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We consider a switch operating under the MaxWeight schedul-
ing algorithm, under any traffic pattern such that all the ports are
loaded. This system is interesting to study since the queue lengths
exhibit a multi-dimensional state-space collapse in the heavy-traffic
regime. We use a Lyapunov-type drift technique to characterize the
heavy-traffic behavior of the expectation of the sum queue lengths in
steady-state, under the assumption that all ports are saturated and
all queues receive non-zero traffic. Under these conditions, we show
that the heavy-traffic scaled queue length is given by (1 − 1

2n
)||σ||2,

where σ is the vector of the standard deviations of arrivals to each
port in the heavy-traffic limit. In the special case of uniform Bernoulli
arrivals, the corresponding formula is given by (n− 3

2
+ 1

2n
). The result

shows that the heavy-traffic scaled queue length has optimal scaling
with respect to n, thus settling one version of an open conjecture; in
fact, it is shown that the heavy-traffic queue length is at most within
a factor of two from the optimal. We then consider certain asymptotic
regimes where the load of the system scales simultaneously with the
number of ports. We show that the MaxWeight algorithm has op-
timal queue length scaling behavior provided that the arrival rate
approaches capacity sufficiently fast.

1. Introduction. Consider a collection of queues arranged in the form
of an n×n matrix. The queues are assumed to operate in discrete-time and
jobs arriving to the queues will be called packets. The following constraints
are imposed on the service process of the queueing system: (a) at most one
queue can be served in each time slot in each row of the matrix, (b) at most
one queue can be served in each time slot in each column of the matrix, and
(c) when a queue is served, at most one packet can be removed from the
queue. Such a queueing system is called a switch.

A scheduling algorithm for the switch is a rule which selects the queues to
be served in each time slot. A well-known algorithm called the MaxWeight
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algorithm is known to optimize the throughput in a switch. The algorithm
was derived in a more general context in [1] and for the special context of
the switch considered in here in [2], where it was also shown that other
seemingly good policies are not throughput-optimal. An important open
question that is not fully understood is whether the MaxWeight algorithm
is also queue length or delay optimal in any sense. In [3], it was shown that
the MaxWeight algorithm minimizes the sum of the squares of the queue
lengths in heavy-traffic under a condition called Complete Resource Pooling
(CRP). For the switch, the CRP condition means that the arriving traffic
saturates at most one column or one row of the switch. The result relies on
the fact that, under CRP and in the heavy-traffic regime, there is a one-
dimensional state-space collapse, i.e., the state of the system collapses to
a line. When the CRP condition is not met, the state-space collapses to
a lower-dimension, but is not one-dimensional. State-space collapse with-
out the CRP condition was established in [4] when the arrivals are deter-
ministic. For stochastic arrivals, state-space collapse for the fluid limit was
studied in [5], and a diffusion limit has been established in [6]. However, a
characterization of the steady-state behavior of the diffusion limit was still
open.

In this paper, we use the Lyapunov-type drift technique introduced in
[7]. The basic idea is to set the drift of an appropriately chosen function
equal to zero in steady-state to obtain both upper and lower bounds on
quantities of interest, such as the moments of the queue lengths. Setting the
drift of a function to zero in steady state is analogous to the basic adjoint
relation (BAR) of diffusion limit systems such as the ones studied in [8].
To obtain upper bounds one has to establish state-space collapse in a sense
that is somewhat different than the one in [3]: the main difference being
that the state-space collapse is expressed in terms of the moments of the
queue lengths in steady-state. This form of state-space collapse can then
be readily used in the drift condition to obtain the upper bound. However,
in [7], the usefulness of the drift technique was only established under the
CRP condition. In this paper, we consider the switch when all the ports are
saturated, i.e., in the heavy-traffic regime, the traffic in all rows and columns
approach capacity, and the CRP condition is violated. The main contribu-
tion of the paper is to characterize the expected steady-state queue lengths
in heavy-traffic even though the CRP condition is violated. As mentioned
earlier, when the CRP condition is violated, the state does not typically
collapse to a single dimension. The main challenge in our proof is due to the
difficulty in characterizing the behavior of the queue length process under
such a multi-dimensional state-space collapse. Characterizing the behavior



MAXWEIGHT ALGORITHM IN A SWITCH 213

of the queue lengths under multi-dimensional state-space collapse has been
difficult, in general, except in rare cases; see [9, 10] for two such examples
in other contexts.

The difficulty in understanding the steady-state queue length behavior
of the MaxWeight algorithm has meant that it is unknown whether the
MaxWeight algorithm minimizes the expected total queue length in steady-
state. One way to pose the optimality question is to increase the number
of queues in the system, or increase the arrival to a point close to the
boundary of the capacity region (the heavy-traffic regime), or do both, and
study whether the MaxWeight algorithm is queue-length-optimal in a scaling
sense. A conjecture regarding the scaling behavior for any algorithm, both
in heavy-traffic and under all traffic conditions, has been stated in [11]. The
authors first heard about the non-heavy-traffic version of this conjecture
from A. L. Stolyar in 2005. The conjecture seemed to be difficult to verify
for the MaxWeight algorithm, and so a number of other algorithms have
been developed to achieve either optimal or near-optimal scaling behavior;
see [12, 13, 14]. The results in this paper establish the validity of one version
of the conjecture (pertaining to the heavy-traffic regime) for the MaxWeight
algorithm.

Note on Notation: The set of real numbers, and the set of non-negative
real numbers are denoted by R, and R+ respectively. We work in the n2 −
dimensional Euclidean space Rn2

. We represent vectors in this space in bold
font, by x. We use two indices 1 ≤ i ≤ n and 1 ≤ j ≤ n for different
components of x. We represent the (i, j)th component by xij and thus, x =

(xij)ij . For two vectors x and y in R
n2
, their inner product 〈x,y〉 and

Euclidean norm ‖x‖ are defined by

〈x,y〉 �
n∑

i=1

n∑
j=1

xijyij , ‖x‖ �
√
〈x,x〉 =

√√√√ n∑
i=1

n∑
j=1

x2ij .

For two vectors x and y in R
n2
, x ≤ y means xij ≤ yij for every (i, j).

We use 1 to denote the all ones vector. Let e(i) denote the vector defined
by e

(i)
ij = 1 for all j and e

(i)
i′,j = 0 for all i′ �= i and for all j. Thus, e(i) is

a matrix with ith row being all ones and zeros every where else. Similarly,

let ẽ(j) denote the vector defined by ẽ
(j)
ij = 1 for all i and ẽ

(j)
i,j′ = 0 for all

j′ �= j and for all i, i.e., it is a matrix with jth column being all ones and
zeros every where else. For a random process q(t) and a Lyapunov function
V (.), we will sometimes use V (t) to denote V (q(t)). We use Var(.) to denote
variance of a random variable.
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2. Preliminaries. In this section, we will present the model of an input
queued switch, MaxWeight scheduling algorithm, some observations on the
geometry of the capacity region and other preliminaries.

2.1. System model and MaxWeight algorithm. An input queued switch
is a model for cross-bar switches that are widely used. An n× n switch has
n input ports and n output ports. We consider a discrete time system. In
each time slot t, packets arrive at any of the input ports to be delivered to
any of the output ports. When scheduled, each packet needs one time slot
to be transmitted across.

Each input port maintains n separate queues, one each for packets to
be delivered to each of the n output ports. We denote the queue length of
packets at input port i to be delivered at output port j at time t by qij(t).

Let q ∈ R
n2

denote the vector of all queue lengths.
Let aij(t) denote the number of packet arrivals at input port i at time

t to be delivered to output port j, and we let a ∈ R
n2

denote the vec-
tor (aij)ij . For every input-output pair (i, j), the arrival process aij(t) is a
stochastic process that is i.i.d across time, with mean E[aij(t)] = λij and
variance Var(aij(t)) = σ2

ij for any time t. We assume that the arrival pro-
cesses are independent across input-output pairs, (i.e, if (i, j) �= (i′, j′), the
processes aij(t) and ai′j′(t) are independent) and are also independent of
the queue lengths or schedules chosen in the switch. We further assume that
for all i, j, t, aij(t) ≤ amax for some amax ≥ 1 and P (aij(t) = 0) > εa for
some εa > 0. The arrival rate vector is denoted by λ = (λij)ij and the
variance vector (σ2

ij)ij is denoted by (σ)2 or σ2. We will use σ to denote
(σij)ij .

In each time slot, each input port can be matched to only one output
port and similarly, each output port can be mapped to only one input port.
These constraints can be captured in a graph. Let G denote a complete n×n
bipartite graph with n2 edges between the set of input ports and the set of
output ports. The schedule in each time slot is a matching on this graph G.
We let sij = 1 if the link between input port i and output port j is matched
or scheduled and sij = 0 otherwise and we denote s = (sij)ij . Then, the set

of feasible schedules, S ⊂ R
n2

is defined as follows.

S =

⎧⎨⎩s ∈ {0, 1}n2
:

n∑
i=1

sij ≤ 1,

n∑
j=1

sij ≤ 1 ∀ i, j ∈ {1, 2, . . . , n}

⎫⎬⎭ .

Let S∗ denote the set of maximal feasible schedules. Then, it is easy to see
that
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S∗ =

⎧⎨⎩s ∈ {0, 1}n2
:

n∑
i=1

sij = 1,

n∑
j=1

sij = 1 ∀ i, j ∈ {1, 2, . . . , n}

⎫⎬⎭ .

Each element in this set corresponds to a perfect matching on the graph G.
Each of these maximal feasible schedules is also a permutation π on the set
1, 2, . . . , n with π(i) = j if sij = 1.

A scheduling policy or algorithm picks a schedule s(t) in every time slot
based on the current queue length vector, q(t). In each time slot, the order
of events is as follows. Queue lengths at the beginning of time slot t are q(t).
A schedule s(t) is then picked for that time slot based on the queue lengths.
Then, arrivals for that time a(t) happen. Finally the packets are served and
there is unused service if there are no packets in a scheduled queue. The
queue lengths are then updated to give the queue lengths for the next time
slot. The queue lengths therefore evolve as follows.

qij(t+ 1) = [qij(t) + aij(t)− sij(t)]
+

= qij(t) + aij(t)− sij(t) + uij(t)

q(t+ 1) = q(t) + a(t)− s(t) + u(t),

where [x]+ = max(0, x) is the projection onto positive real axis, uij(t) is
the unused service on link (i, j). Unused service is 1 only when link (i, j) is
scheduled, but has zero queue length; and it is 0 in all other cases. Thus,
we have that when uij(t) = 1, we have qij(t) = 0, aij(t) = 0, sij(t) = 1
and qij(t + 1) = 0. Therefore, we have uij(t)qij(t) = 0, uij(t)aij(t) = 0
and uij(t)qij(t + 1) = 0. Also note that since uij(t) ≤ sij(t), we have that∑n

i=1 uij ∈ {0, 1} and
∑n

j=1 uij ∈ {0, 1} for all i, j.
The queue lengths process q(t) is a Markov chain. The switch is said to

be stable under a scheduling policy if the sum of all the queue lengths is
finite, i.e.,

lim sup
C→∞

lim sup
t→∞

P

⎛⎝∑
ij

qij(t) ≥ C

⎞⎠ = 0.

If the queue lengths process q(t) is positive recurrent under a scheduling
policy, then we have stability. The capacity region of the switch is the set of
arrival rates λ for which the switch is stable under some scheduling policy.
A policy that stabilizes the switch under any arrival rate in the capacity
region is said to be throughput optimal. The MaxWeight Algorithm is a
popular scheduling algorithm for the switches. In every time slot t, each link
(i, j) is given a weight equal to its queue length qij(t) and the schedule with
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the maximum weight among the feasible schedules S is chosen at that time
slot. This algorithm is presented in Algorithm 1. It is possible to show that
the Markov chain q(t) is irreducible and aperiodic under the MaxWeight
algorithm for an appropriately defined state space [15, Exercise 4.2]. It is
well known [1, 2] that the capacity region C of the switch is the convex hull
of all feasible schedules,

C =Conv(S)

=

⎧⎨⎩λ ∈ R
n2

+ :
n∑

i=1

λij ≤ 1,
n∑

j=1

λij ≤ 1 ∀ i, j ∈ {1, 2, . . . , n}

⎫⎬⎭
=
{
λ ∈ R

n2

+ :
〈
λ, e(i)

〉
≤ 1,

〈
λ, ẽ(j)

〉
≤ 1 ∀ i, j ∈ {1, 2, . . . , n}

}
.

For any arrival rate vector λ, ρ � maxij{
∑

i λij ,
∑

j λij} is called the load.
It is also known that the queue lengths process is positive recurrent under
the MaxWeight algorithm whenever the arrival rate is in the capacity region
C (equivalently, load ρ < 1) and therefore is throughput optimal.

Algorithm 1 MaxWeight scheduling algorithm for an input-queued switch
Consider the complete bipartite graph between the input ports and output ports. Let the
queue length qij(t) be the weight of the edge between input port i and output port j at
time t. In time slot t, the schedule chosen is given by the maximum weight matching, i.e.,

s(t) = argmax
s∈S

∑
ij

qij(t)sij = argmax
s∈S

〈q(t), s〉(1)

Ties are broken uniformly at random.

Note that there is always a maximum weight schedule that is maximal.
If the MaxWeight schedule chosen at time t, s is not maximal, there exists
a maximal schedule s∗ ∈ S∗ such that s ≤ s∗ . For any link (i, j) such that
sij = 0 and s∗ij = 1, qij(t) = 0. If not, s would not have been a maximum
weight schedule. Therefore, we can pretend that the actual schedule chosen
is s∗ and the links (i, j) that are in s and s∗ have an unused service of 1.
Note that this does not change the scheduling algorithm, but it is just a
convenience in the proof. Therefore, without loss of generality, we assume
that the schedule chosen in each time slot is a maximal schedule, i.e.,

s(t) ∈ S∗ for all time t.(2)

Hence the MaxWeight schedule picks one of the n! possible permutations
from the set S∗ in each time slot.
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For any arrival rate in the capacity region C, due to positive recurrence of
q(t), we have that a steady state distribution exists under MaxWeight policy.
Let q denote the steady state random vector. In this paper, we focus on the
average queue length under the steady state distribution, i.e., E[

∑
i,j qij ].

We consider a set of systems indexed by ε with arrival rate λε = (1 − ε)ν,
where ν is an arrival rate on the boundary of the capacity region C such
that all the input and output ports are saturated and νij > 0 for all i, j.
The load of each system is then (1− ε). We will study the switch when ε ↓ 0.
This is called the heavy traffic limit. We first show a universal lower bound
on the average queue length in heavy traffic limit, i.e., on limε→0 E[

∑
i,j qij ].

We then show that under MaxWeight policy, the limiting average queue
length is within a factor of less than 2 of the universal lower bound and
thus MaxWeight has optimal average queue length scaling. We will show
these bounds using Lyapunov drift conditions. We will use several different
quadratic Lyapunov functions through out the paper.

2.2. Geometry of the capacity region. The capacity region C is a coor-
dinate convex polytope in R

n2
. Here, we review some basic definitions. For

any set P ∈ R
m, its dimension is defined by

dim(P ) � min{dim(A)|P ⊆ A,A is an affine space }.
So the capacity region C has dimension n2. A hyperplane H is said to be
a supporting hyperplane of a polytope P if P ∩ H �= ∅, P ∩ H+ �= ∅ and
P ∩ H− = ∅ where H+ and H− are the open half-spaces determined by
the hyperplane H. For any supporting hyperplane H of polytope P , P ∩H
is called a face [16]. A face of a polytope is also a polytope with lower
dimension. A face F of polytope P with dimension dim(F ) = dim(P ) −
1 is called a facet. Heavy traffic optimality of MaxWeight algorithm for
generalized switches is shown in [3, 7] when a single input or output port
is saturated or in other words when approaching an arrival rate vector on a
facet of the capacity region. However, in this paper, we are interested in the
case when all the ports are saturated. The arrival rate vector ν in this case
does not lie on a facet and so, that result is not applicable here.

When ν is the arrival rate vector on the boundary of the capacity region
such that all the input ports and all the output ports are saturated, it lies
on the face F ,

F =

{
λ ∈ R

n2

+ :

n∑
i=1

λij = 1,

n∑
j=1

λij = 1 ∀ i, j ∈ {1, 2, . . . , n}
}

=
{
λ ∈ R

n2

+ :
〈
λ, e(i)

〉
= 1,

〈
λ, ẽ(j)

〉
= 1 ∀ i, j ∈ {1, 2, . . . , n}

}
.
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It is easy to see that F as defined here is indeed a face by observing that
the hyperplane 〈λ,1〉 = n is a supporting hyperplane of the capacity region
C and it contains any rate vector ν where all the ports are saturated. The
face F has dimension (n− 1)2 = n2 − (2n− 1), and lies in the affine space
formed by the intersection of the 2n constraints, {

∑n
i=1 λij = 1 for all j},

and {
∑n

j=1 λij = 1 for all i}. Of these 2n constraints, one is linearly depen-
dent of the others and we have 2n− 1 linearly independent constraints. The
face F is actually the convex combination of the maximal feasible schedules
S∗, i.e., F = Conv(S∗). These results follow from the fact that the face F
is the Birkhoff polytope Bn that contains all the n × n doubly stochastic
matrices. It is known [17, page 20] that Bn lies in the (n− 1)2 dimensional
affine space of the constraints and is the convex hull of the permutation
matrices.

A facet of a polytope has a unique supporting hyperplane defining the
facet. It was shown in [7] that when the arrival rate vector approaches a rate
vector in the relative interior of a facet, in the limit, the queue length vector
concentrates along the direction of the normal vector of the unique support-
ing hyperplane. However, a lower dimensional face can be defined by one of
several hyperplanes, and so there is no unique normal vector. A lower dimen-
sional face is always an intersection of two or more facets. We are interested
in the case when the arrival rate vector approaches the vector ν that lies on
the face F . The face F is the intersection of the 2n facets, {

〈
e(i),λ

〉
= 1}∩C

for all i, and {
〈
ẽ(j),λ

〉
= 1} ∩ C for all j. We will show in section 4 that

in the heavy traffic limit, the queue length vector concentrates within the
cone spanned by the 2n normal vectors, {e(i) for all i}∪ {ẽ(j) for all j}. We
will call this cone K. Here, we will present some definitions and other results
related to this cone. More formally, the cone K can be defined as follows.

K =

⎧⎨⎩x ∈ R
n2
: x=

∑
i

wie
(i)+

∑
j

w̃j ẽ
(j) where wi ∈ R+, w̃j ∈ R+∀i, j

⎫⎬⎭ .

The following lemma presents several equivalent ways of characterizing
the cone K. The proof of the lemma is presented in Appendix A.

Lemma 1. For a vector x ∈ R
n2
, the following are equivalent.

(i) x ∈ K.
(ii) There are wi ∈ R+ and w̃j ∈ R+ for all i, j ∈ {1, 2, . . . , n} such that

xij = wi + w̃j.

(iii) x ∈ R
n2

+ and when x is used as the weight, all maximal schedules
(permutation matrices) have same weight.
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(iv) x ∈ R
n2

+ and it satisfies

xij =
1

n

n∑
j′=1

xij′ +
1

n

n∑
i′=1

xi′j −
1

n2

n∑
i′=1

n∑
j′=1

xi′j′ ∀ i, j.(3)

Note that the representation of the vector x in terms of wi’s and w̃j ’s in
(ii) above need not be unique. For example, suppose that wi ≥ 1 for all i,
then setting w′

i = wi−1 for each i and w̃′
j = w̃j+1 for each j, we again have

that w′
i ∈ R+, w̃

′
j ∈ R+ and xij = w′

i+ w̃′
j for all i, j. Equation 3 means that

any element in the matrix x, is equal to the average of all the elements in
its row plus the average of all the elements in its column minus the average
of all the elements in the whole matrix. Suppose the queue lengths q ∈ K,
then any queue length from an input port to an output port is equal to the
average queue lengths at that input port plus the average queue lengths at
that output port minus the average queue length of all the queues in the
switch.

We now present some more properties of this is cone. The cone K lies in
the 2n− 1 dimensional subspace spanned by the 2n− 1 independent vectors
among the 2n vectors, {e(i) for all i} ∪ {ẽ(j) for all j}. Call this space VK.
For any two vectors x,y ∈ F , x− y is orthogonal to the subspace VK, i.e.,

x− y ⊥ VK.(4)

This is easy to see since
〈
x, e(i)

〉
=
〈
y, e(i)

〉
= 1 for all i and

〈
x, ẽ(j)

〉
=〈

y, ẽ(j)
〉
= 1 for all j. If VF denotes the subspace obtained by translating

the affine space spanned by F , it follows that the spaces VK and VF are
orthogonal because translation means subtraction by a vector. Moreover,
they span the entire space R

n2
since their dimensions sum to n2.

As noted earlier, state space collapse to the cone K has been shown in
[4, 5], although our notion of state space collapse is a bit different as will
be explained later. Equation 3 in Lemma 1 is essentially what is called a
lifting map in [5]. However, we do not explicitly use the notion of workload
or lifting map in the sense used in [5].

2.2.1. Projection onto the cone K . The cone K is closed and convex.
For any x ∈ R

n2
, the closest point in the cone K to x is called the projection

of x on to the cone K and we will denote it by x‖. More formally,

x‖ = argmin
y∈K

‖x− y‖.
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For a closed convex cone K, the projection x‖ is well defined and is unique
[18, Appendix E.9.2]. We will use x⊥ to denote x − x‖. We will use x‖ij to

denote the (i, j)th component of x‖. Similarly, x⊥ij .
Note that unlike projection on to a subspace, projection on to a cone is

not linear, i.e., (x+y)‖ �= x‖+y‖. A simple counter example is the following.
In R

2, let x = (2, 2) and y = (−1,−1). Consider the positive quadrant as
the cone of interest. Then, x‖ = (2, 2), y‖ = (0, 0) and (x+ y)‖ = (1, 1).

Since for any x ∈ R
n2
, x‖ ∈ K, from the definition of the cone K , we

have that every component of x‖ is non negative, i.e., x‖ij ≥ 0. However, x⊥
could have negative components.

The polar cone K◦ of cone K is defined as

K◦ =
{
x ∈ R

n2
: 〈x,y〉 ≤ 0 for all y ∈ K

}
.

The polar cone K◦ is negative of the dual cone K∗ of the cone K . For
any x ∈ R

n2
, x⊥ ∈ K◦ and

〈
x‖,x⊥

〉
= 0 [18, Appendix E.9.2]. Therefore,

pythagoras theorem is applicable, i.e.,

‖x‖2 = ‖x‖‖2 + ‖x⊥‖2(5)

and so, ‖x‖‖ ≤ ‖x‖ and ‖x⊥‖ ≤ ‖x‖.
Projection onto any closed convex set in R

n2
(and so onto a closed convex

cone) is nonexpansive [18, Appendix E.9.3]. Therefore, we have ‖x‖ −y‖| ≤
‖x− y‖. Since x⊥ is a projection onto K◦, we also have

‖x⊥ − y⊥| ≤ ‖x− y‖.(6)

2.3. Moment bounds from Lyapunov drift conditions. In this paper, we
will use the Lyapunov drift based approach presented in [7] to obtain bounds
of average queue length under MaxWeight. A key ingredient in this approach
is to obtain moment bounds from drift conditions. A lemma from [19] was
used in [7] to obtain these bounds and we first state it here as it was stated
in [7].

Lemma 2. For an irreducible and aperiodic Markov chain {X(t)}t≥0

over a countable state space X , suppose Z : X → R+ is a nonnegative-
valued Lyapunov function. We define the drift of Z at X as

ΔZ(X) � [Z(X(t+ 1))− Z(X(t))] I(X(t) = X),

where I(.) is the indicator function. Thus, ΔZ(X) is a random variable that
measures the amount of change in the value of Z in one step, starting from
state X. This drift is assumed to satisfy the following conditions:
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C1 There exists an η > 0, and a κ < ∞ such that for any t = 1, 2, . . . and
for all X ∈ X with Z(X) ≥ κ,

E[ΔZ(X)|X(t) = X] ≤ −η.

C2 There exists a D < ∞ such that for all X ∈ X ,

P (|ΔZ(X)| ≤ D) = 1.

Then, there exists a θ� > 0 and a C� < ∞ such that

lim sup
t→∞

E

[
eθ

�Z(X(t))
]
≤ C�.

If we further assume that the Markov chain {X(t)}t is positive recurrent,
then Z(X(t)) converges in distribution to a random variable Z for which

E

[
eθ

�Z
]
≤ C�,

which directly implies that all moments of Z exist and are finite.

This lemma (and its original form in [19]) is quiet general and versatile.
However, we use a different result in this paper to obtain moment bounds
that are tighter than the bounds that can be obtained using Lemma 2 (or
its original form in [19]). The following lemma essentially follows from [20,
Theorem 1] except for some minor differences. The proof is presented in
Appendix B and makes use of Lemma 2.

Lemma 3. Consider an irreducible and aperiodic Markov chain Markov
Chain {X(t)}t≥0 over a countable state space X , suppose Z : X → R+

is a nonnegative-valued Lyapunov function. The drift ΔZ(X) of Z at X
as defined in Lemma 2 is assumed to satisfy the conditions C.1 and C.2.
Further assume that the Markov chain {X(t)}t converges in distribution to
a random variable X. Then, for any m = 0, 1, 2, . . .,

P
(
Z
(
X
)
> κ+ 2Dm

)
≤
(

D

D + η

)m+1

.

As a result, for any r = 1, 2, . . .,

E[Z
(
X
)r
] ≤ (2κ)r + (4D)r

(
D + η

η

)r

r!.



222 S. T. MAGULURI AND R. SRIKANT

3. Universal lower bound. In this section, we will prove the follow-
ing lower bound on the average queue lengths, which is valid under any
scheduling policy.

Proposition 1. Consider a set of switch systems with the arrival pro-
cesses a(ε)(t) described in Section 2.1, parameterized by 0 < ε < 1, such that
the mean arrival rate vector is λε = (1− ε)ν for some ν ∈ F and variance

is
(
σ(ε)

)2
. The load is then ρ = (1− ε). Fix a scheduling policy under which

the switch system is stable for any 0 < ε < 1. Let q(ε)(t) denote the queue
lengths process under this policy for each system. Suppose that this process
converges in distribution to a steady state random vector q(ε). Then, for each
of these systems, the average queue length is lower bounded by

E

⎡⎣∑
ij

q
(ε)
ij

⎤⎦ ≥
∥∥σ(ε)

∥∥2
2ε

− n(1− ε)

2
.

Therefore, in the heavy-traffic limit as ε ↓ 0, if
(
σ(ε)

)2 → σ2, we have

lim inf
ε↓0

εE

⎡⎣∑
ij

q
(ε)
ij

⎤⎦ ≥ ‖σ‖2

2
.

Proof. We will obtain a lower bound on sum of all the queue lengths
by lower bounding the queue lengths at each input port, i.e., we will first

bound E[
∑

j q
(ε)
ij ] for a fixed input port i. We do this by considering a single

queue that is coupled to the process
∑

j q
(ε)
ij (t). Consider a single server

queue φ
(ε)
i (t) in discrete time. Packets arrive into this queue to be served.

Each packet needs exactly one time slot of service. The arrival process to

this queue is α
(ε)
i (t) =

∑
j a

(ε)
ij (t). Mean arrival to this queue is E[α

(ε)
i (t)] =∑

j λ
(ε)
ij = (1− ε)

∑
j ν

(ε)
ij = (1− ε) since ν ∈ F . As long as the queue is non

empty, one packet is served in every time slot. Thus, this queue evolves as

φ
(ε)
i (t+ 1) =

[
φ
(ε)
i (t) + α

(ε)
i (t)− 1

]+
= φ

(ε)
i (t) + α

(ε)
i (t)− 1 + υ(ε)(t),

where υ(ε)(t) is the unused service and so υ(ε)(t)φ
(ε)
i (t+1) = 0. Clearly, φ

(ε)
i (t)

is positive recurrent and let φ
(ε)
i denote the steady state random variable to

which it converges in distribution.
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Claim 1. In steady state,

E

[∑
j

q
(ε)
ij

]
≥ E[φ

(ε)
i ].

Proof. Suppose that at time zero, the queue φ
(ε)
i starts with φ

(ε)
i (0) =∑

j q
(ε)
ij (0). Then, for any time t, the queue φ

(ε)
i (t) is stochastically no greater

than
∑

j q
(ε)
ij (t). This can easily be seen using induction. For t = 0, we have∑

j qij(0) ≥ φi(0). Suppose that
∑

j q
(ε)
ij (t) ≥ φ

(ε)
i (t). Then, at time (t+ 1),∑

j

q
(ε)
ij (t+ 1) =

∑
j

[
q
(ε)
ij (t) + a

(ε)
ij (t)− s

(ε)
ij (t)

]+
≥
[∑

j

(q
(ε)
ij (t) + a

(ε)
ij (t)− s

(ε)
ij (t))

]+
≥
[
φ
(ε)
i (t) + α

(ε)
i (t)− 1)

]+
= φ

(ε)
i (t+ 1),

where the last inequality follows from the inductive hypothesis, definition of

α(ε)(t), the constraint s
(ε)
ij (t) ≤ 1 and the fact that if x ≥ y, we have that

[x]+ ≥ [y]+. Thus, we have that in steady state, E[
∑

j q
(ε)
ij ] ≥ E[φ

(ε)
i ]. Since

steady state distribution of
∑

j q
(ε)
ij and φ

(ε)
i does not depend on the initial

state at time zero, we have the lower bound E[
∑

j q
(ε)
ij ] ≥ E[φ

(ε)
i ] independent

of the initials states φ
(ε)
i (0) and

∑
j q

(ε)
ij (0).

We will now bound E[φ
(ε)
i ]. This result is obtained in [15]. We present it

here for completeness. Consider the drift of E[(φ
(ε)
i (t))2].

E[(φ
(ε)
i (t+ 1))2 − (φ

(ε)
i (t))2]

= E[(φ
(ε)
i (t) + α

(ε)
i (t)− 1 + υ(ε)(t))2 − (φi(t)

(ε))2]

(a)
= E[(φ

(ε)
i (t) + α

(ε)
i (t)− 1)2 − (υ(ε)(t))2 − (φi(t)

(ε))2]

= E[(α
(ε)
i (t)− 1)2 + 2(φ

(ε)
i (t))(α

(ε)
i (t)− 1)− (υ(ε)(t))2]

(b)
= E[(α

(ε)
i (t)− (1− ε)− ε)2]− 2εE[φ

(ε)
i (t)]− E[υ(ε)(t)]

(c)
= Var

(
α
(ε)
i (t)

)
+ ε2 − 2εE[φ

(ε)
i (t)]− E[υ(ε)(t)]

(d)
=
∑
j

(
σ
(ε)
ij

)2
+ ε2 − 2εE[φ

(ε)
i (t)]− E[υ(ε)(t)],
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where (a) follows from noting that (υ(ε)(t))(φ
(ε)
i (t)+α

(ε)
i (t)−1+υ(ε)(t)) = 0;

(b) follows from independence of φ
(ε)
i (t) and the arrivals α

(ε)
i (t) and since

υ(ε)(t) ∈ {0, 1}; (c) follows from the fact that E[φ
(ε)
i (t)] = (1− ε); (d) follows

from the definition of α
(ε)
i (t) and independence of the arrival process aij(t)

across ports. It can easily be shown that E[(φ
(ε)
i )2] is finite [15, Section 10.1].

Therefore, the steady state drift of E[(φ
(ε)
i (t))2] is zero, i.e., in steady-state,

we get

2εE[φ
(ε)
i ] =

∑
j

(
σ
(ε)
ij

)2
+ ε2 − E[υ(ε)].(7)

Consider the drift of E[φ
(ε)
i (t)].

E[φ
(ε)
i (t+ 1)− φ

(ε)
i (t)] = E[α

(ε)
i (t)− 1 + υ(ε)(t)]

= −ε+ E[υ(ε)(t)].

Since φ
(ε)
i (t) ∈ Z+, we have φ

(ε)
i (t) ≤ (φ

(ε)
i (t))2, and so we get finiteness

of E[φ
(ε)
i ] from that of E[(φ

(ε)
i )2]. Therefore, the drift of E[φ

(ε)
i (t)] is zero in

steady state. Thus, we get that in steady state, E[υ(ε)] = ε. Substituting this
in (7), and using the claim, we get

E[
∑
j

q
(ε)
ij ] ≥ E[φ

(ε)
i ] =

1

2ε

∑
j

(
σ
(ε)
ij

)2
− 1− ε

2
.(8)

Since this lower bound is true for any input port i, summing over all the
input ports, we have the proposition. Note that we could have obtained the
same bound by similarly lower bounding the sum of lengths of all the queues

destined to port j, i.e.,
∑

i q
(ε)
ij (t).

We do not know if this lower bound is tight, i.e., if there is a scheduling
policy that attains this lower bound. However, in section 5, we show that un-
der MaxWeight scheduling algorithm, the average queue lengths are within
a factor of less than 2 away from this universal lower bound, thus showing
that MaxWeight has optimal scaling.

4. State space collapse under MaxWeight policy. As mentioned
earlier, a closely-related but nevertheless different notion of state-space col-
lapse to the cone K has also been shown in [4, 5], but we need the type
of state-space collapse proved here to establish the upper bounds in Sec-
tion 5. In this section, we will show that under the MaxWeight scheduling
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algorithm, in the heavy traffic limit, the steady state queue length vector
concentrates within the cone K in the following sense. As the parameter
ε approaches zero, the mean arrival rate approaches the boundary of the
capacity region and we know from the lower bound that the average queue
lengths go to infinity Ω(1/ε). We will show that under the MaxWeight al-

gorithm, the q
(ε)
⊥ component of the queue length vector is upper bounded

independent of ε. Thus the q
(ε)
⊥ component is negligible compared to the

q
(ε)
‖ component of q(ε). This is called state space collapse. We say that the

state space collapses to the cone K. It was shown in [21] that the state space
collapses to the subspace containing the cone K. Here, we show the stronger
result that the state space collapses to the cone, which is essential to obtain
the upper bounds in Section 5. A similar result was also shown in [22] for a
different problem.

We define the following quadratic Lyapunov functions and their corre-
sponding drifts.

V (q) � ‖q‖2 =
∑
ij

q2ij W⊥(q) � ‖q⊥‖

V⊥(q) � ‖q⊥‖2 =
∑
ij

q2⊥ij V‖(q) � ‖q‖‖2 =
∑
ij

q2‖ij

ΔV (q) � [V (q(t+ 1))− V (q(t))] I(q(t) = q)

ΔW⊥(q) � [W⊥(q(t+ 1))−W⊥(q(t))] I(q(t) = q)

ΔV⊥(q) � [V⊥(q(t+ 1))− V⊥(q(t))] I(q(t) = q)

ΔV‖(q) � [V‖(q(t+ 1))− V‖(q(t))] I(q(t) = q).

We will use Lemma 3 using the Lyapunov function W⊥(q)(.) to bound

the q
(ε)
⊥ component in steady state. We need the following lemma, which

follows from concavity of square root function and the pythagorean theorem
(5). The proof of this lemma is similar to the proof of Lemma 7 in [7] and
so we skip it here.

Lemma 4. Drift of W⊥(.) can be bounded in terms of drift of V (.) and
V‖(.) as follows.

ΔW⊥(q) ≤
1

2‖q⊥‖
(
ΔV (q)−ΔV‖(q)

)
∀q ∈ R

n2
.

We will now formally state the state space collapse result.
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Proposition 2. Consider a set of switch systems under MaxWeight
scheduling algorithm, with the arrival processes a(ε)(t) described in Section
2.1, parameterized by 0 < ε < 1, such that the mean arrival rate vector is
λε = (1 − ε)ν for some ν ∈ F such that νmin � minij νij > 0. The load

is then ρ = (1 − ε). Let the variance of the arrival process be
(
σ(ε)

)2
. Let

q(ε)(t) denote the queue lengths process of each system, which is positive
recurrent. Therefore, the process q(ε)(t) converges to a steady state random
vector in distribution, which we denote by q(ε). Then, for each system with
0 < ε ≤ νmin/2‖ν‖, the steady state queue lengths vector satisfies

E

[
‖q(ε)

⊥ ‖r
]
≤ (M (ε)

r )r ∀r ∈ {1, 2, . . .},

where

M (ε)
r =2

1
r max

(
4(‖λ(ε)‖2 + ‖σ(ε)‖2 + n)

νmin
, (
√
re)1/r16

r

e

namax

νmin
(namax + 1)

)
.

Remark 1. Note that for any r, the expressions Mr are upper bounded
by a constant not dependant on ε whenever there exists a σ̃ which does
not depend on ε such that ‖σ(ε)‖2 ≤ σ̃ for all ε. This is why we call this
state space collapse. Our notion of state-space collapse considers the system
in steady-state, and is hence mathematically different from the state-space
collapse result in [5], although the results are similar in spirit.

Proof. We will skip the superscript (ε) in this proof for ease of notation.
Thus, we will use q(t) , λ and σ to denote q(ε)(t), λ(ε) and σ(ε) respec-
tively. We will verify both the conditions C.1 and C.2 to apply Lemma 3 for
the Markov chain q(t) and Lyapunov function W⊥(q(·)). First we consider
condition C.2.

|ΔW⊥(q)| =|‖q⊥(t+ 1)‖ − ‖q⊥(t)‖| I(q(t) = q)

(a)

≤‖q⊥(t+ 1)− q⊥(t)‖
(b)

≤‖q(t+ 1)− q(t)‖

=

√∑
ij

|qij(t+ 1)− qij(t)|2

(c)

≤
√∑

ij

a2max

≤namax,(9)
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where (a) follows from triangle inequality, i.e., |‖x‖ − ‖y‖| ≤ ‖x − y‖ and
I(.) ≤ 1; (b) follows from nonexpansivity of projection operator (6); (c) is
true because each queue lengths can increase by at most amax ≥ 1 due to
arrivals and can decrease by at most 1 due to departures. Thus condition
C.2 of Lemma is true with D = namax.

We will now verify C.1, using Lemma 4 by bounding the drifts ΔV (q)
and ΔV‖(q).

E [ΔV (q)|q(t) = q]

=E
[
‖q(t+ 1)‖2 − ‖q(t)‖2

∣∣q(t) = q
]

=E
[
‖q(t) + a(t)− s(t) + u(t)‖2 − ‖q(t)‖2

∣∣q(t) = q
]

=E
[
‖q(t) + a(t)− s(t)‖2 + ‖u(t)‖2 − ‖q(t)‖2

∣∣q(t) = q
]

+ E [2 〈q(t+ 1)− u(t),u(t)〉|q(t) = q]

(a)

≤E
[
‖a(t)− s(t)‖2 + 2 〈q(t),a(t)− s(t)〉

∣∣q(t) = q
]

(b)
=E

⎡⎣∑
ij

(a2ij(t) + sij(t)− 2aij(t)sij(t))

∣∣∣∣∣∣q(t) = q

⎤⎦
+ 2 〈q,λ− E [s(t)|q(t) = q]〉

(c)
=
∑
ij

(λ2
ij + σ2

ij) + n− 2E

⎡⎣∑
ij

λijsij(t)

∣∣∣∣∣∣q(t) = q

⎤⎦
+ 2 〈q,λ− E [s(t)|q(t) = q]〉(10)

=‖λ‖2 + ‖σ‖2 + n− 2(1− ε)E

⎡⎣∑
ij

νijsij(t)

∣∣∣∣∣∣q(t) = q

⎤⎦
+ 2 〈q, (1− ε)ν − E [s(t)|q(t) = q]〉

≤‖λ‖2 + ‖σ‖2 + n− 2ε 〈q,ν〉+ 2 〈q,ν − E [s(t)|q(t) = q]〉
=‖λ‖2 + ‖σ‖2 + n− 2ε 〈q,ν〉+ 2min

r∈C
〈q,ν − r〉 ,(11)

where (a) follows from the fact that 〈q(t+ 1),u(t)〉 = 0 and dropping
the −‖u(t)‖2 term; (b) is true because sij ∈ {0, 1}. Note that E[a2ij(t)] =

E[aij(t)]
2+Var(aij(t)). Also note that the arrivals in each time slot are inde-

pendent of the queue lengths and hence are also independent of the service
process. These facts and (2) give (c). Since we use MaxWeight scheduling
algorithm, from (1), we have (11). In order to bound the last term in (11),
we present the following claim.
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Claim 2. For any q ∈ R
n2
,

ν +
νmin

‖q⊥‖
q⊥ ∈ C.

Proof. Since |q⊥ij | ≤ ‖q⊥‖, νij + νmin
‖q⊥‖q⊥ij ≥ νij − νmin ≥ 0 and so

ν + νmin
‖q⊥‖q⊥ ∈ R

n2

+ . We know that q⊥ ∈ K◦ and e(i) ∈ K, and so
〈
q⊥, e(i)

〉
≤

0. Thus, for any i, we have〈
ν +

νmin

‖q⊥‖
q⊥, e

(i)

〉
=
〈
ν, e(i)

〉
+

νmin

‖q⊥‖
〈
q⊥, e

(i)
〉

≤
〈
ν, e(i)

〉
=1,

where the last equality is due to the fact that ν ∈ F . Similarly, we can show

that
〈
ν + νmin

‖q⊥‖q⊥, ẽ(j)
〉
≤ 1 for any j, proving the claim.

Using the claim in (11), we get

E [ΔV (q)|q(t) = q]

≤‖λ‖2 + ‖σ‖2 + n− 2ε 〈q,ν〉+ 2

〈
q,ν −

(
ν +

νmin

‖q⊥‖
q⊥

)〉
=‖λ‖2 + ‖σ‖2 + n− 2ε 〈q,ν〉 − 2νmin

‖q⊥‖
〈
q‖ + q⊥,q⊥

〉
=‖λ‖2 + ‖σ‖2 + n− 2ε 〈q,ν〉 − 2νmin‖q⊥‖,(12)

where the last equality follows from the fact that
〈
q‖,q⊥

〉
= 0. We will now

bound the drift ΔV‖(q).

E
[
ΔV‖(q)

∣∣q(t) = q
]

=E
[
‖q‖(t+ 1)‖2 − ‖q‖(t)‖2

∣∣q(t) = q
]

=E
[〈
q‖(t+ 1) + q‖(t),q‖(t+ 1)− q‖(t)

〉∣∣q(t) = q
]

=E
[
‖q‖(t+ 1)− q‖(t)‖2

∣∣q(t) = q
]

+ 2E
[〈
q‖(t),q‖(t+ 1)− q‖(t)

〉∣∣q(t) = q
]

≥2E
[〈
q‖(t),q‖(t+ 1)− q‖(t)

〉∣∣q(t) = q
]

=2E
[〈
q‖(t),q(t+ 1)− q(t)

〉∣∣q(t) = q
]

− 2E
[〈
q‖(t),q⊥(t+ 1)− q⊥(t)

〉∣∣q(t) = q
]

(a)

≥2E
[〈
q‖(t),a(t)− s(t) + u(t)

〉∣∣q(t) = q
]
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(b)

≥2
〈
q‖,λ

〉
− 2E

[〈
q‖, s(t)

〉∣∣q(t) = q
]

=− 2ε
〈
q‖,ν

〉
− 2E

[〈
q‖, s(t)− ν

〉∣∣q(t) = q
]

=− 2ε
〈
q‖,ν

〉
.(13)

Equation (a) is true because
〈
q‖(t),q⊥(t)

〉
= 0 and

〈
q‖(t),q⊥(t+ 1)

〉
≤ 0

since q‖(t) ∈ K and q⊥(t + 1) ∈ K◦. All the components of q‖ and u(t)
are nonnegative. Using this fact with independence of the arrivals and the
queue lengths gives Equation (b). The last equality follows from (4) since
q‖ ∈ K ∈ VK and s(t),ν ∈ F from (2). Now substituting (12) and (13) in
Lemma 4, we get

E [ΔW⊥(q)|q(t) = q]

≤ 1

2‖q⊥‖
(
‖λ‖2 + ‖σ‖2 + n− 2ε 〈q,ν〉 − 2νmin‖q⊥‖+ 2ε

〈
q‖,ν

〉)
=
‖λ‖2 + ‖σ‖2 + n

2‖q⊥‖
− νmin −

ε

‖q⊥‖
〈q⊥,ν〉

(a)

≤ ‖λ‖2 + ‖σ‖2 + n

2‖q⊥‖
− νmin + ε‖ν‖

≤‖λ‖2 + ‖σ‖2 + n

2‖q⊥‖
− νmin

2
whenever ε ≤ νmin

2‖ν‖

≤ − νmin

4
for all q such that W⊥(q) ≥

2(‖λ‖2 + ‖σ‖2 + n)

νmin
,

where (a) is due to the Cauchy Schwartz inequality
〈

−q⊥
‖q⊥‖ ,ν

〉
≤ ‖q⊥‖

‖q⊥‖‖ν‖.

Thus condition C.1 is valid with κ = 2(‖λ‖2+‖σ‖2+n)
νmin

and η = νmin
4 . Then

from Lemma 3, we get for r = 1, 2, . . .,

E

[
‖q(ε)

⊥ ‖r
]
≤
(
4(‖λ‖2 + ‖σ‖2 + n)

νmin

)r

+ r!

(
16

namax

νmin

)r (
namax +

νmin

4

)r
(a)

≤
(
4(‖λ‖2 + ‖σ‖2 + n)

νmin

)r

+
√
re

(
16

r

e

namax

νmin
(namax + 1)

)r

≤2max

(
4(‖λ‖2+‖σ‖2+n)

νmin
, (
√
re)1/r16

r

e

namax

νmin
(namax + 1)

)r

.

where (a) follows from Stirling’s upper bound of the factorial function, r! ≤
e1−rrr+

1
2 and noting that νmin ≤ 1 follows from the definition of νmin and

the capacity region C. The last inequality follows from ar+br ≤ 2max(a, b)r,
proving the proposition.
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Recall that there are n! maximal schedules (perfect matchings or permu-
tations). For each of them, MaxWeight assigns a weight which is the sum
of corresponding queue lengths and then picks the one with the maximum
weight. In this process, it is equalizing the weights of all the schedules by
serving the matching with maximum weight and thereby decreasing it. The
cone K has the property that if the queue lengths vector q is in the cone K,
we have wi and w̃j such that qij = wi + w̃j . This means that all the max-
imal schedules have the same weight

∑
iwi +

∑
j w̃j and the MaxWeight

algorithm is agnostic between them. Thus, the state space collapse result
states that in steady state, MaxWeight is (almost) successful in being able
to equalize the weights of all maximal schedules in the heavy traffic limit.
This behavior is very similar to Join-the-shortest queue (JSQ) routing policy
in a supermarket checkout system. In such a system, there are a few servers,
each with a queue. When a customer arrives to be served, under JSQ policy,
(s)he picks the server with the shortest queue. It was shown in [7] that in
the heavy traffic limit, the state of this system collapses to a state where all
the queues are equal, and thus, JSQ is agnostic between all the queues when
such a state space collapse occurs. Here JSQ policy is trying to equalize all
the queues by increasing the shortest one, and it is (almost) successful in
doing that in steady state in heavy traffic limit.

A natural question in this context is if there is any interpretation to
the variables wi and w̃j . These variables are the optimal dual variables for
the maximum weight matching problem. The maximum weighted perfect
matching problem in bipartite graphs (that MaxWeight solves in every time
slot) can be written as the integer program (14) and its linear program (LP)
relaxation is the linear program (15).

max
∑
ij

qijsij(14)

subject to:
∑
i

sij = 1 ∀ j∑
j

sij = 1 ∀ i

sij ∈ {0, 1} ∀ i, j.

max
∑
ij

qijsij(15)

subject to:
∑
i

sij = 1 ∀ j∑
j

sij = 1 ∀ i

sij ≥ 0 ∀ i, j.

It can be proved that the optimal solution of the LP relaxation (15) is
identical to the optimal solution of the original integer program (14) [23].
The dual of the LP (15) is the following.

min
∑
i

wi +
∑
j

w̃j
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subject to: wi + w̃j ≥ qij ∀ i, j.(16)

For any perfect matching π and its corresponding schedule sij , and for any
dual feasible wi, w̃j , we have that

∑
i qiπ(i) =

∑
ij qijsij ≤

∑
iwi +

∑
j w̃j .

Suppose s∗ij is an optimal solution of (14) and corresponds to a permutation
π∗, and suppose w∗

i , w̃
∗
j is an optimal solution of (16). Then, from strong

duality, we have that∑
i

qiπ∗(i) =
∑
ij

qijs
∗
ij =

∑
i

w∗
i +

∑
j

w̃∗
j .(17)

Moreover, any π∗ and w∗
i , w̃

∗
j that satisfy (17) are optimal solutions for

problems (14)( or (15)) and (16) respectively. This means that any optimal
perfect matching consists of only links (i, j) such that qij = wi + w̃j . This
property is also called complementary slackness. The Hungarian assignment
algorithm for solving the MaxWeight matching problem is based on this
property. The cone K, has the special property that if wi, w̃j is the optimal
solution, then for any (i, j), we have qij = wi + w̃j and so any perfect
matching is an optimal matching and all perfect matchings have the same
weight.

5. Asymptotically tight upper and lower bounds under the Max-
Weight policy. In the previous section, we have shown that the queue
length vector collapses within the cone K in the steady state. We will use
this result to obtain lower and upper bounds on the average queue lengths
under MaxWeight algorithm. The lower and upper bounds differ only in
o(1/ε) and so match in the heavy traffic limit.

We will obtain these bounds by equating the drift of certain carefully cho-
sen functions equal to zero in steady-state. We first define a few Lyapunov-
type functions and their drifts, in addition to the already defined V (q) =
‖q‖2. The following lemma states that all these Lyapunov functions have
finite expectations in steady state.

V1(q) �
∑
i

⎛⎝∑
j

qij

⎞⎠2

V2(q) �
∑
j

(∑
i

qij

)2

V3(q) �

⎛⎝∑
ij

qij

⎞⎠2

ΔV1(q) �[V1(q(t+ 1))− V1(q(t))] I(q(t) = q)

ΔV2(q) �[V2(q(t+ 1))− V2(q(t))] I(q(t) = q)

ΔV3(q) �[V3(q(t+ 1))− V3(q(t))] I(q(t) = q).
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Lemma 5. Consider the switch under MaxWeight scheduling algorithm.
For any arrival rate vector λ in the interior of the capacity region λ ∈ int(C),
the steady state means E[V (q)], E[V1(q)], E[V2(q)] and E[V3(q)] are finite.

The lemma is proved in Appendix C. We will now state and prove the
main result of this paper.

Theorem 1. Consider a set of switch systems under the MaxWeight
scheduling algorithm, with arrival processes a(ε)(t) described in Section 2.1,
parameterized by 0 < ε < 1, such that the mean arrival rate vector is λε =
(1 − ε)ν for some ν ∈ F such that νmin � minij νij > 0. The load is then

ρ = (1 − ε). Let the variance of the arrival process be
(
σ(ε)

)2
. The queue

length process q(ε)(t) for each system converges in distribution to the steady
state random vector q(ε). For each system with 0 < ε ≤ νmin/2‖ν‖, the
steady state average queue length satisfies(
1− 1

2n

) ∥∥σ(ε)
∥∥2

ε
−B1(ε, n) ≤ E

⎡⎣∑
ij

q
(ε)
ij

⎤⎦ ≤
(
1− 1

2n

) ∥∥σ(ε)
∥∥2

ε
+B2(ε, n),

where

B1(ε, n) = −nε

2
+ n+ 3n(2−

1
r )ε(−

1
r )M (ε)

r and

B2(ε, n) =
n(1 + ε)

2
+ 2n(2−

1
r )ε(−

1
r )M (ε)

r

for any r ∈ {2, 3, . . .}. The terms B1(ε, n) and B2(ε, n) are both o
(
1
ε

)
, i.e.,

limε↓0 εB1(ε, n) = 0 and limε↓0 εB2(ε, n) = 0. Therefore, in the heavy traffic

limit as ε ↓ 0 which means as the mean arrival rate λε → 1
n1, if

(
σ(ε)

)2 →
σ2, we have

lim
ε↓0

εE

⎡⎣∑
ij

q
(ε)
ij

⎤⎦ =

(
1− 1

2n

)
‖σ‖2 .

Proof. Fix an 0 < ε ≤ νmin/2‖ν‖ and we consider the system with index
ε. For simplicity of notation, we again skip the superscript (ε) in this proof
and use q to denote the steady state queue length vector. We will use a to
denote the arrival vector in steady state, which is identically distributed to
the random vector a(t) for any time t. We will use s(q) and u(q) to denote
the schedule and unused service to show their dependence on the queue
lengths. We will use q+ to denote q + a − s(q) + u(q), which is the queue
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lengths vector at time t+1 if it was q at time t. Clearly, q+ and q have the
same distribution.

Define a new function V4(q) and its drift as follows.

V4(q) =V1(q) + V2(q)−
1

n
V3(q)

=
∑
i

⎛⎝∑
j

qij

⎞⎠2

+
∑
j

(∑
i

qij

)2

− 1

n

⎛⎝∑
ij

qij

⎞⎠2

ΔV4(q) �[V4(q(t+ 1))− V4(q(t))] I(q(t) = q)

=ΔV1(q) + ΔV2(q)−
1

n
ΔV3(q).

Since − 1
nV3(q) ≤ V4(q) ≤ V1(q) + V2(q), the steady state mean E[V4(q)] is

finite from Lemma 5. Therefore, the mean drift of V4(.) in steady state is
zero, i.e.,

E[ΔV4(q)] =E[[V4(q(t+ 1))−V4(q(t))] I(q(t)=q)]

=E[V4(q
+)]−E[V4(q)]

=E[V4(q)]−E[V4(q)]

=0.(18)

Therefore,

E[ΔV1(q)] + E[ΔV2(q)]−
1

n
E[ΔV3(q)] = 0.(19)

Expanding the drift of V1(.), we get

E[ΔV1(q)]

=E[V1(q+ a− s(q) + u(q))− V1(q)]

=E

⎡⎣∑
i

⎛⎝∑
j

(qij + aij − sij(q) + uij(q))

⎞⎠2

−
∑
i

⎛⎝∑
j

qij

⎞⎠2⎤⎦
=E

⎡⎣∑
i

⎛⎝∑
j

(aij − sij(q))

⎞⎠2

+
∑
i

⎛⎝∑
j

uij(q)

⎞⎠2⎤⎦
+ 2E

⎡⎣∑
i

⎛⎝∑
j

(qij + aij − sij(q))

⎞⎠⎛⎝∑
j′

uij′(q)

⎞⎠⎤⎦
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+ 2E

⎡⎣∑
i

⎛⎝∑
j

qij

⎞⎠⎛⎝∑
j′

(aij′ − sij′(q))

⎞⎠⎤⎦
=E

⎡⎣∑
i

⎛⎝∑
j

(aij − sij(q))

⎞⎠2

+ 2
∑
i

⎛⎝∑
j

q+ij

⎞⎠⎛⎝∑
j′

uij′(q)

⎞⎠⎤⎦
+ E

⎡⎣−∑
i

⎛⎝∑
j

uij(q)

⎞⎠2

+ 2
∑
i

⎛⎝∑
j

qij

⎞⎠⎛⎝∑
j′

(aij′ − sij′(q))

⎞⎠⎤⎦ .

Similarly expanding drifts of V2(.) and V3(.) and substituting in (19), we
get the following expression. Since this is a lengthy equation, we split into
various terms which we denote by T1 ,T2 ,T3 and T4 . For simplicity of
notation, we suppress all the dependencies in terms of q , a , s (q ) and u
(q ).

T1 = T2 + T3 + T4,(20)

where

T1 =2E

⎡⎣∑
i

⎛⎝∑
j

qij

⎞⎠⎛⎝∑
j′

(sij′(q)− aij′)

⎞⎠⎤⎦
+ 2E

⎡⎣∑
j

(∑
i

qij

)(∑
i′

(si′j(q)− ai′j)

)⎤⎦
− 2

n
E

⎡⎣⎛⎝∑
ij

qij

⎞⎠⎛⎝∑
i′j′

(si′j′(q)− ai′j′)

⎞⎠⎤⎦
T2 =E

⎡⎣∑
i

⎛⎝∑
j

(aij − sij(q))

⎞⎠2⎤⎦+ E

⎡⎣∑
j

(∑
i

(aij − sij(q))

)2
⎤⎦

− 1

n
E

⎡⎣⎛⎝∑
ij

(aij − sij(q))

⎞⎠2⎤⎦
T3 =− E

⎡⎣∑
i

⎛⎝∑
j

uij(q)

⎞⎠2⎤⎦− E

⎡⎣∑
j

(∑
i

uij(q)

)2
⎤⎦

+
1

n
E

⎡⎣⎛⎝∑
ij

uij(q)

⎞⎠2⎤⎦
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T4 =2E

⎡⎣∑
i

⎛⎝∑
j

q+ij

⎞⎠⎛⎝∑
j′

uij′(q)

⎞⎠⎤⎦+ 2E

⎡⎣∑
j

(∑
i

q+ij

)(∑
i′

ui′j(q)

)⎤⎦
− 2

n
E

⎡⎣⎛⎝∑
ij

q+ij

⎞⎠⎛⎝∑
i′j′

ui′j′(q)

⎞⎠⎤⎦ .

We will now bound each of the four terms. The schedule in each time slot
is maximal (2) and so

∑
i sij = 1,

∑
j sij = 1 and

∑
ij sij = n. Noting that

the arrivals are independent of queue lengths, we can simplify the term T1
as follows.

T1 =2E

⎡⎣∑
i

⎛⎝∑
j

qij

⎞⎠⎛⎝1−
∑
j′

λij′

⎞⎠⎤⎦+2E
⎡⎣∑

j

(∑
i

qij

)(
1−

∑
i′

λi′j

)⎤⎦
− 2

n
E

⎡⎣⎛⎝∑
ij

qij

⎞⎠⎛⎝n−
∑
i′j′

λi′j′

⎞⎠⎤⎦
(a)
=2E

⎡⎣∑
i

ε

⎛⎝∑
j

qij

⎞⎠⎤⎦+ 2E

⎡⎣∑
j

ε

(∑
i

qij

)⎤⎦− 2

n
E

⎡⎣nε
⎛⎝∑

ij

qij

⎞⎠⎤⎦
=2εE

⎡⎣∑
ij

qij

⎤⎦ ,

where (a) follows from the fact that
∑

j λij = 1− ε and
∑

i λij = 1− ε since
λε = (1− ε)ν and ν ∈ F .

Thus, from (20), we have

2εE

⎡⎣∑
ij

qij

⎤⎦ = T2 + T3 + T4.(21)

Now the rest of the proof involves bounding the term T2, T3 and T4. We
start with the term T2. Consider the first term of T2. Again noting that the
schedules are maximal (2), we get

E

⎡⎣∑
i

⎛⎝∑
j

(aij − sij(q))

⎞⎠2⎤⎦
=
∑
i

E

⎡⎣⎛⎝∑
j

aij − 1

⎞⎠2⎤⎦
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=
∑
i

E

⎡⎣⎛⎝∑
j

aij − (1− ε)− ε

⎞⎠2⎤⎦
=
∑
i

E

⎡⎣⎛⎝∑
j

aij − (1− ε)

⎞⎠2⎤⎦+
∑
i

ε2 −
∑
i

2εE

⎡⎣⎛⎝∑
j

aij − (1− ε)

⎞⎠⎤⎦
(a)
=nε2 +

∑
i

Var

⎛⎝∑
j

aij

⎞⎠
(b)
=nε2 +

∑
ij

σ2
ij

=nε2 + ‖σ‖2,

where (a) is true because E[
∑

j aij ] = (1− ε); (b) follows from the indepen-
dence of the arrival processes across ports. Similarly, we can show that the

second term in T2 evaluates to E

[∑
i

(∑
j(aij − sij(q))

)2]
= nε2 + ‖σ‖2.

The last term can likewise be evaluated as follows.

1

n
E

⎡⎣⎛⎝∑
ij

(aij − sij(q))

⎞⎠2⎤⎦
=
1

n
E

⎡⎣⎛⎝∑
ij

aij − n

⎞⎠2⎤⎦
=
1

n
E

⎡⎣⎛⎝∑
ij

aij − n(1− ε)− nε

⎞⎠2⎤⎦
=
1

n
E

⎡⎣⎛⎝∑
ij

aij − n(1− ε)

⎞⎠2⎤⎦+ nε2 − 2εE

⎡⎣⎛⎝∑
ij

aij − n(1− ε)

⎞⎠⎤⎦
=nε2 +

1

n
Var

⎛⎝∑
ij

aij

⎞⎠
=nε2 +

1

n

∑
ij

σ2
ij

=nε2 +
1

n
‖σ‖2.
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Putting all the terms of T2 together, we get

T2 =nε2 +

(
2− 1

n

)
‖σ‖2.(22)

Since
∑

ij qij ∈ Z+, we have
∑

ij qij ≤ (
∑

ij qij)
2. Using the fact that

E

[
(
∑

ij qij)
2
]
is finite from Lemma 5, we have that E

[∑
ij qij

]
is finite and

so its drift is zero in steady state. Thus, we get

0 =E

⎡⎣⎡⎣∑
ij

qij(t+ 1)−
∑
ij

qij(t)

⎤⎦ I(q(t) = q)

⎤⎦
=E

⎡⎣∑
ij

aij −
∑
ij

sij(q) +
∑
ij

uij(q)

⎤⎦
E

⎡⎣∑
ij

uij(q)

⎤⎦ =n− n(1− ε)

=nε.(23)

We will now bound the term T3 . Since uij(t) ≤ sij(t), we have
∑

i uij ≤
1,
∑

j uij ≤ 1 and
∑

ij uij ≤ n. Therefore,

−E

⎡⎣∑
i

⎛⎝∑
j

uij(q)

⎞⎠2⎤⎦− E

⎡⎣∑
j

(∑
i

uij(q)

)2⎤⎦≤ T3 ≤
1

n
E

⎡⎣⎛⎝∑
ij

uij(q)

⎞⎠2⎤⎦
−E

⎡⎣∑
i

⎛⎝∑
j

uij(q)

⎞⎠⎤⎦− E

⎡⎣∑
j

(∑
i

uij(q)

)⎤⎦≤ T3 ≤
1

n
E

⎡⎣n
⎛⎝∑

ij

uij(q)

⎞⎠⎤⎦
−2nε ≤ T3 ≤nε.(24)

We now consider the term T4 . It can be rewritten as follows, and can be
split into two parts, one each corresponding to q+

‖ and q+
⊥, where q

+
‖ means

(q+)‖ and similarly q+
⊥.

T4 =2E

⎡⎣∑
ij

uij(q)

⎛⎝∑
j′

q+ij′ +
∑
i′

q+i′j −
1

n

∑
i′j′

q+i′j′

⎞⎠⎤⎦
=2E

⎡⎣∑
ij

uij(q)

⎛⎝∑
j′

q+‖ij′ +
∑
i′

q+‖i′j −
1

n

∑
i′j′

q+‖i′j′

⎞⎠⎤⎦
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+ 2E

⎡⎣∑
ij

uij(q)

⎛⎝∑
j′

q+⊥ij′ +
∑
i′

q+⊥i′j −
1

n

∑
i′j′

q+⊥i′j′

⎞⎠⎤⎦ .

Since the vector q+
‖ is in cone K by definition, (3) in Lemma 1 is applicable.

Recall that when uij(t) = 1, qij(t+ 1) = 0. Thus, when uij(q) = 1, we have

q+ij =0

q+‖ij =− q+⊥ij

1

n

n∑
j′=1

q+‖ij′ +
1

n

n∑
i′=1

q+‖i′j −
1

n2

n∑
i′=1

n∑
j′=1

q+‖i′j′ =− q+⊥ij .

Therefore, we get

uij(q)

⎛⎝∑
j′

q+‖ij′ +
∑
i′

q+‖i′j −
1

n

∑
i′j′

q+‖i′j′

⎞⎠ = −nuij(q)q
+
⊥ij ,

and the term T4 reduces to

T4 =2E

⎡⎣∑
ij

uij(q)

⎛⎝−nq+⊥ij +
∑
j′

q+⊥ij′ +
∑
i′

q+⊥i′j −
1

n

∑
i′j′

q+⊥i′j′

⎞⎠⎤⎦
=2E

⎡⎣〈u(q),−nq+
⊥+
∑
i

〈
q+
⊥, e

(i)
〉
e(i)+

∑
j

〈
q+
⊥, ẽ

(j)
〉
ẽ(j)

− 1

n

〈
q+
⊥,1

〉
1

〉]
.(25)

Term T4 is a critical term to bound and our choice of the Lyapunov function
V4(.) is motivated primarily to obtain (25). We explain the motivation in
detail at the end of this section. From state space collapse, we know that q+

⊥
is bounded. We will now use this result to show that T4 is o(ε). Since q+

⊥ ∈ K◦

and e(i), ẽ(j),1 ∈ K for all i, j, we have that
〈
q+
⊥, e

(i)
〉
≤ 0,

〈
q+
⊥, ẽ

(j)
〉
≤ 0

and
〈
q+
⊥,1

〉
≤ 0. Moreover all components of u, e(i), ẽ(j) and 1 take values

0 and 1. Therefore,

T4 ≤2E

[〈
u(q),−nq+

⊥ − 1

n

〈
q+
⊥,1

〉
1

〉]
(a)

≤2
(
E

[
‖u(q)‖r̃r̃

]) 1
r̃

(
E

[∥∥∥∥−nq+
⊥ − 1

n

〈
q+
⊥,1

〉
1

∥∥∥∥r
r

]) 1
r
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(b)

≤2 (nε)
1
r̃

(
E

[(
n‖q+

⊥‖r +
1

n

∣∣〈q+
⊥,1

〉∣∣ ‖1‖r)r]) 1
r

(c)

≤2 (nε)
1
r̃

(
E

[(
n‖q+

⊥‖r +
1

n
‖q+

⊥‖r‖1‖r̃‖1‖r
)r]) 1

r

(d)
=2 (nε)

1
r̃

(
E

[(
n‖q+

⊥‖r +
(n2)(

1
r̃
+ 1

r )

n
‖q+

⊥‖r

)r]) 1
r

(e)
=4n(1+

1
r̃ )ε

1
r̃
(
E
[
‖q+

⊥‖
r
r

]) 1
r

(f)

≤4n(1+
1
r̃ )ε

1
r̃
(
E
[
‖q+

⊥‖
r
2

]) 1
r for r ≥ 2

(g)

≤4n(1+
1
r̃ )ε

1
r̃M (ε)

r for r ≥ 2

≤4n(2−
1
r )ε(1−

1
r )M (ε)

r for r ≥ 2,

where ‖x‖r denotes the �r norm of a vector x , and r, r̃ ∈ (1,∞) sat-
isfy 1/r + 1/r̃ = 1. Inequality (a) follows from the Hölder’s inequality
for random vectors. Cauchy-Schwartz inequality (which is a special case
of Hölder’s inequality) may also be used to obtain the same bound in heavy
traffic limit. However, in the non-heavy traffic limit, Hölder’s inequality
gives a tighter bound. Since uij ∈ {0, 1}, from (23), we have E

[
‖u(q)‖r̃r̃

]
=

E

[∑
ij(uij(q))

r̃
]
= E

[∑
ij uij(q)

]
= nε. This fact along with using triangle

inequality on the second term gives (b). Inequality (c) again follows using
Hölder’s inequality for vectors. The �r norm of vector 1 is ‖1‖r = n2/r, this
gives (d). Since 1

r̃ + 1
r = 1, we have (e). For any vector x, if 0 < r < r′,

we have ‖x‖r′ ≤ ‖x‖r, and this gives (f) and (g) follows from state space
collapse in Proposition 2. The last inequality follows from 1/r + 1/r̃ = 1.
Similarly, we can lower bound T4 as follows.

T4 ≥2E

⎡⎣〈u(q),−nq+
⊥ +

∑
i

〈
q+
⊥, e

(i)
〉
e(i) +

∑
j

〈
q+
⊥, ẽ

(j)
〉
ẽ(j)

〉⎤⎦
≥− 2

(
E

[
‖u(q)‖r̃r̃

]) 1
r̃

×

⎛⎝E

⎡⎣∥∥∥∥∥∥−nq+
⊥ +

∑
i

〈
q+
⊥, e

(i)
〉
e(i) +

∑
j

〈
q+
⊥, ẽ

(j)
〉
ẽ(j)

∥∥∥∥∥∥
r

r

⎤⎦⎞⎠
1
r

≥− 2 (nε)
1
r̃

(
E

[(∥∥nq+
⊥
∥∥
r
+

∥∥∥∥∥∑
i

〈
q+
⊥, e

(i)
〉
e(i)

∥∥∥∥∥
r
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+

∥∥∥∥∥∥
∑
j

〈
q+
⊥, ẽ

(j)
〉
ẽ(j)

∥∥∥∥∥∥
r

⎞⎠r⎤⎦⎞⎠
1
r

.(26)

Let’s now focus on the middle term in the expectation above. From the
definition of e(i), we have∥∥∥∥∥∑

i

〈
q+
⊥, e

(i)
〉
e(i)

∥∥∥∥∥
r

=

(∑
i

n
∣∣∣〈q+

⊥, e
(i)
〉∣∣∣r) 1

r

=

⎛⎝∑
i

n

⎛⎝∑
j

q+⊥ij

⎞⎠r⎞⎠
1
r

(a)

≤

⎛⎝∑
i

nr
∑
j

(
q+⊥ij

)r⎞⎠ 1
r

=n
∥∥q+

⊥
∥∥
r
.

For any (x1, . . . , xn) ∈ R
n and r ≥ 1, from Jensen’s inequality, we have(∑

i xi

n

)r
≤

∑
i x

r
i

n . This gives inequality (a) above. We have a similar bound

for the last term in expectation in (26). Using both these bounds, the lower
bound on T4 becomes,

T4 ≥− 6n(1+
1
r̃ )ε

1
r̃
(
E
[(∥∥q+

⊥
∥∥
r

)r]) 1
r

≥− 6n(1+
1
r̃ )ε

1
r̃
(
E
[(∥∥q+

⊥
∥∥
2

)r]) 1
r for r ≥ 2

≥− 6n(1+
1
r̃ )ε

1
r̃M (ε)

r for r ≥ 2

≥− 6n(2−
1
r )ε(1−

1
r )M (ε)

r for r ≥ 2.

Combining the lower and upper bounds on T4, for r ≥ 2, we have

−6n(2−
1
r )ε(1−

1
r )M (ε)

r ≤ T4 ≤ 4n(2−
1
r )ε(1−

1
r )M (ε)

r .(27)

Using (22),(24) and (27) to bound (21) and reintroducing the superscript
(ε), we get the theorem.

We will now present the motivation for the choice of the function V4(.).
First consider a discrete-time single server (G/G/1) queue, q(t) that evolves
according to q(t+1) = q(t)+ a(t)− s(t)+ u(t). The queue φ(t) in Section 3
is an example. Similar to (8), we can obtain tight lower and upper bounds
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on mean queue length in steady state by setting the drift of E[q2] to be zero
in steady state, i.e, E[q2(t+ 1)] = E[q2(t)]. Such a bound is called Kingman
bound. See [15, Section 10.1]. When expanded, this equation again gives
four terms, similar to the terms T1, T2, T3 and T4. The fourth term T4 then
is u(q)q+, which is zero from the definition of unused service. This is an
important step in obtaining tight bounds.

Next, consider a load balancing system, similar to a super market checkout
lanes. There are n servers with a separate queue for each server. Whenever
a user arrives into the system, (s)he picks one of the servers and joins the
corresponding queue. We consider ‘Join the shortest queue’(JSQ) policy, in
which each user joins the queue with the shortest length. Ties are broken
uniformly at random. The queue length at server i then evolves according to
qi(t+1) = qi(t)+ai(t)−si(t)+ui(t). It was shown in [7] that the JSQ policy
has minimum steady state sum queue lengths in heavy traffic. This was done
by first showing that the queue lengths collapse to a single dimension where
they are all equal. A tight upper bound is then obtained by setting the drift
of the quadratic function E[(

∑
i qi)

2] to be zero in steady state. When this
equation is expanded, we again have four terms and the fourth one being of
the form (

∑
i ui(q))(

∑
i′ q

+
i′ ). This is not zero in general because of the cross

terms. However, when the state is such that all the queue lengths are equal,
this term is zero. This is easy to see by considering the term ui(q)(

∑
i′ q

+
i′ ).

When ui = 1, we have that q+i = 0 and when all the queues are equal, for
any i′, q+i′ = 0.

Therefore, in all these systems, when using a quadratic Lyapunov func-
tion, the fourth term T4 is the most important and challenging one to bound
correctly. Usually, it should be zero if state space collapse is such that
q+
⊥ = 0. However, for the switch system, if we use Lyapunov functions V1(.)

or V2(.) or V3(.) or V1(.) + V2(.), we do not have the property that T4 = 0
when q+

⊥ = 0. Armed with (3) in Lemma 1, we add the additional −V3(.) to
V1(.) + V2(.) to obtain the Lyapunov function V4(.). We have shown in (25)
that T4 is zero when q ∈ K (since q+

⊥ = 0). The key idea in our upper bound
proof is the choice of the function V4(.). Essentially, we picked the function
V4(.) so that it matches with the geometry of the cone K in the sense that
if the queue length vector is in the cone K, the fourth term T4 is zero.

6. Uniformly loaded switch under Bernoulli traffic. In this sec-
tion, we consider the switch system when all the ports have Bernoulli traffic
with same arrival rate. The lower and upper bound expressions then have
much simple form. More precisely, for the system with index ε , for ev-

ery input-output pair (i, j), the arrival process a
(ε)
ij (t) is a Bernoulli process
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with rate λij = (1 − ε)/n. In other words, the rate vector approaches the
vector ν = 1/n ∈ F on the face F as ε → 0. Then, clearly the vari-

ance vector for the system with index ε is
(
σ(ε)

)2
= 1−ε

n (1 − 1−ε
n )1 with∥∥σ(ε)

∥∥2 = (1 − ε)(n − (1 − ε)) and it converges to σ2 = n−1
n2 1. Moreover,

amax = 1 and νmin = 1
n . Using these values, we can restate Propositions 1

and 2, and Theorem 1 as follows:

Theorem 2. Consider a set of switch systems with the Bernoulli arrival
processes a(ε)(t) parameterized by 0 < ε < 1, such that the mean arrival rate
vector is λε = 1−ε

n 1. Fix a scheduling policy under which the switch system

is stable for any 0 < ε < 1. Let q(ε)(t) denote the queue lengths process
under this policy for each system. Suppose that this process converges in
distribution to a steady state random vector q(ε). Then, for each of these
systems, the average queue length is lower bounded by

E

⎡⎣∑
ij

q
(ε)
ij

⎤⎦ ≥ (1− ε)2

2ε
(n− 1).

Therefore, in the heavy-traffic limit as ε ↓ 0, we have

lim inf
ε↓0

εE

⎡⎣∑
ij

q
(ε)
ij

⎤⎦ ≥ n− 1

2
.

Now consider the same switch systems operating under the MaxWeight
scheduling algorithm. The queue length process q(ε)(t) of each system is pos-
itive recurrent and so converges to a steady state random vector in distribu-
tion q(ε). Then, for each system with 0 < ε ≤ 1/2n, the steady state queue
lengths vector collapses into the cone K in the sense that it satisfies

E

[
‖q(ε)

⊥ ‖r
]
≤ (M̃r)

r ∀r ∈ {1, 2, . . .}, where M̃r = (2
√
re)1/r16

r

e
n2 (n+ 1) .

Therefore, the steady state average queue length satisfies

1

ε

(
n− 3

2
+

1

2n

)
− B̃1(ε, n) ≤ E

⎡⎣∑
ij

q
(ε)
ij

⎤⎦ ≤ 1

ε

(
n− 3

2
+

1

2n

)
+ B̃2(ε, n),

where

B̃1(ε, n) =
(
1− ε

2

)(
n− 2 +

1

n

)
+ n− 1

2
+ 3n(2−

1
r )ε(−

1
r )M̃r and

B̃2(ε, n) =−
(
1− ε

2

)(
n− 2 +

1

n

)
+

n+ 1

2
+ 2n(2−

1
r )ε(−

1
r )M̃r
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for any r ∈ {2, 3, . . .}. The terms B̃1(ε, n) and B̃2(ε, n) are both o
(
1
ε

)
. In the

heavy traffic limit as ε ↓ 0 which means as the mean arrival rate λε → 1
n1,

we have

lim
ε↓0

εE

⎡⎣∑
ij

q
(ε)
ij

⎤⎦ =

(
n− 3

2
+

1

2n

)
.

Thus, MaxWeight algorithm has optimal queue length scaling in the heavy
traffic limit.

Thus, in the heavy traffic limit, we have a universal lower bound on the
(ε scaled) average queue lengths that is Ω(n) and the MaxWeight policy
achieves this bound within a factor less than 2. Since we are interested
in the asymptotics both in term of number of ports, n and distance from
boundary of the capacity region, ε, there are several possible limits in which
the system can be studied. Heavy traffic limit is one such asymptotic, where
we first let the arrival rate approach the boundary of the capacity region
and look at the scaling of average queue length in terms of n. Another set
of asymptotic regimes is when ε → 0 and n → ∞ simultaneously. This can
be studied by setting ε = n−β for β > 0. Such a limit was studied in [13, 14]
for scheduling algorithms that are different from the MaxWeight algorithms
studied here. The universal lower bound in such a limit is Ω(n(1+β)). It is
now easy to see the following corollary.

Corollary 1. Consider a sequence of switch systems with Bernoulli
arrivals, indexed by n. The nth system has mean arrival rate vector λ(n) =
1−γnn−β

n 1 with β > 0 and γn > 0 is a sequence that is Θ(1). The load is

ρ(n) = 1− γnn
−β. Fix a scheduling policy under which the switch system is

stable for any n > 0. Suppose that the queue lengths process q(n)(t) process
converges in distribution to a steady state random vector q(n). Then, for
each of these systems, the average queue length is lower bounded by

E

⎡⎣∑
ij

q
(n)
ij

⎤⎦ ≥ (1− γnn
−β)2

2γn
nβ(n− 1),

and so is Ω(n(1+β)).
Under the MaxWeight scheduling policy, the queue lengths process q(n)(t)

process is positive recurrent and so converges to a steady state random vector
in distribution q(n). When 2γn ≤ n(β−1), the steady state average queue
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length satisfies

n(1+β)

γn
−B3(n) ≤ E

⎡⎣∑
ij

q
(n)
ij

⎤⎦ ≤ n(1+β)

γn
+B4(n) for β > 4,(28)

where B3(n) and B4(n) are o
(
n(1+β)

)
. Thus, under the MaxWeight algo-

rithm, the average sum queue lengths is Θ(n(1+β)) and so has optimal scal-
ing.

Proof. The universal lower bound directly follows from Theorem 2 using
ε(n) = γnn

−β. We will now prove the second part of the corollary which is
under the MaxWeight policy. Sine 2γn ≤ n(β−1), we have 0 < ε(n) ≤ 1/2n
and Theorem 2 is applicable. Therefore, we have (28) with

B3(n) =

(
3nβ − nβ−1

2γn

)
+

(
1−γnn

−β

2

)(
n− 2 +

1

n

)
+ n− 1

2

+ 48

(
2
√
re

γn

)1/r
r

e
n(2−

1
r
+β

r )n2 (n+ 1) ,

B4(n) =

(
−3nβ + nβ−1

2γn

)
−
(
1−γnn

−β

2

)(
n− 2 +

1

n

)
+

n+ 1

2

+ 32

(
2
√
re

γn

)1/r
r

e
n(2−

1
r
+β

r )n2 (n+ 1) .

Clearly all but the last terms above are o
(
n(1+β)

)
. The last terms are

Θ
(
n(5+

β−1
r )
)
. For any β > 4, we can pick r large enough so that 4+ β−1

r < β

and so we have that B3(n) and B4(n) are o
(
n(1+β)

)
.

7. Conclusion. We have obtained a characterization of the heavy-traf-
fic behavior of the sum queue length in steady-state in an n × n switch
operating under the MaxWeight scheduling policy when all ports are satu-
rated. We then considered the special case of uniform Bernoulli traffic and
studied the switch in an asymptotic regime where the load increases simulta-
neously with the number of ports. We showed that the steady-state average
queue lengths are within a factor less than 2 of a universal lower bound. The
result settles one version of a conjecture regarding the performance of the
MaxWeight policy. A number of extensions can be considered:

• Extensions of the result to more general traffic patterns when only a
few ports are saturated or when some of the arrival rates are zero is
an open problem.
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• We believe that one may be also be able to allow correlations across
time slots by making an assumption similar to the assumption in Sec-
tion II.C of [24], and considering the drift of the Lyapunov function
over multiple time slots. This extension may require a bit of additional
work.

• A Brownian limit has been established in the heavy-traffic regime in
[6], but a characterization of the behavior of this limit in steady-state is
not known. We expect the mean of the sum queue lengths (multiplied
by ε and in the limit ε → 0) in steady-state that we have derived to be
equal to the sum of the steady-state expectations of the components
of the Brownian motion in [6]. This would be interesting to verify.

• Verifying whether the MaxWeight algorithm achieves optimal queue-
length scaling in the size of the switch in non-heavy-traffic regimes is
still an open problem.

APPENDIX A: PROOF OF LEMMA 1

Proof. Clearly, from the definition of the cone K , (i) ⇐⇒ (ii). We will
now show that (ii) =⇒ (iii) =⇒ (iv) =⇒ (ii).

(ii) =⇒ (iii): Since all the maximal matchings have exactly one element
from each row and column, when a vector x such that xij = wi+w̃j for all i, j,
is used as the weight, all the matchings have the same weight,

∑
iwi+

∑
j w̃j .

Moreover, since wi ≥ 0 and w̃j ≥ 0 for all i, j, we have that xij ≥ 0 for all
i, j.

(iii) =⇒ (iv): There are n! perfect matchings and each edge appears in
(n − 1)! of them. Therefore, when x is used as weight vector, the average
weight of all the perfect matchings is 1

n

∑
i′,j′ xi′j′ . Now consider the (n−1)!

matchings that contain the edge ij. The total weight of all these matchings
is (n − 1)!xij +

∑
i′ �=i

∑
j′ �=j(n − 2)!xi′j′ , because every edge i′j′ appears in

(n−2)! of these (n−1)! matchings. Since all the matchings have same weight,
equating the average weight of these (n− 1)! matchings to the average of all
the matchings, we have

xij +
1

n− 1

∑
i′ �=i

∑
j′ �=j

xi′j′ =
1

n

∑
i′,j′

xi′j′

xij +
1

n− 1

⎛⎝∑
i′,j′

xi′j′ −
n∑

j′=1

xij′ −
n∑

i′=1

xi′j + xij

⎞⎠ =
1

n

∑
i′,j′

xi′j′

xij

(
1 +

1

n− 1

)
− 1

n− 1

⎛⎝ n∑
j′=1

xij′ +
n∑

i′=1

xi′j

⎞⎠ =
∑
i′,j′

xi′j′

(
1

n
− 1

n− 1

)
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nxij −

⎛⎝ n∑
j′=1

xij′ +

n∑
i′=1

xi′j

⎞⎠ =− 1

n

∑
i′,j′

xi′j′ for n > 1.

This gives (3) since the n = 1 case is trivial.
(iv) =⇒ (ii): We now assume that (3) is true. For each i, j, define

ωi �
1

n

n∑
j′=1

xij′ −
1

2n2

n∑
i′=1

n∑
j′=1

xi′j′

and

ω̃j �
1

n

n∑
i′=1

xi′j −
1

2n2

n∑
i′=1

n∑
j′=1

xi′j′ .

Then clearly, xij = ωi+ ω̃j for all i, j. If ωi ≥ 0 for all i and ω̃j ≥ 0, for all j,
we have (ii). If not, let ζ1 � mini ωi and ζ2 � mini ω̃j . Note that ζ1 + ζ2 ≥ 0
since xij ≥ 0 for all i, j. Suppose that ζ1 < 0. Then, let wi = ωi − ζ1 and
w̃j = ω̃j + ζ1. Then clearly, wi ≥ 0 for all i and w̃j ≥ 0 for all j and
xij = ωi+ ω̃j = wi+ w̃j . Thus, we have (ii). One can similarly define wi ≥ 0
and w̃j ≥ 0 when ζ2 < 0. This proves the lemma.

APPENDIX B: PROOF OF LEMMA 3

Proof. Lemma 2 is applicable here and so we have that E[Z
(
X
)
] < ∞.

Recall that ΔZ(X) is a random variable for any X, so define

D̃ � sup
X∈X

ess sup|ΔZ(X)| = sup
X,X′∈X ,P(X(t+1)=X′|X(t)=X)>0

|Z(X ′)− Z(X)|.

Also define

pmax = sup
X∈X

P(X(t+ 1) > X|X(t) = X).

Then, from Theorem 1 in [20], we have

P

(
Z
(
X
)
> κ+ 2D̃m

)
≤
(

D̃pmax

D̃pmax + η

)m+1

.

Clearly, D̃ ≤ D and pmax ≤ 1. Therefore, we get

P
(
Z
(
X
)
> κ+ 2Dm

)
≤P

(
Z
(
X
)
> κ+ 2D̃m

)
≤
(

D̃pmax

D̃pmax + η

)m+1

≤
(

D

D + η

)m+1

,
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where the last inequality follows from D̃pmax ≤ D and m + 1 ≥ 1. This
proves the first part of the lemma. We will now use this result to obtain
moment bounds. Since r > 0 and Z(.) ≥ 0, we have

E[Z
(
X
)r
]

=r

∫ ∞

t=0
tr−1

P
(
Z
(
X
)
> t
)
dt

=r

∫ κ

t=0
tr−1

P
(
Z
(
X
)
> t
)
dt+ r

∫ ∞

t=κ
tr−1

P
(
Z
(
X
)
> t
)
dt

≤r

∫ κ

t=0
tr−1dt+ r

∞∑
m=0

∫ κ+2D(m+1)

t=κ+2Dm
tr−1

P
(
Z
(
X
)
> t
)
dt

≤κr + r
∞∑

m=0

∫ κ+2D(m+1)

t=κ+2Dm
tr−1

P
(
Z
(
X
)
> κ+ 2Dm

)
dt

≤κr +

∞∑
m=0

(
D

D + η

)m+1 ∫ κ+2D(m+1)

t=κ+2Dm
rtr−1dt

=κr +
∞∑

m=0

(
D

D + η

)m+1

(κ+ 2D(m+ 1))r − (κ+ 2Dm)r

=κr
(
1− D

D + η

)
+

∞∑
m=1

(κ+ 2Dm)r
[(

D

D + η

)m

−
(

D

D + η

)m+1
]

=

(
η

D + η

)[ ∞∑
m=0

(κ+ 2Dm)r
(

D

D + η

)m
]

(a)

≤
(

η

D + η

)[ ∞∑
m=0

(2κ)r
(

D

D + η

)m

+

∞∑
m=0

(4Dm)r
(

D

D + η

)m
]

=(2κ)r + (4D)r
(

η

D + η

) ∞∑
m=0

mr

(
D

D + η

)m

,

where (a) follows from the relation, (a + b)r ≤ 2r max(a, b)r ≤ 2r(ar +
br). It is known [25] that for x < 1 and r = 1, 2, . . .

∑∞
m=0m

rxm =
1

(1−x)r+1

∑r−1
k=0A(r, k)xk+1, where A(r, k) are called the Eulerian numbers.

It is also known that
∑r−1

k=0A(r, k) = r!. Therefore, when x < 1, we have
that

∑∞
m=0m

rxm ≤ 1
(1−x)r+1 r!. Using this relation, we get

E[Z
(
X
)r
] ≤ (2κ)r + (4D)r

(
D + η

η

)r

r!.
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APPENDIX C: PROOF OF LEMMA 5

Proof. We will use Lemma 2 to first show that E[V (q)] is finite. Define
the Lyapunov function W (q) � ‖q‖ =

√
V (q), and its drift

ΔW (q) �[W (q(t+ 1))−W (q(t))] I(q(t) = q).

We will first verify condition C.2 of Lemma 2. Using the same arguments
as in (9), we get

|ΔW (q)| =|‖q(t+ 1)‖ − ‖q(t)‖| I(q(t) = q)

≤‖q(t+ 1)− q(t)‖ I(q(t) = q)

≤n2max
ij

|qij(t+ 1)− qij(t)| I(q(t) = q)

≤n2amax,

thus verifying condition C.2. We will now verify condition C.1.

E [ΔW (q)|q(t) = q]

=E [‖q(t+ 1)‖ − ‖q(t)‖|q(t) = q]

=E

[√
‖q(t+ 1)‖2 −

√
‖q(t)‖2

∣∣∣q(t) = q
]

(a)

≤E

[
1

2‖q(t)‖‖q(t+ 1)‖2 − ‖q(t)‖2
∣∣∣∣q(t) = q

]
=

1

2‖q‖E [ΔV (q)|q(t) = q]

(b)

≤ 1

2‖q‖
(
‖λ‖2 + ‖σ‖2 + n+ 2 〈q,λ− E [s(t)|q(t) = q]〉

)
(c)

≤ 1

2‖q‖

(
‖λ‖2 + ‖σ‖2 + n+ 2min

r∈C
〈q,λ− r〉

)
(d)

≤ 1

2‖q‖
(
‖λ‖2 + ‖σ‖2 + n+ 2 〈q,λ− (λ+ ε11)〉

)
=
‖λ‖2 + ‖σ‖2 + n

2‖q‖ − ε1
‖q‖1
‖q‖

(e)

≤ ‖λ‖2 + ‖σ‖2 + n

2‖q‖ − ε1

≤− ε1
2

for all q such that W (q) ≥ ‖λ‖2 + ‖σ‖2 + n

ε1
,

where σ denotes the variance vector and ‖q‖1 �
∑

ij qij denotes the �1 norm
of q. Inequality (a) follows from the concavity of square root function, due
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to which we have that
√
y − √

x ≤ 1
2
√
x
(y − x). Inequality (b) follows from

the bound on drift of V (.) obtained in (10) in the proof of the proof of
Proposition 2; (c) follows from the fact that we use MaxWeight scheduling.
Since λ ∈ int(C), there exists a ε1 > 0 such that λ + ε11 ∈ C. This gives
(d). For any vector x, its �1 norm is at least its �2 norm , i.e., ‖x‖1 ≥ ‖x‖.
This gives inequality (e). Thus, condition C.1 is verified and we have that all
moments of W (q) exist in steady state. In particular, we have that E[V (q)]
is finite.

Now, note that

V3(q) =

⎛⎝∑
ij

qij

⎞⎠2

≤

⎛⎝∑
ij

max
ij

qij

⎞⎠2

= n4max
ij

q2ij ≤ n4
∑
ij

q2ij = n4V (q).

Thus, E[V3(q)] is also finite. The lemma follows by noting that V1(q) ≤ V3(q)
and V2(q) ≤ V3(q).
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