for Brownian motion
in D∗. We will estimate the Hx -measure of the family Fa of excursions with the
property that | arg e(0)−arg e(ζ−)| ≤ 2π and supt∈[0,ζ(e)) | arg e(0)−arg e(t)| ≥ a,
for a ≥ 4π . Note that this quantity does not depend on x. Let Ĥ x be the excursion
law for Brownian motion in D− = {z ∈ C : Re z < 0} starting from x ∈ ∂D−. Ex-
cursion laws are conformally invariant, up to a multiplicative constant [see Burdzy
(1987), Proposition 10.1]. The exponential function f (z) = exp(z) maps D− onto
D∗ \ {0} and is locally conformal, up to the boundary. Hence, for some constant c4,
Hx(Fa) = c4Ĥ

y(F̂a), where F̂a is the family of excursions with the property that
| Im e(0)− Im e(ζ−)| ≤ 2π and supt∈[0,ζ(e)) | Im e(0)− Im e(t)| ≥ a. If we normal-
ize all excursion laws as in (2.5), then it is easy to check that c4 = 1 (although
our argument does not depend on the value of this constant). Thus, the equality
Hx(Fa) = Ĥ y(F̂a) holds for all x ∈ ∂D∗ and y ∈ ∂D−. By Burdzy [(1987), The-
orem 5.1(v)], for some c5 < ∞,

Ĥ x
(

sup
t∈[0,ζ(e))

∣∣Im e(0) − Im e(t)
∣∣≥ a
)

≤ c5/a.(4.27)

It is easy to see that if Brownian motion starts in D− from a point z with | Im z| > a

with a ≥ 4π then the chance that it will exit D− through the line segment on the
imaginary axis between −2πi and 2πi is bounded above by c6/a. This, (4.27) and
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the strong Markov property of Ĥ x applied at the time inf{t ∈ [0, ζ(e)) : | Im e(0)−
Im e(t)| ≥ a} imply that

Hx(Fa) = Ĥ x(F̂a) ≤ c5c6/a
2 = c7/a

2.(4.28)

Fix some α > 0. By the exit system formula (2.4), the probability that there exists
an excursion et of X such that Lt > s and et belongs to FαLt is equal to∫ ∞

s
HXσ(u)(Fαu) du ≤

∫ ∞
s

c7/(αu)2 du = c8/
(
α2s
)
.

This quantity goes to 0 as s → ∞, so for every fixed α > 0, with probability 1,
there is sα = sα(ω) < ∞ such that there are no excursions et ∈ FαLt with Lt > sα .

Fix an arbitrarily small α > 0 and suppose that t1 is so large that 1
t

arg∗ XTt ≤
μ0 + α and Lt/t ≤ 2 for all t > t1. If 1

u
arg∗ Xu ≥ μ0 + 5α for some u > t1, then

| arg∗ Xu − arg∗ XTu | ≥ 4αu ≥ 2αLu. This means that an excursion starting at Tu

belongs to F2αLu = F2αLTu
. Since there are no such excursions beyond some s2α , it

follows that lim supt→∞ 1
t

arg∗ XTt ≤ μ0 + 5α, a.s. This holds for all rational α >

0 simultaneously, a.s., so lim supt→∞ 1
t

arg∗ XTt ≤ μ0, a.s. The matching lower
bound for lim inf can be proved analogously. We conclude that for every z ∈ D∗,
Pz-a.s., limt→∞ 1

t
arg∗ XTt = μ0.

The proof of (3.4) will be combined with the proof of Theorem 3.15(iv) given
below.

(iv) Since h is C2 on D∗, it follows from (2.18) that θ(z) is C2 on D∗, and hence
θ(x) is C2 on ∂D∗. Moreover H = h + ih̃ is C2−ε , by Corollary II.3.3 in Garnett
and Marshall (2005). By assumption, h is positive and continuous on ∂D∗. Thus,
H(D∗) is a compact subset of {Re z > 0} and so by (2.18), supx |θ(x)| < π/2. We
can now apply parts (i) and (iii) of the theorem to see that part (iv) holds. �

PROOF OF THEOREM 3.5. Fix a Borel measurable function θ : ∂D∗ →
[−π/2, π/2]. First we need to prove that there exists a sequence of C2 functions
θk : ∂D∗ → (−π/2, π/2) which converges to θ in weak-* topology. For this, we
extend θ harmonically to D∗ and then we let θk(e

it ) = θ(eit (1 − 1/k)). Then θk’s
converge to θ in weak-* topology. See Hoffman (1962), page 33.

(i) This was essentially proved in Burdzy and Marshall (1993), Theorem 1.1.
That theorem was concerned with ORBM in a half-plane while the present re-
sult is set in a disc. Theorem 3.5(i) can be proved just like Burdzy and Marshall
(1993), Theorem 1.1, by repeating the arguments given in Burdzy and Marshall
(1993) with some minor adjustments. We omit the proof to save space. The Markov
property of X follows from that of Xk and the convergence of finite dimensional
distributions. Since for each k, the subprocess of Xk before hitting ∂D∗ is Brown-
ian motion in D∗ before hitting ∂D∗, the same claim applies to the subprocess of
X before hitting ∂D∗.

The transition probabilities are the same for each process |Xk| so the process
|X| has the same transition probabilities. It follows that X is conservative.



3010 BURDZY, CHEN, MARSHALL AND RAMANAN

(ii) This claim was shown in the proof of Burdzy and Marshall (1993), Theo-
rem 1.1, although it was not a part of the statement of that theorem. See Step 4 on
page 214 of Burdzy and Marshall (1993).

(iii) Suppose that (hk,μk) ↔ θk and Xk solves the SDE (3.10) except that the
initial distribution for Xk is the stationary distribution hk(z) dz. According to Re-
mark 2.6, the measures hk(z) dz converge to h(z) dz. It is easy to see that part (i) of
this theorem implies that Xk’s converge weakly to a process X satisfying the SDE
(2.1), with the initial distribution h(z) dz. For every t ≥ 0 and k ≥ 1, the distribu-
tion of Xk

t is hk(z) dz. Hence, for every t ≥ 0, the distribution of Xt is h(z) dz.
This shows that h is a stationary distribution for X satisfying (2.1).

We next show uniqueness of the stationary distribution. As observed in (2.2),
for every reflection angle field θ , the radial part |X| of X is a two-dimensional
Bessel process confined to [0,1] by reflection at 1. This easily implies that for any
initial distribution of X, the distribution of X1 has a strictly positive density inside
B(0,1/2). If there were more than one invariant measure, at least two of them
(say, Q1 and Q2) would be mutually singular by Birkhoff’s ergodic theorem Sinaı̆
(1994). We have just shown that the Lebesgue measure restricted to B(0,1/2) (let
us call it Q3) is absolutely continuous with respect to the distribution of X1, so that
in particular, Q3 � Q1 and Q3 � Q2. Since Q1 ⊥ Q2 by assumption, there exists
a set A ⊂ B(0,1/2) such that Q1(A) = 0 and Q2(B(0,1/2) \ A) = 0. Therefore,
one must have Q3(A) = Q3(B(0,1/2) \ A) = 0 which contradicts the fact that
Q3(B(0,1/2)) �= 0.

(iv) The first claim follows easily from the definitions. The second claim follows
from the first claim and part (i) of the theorem.

(v) Since θk are smooth, (4.10) holds for Xk’s, that is,

1

t
argXk

t − μk

= 1

t
Ck

t + 1

t

(
Ck

Lk
t
− Ck

t

)+ (1

t

∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s − μk

)
(4.29)

+ 1

t

(
argXk

t − argXk

T k
t

)
,

where the symbols with the superscript or subscript k denote objects analogous to
those in (4.10). Since Xk’s converge to X weakly, we can assume that all these
processes are constructed on a single probability space and Xk

t → Xt , a.s., for
every fixed t , as k → ∞. In view of (4.29), we can write

1

t
argXt − μ0 =

(
1

t
argXt − 1

t
argXk

t

)
− (μ0 − μk) + 1

t

(
Ck

t − Ck
0
)+ 1

t

(
Ck

Lk
t
− Ck

t

)
(4.30)
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+
(

1

t

∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s − μk

)
+ 1

t

(
argXk

t − argXk

T k
t

)+ 1

t
argXk

Sk ,

where Sk = inf{t > 0 : Xk
t ∈ ∂D∗}. The distribution of 1

t
(Ck

t − Ck
0) is Cauchy for

every k and t so it suffices to show that all other terms on the right-hand side of
(4.30) are small for large t and k.

Fix an arbitrarily small ε > 0. Note that (4.17) and (4.18) do not depend on θ so
we can apply them for all θk . Hence, we can find t1 so large that for t ≥ t1,

P
(∣∣∣∣1t (Ck

Lk
t
− Ck

t

)+ 1

t

(
argXk

t − argXk

T k
t

)∣∣∣∣≥ ε

)
< ε.

We will assume without loss of generality that Xk
0 = z �= 0, a.s., for all k. (The

case z = 0 can be dealt with by applying the Markov property at time t = 1.)
Then argXk

Sk has the same distribution for each k ≥ 1 and so by taking t1 larger if
needed,

P
(∣∣∣∣1t argXk

Sk

∣∣∣∣≥ ε

)
< ε for all k ≥ 1 and t ≥ t1.

Recall that Xk
t → Xt , a.s. By Remark 2.6(vi), μk → μ0. Thus, for a fixed t , we

can make k so large that

P
(∣∣∣∣1t argXt − 1

t
argXk

t

∣∣∣∣+ |μ0 − μk| ≥ ε

)
< ε.

Hence, it will suffice to prove that for a fixed ε > 0, some t1 and k1, all t ≥ t1,
k ≥ k1 and zk ∈ D∗,

Pzk

(∣∣∣∣1t
∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s − μk

∣∣∣∣> ε

)
< ε.(4.31)

If we let Qk(dx) = hk(x) dx then by (4.11),

EQk

[
1

t

∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s

]
= μk.(4.32)

Hence, to complete the proof of part (iv) of the theorem, it will suffice to show that

Var
(

1

t

∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s

)
≤ c1/t.(4.33)

We will split the rest of the proof of this part of the theorem into steps.
Step 1. We will recall some results from Burdzy and Marshall (1993), Lemmas

2.2–2.3, but we will change the notation.
We will say that D ⊂ C is a monotone domain if D is open, connected and for

every z ∈ D and b > 0 we have z + ib ∈ D.
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Let H = {z ∈ C : Im z > 0} be the upper half-plane. Suppose that θ : ∂H →
[−π/2, π/2] is a Borel measurable function and suppose θ is not equal almost
everywhere either to π/2 or to −π/2. Then there exists a univalent analytic
mapping g of H onto a monotone domain D = g(H) such that for almost all
x ∈ ∂H, g(x) and g′(x) exist, g′(x) �= 0 and argg′(x) = θ(x). We choose g so that
lim|z|→∞ |g(z)| = ∞. We construct g as follows. Let θ : H → R be the bounded
harmonic extension of our original function θ : ∂H→ [−π/2, π/2] and let θ̃ be the
harmonic conjugate of θ such that θ̃ (i) = 0. Define g : H → C by setting g(i) = i

and

g′(z) = exp
(
i
(
θ(z) + iθ̃ (z)

))
.

Then g is one-to-one on H because Reg′(z) > 0. [See Burdzy and Marshall
(1993).] By abuse of notation, we will use the same symbol θ to denote real func-
tions on both ∂D∗ and ∂H. Specifically, for z ∈ ∂H, we let θ(z) = θ(exp(iz)),
where θ(exp(iz)) refers to the function θ ∈ T introduced in the assumptions of
Theorem 3.5. Hence, in this proof, θ : ∂H → R is a periodic function with period
2π . It follows that g is also periodic with period 2π , up to an additive constant.
That is, g(z + 2π) = g(z) + d for all z ∈ H, where d = g(i + 2π) − g(i). The
constant d is nonzero since Reg′ > 0.

Suppose that θk : ∂D∗ → (−π/2, π/2) are C2-functions which converge
weak-*to θ as k → ∞. Let gk and Dk := gk(H) correspond to θk in the same
way as g and D = g(H) correspond to θ . Note that gk(z + 2π) = gk(z) + dk for
some constant dk . Moreover, if ε > 0, then gk(z + iε) converges to g(z + iε)

uniformly in z ∈ R and dk → d . Indeed, by weak-* convergence of θk ∈ T, we
conclude uniform convergence of θk(z) + iθ̃ (z) on the compact set {z : |z| = e−ε},
and hence g′

k converges uniformly on I = {z : 0 ≤ Re z ≤ 2π, Im z = ε}. Integra-
tion then shows that dk → d , and hence gk converges uniformly to g on R + iε.
Let f (z) = exp(ig−1(z)), for z ∈ D and fk(z) = exp(ig−1

k (z)) for z ∈ Dk . Then f

and fk are locally conformal maps of D and Dk onto D∗ \ {0} which are periodic
with periods d and dk , respectively.

The monotone domains Dk converge to D in the following sense:

(a) If B is open and such that B ∩ ∂D �= ∅, there is a k0 = k0(B) such that
B ∩ ∂Dk �= ∅ for all k ≥ k0.

(b) If B is connected and open, with B ∩ D �= ∅ and B ⊂ Dk for infinitely
many k, then B ⊂ D.

(c) If K is compact and K ⊂ D, then K ⊂ Dk for all k ≥ k0 = k0(K).

We invoke conformal invariance of ORBM as in (4.5)–(4.7). For x ∈ ∂Dk such
that fk(x) = z ∈ ∂D∗, let v̂k(x) = i sec θk(z). In other words, v̂k is the conformal
(inverse) image of the vector of reflection vθk

. Suppose that B̂ is a two-dimensional
Brownian motion and consider the Skorokhod SDE

X̂k
t = x̂k + B̂t +

∫ t

0
v̂k

(
X̂k

s

)
dL̂k

s ,(4.34)
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where L̂k is the local time of X̂k on ∂Dk . The process X̂k is reflected Brownian
motion in Dk with the oblique angle of reflection θk . If ck(t) = ∫ t0 |f ′

k(X̂
k
s )|2 ds

then the process Xk
t = fk(X̂

k
ck(t)

) is reflected Brownian motion in D∗ with the
oblique angle of reflection θk .

Let Kk = f −1
k (∂B(0,1/2)). Note that Kk is the image under the map gk of the

horizontal line {z : Im z = ln 2}, and so Kk is an analytic curve. Let ak = Redk =
Re(gk(2π) − gk(0)) and for z ∈ ∂Dk , let Rk(z) = {x ∈ ∂Dk : |Rex − Re z| ≥ ak}.
Let T̂ k(A) = inf{t ≥ 0 : X̂k

t ∈ A}. We will show that for every θ there exists p1 > 0
such that for every approximating sequence {θk} there exists k1 such that for any
k ≥ k1 and zk ∈ ∂Dk ,

Pzk

(
T̂ k(Kk) < T̂ k(Rk)

)≥ p1.(4.35)

Let [x, z] denote the line segment between x, z ∈ C. For every θ there exist
a, b ∈ (0,∞) such that for every approximating sequence {θk} there exists k1 such
that for any k ≥ k1 and z ∈ ∂Dk we have ak ≥ a and Kk ∩ [z, z + ib] �=∅.

With probability greater than p2 > 0, Brownian motion starting from 0 will
hit the line {z : Im z = 2b} before hitting the lines {z : |Re z| = a/2}, and then
it will cross the imaginary axis before hitting any of the lines {z : |Re z| = a} or
{z : Im z = b}. Since

∫ t
0 v̂k(X̂

k
s ) dL̂k

s is a purely imaginary number with nonnegative
imaginary part, this implies that with probability greater than p2, the process X̂k

starting from zk ∈ ∂Dk will hit the line {z : Im z − Im zk = 2b} before hitting the
lines {z : |Re z − Re zk| = a/2}, and then it will cross the line {z : Re z = Re zk}
before hitting any of the lines {z : |Re z − Re zk| = a} or {z : Im z − Im zk = b}. If
the trajectory of X̂k follows a path described above then, in view of the definitions
of a and b, it will cross Kk before hitting Rk . We conclude that (4.35) holds with
p1 = p2 > 0.

Let

T k(A) = inf
{
t ≥ 0 : Xk

t ∈ A
}
,

T k
b = T k(B(0,1/2)

)
,

T k∗ = inf
{
t ≥ 0 : Xk

t ∈ ∂D∗,
∣∣argXk

t − argXk
0

∣∣≥ 2π
}
.

By the conformal invariance of ORBM, (4.35) implies that

Pzk

(
T k

b < T k∗
)≥ p1 for all k and zk ∈ ∂D∗.(4.36)

Step 2. We will estimate the variance of
∫ 1

0 tan(θk(X
k
s )) dLk

s .
Let Sk

1 = T k(∂D∗ ∪ ∂B(0,1/2)). The probability that Brownian motion will
make a loop in the annulus D∗ \B(0,1/2) (that is, argXk will increase or decrease
by 2π ) before hitting the boundary of the annulus is less than p3 < 1. This implies
that, for any z ∈ D∗,

Pz

(∣∣argXk

Sk
1
− argXk

0

∣∣≤ 2π
)≥ 1 − p3.(4.37)
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This and an easy inductive argument based on the strong Markov property applied
at the times when consecutive loops are completed shows that there exists n so
large that for any z ∈ D∗,

Pz

(∣∣argXk

Sk
1
− argXk

0

∣∣≥ n2π
)≤ p1/4,(4.38)

where p1 is as in (4.36). Fix such an n and let

Sk
2 = inf

{
t ≥ 0 : ∣∣argXk

t − argXk
0

∣∣≥ (n + 1)2π
}
,

Sk
3 = inf

{
t ≥ Sk

2 : ∣∣argXk
t − argXk

S2
k

∣∣≥ n2π
}
,

Sk
4 = inf

{
t ≥ 0 : ∣∣argXk

t − argXk
0

∣∣≥ (2n + 1)2π
}
,

Sk
5,j = inf

{
t ≥ 0 : ∣∣argXk

t − argXk
0

∣∣≥ j (2n + 2)2π
}
.

By (4.36), we have for z ∈ ∂D∗,

Pz

(
T k

b ≤ T k∗ ∧ Sk
2
)+ Pz

(
Sk

2 ≤ T k
b ≤ T k∗

)≥ p1.

It follows that either

Pz

(
T k

b ≤ T k∗ ∧ Sk
2
)≥ p1/2(4.39)

or

Pz

(
Sk

2 ≤ T k
b ≤ T k∗

)≥ p1/2.(4.40)

Suppose that the last estimate holds. By (4.38) and the strong Markov property
applied at Sk

2 ,

Pz

(
Sk

2 ≤ Sk
3 ≤ T k

b ≤ T k∗
)≤ p1/4,

so, in view of (4.40),

Pz

(
Sk

2 ≤ T k
b ≤ Sk

3 ∧ T k∗
)≥ p1/4.

It follows from this and (4.39) that

Pz

(
T k

b ≤ Sk
3
)≥ p1/4,

and, therefore, for z ∈ ∂D∗,

Pz

(
T k

b ≤ Sk
4
)≥ p1/4.

We combine this with (4.37) using the strong Markov property at Sk
1 to see that for

z ∈ D∗,

Pz

(
T k

b ≤ Sk
5,1
)≥ (1 − p3)p1/4 =: p4 > 0.

Applying the strong Markov property repeatedly at Sk
5,j ’s, we see that for z ∈ D∗

and j ≥ 1,

Pz

(
T k

b ≥ Sk
5,j

)≤ (1 − p4)
j .
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In other words,

Pz

(∣∣argXk

T k
b

− argXk
0

∣∣≥ j (2n + 2)2π
)≤ (1 − p4)

j .(4.41)

Let X0 be the ORBM corresponding to θ ≡ 0. It is easy to see that

argXk
t − argXk

0 −
∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s

has the same distribution as argX0
t − argX0

0. The estimate (4.41) applies to X0;
to prove that, one can apply the same argument as the one for Xk’s or a direct
elementary proof. Since∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s

= (argXk
t − argXk

0
)− (argXk

t − argXk
0 −
∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s

)
,

and (4.41) applies to both quantities within parentheses, we obtain for z ∈ D∗ and
j ≥ 1,

Pz

(∣∣∣∣∫ T k
b

0
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣≥ 2j (2n + 2)2π

)
≤ Pz

(∣∣argXk

T k
b

− argXk
0

∣∣≥ j (2n + 2)2π
)

+ Pz

(∣∣∣∣argXk

T k
b

− argXk
0 −
∫ T k

b

0
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣≥ j (2n + 2)2π

)
≤ 2(1 − p4)

j .

This implies that for some c2 < ∞ and all z ∈ D∗ and all k,

Ez

[∣∣∣∣∫ T k
b

0
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣3]≤ c2.(4.42)

Let V0 = U1 = 0, and for m ≥ 1,

Vm = inf
{
t ≥ Um : Xk

t ∈B(0,1/2)
}
,

Um+1 = inf
{
t ≥ Vm : Xk

t /∈ B(0,3/4)
}
.

Since P(Um+1 − Vm > 1 | FVm) > p5 > 0, we have

P(Um ≤ 1) ≤ c3(1 − p5)
m.(4.43)

Note that the local time Lk does not increase on intervals [Vm,Um+1]. Hence,∫ 1

0
tan
(
θk

(
Xk

s

))
dLk

s =
∞∑

m=1

∫ Vm∧1

Um∧1
tan
(
θk

(
Xk

s

))
dLk

s ,(4.44)
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and, therefore,∣∣∣∣∫ 1

0
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣3 =
∣∣∣∣∣

∞∑
m=1

∫ Vm∧1

Um∧1
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣∣
3

≤ 3
∞∑

m=1

∑
i≤m

∑
j≤m

∣∣∣∣1{Um<1}
∫ Vm∧1

Um∧1
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣
×
∣∣∣∣1{Ui<1}

∫ Vi∧1

Ui∧1
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣
×
∣∣∣∣1{Uj<1}

∫ Vj∧1

Uj∧1
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣
≤ 3

∞∑
m=1

∑
i≤m

∑
j≤m

[
1{Um<1}

∣∣∣∣∫ Vm∧1

Um∧1
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣3

+ 1{Ui<1}
∣∣∣∣∫ Vi∧1

Ui∧1
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣3
+ 1{Uj<1}

∣∣∣∣∫ Vj∧1

Uj∧1
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣3].
This, (4.42) and (4.43) imply that for some c4 < ∞, all z ∈ D∗ and all k,

Ez

[∣∣∣∣∫ 1

0
tan
(
θk

(
Xk

s

))
dLk

s

∣∣∣∣3]≤ 3
∞∑

m=1

∑
i≤m

∑
j≤m

3c3(1 − p5)
mc2 < c4.(4.45)

Step 3. For a fixed z ∈ D∗ and all k, the processes {|Xk
t |, t ≥ 0} have the same

distribution, that of 2-dimensional Bessel process on [0,1], reflected at 1. Hence,
Pz(|Xk

1/2| < 1/4) > p6, where p6 does not depend on z ∈ D∗ and k. This and the
Markov property at time 1/2 can be used to show that the density of the distribution
of Xk

1 under Pz is greater than c5 > 0 on B(0,1/2), where c5 does not depend on
z ∈ D∗ and k.

Let Pk
x denote the distribution of the process Xk starting from x. Consider z ∈

D∗. We will construct a process Xk with distribution Pk
z in a special way. First

we will construct i.i.d. random vectors A1,A2,A3, . . . . The distribution of each
Aj is partly continuous, with density c5 in B(0,1/2). With probability 1 − c5π/4,
Aj takes value � (the cemetery state). Let qk

1 be the density of Xk
1 under the

distributions Pk
z . Let B1 be a random vector with density qk

1 (x) − c51B(0,1/2)(x)

on D∗. With probability c5π/4, B1 takes value �. We construct B1 so that it is
equal to � if and only if A1 �= �. Moreover, we make the conditional distribution
of B1 given {B1 �= �} independent of Aj ’s.

In the following construction, the expression “Markov bridge” will refer to the
Markov bridge corresponding to Pk . If A1 ∈ B(0,1/2) then we let {Xk

t ,0 ≤ t ≤ 1}
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be the Markov bridge between the points in time-space (0, z) and (1,A1). If A1 =
� then we let {Xk

t ,0 ≤ t ≤ 1} be the Markov bridge between the points (0, z) and
(1,B1), otherwise independent of Aj ’s and B1.

We continue by induction. Suppose that {Xk
t ,0 ≤ t ≤ n} has been defined. Let

qk
n+1(X

k
n, x) be the density of Xk

1 under the distribution Pk
Xk

n
. Let Bn+1 be a random

vector with density qk
n+1(X

k
n, x) − c51B(0,1/2)(x) on D∗. With probability c5π/4,

this random vector takes value �. We construct Bn+1 so that it is equal to � if
and only if An+1 �= �. Moreover, we make the conditional distribution of Bn+1

given {Bn+1 �= �} independent of Aj ’s and {Xk
t ,0 ≤ t ≤ n}, except that it has the

density qk
n+1(X

k
n, x) − c51B(0,1/2)(x) on D∗.

If An+1 ∈ B(0,1/2) then we let {Xk
t , n ≤ t ≤ n + 1} be the Markov bridge

between the points in time-space (n,Xk
n) and (n+1,An+1), otherwise independent

of Aj ’s and {Xk
t ,0 ≤ t ≤ n}. If An+1 = � then we let {Xk

t , n ≤ t ≤ n + 1} be the
Markov bridge between (n,Xk

n) and (n+ 1,Bn+1), otherwise independent of Aj ’s
and {Xk

t ,0 ≤ t ≤ n}. It is easy to check that this inductive construction yields a
process {Xk

t , t ≥ 0} with distribution Pk
z .

Let 
k
n = ∫ n+1

n tan(θk(X
k
s )) dLk

s . Let An = ⋃n
j=1{An �= �} and note that

P(Ac
n) = (1 − c5π/4)n =: cn

6 , where c6 < 1. If An holds then the trajectory of
{Xk

t , n ≤ t ≤ n + 1} does not depend on Xk
1. Hence, Cov(
k

1,
k
n1An

) = 0. We
have

Cov
(

k

1,
k
n

)= Cov
(

k

1,
k
n1An

+ 
k
n1Ac

n

)= Cov
(

k

1,
k
n1An

)+ Cov
(

k

1,
k
n1Ac

n

)
= Cov

(

k

1,
k
n1Ac

n

)= E
(

k

1
k
n1Ac

n

)−E
k
1E
(

k

n1Ac
n

)
,

so, in view of (4.45), for some c10 < 1,∣∣Cov
(

k

1,
k
n

)∣∣≤ (E∣∣
k
1

∣∣3)1/3(E∣∣
k
n

∣∣3)1/3(E13
Ac

n

)1/3 +E
k
1
(
E
(

k

n

)2)1/2(E12
Ac

n

)1/2

≤ c7c
n/3
4 + c8c

n/2
4 ≤ c9c

n
10.

It is easy to see that the estimate applies also to n = 1 (possibly with new values
of the constants). This implies that

Var
(∫ n

0
tan
(
θk

(
Xk

s

))
dLk

s

)

=
n∑

i=1

n∑
j=1

Cov
(∫ i

i−1
tan
(
θk

(
Xk

s

))
dLk

s ,

∫ j

j−1
tan
(
θk

(
Xk

s

))
dLk

s

)

≤
n∑

i=1

n∑
j=1

c9c
|i−j |
10 ≤ c11n.



3018 BURDZY, CHEN, MARSHALL AND RAMANAN

It is elementary to check that the estimate also applies with noninteger upper limit,
that is, for any t > 1,

Var
(∫ t

0
tan
(
θk

(
Xk

s

))
dLk

s

)
≤ c11t.

This completes the proof of (4.33), and hence the proof of part (v) of the theorem.
(vi) The claim follows from the ergodic theorem if we show that under the

stationary distribution h(x) dx,

Eh

[
arg∗ X1

]= μ0.(4.46)

Recall that

lim
k→∞μk = μ0.(4.47)

Theorem 3.2(iii) implies that

Ehk

[
arg∗ Xk

1
]= μk.(4.48)

It follows easily from definitions of arg∗ and arg∗, and Theorem 3.5(iv) that
arg∗ Xk

1 → arg∗ X1 in distribution. Hence, in view of (4.47)–(4.48), the proof of
(4.46) will be complete if we prove that the family {arg∗ Xk

1}k≥1 is uniformly inte-
grable.

The following formula can be derived in the same way as (4.10) has been de-
rived:

arg∗ Xk
1 = C∗

Lk
1
+
∫ 1

0
tan
(
θk

(
Xk

s

))
dLk

s + (argXk
1 − argXk

T k
1

)
.(4.49)

Here C∗ is a Cauchy process with jumps larger than 2π removed.
Recall that Sk = inf{t > 0 : Xk

t ∈ ∂D∗} and T k
1 = inf{t > 1 : Xk

t ∈ ∂D∗}. So by
the Markov property of Xk , under the stationary measure hk(x) dx, {Xk

s −Xk
1;1 ≤

s ≤ T k
1 } has the same distribution as that of {Xk

s − Xk
0;0 ≤ s ≤ Sk}. It follows

from the paragraph following (2.2) that under the stationary measure hk(x) dx,
Y k = |Xk| is a stationary 2-dimensional Bessel process in (0,1] reflected at 1. Let
σk(a, b] = ∫{a<|x|≤b} hk(x) dx. Then σk(dr) is the stationary probability distribu-

tion of Y k so it is independent of k. This and the rotational invariance of Brownian
motion imply that the distribution of argXk

0 − argXk
Sk does not depend on k. By

an earlier remark, the distribution of argXk
1 − argXk

T k
1

is the same so it does not

depend on k either. Hence, the family {argXk
1 − argXk

T k
1
}, k ≥ 1, is uniformly in-

tegrable. The distribution of Lk
1 does not depend on k so the same applies to C∗

Lk
1
.

Random variables
∫ 1

0 tan(θk(X
k
s )) dLk

s are uniformly integrable by (4.45). All these
remarks taken together with (4.49) show that the family {arg∗ Xk

1}k≥1 is uniformly
integrable. This completes the proof of part (vi) of the theorem.
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(vii) An explicit integral test was given in Burdzy and Marshall (1992): The
ORBM in D+ = {z : Im z > 0} with angle of reflection θ hits 0 with positive prob-
ability if and only if∫ 1

0

1

y
Re exp

(
i
(
θ(iy) + iθ̃ (iy)

))
dy < ∞,(4.50)

where θ(z) is the bounded harmonic extension of θ to D+ and θ̃ is the harmonic
conjugate of θ vanishing at z = i. In Burdzy and Marshall (1992) there was the
added assumption that θ ∈ C1+ε , for some ε > 0, except possibly at 0. As noted in
Burdzy and Marshall (1993), the same result holds if we only assume θ is measur-
able and |θ | ≤ π/2. One way to transfer this result to θ ∈ T is to set θ1(t) = θ(eit ),
for t ∈R, and θ1(z) = θ(eiz) for z ∈ D+ as before. Then∫ 1

0

1

y
Re exp

(
i
(
θ1(iy) + iθ̃1(iy)

))
dy =

∫ 1

0

1

y
Re exp

(
i(θ + iθ̃ )

(
e−y))dy.

Setting r = e−y , we have y = ln 1/r ∼ 1 − r on [e−1,1] and so ORBM hits 1 with
positive probability in D∗ if and only if the left-hand side of (3.13) is finite for
x = 1. By (2.19),

1/(h + ih̃ − iμ0/π) = π cos θ(0)ei(θ+iθ̃ )

and by taking real parts, the two integrals in (3.13) are equal.
Suppose that for some z0 ∈ D∗ and x ∈ ∂D∗, Pz0(x ∈ 
θ

X) > 0. A simple cou-
pling argument shows that for some r > 0 and p > 0, Pz(x ∈ 
θ

X[0,1]) ≥ p for all
z ∈ B(z0, r) ⊂ D∗. Since for every k ≥ 1, Xt returns to B(z0, r) for some t ≥ k

with probability one, we have by this “renewal property” that Pz(x ∈ 
θ
X) = 1 for

all z ∈ B(z0, r).
(viii) Let ρ denote the Prokhorov distance between probability measures

[Billingsley (1999), Appendix III]. For any stochastic processes V and Z, we will
write ρ(V,Z) to denote the distance between their distributions relative to M1 dis-
tance between trajectories. For every k, one can find a sequence (θn

k )n≥1 of C2

functions with values in (−π/2, π/2) which converges to θ̄k as n → ∞ in weak-*
topology. Recall that X̄k are defined relative to θ̄k in the same way that X is defined
relative to θ . Processes Xk are defined by (3.10) relative to θk . By part (i) of the the-
orem, one can find a sequence θ

nk

k : ∂D∗ → (−π/2, π/2) with the following prop-
erties. Let Xk,nk be the solution to (3.10) relative to θ

nk

k . Then ρ(Xk,nk , X̄k) < 1/k.
Moreover, we can choose nk’s so large that the sequence (θ

nk

k )k≥1 converges to θ

in weak-* topology. Since the sequence (θ1, θ
n1
1 , θ2, θ

n2
2 , θ3, θ

n3
3 , . . .) converges to

θ , the sequence of processes X1,X1,n1,X2,X2,n2,X3,X3,n3, . . . converges in dis-
tribution to a process X′, by part (i) of the theorem. We must have X = X′ in
distribution, because (θk)k≥1 is a subsequence of (θ1, θ

n1
1 , θ2, θ

n2
2 , θ3, θ

n3
3 , . . .). We

see that ρ(Xk,nk ,X) → 0. Since ρ(Xk,nk , X̄k) < 1/k, we obtain ρ(X̄k,X) → 0 as
k → ∞. �
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PROOF OF PROPOSITION 3.7. The integral in (3.13) is equal to∫ 1

0

1

1 − r

∫
∂D∗

1 − r2

|z − rx|2 dσ(z) dr =
∫
∂D∗

∫ 1

0

1 + r

|1 − rxz|2 dr dσ(z).

Let w = xz̄. Then |w| = 1 and

1

|1 − rw|2 = 1

(1 − rw)(1 − rw)
= 1

w − w

( −w

1 − rw
− w

1 − rw

)
.

So ∫ 1

0

1

|1 − rw|2 dr = 1

w − w
ln

1 − w

1 − w
= arg (1 − w)

|1 − w| sin arg (1 − w)
∼ 1

|1 − w| .

Thus, the integral in (3.13) is finite if and only if (3.17) holds. �

PROOF OF PROPOSITION 3.11. An application of the Riemann mapping the-
orem shows that it suffices to prove the proposition for D = D∗.

(i) The expected occupation measure for an excursion law Hx is a constant
multiple of Kx(·) by (2.8). According to the definition, the ERBM is a “mixture”
of excursion laws. This easily implies that the stationary distribution for X has the
density that is proportional to

∫
∂D∗ Kx(y)ν(dx).

(iii) The function h has a representation h(y) = ∫∂D∗ Kx(y)ν(dx). If one con-
structs an ERBM corresponding to ν then the stationary measure of this process is
h by part (i) of the proposition. �

PROOF OF THEOREM 3.12. (i) Since limk→∞ dist(xk, ∂D∗) = 0, every sub-
sequence of xk contains a further subsequence that converges to some point in
∂D∗. We will assume that the whole sequence xk converges to a point x∞ ∈ ∂D∗.
We will show that the limit distribution of Xk does not depend on x∞. Hence, the
result holds for every sequence satisfying limk→∞ dist(xk, ∂D∗) = 0.

As was noted in the paragraph following (2.2), for any r0 ∈ [0,1], t ≥ 0 and
θ1, θ2 ∈ T, if Xk is an ORBM in D∗ with the angle of reflection θk and |Xk

0| = r0

for k = 1,2, then the distributions of |X1
t | and |X2

t | are identical. Suppose that
X is an ORBM. Then P(|Xt | ∈ [1 − ε,1]) ≤ cε for some c and all ε ≥ 0. Fix an
arbitrary ε ∈ (0,1). Let E∗

ε = {e1, e2, . . .} be the set of all excursions of X from
∂D∗ which enter the ball B(0,1 − ε), ordered according to their starting times.
Let Sn = Sn(ε) = inf{t ≥ 0 : en

t ∈ B(0,1 − ε)}. It follows from the rotation invari-
ance of Brownian motion that the distribution of {exp(−i arg en

Sn
)en

t , t ≥ Sn} (the
excursion rotated about 0 so that en

Sn
is mapped to 1 − ε ∈ R) does not depend on

n, θ or the value taken by Sn.
Since the process {en

t , t ≥ Sn} is Brownian motion killed upon hitting ∂D∗, its
trajectory has modulus of continuity c(ω)

√
2r| log r|, where c(ω) is finite for al-

most all ω [see Karatzas and Shreve (1991), Theorem 2.9.25]. If we time-reverse
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en and rotate it so that it starts from 0, then it will have the distribution H 0 con-
ditioned by {∃t > 0 : et ∈ B(0,1 − ε)}. Hence, the claim about the modulus con-
tinuity can be extended as follows. The modulus of continuity of {en

t , t ∈ (0, ζ )}
is c1(ω)

√
2r| log r|, where c1(ω) is finite for almost all ω. This easily implies that

for any sequence of random variables Vk which converges to 0 in distribution,
processes {exp(−iVk)en

t , t ≥ 0} converge to {en
t , t ≥ 0} in distribution in the Sko-

rokhod topology as k → ∞. Note that no assumptions on the joint distribution of
Vk and {en

t , t ≥ 0} are needed.
Recall that hk(0) = 1/π for any (hk,μ0,k) ∈ H. Hence,

∫
∂D∗ hk(x) dx = 2 and,

therefore, ν(∂D∗) = 2. It follows that ν/2 is a probability distribution on ∂D∗.
Let Ek

ε be defined relative to Xk in the same way as E∗
ε has been defined relative

to a generic X. We will suppress both ε and k in the notation for excursions, that
is, we will write Ek

ε = {e1, e2, . . .}. In view of the opening remarks of this proof,
it is routine to show that in order to prove part (i) of the theorem, it is sufficient
to show that for any fixed ε ∈ (0,1) and n, the joint distribution of (e1

0, e2
0, . . . , en

0)

converges to that of a sequence of n i.i.d. random variables with distribution ν/2,
as k → ∞.

Let σk
t = inf{s ≥ 0 : Lk

s > t} and Ak
t = argXk

σk
t

, with the convention that

argXk

σk
t

∈ [0,2π). By abuse of notation, we define θk for real x by θk(x) = θk(e
ix).

Let B be Brownian motion in C starting at the origin and Sk = inf{t > 0 : xk +Bt ∈
∂D∗}. Let Âk

0 = arg(xk + BSk). Since xk → x∞ ∈ ∂D∗, a0 := limk→∞ Âk
0 =

argx∞ a.s. Let Ct be a Cauchy process with C0 = 0 that is independent of B ,
and let Âk

t be the solution to the SDE

Âk
t = Âk

0 + Ct +
∫ t

0
tan θk

(
Âk

s

)
ds.(4.51)

Clearly, Âk
0 has the same distribution as Ak

0. Let Āk
t ∈ [0,2π) be the unique number

such that Āk
t = Âk

t + j2π for some integer j . Then, by the conformal invariance
of ORBMs presented in (4.5)–(4.7), the distribution of {Āk

t , t ≥ 0} is the same as
that of {Ak

t , t ≥ 0}.
To incorporate our assumptions on hk and 1/hk , we first note that by (2.15) and

(2.11)

tan θk(z) = μk(z)

πhk(z)
= μ0,k

πhk(z)
− h̃k(z)

hk(z)
,(4.52)

for z ∈ D∗. If f is Lipschitz with constant λ, then its modulus of continuity satisfies
ωf (δ) ≤ λδ. By Garnett (2007), Theorem III.1.3, the modulus of continuity of f̃

satisfies

ωf̃ (δ) ≤ Cλδ(1 + logπ/δ),

where C is a constant not depending on f or δ. So by assumption (c), h̃k are Dini
continuous on D∗, with constants depending only on λ, not k. We also conclude
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that each θk and θ̃k are Dini continuous on D∗ and, therefore, on D∗, by (2.18). In
particular, (4.52) holds for x ∈ ∂D∗.

By a change of variables,

Âk
t/μ0,k

= Âk
0 + Ct/μ0,k

+
∫ t

0
tan θk

(
Âk

r/μ0,k

) dr

μ0,k
(4.53)

= Âk
0 + Ct/μ0,k

− 1

μ0,k

∫ t

0

h̃k(A
k
r/μ0,k

)

hk(A
k
r/μ0,k

)
dr + 1

π

∫ t

0

1

hk(A
k
r/μ0,k

)
dr.

By assumption (d), hk(z) = ∫ Kz(x)hk(x)|dx| converges to
∫

Kzν(dx) :≡ h(z),
where Kz is the Poisson kernel for z ∈ D∗. Since each hk is Lipschitz with con-
stant λ on ∂D∗ and, therefore, on D∗, we have that |h(z) − h(w)| ≤ λ|z − w|
for z,w ∈ D∗. Thus, h extends to be Lipschitz with constant λ on D∗ and so
ν(dx) = h(x)|dx|.

Recall from Remark 3.13(iii) that the assumption (c) implies that all functions
1/hk are Lipschitz with the same constant. Without loss of generality, we will
assume that the Lipshitz constant for 1/hk is λ. It follows that 1/h is Lipshitz
with constant λ.

Recall that a0 := limk→∞ Âk
0 = argx∞. By abuse of notation, let h(x) = h(eix)

for real x and let at be the solution to

at = a0 +
∫ t

0

1

πh(as)
ds.(4.54)

Let t1 be such that at1 = a0 + 2π . Since

∂

∂t
ν
([a0, at ])/2 = (1/2)

∂

∂t

∫ at

a0

h(b) db = (1/2)
h(at )

πh(at )
= 1

2π

and ν([a0, at1])/2 = ν([a0, a0 + 2π ])/2 = 1, we must have t1 = 2π . Hence, for
0 ≤ s ≤ t ≤ 2π ,

ν
([as, at ])/2 = t − s

2π
.(4.55)

It follows from (4.53)–(4.54) that

Âk
t/μ0,k

− at = Fk
t + 1

π

∫ t

0

(
1

h(Ak
r/μ0,k

)
− 1

h(ar)

)
dr,

where

Fk
t = Âk

0 − a0 + Ct/μ0,k
− 1

μ0,k

∫ t

0

h̃k(A
k
r/μ0,k

)

hk(A
k
r/μ0,k

)
dr

(4.56)

+ 1

π

∫ t

0

(
1

hk(A
k
r/μ0,k

)
− 1

h(Ak
r/μ0,k

)

)
dr.
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Since 1/h is Lipschitz with constant λ,∣∣Âk
t/μ0,k

− at

∣∣≤ sup
0≤s≤2π

∣∣Fk
s

∣∣+ λ

π

∫ t

0

∣∣Âk
r/μ0,k

− ar

∣∣dr,

for 0 ≤ t ≤ 2π . By Grönwall’s inequality [see Bellman (1943)],

|Ât/μ0,k
− at | ≤

(
sup

0≤s≤2π

∣∣Fk
s

∣∣)eλt/π .(4.57)

We claim that

lim
k→∞ sup

0≤s≤2π

∣∣Fk
s

∣∣= 0,(4.58)

in probability. By the definition of a0, limk Âk
0 − a0 = 0. By assumption (a),

θk(0) = ∫ θk(x)|dx|/2π converges to π/2. But then μ0,k = tan θk(0) converges
to +∞. Thus, sup0≤t≤2π Ct/μ0,k

= 0, a.s. Since h̃k and 1/hk are Dini continuous
on D∗ with constant depending only on λ, and hk(0) = 1/π and h̃k(0) = 0, we
have that h̃k/hk is bounded on ∂D∗ by a constant independent of k. Thus, the first
integral in (4.56) also tends to 0.

If βn(f ) denotes the nth Cesaro mean of f on ∂D∗, then for continuous f ,
βn(f ) converges uniformly on ∂D∗ to f , with the difference ‖βn(f ) − f ‖∞
depending only on the modulus of continuity of f and n; see Hoffman (1962),
page 18. Since 1/hk and 1/h are Lipschitz with constant λ, given ε > 0 we can
choose n so that∥∥1/hk − βn(1/hk)

∥∥∞ < ε and
∥∥1/h − βn(1/h)

∥∥∞ < ε.(4.59)

By assumption (d), hk converges to h, uniformly on compact subsets of D∗, and
since 1/hk are uniformly bounded, 1/hk converges to 1/h uniformly on compact
subsets of D∗. Since 1/hk are uniformly bounded, this also implies 1/hk con-
verges to 1/h weak-* and, therefore, for k sufficiently large, and n fixed,∥∥βn(1/hk) − βn(1/h)

∥∥∞ < ε.(4.60)

By (4.59), (4.60) and the triangle inequality, 1/hk converges uniformly to 1/h. We
conclude that the second integral in (4.56) tends to 0 as well, proving the claim.

We will need a generalization of the above results (4.57) and (4.58). Let
Du = {z ∈ C : Im z > 0} be the upper half-plane. Let Hx be the excursion law for
Brownian motion in D∗, for excursions starting from x ∈ ∂D∗ and let Ĥ x be the
excursion law for Brownian motion in Du, for excursions starting from x ∈ ∂Du.
The measure Ĥ 0(e(ζ−) ∈ dx) is the distribution of the end point of the excursion
under Ĥ 0. It is also the Lévy measure for the Cauchy process. Let

με(dx) = Ĥ 0
(

sup
t∈[0,ζ )

Im et <
∣∣log(1 − ε)

∣∣, e(ζ−) ∈ dx
)
.
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The measure με is the Lévy measure for a pure jump process, say Cε
t , similar to

the Cauchy process, except that it has fewer big jumps. We can choose a right
continuous version of Cε , and so sup0≤s≤t |Cε

s | → 0, a.s., as t → 0. We let Â
k,ε
t be

the solution to the equation analogous to (4.51),

Â
k,ε
t = Â

k,ε
0 + Cε

t +
∫ t

0
tan θk

(
Âk,ε

s

)
ds.(4.61)

An argument analogous to that showing (4.57) and (4.58) proves that for every
fixed ε > 0,

sup
0≤s≤2π

∣∣Âk,ε
s/μ0,k

− as

∣∣→ 0,(4.62)

in probability, as k → ∞.
Recall the definition of Ek

ε = {e1, e2, . . .} from the beginning of the proof. We
claim that for any fixed ε ∈ (0,1) and n, the joint distribution of (e1

0, e2
0, . . . , en

0)

converges to that of a sequence of n i.i.d. random variables with distribution ν/2,
as k → ∞.

We will present a special construction of (e1
0, e2

0, . . . , en
0). The heuristic meaning

of the construction is the following. Excursions that reach B(0,1 − ε) occur as a
Poisson process with constant intensity on the local time scale. If we have already
observed e1, e2, . . . , em, the next excursion will occur after an exponential waiting
time on the local time scale, where the local time has the same distribution as the
process Â

k,ε
t . This process, suitably rescaled, behaves like the function at accord-

ing to (4.62). By (4.55), a point on the boundary chosen in a uniform manner on
the at scale has the distribution ν/2. We will also need a fact that, on small time
intervals, exponential density is almost constant. The process Â

k,ε
t represents rapid

rotation along the unit circle and the exponential clock will chose a point on the
circle according to the distribution very close to ν/2, because the almost constant
exponential density (on small intervals) is transformed into the density of ν/2 by
the function at .

Suppose that excursions e1, e2, . . . , em have been already generated, for some
m ≥ 0. If m ≥ 1, let Tm be the time when em ended. If m = 0, then we take T0
to be the first hitting time of ∂D∗ by Xk . Unless stated otherwise, every new ran-
dom object introduced below will be assumed to be independent from all random
objects constructed so far.

By conformal invariance of excursion laws,

Hx(∃t ∈ [0, ζ ) : et ∈ B(0,1 − ε)
)= Ĥ 0(∃t ∈ [0, ζ ) : Im et ≥ ∣∣log(1 − ε)

∣∣),
and the last quantity is equal to 1/| log(1 − ε)| [see Burdzy (1987) for the justifi-
cation of both claims].

Consider an exponential random variable α with density fα(t) and expected
value | log(1−ε)|, independent of objects constructed so far. For every δ > 0, there
exists c3 > 0 so small that for any interval [t, t + c3] and any s1, s2 ∈ [t, t + c3],
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we have fα(s1)/fα(s2) ∈ (1 − δ,1 + δ). We generate an integer-valued random
variable N , such that P(N = j) = P(α ∈ [j2π/μ0,k, (j + 1)2π/μ0,k]) for j ≥ 0.
We consider a solution to (4.61) with Â

k,ε
0 = argXk

Tm
+ N2π/μ0,k . We generate a

random variable α′ with the same distribution as α conditioned to be in [N,N +1).
Note that we can take δ > 0 so small and then let k be so large that, in view of (4.55)
and (4.62), the distribution of exp(iÂ

k,ε
α′−N) is arbitrarily close to ν/2.

We generate an excursion ēm+1 with the (probability) distribution H 0(· | ∃t ∈
[0, ζ ) : et ∈ B(0,1 − ε)). We let êm+1

t = exp(iÂ
k,ε
α′−N)ēm+1

t .

In view of the preceding remarks, the distribution of êm+1
0 is arbitrarily close to

ν/2, conditional on the trajectories of e1, . . . , em, if k is arbitrarily large. According
to our construction, the joint distribution of (e1, . . . , em, êm+1) is the same as that
of (e1, . . . , em, em+1). We conclude that for any fixed ε ∈ (0,1) and n, the joint
distribution of (e1

0, e2
0, . . . , en

0) converges to that of a sequence of n i.i.d. random
variables with distribution ν/2, as k → ∞. This completes the proof of part (i) of
the theorem.

(ii) We will generalize Example 3.14. Suppose that h is positive on D∗, har-
monic in D∗ and Lipschitz on D∗. Then 1/h is Lipschitz on D∗. Set hk(z) =
h((1 − 1/k)z) and suppose μ0,k → ∞. Then (hk,μ0,k) ↔ θk ∈ T as in Theo-
rem 2.1, satisfy the assumptions of part (i) and the conclusions of that part of the
theorem with the given h. �

PROOF OF THEOREM 3.15. (i) Suppose that X0 has the stationary distribution
with density h. Then for every t > 0,

E
[
c(t)
]= E

[∫ t

0

∣∣f ′(Xs)
∣∣2 ds

]
=
∫ t

0
E
[∣∣f ′(Xs)

∣∣2]ds =
∫ t

0

∫
D∗

∣∣f ′(x)
∣∣2h(x) dx ds

= t

∫
D∗

∣∣f ′(x)
∣∣2h(x) dx = t

∫
D

h̄(x) dx < ∞.

It follows that under the stationary distribution, ζ = ∞, a.s. This implies that ζ =
∞, Px-a.s., for almost all x ∈ D∗.

Consider an x ∈ D∗ and r > 0 so small that B(x, r) ⊂ D∗. The exit distributions
from B(x, r) are mutually absolutely continuous for any two points y, z ∈B(x, r).
Let T be the exit time from B(x, r). It is easy to see that c(T ) < ∞, Py -a.s., for
every y ∈ B(x, r). Since ζ = ∞, Py-a.s., for at least one y ∈ B(x, r), it follows
that this claim holds for all y ∈ B(x, r). The claim holds for all balls such that
B(x, r) ⊂ D∗ so ζ = ∞, Py-a.s., for all y ∈ D∗.

(ii) This part follows easily from conformal invariance of Brownian motion
killed upon leaving a domain.

(iii) This claim follows from the interpretation of the stationary distribution as
the long time occupation measure, the definition of ĥ and the “clock” c(t). We
sketch the easy argument. For an arbitrarily small ε > 0 and x, y ∈ D∗ we can find
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r > 0 so small that

lim
t→∞

∫ t
0 1{Yt∈B(f (x),r)} ds∫ t
0 1{Yt∈B(f (y),r)} ds

≤ lim
t→∞

supz∈f −1(B(f (x),r)) |f ′(z)|2 ∫ t0 1{Xt∈f −1(B(f (x),r))} ds

infz∈f −1(B(f (y),r)) |f ′(z)|2 ∫ t0 1{Xt∈f −1(B(f (y),r))} ds

≤ lim
t→∞

supz∈f −1(B(f (x),r)) |f ′(z)|2(1 + ε)|f ′(x)|−2 ∫ t
0 1{Xt∈B(x,r)} ds

infz∈f −1(B(f (y),r)) |f ′(z)|2(1 − ε)|f ′(y)|−2
∫ t

0 1{Xt∈B(y,r)} ds

≤ lim
t→∞

supz∈f −1(B(f (x),r)) |f ′(z)|2(1 + ε)|f ′(x)|−2 supz∈B(x,r) h(z)

infz∈f −1(B(f (y),r)) |f ′(z)|2(1 − ε)|f ′(y)|−2 infz∈B(y,r) h(z)
.

If we let ε, r → 0, then the right-hand side converges to h(x)/h(y). Hence, the
limsup of the left-hand side is at most h(x)/h(y). A similar argument shows that
the liminf of the left-hand side is at least h(x)/h(y). This implies that the station-
ary density for Y is proportional to h ◦ f −1. Hence, it must be equal to ĥ.

(iv) It follows from the definition of the “clock” c(t) and the ergodic theorem
that, a.s.,

lim
t→∞

c(t)

t
=
∫
D∗

∣∣f ′(x)
∣∣2h(x) dx = ‖h̄‖L1(D).

We have already proved (3.3). That claim and the above formula imply for z =
f (0),

lim
t→∞

arg∗(Yt − z)

t
= lim

t→∞
arg∗ Xc−1(t)

t

= lim
t→∞

arg∗ Xt

c(t)
= lim

t→∞
arg∗ Xt

t
· t

c(t)
(4.63)

= lim
t→∞

arg∗ Xt

t
lim

t→∞
t

c(t)
= μ0

‖h̄‖L1(D)

= μ(0)

‖h̄‖L1(D)

.

Next we prove (3.4). Suppose that f = τ is a one-to-one analytic map of D∗
onto D∗ such that τ(0) = z, as in Lemma 2.3. Then τ is a Möbius transformation.
Let ĥ = h ◦ τ/‖h ◦ τ‖1, μ̂0 = μ(z)/‖h ◦ τ‖1, and θ̂ = θ ◦ τ . Then by Lemma 2.3,
θ̂ ↔ (ĥ, μ̂0). If h̄ = ĥ ◦ τ−1 = h/‖h ◦ τ‖1 then

‖h̄‖1 = 1/‖h ◦ τ‖1.

By (4.63),

lim
t→∞

arg∗(Xt − z)

t
= μ̂0

‖h̄‖1
= μ̂0‖h ◦ τ‖1 = μ(z).(4.64)
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Finally, we prove (3.23) in full generality along the same lines as in (4.63). For
any z ∈ D, by (3.4),

lim
t→∞

arg∗(Yt − z)

t
= lim

t→∞
arg∗(Xc−1(t) − f −1(z))

t
= lim

t→∞
arg∗(Xt − f −1(z))

c(t)

= lim
t→∞

arg∗(Xt − f −1(z))

t
· t

c(t)

= lim
t→∞

arg∗(Xt − f −1(z))

t
lim

t→∞
t

c(t)
= μ(f −1(z))

‖h̄‖1
.

(v) Let θ correspond to (h,μ0). Let Y be constructed as in (3.20)–(3.22). Then
it is easy to see that Y satisfies conditions (a) and (b) of part (v).

(vi) This follows directly from the Itô formula and Theorem 3.1. �

We now present an example showing that a conformal mapping may not always
map an ORBM in one planar domain to another ORBM, in the sense of Theo-
rem 3.15.

EXAMPLE 4.1. Let S be a two-dimensional infinite wedge with corner at the
origin 0 and angle 0 < α < 2π . Consider θ1, θ2 ∈ (−π/2, π/2) and suppose that
each θk represents the angle of reflection on one of the two sides of the wedge,
measured from the inward normal toward the origin 0. In Varadhan and Williams
(1985), it was shown that there exists a strong Markov process that behaves like
Brownian motion in the interior of the wedge and reflects instantaneously at the
boundary with the oblique angle of reflection given by θk . This process, called
obliquely reflected Brownian motion in Varadhan and Williams (1985), is charac-
terized as the unique solution to the corresponding submartingale problem away
from the vertex. It was shown Varadhan and Williams (1985) that the process en-
ters 0 in a finite time and then stays there forever (i.e., it cannot be continued as
a Markov process beyond that time) if and only if β := (θ1 + θ2)/α ≥ 2. Let D

be an acute triangle obtained by truncation of the infinite wedge S. Assume that
θ1 and θ2 are such that β ≥ 2, set θ3 = 0 on the edge opposite to 0, and assume
that the analogues of β at the other two vertices are strictly less than 2. Let f be a
conformal mapping from the unit disk D∗ onto the Jordan domain D and note that
it extends to a homeomorphism from D∗ onto D. Let θ(x) be the pre-image of the
θ -function on ∂D by f . Then θ is a piecewise constant function on ∂D∗ taking
values in (−π/2, π/2). Thus by Theorem 3.5, the ORBM X in D∗ with reflec-
tion angle θ is a continuous, conservative Markov process having stationary distri-
bution h(x) dx. Consequently, Zt = f (Xt) is a continuous, conservative Markov
process on D. The process Z is an extension of killed Brownian motion in D mod-
ulo a time change in the sense that for every t ≥ 0 and τt = inf{s ≥ t : Zs ∈ ∂D},
the process {Zs, s ∈ [t, τt )} is a time change of Brownian motion killed upon exit-
ing D. Let τ̂t = inf{s ≥ t : Zs = 0} for t ≥ 0. Then the process {Zs, s ∈ [t, τ̂t )} is a
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time change of the obliquely reflected Brownian motion in D killed upon hitting 0.
More precisely, let x0 = f −1(0), σx0 = inf{t ≥ 0 : Xt = x0}, c(t) = ∫ t0 |f ′(Xs)|2 ds

and c−1(t) = inf{s : c(s) > t}. Then Yt = f (Xc−1(t)), t ∈ [0, σx0), is obliquely re-
flected Brownian motion in D killed upon hitting 0. The result in Varadhan and
Williams (1985) and Theorem 3.15 imply that c(σx0) = ∫ σx0

0 |f ′(Xs)|2 ds < ∞
but
∫ σx0+ε

0 |f ′(Xs)|2 ds = ∞ a.s. for every ε > 0, and that h ◦ f −1 /∈ L1(D). �

PROOF OF THEOREM 3.17. (i) The argument given in the proof of Theo-
rem 3.15(i) which shows that ζ = ∞, a.s., applies verbatim in the present case
because we have assumed that ‖h̄‖L1(D) < ∞.

Every harmonic function hk is bounded because θk is continuous and takes val-
ues in (−π/2, π/2). Hence, the function h̄k := hk ◦ f −1 is also bounded. Since D

is bounded, it follows that ‖h̄k‖L1(D) < ∞. Once again, the argument given in the
proof of Theorem 3.15(i) applies and shows that ζk = ∞, a.s., for all k.

(ii) Recall the representation of X as the Poisson point process on the space
R+ × CD∗ (see Definition 3.9). Excursion laws are conformally invariant in the
sense of the transformation in (3.20)–(3.22) by Burdzy (1987), Proposition 10.1, so
Y can be represented as a Poisson point process on R+ ×CD . In other words, Y is
an ERBM and it only remains to identify the corresponding (ν̄(dx), H̄ x)x∈∂D . We
can arbitrarily set the excursion intensity ν̄ to be ν̄(A) = ν(f −1(A)) for A ⊂ ∂D,
in view of Remark 3.10(ii).

We will find the matching normalization for H̄ x . Fix some z ∈ D and suppose
that r > 0 is very small. The Green function Gx(·) in D has the property that

lim
r→0

infy∈∂B(z,r) Gy(z)

supy∈∂B(z,r) Gy(z)
= lim

r→0

infy∈∂B(z,r) Gy(z)

| log r| = 1.(4.65)

Let TA denote the hitting time of A. Recall that Gx(·) is the density of the expected
occupation time for Brownian motion in D killed upon exiting from D. Also, by
Remark 3.10(v), the density of the expected occupation time for H̄ x is c̄xKx(·).
Hence, for x ∈ ∂D, by the strong Markov property of H̄ x ,

c̄xKx(z) =
∫
∂B(z,r)

Gy(z)H̄
x(X(T∂B(z,r)) ∈ dy

)
.

This and (4.65) imply that, as r → 0,

| log r|H̄ x(T∂B(z,r) < ∞) = c̄xKx(z) + o(1).(4.66)

An analogous formula holds for excursion laws Hx in D∗, with the corresponding
constants cx equal to each other, by rotation invariance. Let N(dx, z, r,D, t) be the
number of excursions of the ERBM in D (here D can be also D∗), which started
from dx ⊂ ∂D before time t and hit ∂B(z, r) before their lifetime. It is easy to see
that

lim
r↓0,ε↓0

lim
t→∞

N(dx, z, r,D, t)

N(dx, z, r(1 + ε),D, t)
= 1.(4.67)
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By the ergodic theorem,

lim
r→0

lim
t→∞

N(dx,0, r,D∗, t)
N(dy,0, r,D∗, t)

exists and is equal to ν(dx)/ν(dy). The fact that small balls are mapped by f

onto regions very close to balls, (4.67), and the definition of Y as a transform of X

imply that for Y we have

lim
r→0

lim
t→∞

N(dx,f (0), r,D, t)

N(dy,f (0), r,D, t)
= ν(f −1(dx))

ν(f −1(dy))
= ν̄(dx)

ν̄(dy)
.

This in turn implies that all c̄x in (4.66) must be equal to each other so, in view of
Remark 3.10(iii), we may take all of them to be equal to 1.

(iii) The processes Xk converge to X in the sense of finite dimensional distri-
butions according to Theorem 3.12. A stronger assertion follows from the proof
of that theorem. Fix some ε > 0 and let ek,n be the nth excursion of the process
Xk which hits the ball B(0,1 − ε), and let T k,n

ε be the hitting time of the ball.
Then the joint distributions of {ek,n

t , t ∈ [T k,n
ε , ζ )}, n ≥ 1, ε > 0, ε ∈ Q, converge

as k → ∞, in the Skorokhod topology. By the Skorokhod lemma, we can assume
that {ek,n

t , t ∈ [T k,n
ε , ζ )}, n ≥ 1, ε > 0, ε ∈ Q, converge a.s., as k → ∞, in the

Skorokhod topology. Hence, Xk
t → Xt for almost all t ≥ 0 simultaneously, a.s.

The function f is Lipschitz continuous inside every disc B(0,1−ρ), ρ ∈ (0,1).
This implies that for every ε > 0 and n, the images of the excursions f (ek,n

t )

converge as k → ∞, a.s., in the Skorokhod topology over their lifetimes to the
corresponding excursion of Y . It will suffice to show that for every fixed t > 0,
the clocks ck(t) converge to c(t) in probability (note that the clocks are monotone
functions).

Let

c(t) =
∫ t

0

∣∣f ′(Xs)
∣∣2 ds for t ≥ 0,

Y (t) = f (Xc−1(t)) for t ∈ [0,∞),(4.68)

ck(t) =
∫ t

0

∣∣f ′(Xk
s

)∣∣2 ds for t ≥ 0,

Y k(t) = f
(
Xk

c−1
k (t)

)
for t ∈ [0,∞).(4.69)

Then Y and Y k’s have distributions as specified in the statement of the theorem.
We will assume for a moment that Xk

0’s and X0 have stationary distributions.
Let Dε = D∗ \B(0,1 − ε). By assumption (i),∫

D∗

∣∣f ′(x)
∣∣2h(x) dx =

∫
D

h ◦ f −1 dx < ∞.(4.70)
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By assumption D is bounded, so that
∫
D∗ |f ′|2 dx = Area(D) < ∞ and by the

proof of Theorem 3.12, hk converges uniformly to h. Thus,

sup
k

∫
D∗

∣∣f ′(x)
∣∣2hk(x) dx < ∞,(4.71)

and, moreover,

lim
ε↓0

∫
Dε

∣∣f ′(x)
∣∣2h(x) dx = 0(4.72)

and

lim
ε↓0

sup
k

∫
Dε

∣∣f ′(x)
∣∣2hk(x) dx = 0.(4.73)

For ε > 0 (suppressed in the notation), let

c̄(t) =
∫ t

0

∣∣f ′(Xs)
∣∣21{Xs∈Dε} ds, ĉ(t) =

∫ t

0

∣∣f ′(Xs)
∣∣21{Xs∈B(0,1−ε)} ds,

c̄k(t) =
∫ t

0

∣∣f ′(Xk
s

)∣∣21{Xk
s ∈Dε} ds, ĉk(t) =

∫ t

0

∣∣f ′(Xk
s

)∣∣21{Xk
s ∈B(0,1−ε)} ds.

Fix some t ≥ 0 and arbitrarily small p1, δ > 0. It follows from (4.70)–(4.73)
that there exists ε1 > 0 such that for ε ∈ (0, ε1) and all k,

E
[
c̄(t)
]= E

[∫ t

0

∣∣f ′(Xs)
∣∣21{Xs∈Dε} ds

]
=
∫ t

0
E
[∣∣f ′(Xs)

∣∣21{Xs∈Dε}
]
ds

=
∫ t

0

∫
Dε

∣∣f ′(x)
∣∣2h(x) dx ds = t

∫
Dε

∣∣f ′(x)
∣∣2h(x) dx ds < p1δ

and

Ec̄k(t) = E
∫ t

0

∣∣f ′(Xk
s

)∣∣21{Xk
s ∈Dε} ds =

∫ t

0
E
(∣∣f ′(Xk

s

)∣∣21{Xk
s ∈Dε}
)
ds

=
∫ t

0

∫
Dε

∣∣f ′(x)
∣∣2hk(x) dx ds = t

∫
Dε

∣∣f ′(x)
∣∣2hk(x) dx ds < p1δ.

It follows that for ε ∈ (0, ε1) and all k,

P
(
c̄(t) ≥ δ

)≤ p1 and P
(
c̄k(t) ≥ δ

)≤ p1.(4.74)

For almost all s > 0, Xk
s → Xs , a.s., and P(Xs ∈ ∂B(0,1 − ε)) = 0. Hence, for

almost all s > 0, a.s.,

lim
k→∞
∣∣f ′(Xk

s

)∣∣21{Xk
s ∈B(0,1−ε)} = ∣∣f ′(Xs)

∣∣21{Xs∈B(0,1−ε)},

and, therefore, by the bounded convergence theorem, a.s.,

lim
k→∞ ĉk(t) = lim

k→∞

∫ t

0

∣∣f ′(Xk
s

)∣∣21{Xk
s ∈B(0,1−ε)} ds

=
∫ t

0

∣∣f ′(Xs)
∣∣21{Xs∈B(0,1−ε)} ds = ĉ(t).
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This and (4.74) imply that for every fixed t > 0, a.s.,

lim
k→∞ ck(t) = c(t),

because δ and p1 can be chosen arbitrarily close to 0.
We can remove the assumption that the processes are in the stationary distribu-

tion as in the proof of Theorem 3.15(i).
(iv) This can be proved just as part (iii) of Theorem 3.15.
(v) Let h∗ = ĥ ◦ f . Then h∗ is a positive harmonic function in D∗ and so

‖h∗‖1 = πh∗(0) < ∞. Let h = h∗/‖h∗‖1. By assumption, h is Lipschitz continu-
ous on D∗ and strictly positive on ∂D∗. Let hk(z) = (1 − 2−k)1/2h((1 − 2−k)z).
Then hk is a sequence of positive harmonic functions in D∗ with L1 norm equal to
1 and C2 on D∗, such that hk → h uniformly on compact subsets of D∗, and both
hk and 1/hk are λ-Lipschitz on ∂D∗ for some λ > 0 when k is sufficiently large.
Let μ0,k = k, and let θk correspond to (hk,μ0,k). Let Y k’s and Y be constructed as
in the statement of Theorem 3.17. Then it is easy to see that the stationary distri-
bution for ERBM Y has density ĥ. �

PROOF OF THEOREM 3.18. Let Dk∗ = f −1(Dk). It is easy to see that Dk∗
converge to D∗ in the sense that for every r < 1 there exists k0 such that B(0, r) ⊂
Dk∗ for k ≥ k0. Set x0 = f −1(y0) = f −1

k (y0), a0 = f (0) and ak = fk(0). Then
ak → a0. Let hk = h̄◦fk/‖h̄◦fk‖1 = h̄◦fk/(πh̄(ak)), and let θk ↔ (hk,μ0). Note
that hk are smooth and bounded on D∗ and therefore θk are smooth on ∂D∗ and
take values in (−π/2, π/2). Let h = h̄◦f/‖h̄◦f ‖1 = h̄◦f/(πh̄(a0)), and let θ ↔
(h,μ0). Then hk converges to h uniformly on compact subsets of D∗ and by (2.18),
θk(z) converges to θ(z) uniformly on compact subsets of D∗. Since the closed unit
ball in L∞(∂D∗; |dx|) = L1(∂D∗; |dx|)∗ is compact in the weak-* topology, it
follows that θk converges to θ in the in the weak-* topology in L∞(∂D∗; |dx|).
Let Xk be the solution to (2.1) corresponding to θk and starting from x0 = f −1(y0)

and let X be constructed as in Theorem 3.5, relative to θ and also starting from
x0 = f −1(y0). Let

c(t) =
∫ t

0

∣∣f ′(Xs)
∣∣2 ds and Y(t) = f (Xc−1(t))

(4.75)
for t ∈ [0,∞),

ck(t) =
∫ t

0

∣∣f ′
k

(
Xk

s

)∣∣2 ds and Y k(t) = fk

(
Xk

c−1
k (t)

)
(4.76)

for t ∈ [0,∞).

Then Y and Y k’s have distributions as specified in the statement of the theorem.
We will assume for a moment that Xk

0’s and X0 have stationary distributions.
According to Theorem 3.5(i), the processes {Xk

s ,0 ≤ s ≤ t} converge weakly to
{Xs,0 ≤ s ≤ t} in MT

1 topology. By the Skorokhod theorem, we can assume that
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all these processes are defined on the same probability space and {Xk
s ,0 ≤ s ≤ t}

converge almost surely to {Xs,0 ≤ s ≤ t} in MT
1 topology.

Let Dε = D∗ \B(0,1 − ε). We have∫
D∗

∣∣f ′(x)
∣∣2h(x) dx = 1

πh̄(a0)

∫
D

h̄dx < ∞,(4.77)

sup
k

∫
D∗

∣∣f ′
k(x)
∣∣2hk(x) dx = 1

πh̄(ak)
sup
k

∫
Dk

h̄ dx < ∞(4.78)

and, moreover, as in (4.72) and (4.73)

lim
ε↓0

∫
Dε

∣∣f ′(x)
∣∣2h(x) dx = 0,(4.79)

lim
ε↓0

sup
k

∫
Dε

∣∣f ′
k(x)
∣∣2hk(x) dx = 0.(4.80)

For ε > 0 (suppressed in the notation), let

c̄(t) =
∫ t

0

∣∣f ′(Xs)
∣∣21{Xs∈Dε} ds, ĉ(t) =

∫ t

0

∣∣f ′(Xs)
∣∣21{Xs∈B(0,1−ε)} ds,

c̄k(t) =
∫ t

0

∣∣f ′
k

(
Xk

s

)∣∣21{Xk
s ∈Dε} ds, ĉk(t) =

∫ t

0

∣∣f ′
k

(
Xk

s

)∣∣21{Xk
s ∈B(0,1−ε)} ds.

Fix some t ≥ 0 and arbitrarily small p1, δ > 0. It follows from (4.79)–(4.80)
that there exists ε1 > 0 such that for ε ∈ (0, ε1) and all k,

E
[
c̄(t)
]= E

[∫ t

0

∣∣f ′(Xs)
∣∣21{Xs∈Dε} ds

]
=
∫ t

0
E
[∣∣f ′(Xs)

∣∣21{Xs∈Dε}
]
ds

=
∫ t

0

∫
Dε

∣∣f ′(x)
∣∣2h(x) dx ds = t

∫
Dε

∣∣f ′(x)
∣∣2h(x) dx ds < p1δ

and

E
[
c̄k(t)
]= E

[∫ t

0

∣∣f ′
k

(
Xk

s

)∣∣21{Xk
s ∈Dε} ds

]
=
∫ t

0
E
[∣∣f ′

k

(
Xk

s

)∣∣21{Xk
s ∈Dε}
]
ds

=
∫ t

0

∫
Dε

∣∣f ′
k(x)
∣∣2hk(x) dx ds = t

∫
Dε

∣∣f ′
k(x)
∣∣2hk(x) dx ds < p1δ.

It follows that for ε ∈ (0, ε1) and all k,

P
(
c̄(t) ≥ δ

)≤ p1 and P
(
c̄k(t) ≥ δ

)≤ p1.(4.81)

For any fixed ε > 0, there is k0 ≥ 1 such that

sup
x∈B(0,1−ε)

(∣∣f ′(x)
∣∣2h(x) ∨ sup

k≥k0

∣∣f ′
k(x)
∣∣2hk(x)

)
< ∞.(4.82)
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For every fixed s > 0, Xk
s → Xs , a.s., and P(Xs ∈ ∂B(0,1 − ε)) = 0. Hence, for

every fixed s > 0, a.s.,

lim
k→∞
∣∣f ′

k

(
Xk

s

)∣∣21{Xk
s ∈B(0,1−ε)} = ∣∣f ′(Xs)

∣∣21{Xs∈B(0,1−ε)},

and, therefore, by the bounded convergence theorem, a.s.,

lim
k→∞ ĉk(t) = lim

k→∞

∫ t

0

∣∣f ′
k

(
Xk

s

)∣∣21{Xk
s ∈B(0,1−ε)} ds

=
∫ t

0

∣∣f ′(Xs)
∣∣21{Xs∈B(0,1−ε)} ds = ĉ(t).

This and (4.81) imply that for every fixed t > 0, a.s.,

lim
k→∞ ck(t) = c(t),(4.83)

because δ and p1 can be chosen arbitrarily close to 0.
It follows easily from the definition (3.9) of convergence in MT

1 topology and
continuity of f on D∗ that convergence of Xk to X in MT

1 topology implies con-
vergence of f (Xk) to f (X) in MT

1 topology. This is because the transformation
f affects only the first components of the pairs (yn(s), tn(s)) and (y(s), t (s)) in
(3.9). When the clocks are changed, the second components are affected as well.
Then we use (4.83) to conclude that Y k converge to Y in MT

1 topology.
We can remove the assumption that the processes are in the stationary distribu-

tion as in the proof of Theorem 3.15(i). �

PROOF OF THEOREM 3.8. Take a sequence of C2 functions θk : ∂D∗ →
(−π/2, π/2) that converges to θ ∈ T in weak-* topology as elements of the
dual space of L1(∂D∗). Let Xk be ORBM on D∗ that satisfies (3.10). By The-
orem 3.5(i), Xk converges weakly in MT

1 -topology to X, so does f (Xk) to f (X).
Define

ck(t) =
∫ t

0

∣∣f ′(Xk
s

)∣∣2 ds and c(t) =
∫ t

0

∣∣f ′(Xs)
∣∣2 ds.

By an argument similar to that proving (4.83), we can show that limk→∞ ck(t) =
c(t) a.s. for every fixed t > 0. Consequently by the argument as in the second to the
last paragraph in the proof of Theorem 3.18, f (Xk

c−1
k (t)

) converges weakly in MT
1 -

topology to f (Xc−1(t)). It is easy to see that f (Xc−1(t)) has stationary distribution
with density h̄. Since f is smooth on Dk and θk ◦ f −1 converges to θ ◦ f −1 ∈ T
in weak-* topology as elements of the dual space of L1(∂D∗), it follows from
Theorem 3.5 that f (Xc−1(t)) is the ORBM on D∗ with reflection angle θ ◦ f −1.

�

PROOF OF THEOREM 3.19. This theorem can be proved just like Theo-
rem 3.18. All we have to check is whether the following claims hold: (4.77), (4.78),
(4.79), (4.80) and (4.82). They are all easily seen to hold in the present context.

�
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EXAMPLE 4.2. We will sketch an example of a bounded domain D, an
oblique angle of reflection θ and the corresponding ORBM with a stationary mea-
sure whose density h is not in L1(D). The construction is a typical fractal-type
argument; a construction similar in spirit can be found in Section 4 of Bass and
Burdzy (1992). We will not supply a formal proof because it would require a lot
of space and the claim is rather specialized.

Let D0 = (0,1)2, and for k ≥ 1 and small rk ∈ (0,2−k−2) (to be specified later),
let

Dk = B
(
2−k − i2−k,2−k−2),

D′
k = (2−k − rk,2−k + rk

)× (−2−k,2−k),
D = D0 ∪⋃

k≥1

(
Dk ∪ D′

k

)
.

The boundary ∂D is smooth except for a countable number of points. We will
specify the reflection angle relative to the inward normal vector n at each boundary
point where n is well defined. For all points x ∈ ∂D ∩ (∂D0 ∪ ∂Dk), k ≥ 0, we let
θ(x) = 0. In other words, the reflection is in the normal direction at the points on
the boundary of the square D0 and on the (arcs of the) circles ∂Dk .

It remains to define the angle of reflection for the part of ∂D which lies on the
sides of very thin channels D′

k . To make the example simple, we let the angle of
reflection be π/2 or −π/2, at x ∈ ∂D ∩ ∂D′

k , k ≥ 1, so that the reflected process
is pushed down towards Dk . It would be more accurate to say that the process is
teleported to Dk if it hits the side of a channel ∂D ∩ ∂D′

k because it has a jump
that takes it to ∂Dk .

Heuristically speaking, the ratio of the average amounts of time spent by ORBM
in Dk and D0 can be made arbitrarily large by making rk sufficiently small. The
reason is that ORBM will jump to Dk when it hits the boundary of D′

k . Going the
other way is much harder – the process has to go though the very thin channel
connecting Dk and D0 without hitting the sides of the channel. Let ak be the ratio
of the average amounts of time spent by ORBM in Dk and D0. If we make all
ak ≥ 1, then

∑
k≥1 ak = ∞ and it follows that there is no stationary probability

distribution for ORBM. Every stationary measure has to have infinite mass.
It is clear that the ORBM described above is well defined as long as it does not

hit (0,0). An elementary argument can be used to show that the ORBM will not
hit (0,0) at a finite time, a.s., if we make the channels sufficiently thin (i.e., rk’s
sufficiently small). �

PROOF OF THEOREM 3.20. Parts (i) and (ii) are special cases of Theorems 1
and 2 of Aikawa (2000).

For part (iii), let D be the image of the unit disk by the map F(z) = √
1 − z and

let h(w) = Re((1 + z)/(1 − z)) where z = F−1(w). Then for the region C in the
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disk given by 1 − |z|2 > |1 − z| (an approximate cone),∫
D

h(w)dw =
∫
C

Re
(
(1 + z)/(1 − z)

)∣∣F ′(z)
∣∣2 dz ≥

∫
C

|1 − z|−2 dz/4,

since Re((1 + z)/(1 − z)) = (1 − |z|2)/|1 − z|2. This latter integral is infinite by
integrating in polar coordinates centered at z = 1. �
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