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Relatives of the Ewens Sampling Formula
in Bayesian Nonparametrics
Stefano Favaro and Lancelot F. James

Abstract. We commend Harry Crane on his review paper which serves to
not only point out the ubiquity of the Ewens sampling formula (ESF) but also
highlights some connections to more recent developments. As pointed out by
Harry Crane, it is impossible to cover all aspects of the ESF and its relatives
in the pages generously provided by this journal. Our task is to present ad-
ditional commentary in regards to some, perhaps not so well-known, related
developments in Bayesian noparametrics.
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1. INTRODUCTION

Let X1, . . . ,Xn|P be independent and identically
distributed as P , where P is an unknown probability
measure P(A) = Pr(X1 ∈ A) with A being a subset of
a measurable space X . Despite the complexity of X ,
the classic nonparametric estimator of P is given by
Pn(x) = n−1 ∑

1≤i≤n δXi
(x). Bayesian nonparametric

statistics has its origins in David Blackwell’s desire in
the late 1960s to find appropriate Bayesian solutions
to this problem, that is, to find priors P(dP) over
the space of distributions that lead to posterior distri-
butions P(dP |X1, . . . ,Xn) that are tractable and ide-
ally mimic nice properties of their frequentist counter-
parts. The Dirichlet process (DP) by Ferguson [6] was
the first and still most prominent solution to this prob-
lem, producing a posterior distribution that is again a
DP. Doksum [3] soon followed with neutral to the right
(NTR) priors defined as random distribution functions
over the real line R, and showed that the posterior was
also a NTR process. Doksum also showed that when
X = R the DP arises as a special case of NTR priors.
These early works focused on the statistical problem
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where it was assumed that X = (X1, . . . ,Xn) comes
from a true distribution P̃ . Furthermore, it was often
assumed that P̃ was a nonatomic distribution, mean-
ing there are no ties among the Xi’s. So while it was
of interest to calculate the Bayes estimate, which is the
prediction rule Qn(dx) = E[P(dx)|X], its behavior is
evaluated relative to P̃ . That is to say, from the point of
view of such statistical problems, the combinatorial as-
pects of the joint exchangeable distribution Mn(dx) =
E[∏1≤i≤n P (dxi)] was not of primary interest.

In the case of the DP, with prior law P0,θ (dP |H),
Mn(dx) = Mn(dx|θ) is the Blackwell–MacQueen
Pólya urn distribution in Blackwell and MacQueen [2]
which produces the Chinese restaurant process (CRP)
and the Ewens’ sampling formula (ESF). The result
by Blackwell and MacQueen [2] shows that if the
empirical measure Pn is based on X sampled from
Mn(dx|θ), then as n → ∞ it converges to a DP with
law P0,θ (dP |H). The problem considered in Anto-
niak [1] involves placing a prior distribution π(dθ)

on θ , which necessitates the involvement of Mn(dx|θ)

and gives impetus to Antoniak’s independent deriva-
tion of the ESF. The reader is referred to Proposition 3
in Antoniak [1] for a detailed account. The model in
Lo [12] represents the prototype for the modern us-
age of Bayesian hierarchical mixture models where X
are viewed as latent variables drawn from Mn(dx|θ).
The approach proposed by Lo [12] incorporates Fu-
bini’s theorem which expresses the joint distribution
of (P,X) in terms of P |X, and X ∼ Mn(dx|θ). Fur-
thermore, Lemma 2 in Lo [12] establishes characteri-
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zations via the partition of [n] = {1, . . . , n} induced by
X and hence the CRP. Nonetheless, the combinatorial
complexity involved in such characterizations limited
their practical usage at that time.

The purpose of our exposition so far was to note that
in the 1970s and 1980s the primary focus in Bayesian
nonparametrics was on priors over spaces of mea-
sures and the somewhat limited employment of com-
binatorial structures such as the CRP/ESF. The field
has changed in a dramatic fashion since Ferguson [6].
Due in large part to advances in computer technol-
ogy, Bayesian nonparametric ideas are now being ap-
plied to tackle a wide range of statistical problems
where parametric assumptions are often infeasible. In
particular, many applications exploit the flexible mod-
eling features exhibited by the ESF/CRP, and gener-
alized Mn, as applied to intricate missing data prob-
lems. The availability of explicit probability distribu-
tions for these mechanisms provides formal generative
processes that allow one to learn model structure in the
presence of incoming data via the standard Bayesian
updating mechanism. For instance, generalized notions
of the CRP provide natural priors on the space of par-
titions/clusters/groups that grow with the sample size.
Of note are some recent developments related to prob-
lems arising out of Bayesian machine learning; see, for
example, Teh and Jordan [14] and references therein.
Rather than recount points that are generally familiar to
a more specialized Bayesian nonparametric audience,
in the next two sections we focus on less well-known,
but highly pertinent, connections between the ESF and
its relatives and models arising in Bayesian nonpara-
metrics.

2. AGE-ORDERED ESF AND SPATIAL NTR
PROCESSES

It is now well recognized (see, for instance, Pit-
man [13]) that, via Kingman’s correspondence, there
are bijective relations between the DP, the Blackwell–
McQueen Pólya urn and the ESF. Here we point
out a correspondence that is not so well known.
Let T1, . . . , Tn|F be independent and identically dis-
tributed survival times with unknown survival distri-
bution S(t) = 1 − F(t) and cumulative hazard �(t) =∫ t

0 F(ds)/S(s−). If there are Kn = k ≤ n distinct or-
dered values T(1) > T(2) > · · · > T(k), then, using the
language of survival analysis, one can form death sets
Dj = {i : Ti = T(j)} and risk sets Rj = {i : Ti ≥ T(j)},
with sizes dj = |Dj | and rj = |Rj |. Hence, rj =
rj−1 + dj = ∑

j≤�≤k d� with rk = n and r0 = 0. It is

evident that Dn = {D1, . . . ,Dk} constitutes one of k!
orderings of a partition π = (B1, . . . ,Bk) of [n]. Let
d = (d1, . . . , dk), and consider the probabilities

p0,θ (d) = θk

(θ)↑n

k∏
j=1

dj !
rj

(2.1)

and

p̃0,θ (d) = n!∏k
j=1 dj !

p0,θ (d).

These probabilities agree with variants of the age-
ordered ESF, as derived in Donelley and Tavaré [4],
that is, formula for k ≤ n distinct allelic types ordered
by their ages. As the name suggests, there should be
a connection between (2.1) and the DP, however, it is
not an immediately obvious one. Formula (2.1) arises
as a special case of a general formula in James [10]
and Gnedin and Pitman [7]. Specifically, (2.1) is de-
rived by choosing F to be a NTR process, as de-
fined in Doksum [3], which involves a representation of
the marginal distribution Mn(dt) = E[∏1≤i≤n F (dti)]
in terms of a joint distribution of (D1, . . . ,Dk) and
(T(1), . . . , T(k)). James [10] showed that if one inte-
grates Mn(dt), with respect to (T(1), . . . , T(k)), then this
yields generalized distributions on Dn where p0,θ is a
special case. With the exception of the DP, Mn(dt) does
not produce independent and identically distributed
unique values, when F is selected to be a NTR pro-
cess.

For specifics, Ŝ(t) = ∏
{j :T(j)≤t}(1 − dj/rj ) and

�̂(t) = ∑
{j :T(j)≤t} dj/rj are the Kaplan–Meier and

Nelson–Aalen estimators for S and �, respectively.
Recall that a NTR survival process can always be rep-
resented as S(t) = ∏

{j :τj≤t}(1 − �j), where (�j , τj )

are the points of a Poisson random measure N , with
mean E[N(du,ds)] = ρ(u|s)�0(ds)du, on ([0,1],
(0,∞)) where �0(ds) = F0(ds)/S0(s−) is a hazard
rate. In particular, it follows that F(ds) = S(s−)�(ds),
where �(t) = ∑

{j :τj≤t} �j , is a random cumulative
hazard corresponding to processes described in Hjort
[9]. It is known that F has the DP law P0,θ (dF |F0) if
ρ(u|s) = θS0(s−)u−1(1 − u)θS0(s−)−1. The choice of
F that produces (2.1) is ρ(u) = θ(θ + 1)(1 − u)θ−1,
which is the term (θ + 1) multiplied by a Beta density
function with parameter (1, θ). This can be seen as a
special case of equation (42) in Gnedin and Pitman [7].
The prediction rule for this case can be deduced from
James [10],

E
[
F(dt)|T] =

k+1∑
�=1

q∗
� F̃�:n(dt) +

k∑
j=1

p∗
j δT(j)

(dt).
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Here, setting �0(s) = s, F̃�:n denotes a truncated ex-
ponential distribution with parameter (θ(θ + 1)/(θ +
r�−1)(θ + r�−1 + 1)) and support T(�) < t < T(�−1).
Furthermore, the transition probabilities for generating
Dn according to p0,θ in (2.1) are given by

pj = E
[
p∗

j |Dn

] = n

(θ + n)

rj

n

(dj + 1)

rj + 1

k∏
�=j+1

r�

r� + 1

and

qj = E
[
q∗
j |Dn

] = θ

(θ + n)

1

rj−1 + 1

k∏
�=j

r�

r� + 1
,

which can be used to generate a special case of a gen-
eralized ordered CRP. See Section 5.2.1 in James [10].
F(t) is clearly not a DP. However, as in James [10], if
one adds a spatial component (�j , τj , xj ) with mean
θ(θ + 1)(1 − u)θ−1�0(ds)H(dx), then this creates a
spatial NTR process F(dt,dx), where for (t, x) ∈
R+ × X , P(dx) = F(∞,dx) has the Dirchlet law
P0,θ (dP |H). Equation (42) in Gnedin and Pitman [7]
yields the ordered partition distribution of the two-
parameter family for the range 0 ≤ α < 1 and θ ≥ 0.
Proposition 6.1 in James [10] used that result to show
that the Pitman–Yor process with law Pα,θ (dP |H) can
be represented as a spatial NTR process F(∞,dx).
The analogous pj and qj can also be worked out
explicitly. A remarkable aspect of this is that while
Doksum’s NTR specification of F(t) does not con-
tain the Pitman–Yor processes, there is a NTR process
F(t) = F(t,X ) which produces a random partition of
[n], (B1, . . . ,Bk) whose law for θ ≥ 0 follows the two
parameter (α, θ) CRP scheme.

3. POSTERIOR ESF AND SPECIES SAMPLING
PROBLEMS

Species sampling problems refer to a broad class
of statistical problems where samples are drawn from
a population of individuals belonging to an (ide-
ally) infinite number of species with unknown pro-
portions. Given a sample of size n featuring Kn = k

species with frequency counts (M1,n, . . . ,Mn,n) =
(m1,n, . . . ,mn,n), interest lies in estimating global and
local measures of species variety induced by consider-
ing an additional unobservable sample of size m: the
former refer to the species variety of the whole addi-
tional sample, whereas the latter refer to the discovery
probability at the (n + m + 1)th step of the sampling
process. These problems have originally appeared in

ecology, and their importance has grown consider-
ably in recent years, driven by challenging applica-
tions arising from bioinformatics, genetics, linguistics,
networking and data confidentiality, design of experi-
ments, machine learning, etc. The ESF, together with
Pitman’s two-parameter generalization, represents the
cornerstone of the Bayesian nonparametric approach
proposed by Lijoi et al. [11] for making inference
measures of species variety. Indeed, it takes on the
natural interpretation of a prior “sampling” model in-
duced by assuming a DP prior on the unknown species
composition of the population. Given that, the esti-
mation of global and local measures of species vari-
ety relies on the study of distributional properties of
a posterior ESF, namely, distributional properties of
(M1,n, . . . ,Mn+m,n+m) given (M1,n, . . . ,Mn,n).

Under the assumption that P has the two-parameter
Poisson–Dirchlet law (i.e., Pitman–Yor process)
Pα,θ (dP |H), the distribution of Ml,n+m given (M1,n,

. . . ,Mn,n) arises by a direct application of Theo-
rem 3 in Favaro et al. [5]. Along similar arguments,
one may obtain the joint conditional distribution of
(M1,n+m, . . . ,Mn+m,n+m) given (M1,n, . . . ,Mn,n). Of
particular interest in Bayesian nonparametric inference
for species sampling problems is the expectation and
the large m asymptotic behavior of the distribution of
Ml,n+m given (M1,n, . . . ,Mn,n). In particular, one has

E
[
Ml,n+m|Mn = (m1, . . . ,mn)

]

=
l∑

i=1

(
m

l − i

)
mi(i − α)↑(l−i)

· (θ + n − i + α)↑(m−l+i)

(θ + n)↑m
(3.1)

+
(

m

l

)
(1 − α)↑(l−1)(θ + kα)

· (θ + n + α)↑(m−l)

(θ + n)↑m

with k = ∑
1≤i≤n mi . Furthermore, let Ba,b be a Beta

random variable with parameter (a, b), and let Sq be
a nonnegative random variable with density function
proportional to sq−1−1/αfα(s−1/α), where fα is the
positive α-stable density function. As m → +∞,

Ml,n+m

mα

∣∣∣(Mn = (m1, . . . ,mn)
)

(3.2)

→ α(1 − α)↑(l−1)

l! Bk+θ/α,n/α−kS(θ+n)/α
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almost surely, where Bk+θ/α,n/α−k and S(θ+n)/α are
independent random variables. The limiting scale mix-
ture Bk+θ/α,n/α−kS(θ+n)/α provides the posterior coun-
terpart of the well-known α-diversity of the two-
parameter Ewens–Pitman sampling formula, which is
recovered by setting n = k = 0. In particular, if α = 0,
then Ml,n+m → Pl weakly m → +∞, where Pl is a
Poisson random variable with parameter θ/ l.

Let Ml,m = E[Ml,n+m|Mn = (m1, . . . ,mn)] be the
posterior expectation displayed in (3.1). Intuitively,
Ml,m takes on the interpretation of the Bayesian non-
parametric estimator, with respect to a squared loss
function, of the number of species with frequency l

in the enlarged sample of size (n + m). Accordingly,
(3.2) provides a tool for deriving corresponding large
m asymptotic credible intervals. The estimator Ml,m

is the prototypical example of a measure of global
species variety, and other measures of global species
variety may be introduced as suitable functions of it.
For instance, for any integer 1 ≤ τ ≤ n+m, Mm(τ) =∑

1≤l≤τ Ml,m is the estimator of the so-called rare
species variety, namely, the number of species with
frequency less or the equal of a threshold τ . Then an
estimator of the overall species variety is obtained by
setting τ = n + m. Besides these measures of global
species variety, Ml,m also leads to measures of local
species variety. Indeed, it is easy to show that Dl,m =
(l − α)Ml,m/(θ + n + m) is the estimator of the prob-
ability that the observation at the (n + m + 1)th draw
coincides with a species with frequency l. In particu-
lar, 1 − ∑

1≤l≤n+mDl,m is the estimator of the proba-
bility of discovering a new species at the (n+m+ 1)th
draw. For any m ≥ 1, these estimators provide the nat-
ural Bayesian nonparametric counterparts of the cele-
brated Good–Toulmin estimator proposed by Good and
Toulmin [8].
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