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A Bayesian Beta Markov Random Field
Calibration of the Term Structure of Implied
Risk Neutral Densities

Roberto Casarin*, Fabrizio Leisen!, German Molina*, and Enrique ter Horst?

Abstract. We build on the derivative pricing calibration literature, and propose
a more general calibration model for implied risk neutral densities. Our model al-
lows for the joint calibration of a set of densities at different maturities and dates
through a Bayesian dynamic Beta Markov Random Field. Our approach allows
for possible time dependence between densities with the same maturity, and for
dependence across maturities at the same point in time. This approach to the
risk neutral density calibration problem encompasses model flexibility, parame-
ter parsimony, and, more importantly, information pooling across densities. This
proposed methodology can be naturally extended to other areas where multidi-
mensional calibration is needed.

Keywords: Bayesian inference, Beta Markov Random Fields, exchange
Metropolis Hastings, risk neutral measure, density calibration, distortion
function.

1 Introduction

Linear and nonlinear derivatives are used by investors to hedge risks, as well as specu-
late on the perceived market uncertainty of underlying assets (Hull, 2014). Furthermore,
derivatives convey information about the likelihood that the market assigns to differ-
ent future outcomes. Therefore, extracting the likelihood or probabilities regarding the
different future outcomes through different statistical techniques yields the implied prob-
ability density function (pdf), which is used to price the given quoted market derivative
prices for every given period (Fackler and King, 1990; Lai, 2011; Ait-Sahalia and Lo,
1998a; Panigirtzoglou and Skiadopoulos, 2004; Bliss and Panigirtzoglou, 2002). These
option-implied pdfs give us a forward-looking view of what the market thinks will hap-
pen to any given asset together with its respective probabilities (Vergote and Puigvert,
2012; Vesela and Puigvert, 2014).

The economic literature has shown an increasing interest in nonparametric implied
risk neutral densities (Fackler and King, 1990; Lai, 2011), both allowing estimation of
what the economic agents think about the future, their economic expectations (Bliss
and Panigirtzoglou, 2004; Rodriguez and ter Horst, 2008), and also providing superior
estimates of such risk-neutral densities (Lai, 2011). Density forecasting is now widely
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used in many applied economic contexts, such as nonparametric calibration of implied
risk neutral densities used in macroeconomics to generate predictions on inflation and
interest rates, among other applications (see a non-comprehensive list in Bhar and
Chiarella (2000); Carlson et al. (2005); Vincent-Humphreys and Noss (2012); Vergote
and Puigvert (2012); Vesela and Puigvert (2014); Sihvonen and Vdhémaa (2014)). The
use of densities for predicting quantities of interest is now common in economics and
finance (Bhar and Chiarella, 2000; Carlson et al., 2005; Vergote and Puigvert, 2012;
Vesela and Puigvert, 2014). In the spirit of West and Crosse (1992) and West (1992)
with regards to the inclusion in the forecast of a decision maker’s prior from different
sources of information, many recent papers (Hall and Mitchell, 2007; Billio et al., 2013;
Fawcett et al., 2013; Gneiting and Ranjan, 2013) have focused on the combination and
calibration of predictive densities. See also Chapter 16 of West and Harrison (1997) for
further initial references.

In order to extract the implied risk neutral densities, our starting point is in line
with the nonparametric cubic spline interpolation technique by Bliss and Panigirtzoglou
(2002). These authors make use of an important result from Breeden and Litzenberger
(1978) where the option-implied risk-neutral density can be inferred from the second
partial derivative of the call price function with respect to the strike price. However,
the estimation of the second derivative of a call price function can sometimes lead to
numerically unstable and inaccurate estimates of the option-implied density. Following
the results derived in Malz (1997) and Shimko (1993), Bliss and Panigirtzoglou (2002)
argue that numerically stable and accurate results for the implied pdfs are obtained if
option prices and strike prices are transformed into implied volatility and delta values
prior to their penalized cubic spline interpolation. Full implementation details of the
nonparametric estimation of the option-implied density estimation can be found in Bliss
and Panigirtzoglou (2002) and Campa et al. (1998). This nonparametric density estima-
tion consists of four steps: transforming the option strike prices into implied volatilities
(when those are not directly available); using the market-implied volatilities to calcu-
late the delta values; interpolating the implied volatilities and the deltas calculated in
the previous two steps by minimizing the function (26) as defined in Appendix A; and
transforming back the interpolated volatility smile from volatility vs delta values to
option price vs strike price values. In order to obtain the option-implied, risk-neutral
density, we calculate the second derivative of the call function that we computed in the
previous four steps (Breeden and Litzenberger, 1978).

As argued in Diebold et al. (1999), many density forecasts of interest do not come
from known parametric models such as surveys (Diebold et al., 1999) or from prices of
options written at different strike prices (Ait-Sahalia and Lo, 1998b; Soderlind and
Svensson, 1997; Campa et al., 1998). Also, modelling the dependence between the
risk-neutral and physical measures has been explored by the use of affine and non-
affine stochastic processes (Filipovic, 2009; Durham, 2013) as well as the use of copulas
(Schonbucher, 2003; Jaworski et al., 2010). While much of the prior work in this area
has focused on affine and affine-jump models because of their analytical tractability,
Durham (2013) has found that log-volatility models perform dramatically better than
affine models. The approach taken in this manuscript is different from the already exist-
ing parametric literature on modelling the dependence between risk-neutral and phys-
ical densities (Schonbucher, 2003; Filipovic, 2009; Jaworski et al., 2010) in two ways:
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first, we model the dependence between the risk-neutral and physical densities by using
the beta distortion function (Artzner et al., 1999; Wang et al., 1997; Wang and Young,
1998; Gzyl and Mayoral, 2008), and second, both our risk-neutral and physical densities
are nonparametric (Bliss and Panigirtzoglou, 2002), whereas the approach in Durham
(2013) and Filipovic (2009) is a parametric one. Our approach on estimating the depen-
dence between the nonparametric risk-neutral (Q) and physical (P) densities’ can be
seen as a complement to the already existing parametric literature (Duffie et al., 2000;
Schonbucher, 2003; Filipovic, 2009; Jaworski et al., 2010; Durham, 2013). Furthermore,
following previous work such as Diebold and Mariano (1995), Christoffersen (1998) and
Diebold et al. (1998), we view the forecasts as primitives — our proposed approach will
not depend on the method used to produce the risk-neutral density forecasts.

The basic intuition behind our dynamic estimation of the dependence between Q
and P hinges on the concept of the Probability Integral Transforms (PIT) (Fackler and
King, 1990; Diebold et al., 1999). Simply put, if we observe n random realizations of
a random variable Y and its true density is f(y), then the PIT; = ff;o fly)dy for
i=1,...,n should be uniformly distributed. If the PIT; are not uniformly distributed,
then by using a beta distortion function (Artzner et al., 1999; Wang et al., 1997; Wang
and Young, 1998) to f(y), by modifying their probability, the PIT; can be distorted to
be uniformly distributed (Fackler and King, 1990; Diebold et al., 1999). Gzyl and May-
oral (2008) provide a method for reconstructing distortion functions from the observed
prices of risk premiums. Our contribution provides a natural modelling framework for
the term structure of the implied nonparametric risk neutral and physical probability
distributions, which accounts for the possible dependence between the PITs at different
maturities and different dates for a given maturity, whereas previous calibration ap-
proaches lack this generality, as they do not take advantage of the different sources of
dependence (for example, maturities and/or time). Additionally, our approach poten-
tially allows for modelling other sources of dependence (e.g. cross-asset dependence).

Since the PITs belong to the unit interval, our calibration approach makes use of
beta densities as initially suggested by Fackler and King (1990) and Diebold et al.
(1999). However, we extend their approach in our paper to the multi-maturity and
multi-period setting. In order to account for time and cross-maturity dependence, we
propose a random field model with beta densities, which fits well-known features of the
data regarding dependencies. We make some general assumptions on the time (lags) and
spatial (neighbour system) structure that are needed to obtain a parsimonious model.
We provide a Bayesian inference framework, that allows us to account for uncertainty
in the density calibration. Moreover, the use of hierarchical prior distributions allows us
not only to avoid potential over-fitting due to over-parameterization, but also to achieve
different degrees of information pooling across maturities.

Several recent papers focus on the combination and the calibration of the predic-
tive densities (Hall and Mitchell, 2007; Geweke and Amisano, 2011; Billio et al., 2013;
Fawcett et al., 2013; Gneiting and Ranjan, 2013). Optimal linear pooling of densities is
considered in Hall and Mitchell (2007), as well as Geweke and Amisano (2011), while

IThe notations Q and P will refer to the nonparametric risk-neutral and physical densities, respec-
tively, in our manuscript.
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more general approaches to density combinations are considered in Billio et al. (2013),
Fawcett et al. (2013) and Gneiting and Ranjan (2013). Modelling the time evolution of
the optimal combination of predictive densities is one of the challenging issues tackled
in these papers. The issue of calibrating densities is considered instead in Gneiting et al.
(2005) and Gneiting and Ranjan (2013), who also propose the use of beta densities to
achieve a continuous deformation of the predictive density, and to obtain well-calibrated
PITs. A well-calibrated PIT is defined as one where the calibration function allows us
to obtain a cumulative probability distribution of the observed underlying asset, under
the correct target distribution (physical measure), with a resulting uniform histogram
(Fackler and King, 1990). Despite the presence in the forecasting and financial literature
of similar issues, such as the density calibration and combination, the implied risk neu-
tral calibration literature differs substantially from the forecast calibration literature
since the former assumes the calibration model is generating the change of measure
needed to obtain the physical measure from the risk neutral. Our paper contributes to
this stream of literature through a much-needed extension for capturing key features,
since it provides a general approach to the joint calibration of densities, allowing for the
pooling of information across different predictive densities (e.g. the risk neutral densities
at different maturities).

Finally, as a side note, this paper also contributes more generally to the literature
on modelling data on bounded domains (Grunwald et al., 1993; McKenzie, 1985; Wal-
lis, 1987; Ferrari and Cribari-Neto, 2004). Our approach using Bayesian Beta Markov
Random Field models, as well as the inferential procedure, are original extensions to
the multivariate context of the Bayesian Beta models and inferences recently proposed
in the statistical literature. See Branscum et al. (2007) for Bayesian Beta regression,
Casarin et al. (2012) for model selection in Bayesian Beta autoregressive models and the
references therein, and Kennedy (1994), Goldstein (2000), and Kimmel (2004) for mod-
elling the term structure of interest rates by using Gaussian Markov Random Fields.
For further background on Markov Random Fields, see Cressie and Lele (1992). While
we build our proposed approach through a financial application, the model and ap-
proach proposed here are broader and can be used in other areas where more generic,
multidimensional calibration approaches are needed.

The paper is organized as follows: Section 2 introduces the density calibration prob-
lem and our Bayesian Beta Markov Random Field model for the joint calibration. In
Section 3, we discuss the inference difficulties with the proposed model and develop a
numerical procedure for posterior computation. In Section 4, we study the efficiency
of our estimation procedure through simulation. In Section 5, we provide an applica-
tion in the Foreign Exchange market, while Section 6 concludes and discusses potential
extensions.

2 A dynamic calibration model

2.1 The univariate motivation

The major limitation of using risk-neutral densities is that they do not incorporate
risk premium and thus do not correspond to investor’s actual forecasts. The principal
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reason is that the risk-neutral density extraction relies on the simplifying assumption of
an arbitrage free market and the definition of an equivalent martingale measure, which
in turn implies that all assets have the same expected return which is equal to the risk-
free rate (Delbaen and Schachermayer, 2011; Hull, 2014; Duffie, 2001; Skiadas, 2009).
One therefore needs to correct this bias by estimating the real-world densities (RWD)
using a statistical calibration such as proposed by Fackler and King (1990) and Diebold
et al. (1999). Furthermore, RWD densities put lesser probability weight on bad states
than risk-neutral densities do. As suggested by Fackler and King (1990) and Diebold
et al. (1999), one can convert the risk-neutral densities to their real-world counterparts
by adequately risk adjusting the risk neutral density. Let ft% () be the density forecast
made at time ¢ for a given random variable z; , that we observe at time ¢ + 7 during
t =1,...,T periods. The probability integral transform (PIT) of z;, with respect to

ft% (x) is defined as

Yor = / F (2)dz = F2.(z.,). (1)

We can therefore see that computing the PIT of the random variable z, ; is equivalent

to computing the cumulative density function (CDF) defined as Ft(?T (z) of the density
used to forecast our random variable x¢ -. Let us write C(y; ) as the CDF of the PIT
Yt,-- We then have the following relationship:

Clyer) = P(Vir < yur) = P(F2 (200) < Yir)
= Pz, < FS%0r) = FL(FS9 (o)

(2)

P

where Fy  is the CDF of the data generating process for z; .. We can therefore see that if

the forecasting risk-neutral CDF Ft% is correctly calibrated, i.e. Ft% = F,f - then we have
that the PITs y; , will be independent and uniformly distributed and C'(y;.-) = yi,r-
Remembering that P and Q denote the physical (Real World) and risk-neutral CDFs,
respectively, we have that

P

t,T

(xt,T) = P(Xt,f < mtﬁ) = P(Fth(Xt,T) < Fth(xt,T))

) = ]P)(Yi:'r < Ft?r(xt,r’)) = C(Ft?r(xt,f)) ¥

Now taking derivatives on both sides of (3), we can see how the physical density relates
to the risk-neutral density:

oC  OF2 (x1,) aC
fPTI’ﬂ' - S ’ - fQTx/ﬂ' :CFQT'IJ' f,Q‘rwa
) R ) One 0RG(ay r)  ernMite)
Q ac (FE (ze )P (1= (F2 (we,2))) ! . W
where o(F (a1,) = grf = Tyttt and B(p.g) s the

usual normalization constant of a Beta(p, q) distribution (Fackler and King, 1990). In
order to know the distortion function ¢(-), one can determine both p and ¢ with a regular
maximum likelihood estimation (Fackler and King, 1990; Diebold et al., 1999). To test

the forecasting ability of the estimated risk-neutral density ft% (x¢,r), we can test the null
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hypothesis that ft%(xtﬁ) = ffT(xtJ) under which the PITs y, , are independent and
uniformly distributed U[0, 1]. In this paper, we follow Bliss and Panigirtzoglou (2004)
and apply the Berkowitz test (Berkowitz, 2001) for PITs uniformity and independence
(see Section 5). As pointed out in Vergote and Puigvert (2012) and Vesela and Puigvert
(2014), using traditional approaches, in order to avoid serial dependence in the PITs
that usually arise from overlapping maturities in the option data, it is better to work
with monthly maturities or less than longer maturity options due then to a lack of
sufficient data. Contrary to their approach, ours will not suffer from this restriction, as
detailed in the following section.

2.2 The multivariate case

Let 2t -,,i=1,...,M,and t =1,...,T, be a set of random variables that in our finan-
cial application can be treated as the underlying realized forward levels (market-implied
estimates of the asset level at maturity), available at time ¢, for the different future ma-
turities 71,..., 7. Let Ft(‘?n (z) and F{_ (x) denote the risk neutral and the physical
cumulative density functions, respectively, and ft%i (z) and ft}? -, (z) their probability
density functions.

We assume the following joint deformation model:
FtP (xt,ﬁ PR 7xt,TA4) = Ct (Ft(?n (It,ﬁ)a ceey Ft(?rM (It,TM)) (5)

where C; : [0,1] — [0,1], t = 1,...,T, is a sequence of deformation functions. The
model can be restated in terms of densities

M
ftp(xtﬁl s ’mtﬁTM) = Ct(Ft;Qn (wt,ﬁ)a ey Ft;QTju (mtﬂ'I\/I)) H ft?Tj (xtﬂ'j) (6)
j=1

where c¢; is the mixed partial derivative of C}; with respect to all the arguments. Let
Yji = Ft%j (7¢,r;), j=1,..., M. Then, in order to model the dependence of the predic-
tion densities at different dates, our modelling assumption is a Beta dynamic Markov
Random Field (8-MRF). Let E = [0,1] be the phase space and S = {1,..., M} the
finite set of sites (see Bremaud (1999), Ch. 7) corresponding to the different maturities,
then our S-MRF is defined by the following local specification:

M
1
ct(Yies - Yme) = Z H Cjt(yjt|yN(j)) (7)
j=1

where yn ;) = {yre, k € N(j) C S} with N(j) a member of the neighbourhood system
N, c;j; represents the jth components of the joint calibration function ¢;, and Z; is a
normalization function which may depend on the parameter of the calibration model
and may be unknown for some S-MRF neighbourhood system specifications.

Modelling the full dependence structure between densities at the different maturities
and allowing for time-change in this structure may require a large number of parame-
ters, and consequently lead to over-parameterization (see, e.g. Litterman (1986), Sims
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and Zha (1998) and Chib and Greenberg (1995)). The resulting potential over-fitting
problem calls for the use of a Bayesian approach to inference, which allows for prior
constraints on the model parameters. In order to reduce the number of parameters and
to obtain a parsimonious S-MRF model, in this paper we assume a time-invariant topol-
ogy (S, N) and focus on two special neighbourhood systems. The first one is a Markov
model:

NO={ Gy i

and the second one is a proximity model

2} ifj =1,
(M- 1) ifj = M

connecting each density with the two adjacent densities in terms of maturity.

Following the standard practice in the financial calibration literature (e.g. see Fackler
and King (1990)) we assume that the jth component of the joint calibration function is
the probability density function of a beta distribution. In order to account for possible
time dependence in the PITs, we let the parameter of the beta calibration function of
the density at maturity 7; depend on the past values of the PITs for the same maturity.
Note that this assumption of dependence only on adjacent densities is well supported in
financial applications, where, conditional on the PIT of an adjacent maturity, the PIT is
independent of PITs of other maturities (since the times-to-maturity are overlapping),
and, conditional on the closest PIT on a given maturity, the PIT is independent of other
PITs for that maturity (basic Markovian assumption for the underlying processes). We
use the re-parametrization of beta pdfs used in Bayesian mixture models (e.g. see Robert
and Rousseau (2002) and Bouguila et al. (2006)) and Bayesian beta autoregressive
processes (e.g. see Casarin et al. (2012))

jtYje—1 —Hjt)Vit—
cite(Yjtlyn ) = Bjty;t' (1 - yjt)(1 #ae) vyl (8)
with
B., — F(Hjt’th)
Jjt —
Do) (1 = p5e)v5e)
and
p
Mjt = @ | aojt Zakjytfk,j + Z Briytk | 9)
k=1 EEN(5)
Yit = (10)

with ¢ : R+ [0,1] a twice differentiable strictly monotonic link function. We assume a
exp(x)
1+exp(z) "

logistic link function, i.e. p(x) =
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3 Bayesian inference

Let x¢ = (4,7, - - -, Tt ) De a set of observations for different maturities, and x,41.7 =
(Xp41, - - -, X7), then the likelihood of the model can be written as

T
L(xpt1:7(0) = H ftl,jfr(xtm see e Tty

t=p+1
M
1 pjtyi—1 11
- H 7, H /’L]t')/],(l M]t)'}/]) (F‘tQTJ ('Tt TJ)) ( )

(I—pje)vi—1
x (1= B2 (@) 2 @),
Note that this is a pseudo-likelihood, since we assume that the p initial values of the
B-MRF are known.

In order to complete the description of our Beta Markov Random Field model, we
assume the following hierarchical specification of the prior distribution. For a given j,
with 7 =1,..., M, we assume

i.1.d.

;g ~ N(aj,s?),kzl,...,p, (12)
i.1.d.

Bri R ONBjg), k=1,...,m;. (13)

For the second level of the hierarchy we assume

u

i1

'YJ ~ ga(£17£2)a]:1a7M7
a; "N N(ns?),j=1,...,M, (15)
ﬂj 7’}\/ N(/B7g2)3]:1a7M

where m; = Card(N(j)) is the number of elements of N(j) and Ga(&1,&2) denotes the
gamma distribution with density

U

1
F61,6) = =75 exp{ =&y }E5*
I'(&) ’
Moreover, in order to design an efficient algorithm for posterior simulation, we re-
parametrize o; = log(v;), j = 1,...,M. We will define the parameter vector 8 =
(01, ce 791\4) where 0j = (aj,ﬁj,oj,aj7ﬁj), a; = (Ck()j, Aljyeny Oépj) and ,Bj
(Bijs---»Bm;;). Then the joint probability density function of the prior distribution is

Moy .
f(0)o<exp{—2(2 5 () —a)? —1—2 (B; ﬁ)2+§(aj—uj)'5j_1(aj—uj)

j=1

N
+=(8; —v) G }H exp{—&1/2exp(o;)} exp(&2/20;)

N[ =
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where p; = ajtpy1), Vj = Bjtm,, with ¢, the n-dimensional unit vector. The prior
covariance matrices are S; = 571,41y and G = g3 I, with I, the n-dimensional
identity matrix.

The joint posterior distribution can be written as

T T M
T(0]xpt1:7) X exp | — Z log Z; — Z ZlogBjt

t=p+1 t=p+1j=1
P P J (17)
T M
+ 30 (Ao +log(1 = FE, (@) exple) | £(6)
t=p+1j=1

where

Bji = Bji(pjt exp(oj), (1 — pje) exp(oy))
and

Aje =10g(F2 (1.0,)/(1 = F2_(21.7,)))-

A major problem with this model is that the normalizing constants Z;, t =p + 1,
..., T, in the likelihood function and in the posterior distribution are unknown and
possibly depend on the parameters. Thus, samples from 7(6|x,41.7) cannot be easily
obtained with standard MCMC procedures. For instance, the standard MH algorithm
cannot be directly applied because the acceptance probability involves ratios of un-
known normalizing constants. In the last two decades, various approximation methods
have been proposed in order to circumvent the problem of intractable normalizing con-
stants. Recently, Mgller et al. (2006) proposed an auxiliary variable MCMC algorithm,
which is a feasible simulation procedure for many models with intractable normalizing
constant. The Mgller et al. (2006)’s single auxiliary variable method has been success-
fully improved by Murray et al. (2006). They propose the exchange algorithm, which
removes the need to estimate the parameter before sampling begins and has higher
acceptance probability than Mgller et al. (2006)’s algorithm. Unfortunately, both the
single auxiliary variable and the exchange algorithms require exact sampling of the aux-
iliary variable from its conditional distribution, which can be computationally expensive
for many statistical models. An exact simulation algorithm for our S-MRF model is not
available, thus in this paper we follow an alternative route and apply the double MH
algorithm proposed by Liang (2010). For additional literature intractable normalizing
constants, please, see Atchadé et al. (2013). The double MH avoids the exact simulation
step by applying an internal MH step to generate the auxiliary variable.

Assume we are interested in simulating the auxiliary variable z, .7 from the condi-
tional distribution L(z,+1.7]6"). If the sample is generated by iterating n times an MH
algorithm with transition kernel Ky (z|x), then the n-step transition probability is

1 -1
Pl (zp+1:7|Xpr1:7) = Kor (Xp i 1.0 [Xpr1:7) -+ Ko (Zpr1:7[%) 1),
and the acceptance rate of the Murray et al. (2006)’s exchange algorithm writes as

0)q(010',xp11.7) L(zpi1.7|0) Py (Zpr1.1|Xpr1.7)
0,07, 1.7X)11. :f( 7P [d o' \%p P 18
P00 B 1 o 1:7) = g @10 e ) Dlxpanir|0) B Gprr i) )
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If we chose q(8|0',x,41.7) as a Metropolis transition kernel then the exchange is an
MH step with transition Pg(zy41.7|Xp+1:7) and target distribution L(zp41.7]6), and
the acceptance probability in (18) becomes

L<Zp+1:T‘0) L(Xp+1:T|6/)
L(xp+1:7(0) L(2ps1:7/0)

p(evelazp+1:T|Xp+l:T) = (19)

Assume the current value of the MH chain is 8V = 6, then the double MH sampler
iterates over the following steps:

1. Simulate a new sample 8’ from 7(0) using an MH algorithm starting with 8.

2. Generate the auxiliary variable zpi1.7 ~ P (2p+1.7|Xp+1.7) and accept it with
probability min{1, p(0,0’, 2z, 1.7|xp+1.7)} given in (19).

3. Set 04V = @' if the auxiliary variable is accepted and 841 = 0 otherwise.

For the first MH step in the double MH, we assume a multivariate random-walk proposal,
i.e.

0 ~ N0, A)
where A is an n-dimensional positive diagonal matrix with n = (p+4)M +m + 2.

Regarding the second MH step, we consider a Gibbs sampler which generates samples
from the full conditional distributions of each site.

Fort = p+1,...,7 and for j = 1,..., M the Gibbs sampler generates iter-
atively 2ty W(Zt,’rj |Zt7p:t71,7'j y Lt 1it+p,mj Dt—pit, 7515 Lt—pit,Tjy1s 0)7 where Zs:it,r; —
(%s,7;+ - - -+ 2t,7;)- The full conditionals are not trivial to simulate from, thus we apply an
MH step. See Appendix B for further details on the derivation of the full conditional
distributions and on the sampling method.

4 Simulation exercise

The extraction of parametric and nonparametric risk-neutral densities has been impor-
tant not only for traders in order to use this density to price more exotic derivatives,
but also for central bankers as well and policy makers (Campa et al., 1997; Vergote and
Puigvert, 2012; Sihvonen and Vdhadmaa, 2014). Recently, a great deal of interest has
grown in predicting both the nonparametric risk-neutral and its physical counterpart
simultaneously, as shown in Vesela and Puigvert (2014) for the 3-month Euribor inter-
est rate, using the beta calibration function for fixed expirations of the nonparametric
risk-neutral density instead of constant and rolling maturity expirations such as 3,6,9,
and 12 months as in Vergote and Puigvert (2012). These constant maturity risk-neutral
densities are interpolated in practice from fixed expiration densities as done in Vergote
and Puigvert (2012). We do not need to follow their approach, which is constrained by
the chosen maturity, since we can model rolling, fixed time to maturity (as opposed to
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fixed maturity), option prices, and forwards. In this sense, our approach is more gener-
alizable for over-the-counter markets, where the market centres around (rolling tenor)
fixed time-to-maturity points rather than fixed expiry dates. This is usually the case in
the over-the-counter markets, including the foreign exchange market.

In this section, we produce several simulation exercises to test the accuracy of our
method to produce a calibration function that allows for better assessment of the non-
standard features usually encountered in the PIT data, including through mis-estimation
of the underlying parameters of the process. This exercise consists of several layers
according to the following sequence:

e We produce the simulated data x;,,, ¢ =1,...,T and j = 1,..., M, under the
physical measure, which will be common to all the simulation exercises. The data
are asset prices Sy, simulated from a Geometric Brownian Motion (GBM), i.e.
Ttr; = Sttr;, under the physical measure for M = 3 maturities, that are 3
months (1), 6 months (72) and 12 months (73) for a time interval of 2 years, that
is, T' = 504 trading days, u = 0.20, r = 0.05, 0 = 0.15, 77 = 0.25 (years), 72 = 0.5
(years) and 73 = 1 (year).

e From that data, we estimate the risk neutral measure, assuming that we incorrectly
estimate (grossly) the parameters of this risk neutral measure. For this purpose,
we assume two potential scenarios that cover the two extremes (note that, in both
cases, the values that we are using are different from pu):

1. (Overestimation of the volatility of the Brownian Motion) We will assume
for the calibration exercise that we overestimate the unknown volatility of
the physical process and set o = 0.20.

2. (Underestimation of the volatility of the Brownian Motion) We will assume
for the calibration exercise that we underestimate the unknown volatility of
the physical process and set o = 0.10.

e For each of the cases above, and for each of the maturities in the simulation
exercise, we compare two curves (see Figure 1). Note that in both cases we use
the same playing field for the volatility, to ensure that the comparison is done
solely on the calibration benefits:

1. (NC Curve) This is the non-calibrated curve and corresponds to the empirical
CDF of the data FST]_ (4,r;), t =p+1,...,T. It simply states the shape of
the PITs CDF using the risk neutral data, under the stated value of the
volatility.

2. (C Curve) This is the empirical CDF of the data Ffrj (4,r;),t =p+1,...,T,
where Ff is the marginal distribution of the distribution F(z¢ ...,
Tty ), Obtained by using the S-MRF calibration applied to the risk neu-
tral data, under the stated value of the volatility.

e As areference, we include the 45 degree line, which represents the perfect scenario
where the (calibrated) PITs are uniformly distributed.
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In order to run this simulation, we assume that the data comes from a standard process
in the financial literature (GBM), with S, t € [0, T, to model the price of the underlying
as in Black and Scholes (1973) and Merton (1973), i.e.

t t
Sy = So + / Sy pdu Jr/ SyodW (u) (20)
0 0

where W (t), t € [0,T], is a Wiener process.

We simulate price sample paths under the physical measure for 3, 6 and 12 months
for a time interval of T' = 2 years, u = 0.20, » = 0.05, 0 = 0.15, 7, = 0.25, 75 = 0.5, and
T3 = 1.

We also know analytically the risk-neutral densities of Sy, ., j = 1,2,3, conditional
on S, which are given by

ft?rj (SH‘TJ')

1 D |:_ [log(SHTj/St) — (7’ — 0.502)Tj] 7 (21)

= ex
Stir,\/2m02T;

J = 1,2,3. Once we observe 3 months later a price level of S;,,, under the historical
measure, then we proceed to compute the 3, 6 and 12 months PITs at time ¢ as follows:

2.
20°7;

St+'rj Q
Yt,r; = / ft,Tj (St+7j MSH'TJ ’ (22)

— 00

7 =1,2,3. The next period, at time ¢ 4+ 1, we recompute the PITs in the same way as
in (22), obtaining a vector x; = (xt, ¢41,. - ., Zr47) Where again

Xs = (an (Ts,m )5 Fsc,g'rg (Ts,7,), FSC?T;; (Ts,75))5

and where the components of xs will be very likely correlated, given the overlapping
times to maturity. In our simulation exercise, we assume that a year has 252 trading
days (prices) and that 3 (6 and 12) months correspond to 63 (126 and 252) trading
days, respectively.

A uniform marginal distribution of the PITs, assuming that they are not autocor-
related, indicates that there is no need for a calibration function. A uniform marginal
distribution of the PITs, assuming that they are autocorrelated, does not necessarily
say anything about the need for a calibration function. There could be cases where the
PITs are extremely autocorrelated, and yet display a perfect uniform histogram lead-
ing to the wrong conclusion that both the risk neutral and physical measures are both
identical.

The source of autocorrelation of the PITs comes from the rolling nature of the
data. For each period ¢, we obtain a new PIT for each maturity, which is the outcome
of the physical process under that given maturity. Since, for a given maturity 7, we
will be producing 7 x 252 overlapping periods (with different levels of overlap), these
periods will share common contributions to each of those PITs. For example, a 3 month
PIT with reference point, and maturity in 65 business days (3 months), will share
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64 business days in common with another PIT, with reference point tomorrow, and
maturity 65 days from tomorrow. This generates an artificial autocorrelation in the
PITs, which is embedded in any overlapping data. Classical approaches include a mere
thinning of the data to the frequency of the underlying maturity, to take only non-
overlapping periods Vergote and Puigvert (2012). However, this approach is especially
penalizing on the longer maturities. For example, for maturities of a year, traditional
approaches will only collect one data point per year. Our approach is less restrictive,
since it takes into account in the modelling the different sources of correlation (including
this autocorrelation) between the PITs through the S-MRF approach. For two given
PITs (A, B), for which the data driving them is represented by the combination of the
starting points t 4, t g, and the maturities 74, 75, the overlapping amounts of information
contained in the physical process is the intersection of [ta,ta + 74| N [tB,t5 + TB].
This information is processed naturally through the 8-MRF approach, which takes into
account the two causes of autocorrelation (over time and across neighbours).

We apply our Bayesian S-MRF calibration model with the following hyperparameter
settings o = 0, 8 =0, 57 = 10, g7 = 10, s* = 100, and g = 100. We apply the proposed
MCMC algorithm in order to approximate the posterior quantities of interest. In the
MCMC algorithm, we consider 5,000 iterations after convergence (that is detected after
about 2,000 burn-in iterations by applying the Geweke (1992) convergence diagnostic
test statistics). The scale A of the proposal distribution of the MH step for generating
0 from ¢ was chosen to achieve average acceptance rates between 0.5 and 0.7 for the
two MH algorithms (steps 1 and 2), which is a good sign of efficiency for most MCMC
algorithms, as suggested, for example, by Rosenthal (2011). This choice can be done
‘on-line’ through the runs of the algorithm in the burn-in phase.

With regards to Table 1:

e «; are the autoregressive parts of the S-MRF (time factor) — representing the
time-dependence.

e (3, are the parameters linking the different maturities (maturity factor), repre-
senting the cross-maturity dependence.

The autocorrelation over time decreases as the maturity increases. This feature can
be seen in the value of the corresponding parameters «.. Additionally, 81 and 35 represent
the correlation parameters of neighbouring maturities before and after, respectively.
Hence (12 represents the correlation parameters between maturity 1 and maturity 2,
while 23 represents the correlation parameter between maturity 2 and maturity 3.
Furthermore, panels ¢ and d pool across maturities. This pooling produces an interesting
practical approach because it assumes the same autoregressive structure over time for
the PITs across their maturities, should this be considered a more sensible modelling
approach.

The results of the calibration exercises are given in Table 1 and Figure 1. The
autoregressive coefficient is significant for all maturities. The proximity parameter is
significant only for the last maturity. The value of the precision parameter increases
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Panel (a) (o =0.1)
Tj,jzl Tj,j:2 Tj,j:-?)
Hij Gij CI Gij CI Qij CI
v | 142 (105, 1.51) | 282  (2.79, 2.93) | 13.46 (13.40, 13.64)
ag; | —0.32 (-0.44, -0.25) | -0.55 (-0.64, —0.46) | —-1.09 (-1.15, -1.02)
ap; | 043 (0.32,048) | 051 (0.35,0.61) | 0.32  (0.23,0.42)
B 011  (0.01,021) | 016  (0.04,0.26)
By | 018 (0.06,0.27) | 0.03  (0.01,0.15)

Panel (b) (¢ = 0.2)
Tj,jzl Tj,j:2 Tj,j:?)

05 0;; CI 0;; C1 0i; C1

ol 3.75 (13.73, 3.81) 7.01 (6.67, 7.23) 14.03 (13.83, 14.16)
ag; | 024 (-0.34,-0.11) | -0.11 (-0.19, -0.03) | -0.23 (-0.29, 0.18)
oy | 0.37 (0.23, 0.47) 0.30 (0.24, 0.41) 0.47 (0.32, 0.58)

Bi; 0.37  (0.27,043) | 0.05  (-0.09,0.21)
B2; 0.13 (0.03, 0.21) -0.02  (-0.09, 0.08)

Panel (¢) (¢ =0.1) Panel (d) (o =0.2)
7.j=1,2,3 7.j=1,2,3

S 994 (427, 17181) || ~ | 953 (49.57, 159.60)
ao | 017  (-5.25,7.19) || ap | 155  (-4.43, 7.15)
a; | —0.02 (-8.37,5.21) o1 | 048 (5.8, 4.17)
B | 074  (-6.79,5.98) || B | -0.37  (-5.81, 4.27)
By | 056  (-5.58,7.55) || By | -0.04  (-7.48,7.77)

Table 1: Posterior mean (91) and 95% credible intervals (CI), for the parameters of
the B-MRF. The non-calibrated predictive models with ¢ = 0.1 (panels (a) for the
hierarchical and (c) for the pooled model) and o = 0.2 (panels (b) for the hierarchical
and (d) for the pooled model), when the true value of the scale parameter is o = 0.15.

with the maturity. Figure 1 shows the non-calibrated and calibrated PITs. Figure 2
shows the predictive density, and the calibrated predictive, for the prices at time ¢ = 504
using the implied densities available at time ¢ — 7; for different j (rows) and different
wrong values of the volatility parameter o (columns).

We also consider a more parsimonious model, where we assume fj; = B and oy, =
ay for all 5 =1,..., M. The results are also given in Table 1.

5 Foreign exchange market application

We apply our methodology to over-the-counter annualized implied volatilities for options
on the EUR/USD (underlying being the currency spot level) for different tenors (one
month, two months, and six months), spanning from 01/Jan/2010 until 01/Apr/2013.
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o=0.1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1: Non-calibrated (dashed line) and calibrated (solid line) risk neutral distribu-
tion for different maturities (rows) and volatility levels (columns). In each plot, thin
solid lines represent the 95% HPD region.

For the computation of the risk neutral densities, we applied the same procedure con-
sisting of first fitting a spline to the implied volatility for each tenor separately as
in Panigirtzoglou and Skiadopoulos (2004); Vergote and Puigvert (2012), in order to
transform back to the option price space and take the second derivative to yield the risk
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Figure 2: Non-calibrated (dashed line) and calibrated (solid line) risk neutral distribu-
tion and price level (vertical dotted line) at last point of the sample, i.e. t = 504, for
different maturities (rows) and different volatility levels (columns).

neutral density.? For an extensive review on how to extract risk-neutral densities from
option prices with Matlab code included, see Fusai and Roncoroni (2000). We apply this
methodology, both for the case where we assume that each tenor has its own calibration
function, and for the case where we assume that there is a single calibration function

2A more thorough description of how to estimate the risk-neutral density obtained in our work is
given in Appendix A.
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Panel (a) (Original data sample)
Tj,jzl Tj,j:2 Tj,jZS
9,‘]‘ Qij CI Gij CI Gi]‘ CI
v | 224 (2.14,301) | 278 (276, 2.08) | 355  (3.42, 3.97)
ag; | —0.04 (-0.16, 0.09) | -0.06 (-0.21, 0.07) | -0.08 (-0.24, 0.04)
ar; | 015 (0.06,024) | 031  (0.14,045) | 0.31  (0.21, 0.52)
B 0.14  (0.04,0.28) | 0.13 (-0.01, 0.26)
Boi | 017 (0.04,028) | -0.01 (-0.2,0.01)

Panel (b) (Thinned data sample)
Tj,jzl Tj,j:2 Tj,j:3
0;; 0;; CI 0 C1 05 CI
v | 263 (252,278) | 257  (2.34,2.71) | 352  (3.48, 3.62)
ag; | 0.03 (-0.14, 0.23) | 0.04 (-0.15,0.18) | 0.02 (-0.17,0.21)
ag; | 0.05 (-0.25,0.21) | 0.10 (-0.04,0.33) | 0.11 (-0.02, 0.23)
Bi; 0.06  (0.01,0.26) | 0.09 (-0.01, 0.34)
Ba | 0.07  (-0.10,0.32) | 0.03 (-0.14, 0.23)

Table 2: Posterior mean (;) and 95% credible intervals (CI), for the parameters of the
B-MRF. The non-calibrated and S-MRF calibrated predictive pits empirical distribution
function for original data (panel (a)) and thinned data (panel (b)), with thinning factor
100/15.

that works across several tenors by setting 5i; = 0 in the specification of fi;;.

Figure 3 shows the time series (left column) and the histograms (right column) of
the different PIT series.

We further display below the risk neutral densities estimated on the last day of the
sample, 01/Apr/2013, for the different maturities as well as their physical densities,
computed by applying the calibration function to each of the risk-neutral densities. We
apply our S-MRF calibration model with the prior and MCMC setting used in the
simulated experiments (see previous section).

The results are given in Figure 4. As it results from panel (a) in Table 2, we found
evidence of autocorrelation component (coefficient a4 ;) and of dependence across neigh-
bouring maturities (coefficients 3;;). From panel (b) of the same figure, we can see
that the value of the autoregressive coefficient decreases when thinning (thinning factor
100/15) is applied to the PITs time series in order to reduce the dependence between
the samples.

In order to test whether the physical density before and after the estimation of
the distortion (calibration) Beta function is adequate or not, we follow Bliss and Pani-
girtzoglou (2004) and apply the Berkowitz test. The Berkowitz test (Berkowitz, 2001)
consists in transforming the PITs to normal random variables through the following
approach:

2t = 0 (1) (23)
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Figure 3: PIT time series (first column) and unnormalized histogram of the non-
calibrated PITs (second column).

where ®~! is the inverse CDF of a standard normally distributed random variable.
Under the null hypothesis the z; ; have to be iid standard normally distributed random
variables, meaning that when estimating the model z; » — v; = pr(21—1,r — V7) + €7,
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Figure 4: Non-calibrated (solid line), calibrated (dotted line), and S-MRF calibrated
(thinner dashed line) risk neutral distributions for the three different maturities (rows):
one, two and six months. In each plot, thinner solid lines represent the 95% HPD region.

with €, ~ N(0,¢?), we would obtain p, = 0, v, = 0 and ¢? = 1. The likelihood of this
autoregressive normal model is written as L(v,, (., pr), and we use the statistic

LR3; = -2 (L(07 170) - L(ZA/T7<A‘T?[)T)) (24)

to test the null hypothesis of independence and normality of the z; , (Berkowitz, 2001).
We report the p-values for different maturities under the null hypothesis. The LRj3
statistic has a x?(3), that is, a chi-square distribution with 3 degrees of freedom, under
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LR3 LR,

Maturity | NC B-C  B-MRF-C | NC B-C  B-MRF-C
1 month | 0.003 0.092 0.153 0.001 0.023 0.063

3 months | 0.001 0.017 0.157 0.001  0.001 0.056

6 months | 0.001 0.001 0.223 0.001  0.001 0.074

Table 3: Berkowitz tests (p-value) for uniformity and independence, LR3 and for in-
dependence, LRy, for different maturities (rows), and different PITs series (columns):
physical distribution PITs or non-calibrated PITs (NC), beta calibrated PITs (5-C)
and B-MRF calibrated PITs (8-MRF-C)

the null where p = 0, v = 0 and Var(e;) = 1. Moreover, as suggested in (Berkowitz,
2001), we also test the independence assumption separately by evaluating the statistics

LRy = =2(L(0r,(7,0) = L(0r, (7, ) (25)
which follows a x?(1) under the null hypothesis where p = 0.

As suggested by the graphical evidence of Figure 3, when performing the Berkowitz
test for the physical density, the null hypothesis stating that p, =0, v, =0 and (, =1
for all different maturities was rejected with p-values equal to 0 (see columns NC in
Table 3).

Also, we compare the physical density PITs with the beta calibrated PITs (see
columns S-C in Table 3), which correspond to the physical density PITs calibrated with
a beta distortion. It can be obtained as a restricted version of our S-MRF model by
setting ax; = 0 and Bg; = 0 for all k and j. The 8-C PITs are rejected as good forecast
for the 3 month and 6 month maturities. However, when we examine the p-values of
the LR, tests for autocorrelation we reject the null hypothesis that the underlying PITs
are uncorrelated, suggesting that the rejection of LR3 is potentially due to the lack of
independence in the PITs. For the S-MRF-C PITs the absence of autocorrelation (see
LR, p-values) cannot be rejected, and the hypothesis that they provide good forecasts
cannot be rejected for all maturities by comfortable margins.

6 Conclusion

This paper, which builds on the methodology by Casarin et al. (2012), provides a new
modelling framework using both the derivative implied volatilities and synchronized
spot and forwards for the term structure of the implied probability, which accounts
for the possible dependence between PITs at different maturities, and different dates
for a given maturity. This approach allows for borrowing of information between the
different tenors, for both the risk-neutral and the physical measures. We also provide an
inferential Bayesian framework that allows the inclusion of uncertainty in the density
calibration functions, normally a factor overlooked in the literature, and therefore also
in the physical densities.

Modelling the time evolution of the predictive densities and the relationship be-
tween densities from many sources is a challenging issue. For example, in traditional
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approaches, when reconstructing the calibration function there cannot be any overlap-
ping time intervals so that the PITs are independent in order to estimate the beta
calibration function as explained in Fackler and King (1990) and later used in Ver-
gote and Puigvert (2012), and Vesela and Puigvert (2014). Using independent PITs
has the drawback of requiring large amounts of data (even more for longer maturities),
not always available for new assets or assets that do not trade frequently, to have a
reliable calibration function. Our methodology takes advantage of using all sources of
information available, without thinning of the source, since the induced correlation is
incorporated in the modelling of the dependent PITs.

Future research will include adapting and comparing our methodology to other as-
sets, such as stocks, commodities, fixed income indices, and other exchange-traded mar-
kets, which trade on fixed expiry contracts rather than rolling constant term contracts,
by interpolating the risk neutral densities for different constant maturities from fixed
expiry contracts as done in (Vergote and Puigvert, 2012), as well as applications of this
method outside the financial world.

Appendix A: Risk neutral density estimation

Our application consists of the daily implied annualized volatility on the Eurodollar
currency for different (constant maturity, rather than fixed day of expiry) expirations.
The full data consists of the closing snapshots around the end of the London business
day for spot, forwards and implied volatilities for the period of the 01/Jan/2010 to the
01/Apr/2013. We follow Campa et al. (1998); Vergote and Puigvert (2012) and fit a
cubic smoothing spline to the volatility smile. We work in the implied volatility space
which provides a natural interpolation setting for the full surface, especially as most
of the higher-quality data comes from the more-traded out-of-the-money options. By
fitting the implied volatility (sigma-delta) instead of the option prices directly, one is
able to circumvent the latter problem of the noise in the options data, as in Shimko
(1993); Hutchinson et al. (1994); Malz (1997); Ait-Sahalia and Lo (1998a); Engle and
Rosenberg (2000); Bliss and Panigirtzoglou (2002). Additionally, this is the natural
approach in over-the-counter options markets, where option prices are often quoted by
market-makers in volatility space, rather than price space.

Using the same notation as in Vergote and Puigvert (2012), the optimal cubic
smoothing spline of the implied volatility is the one that minimizes the following func-
tion:

min A3 wilos — 0(0):)? + (1 - /\)/O 4" (6,0)do (26)

where ¢ is the partial derivative of the Black and Scholes option call price with respect

—

to the underlying, o;, 0(©), and w; = ﬁ are the observed implied volatility, fitted
volatility, and weight of observation 1, toéether with its Greek Black and Scholes vega
v, respectively. Furthermore, © represents the matrix of polynomial parameters of the
cubic spline while g(-,-) is the cubic spline function. An arbitrary value of A = 0.99
is chosen as standard in the literature, as seen, for example, in Vergote and Puigvert
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(2012), Bliss and Panigirtzoglou (2004) or Bliss and Panigirtzoglou (2002). It is worth-
while noting that the Black—Scholes formula is used solely to convert the option prices
into/from their implied volatilities, in order to make the smoothing more effectively.
This approach does not imply that we are assuming the Black and Scholes pricing for-
mula is the correct one, but is only a way to make the smoothing more effective in the
interpolation.?

Appendix B: Computational details

In order to generate z,41.7 from L(zp+1.7|0) we apply an MH within Gibbs algorithm.
The full conditional distributions of the Gibbs sampler are derived by using the Markov
property of our dynamic random field with respect to the chosen neighbourhood system.
Let Bjs = Bjs(tj5775, (1 — t55)7;), then the full conditional distribution of the jth site,
fort=p+1,...., T —pis

71—(Zt,‘rj |Zt—p:t—1,7'_7~ ) Zt+1:t+P7T_7‘ ) Zt—p:t,‘rj_1 ) zt—p:t,7'_7~+1 ’ 0)
o L(Zp+1~T|9)

N H H B, ( @ o ))#J‘s’ﬁ—l (1 B FS(?-,—J. (26.r ))(1—#.7’s)’¥.7 s T]( o)

s=p+1j=1
t+p M

sy —1 (I=pjs)v;—1
< [TII Bis (P2, (zer)) " (1= F2, (20,) 12, o)
s=t j=1 (27)

OCH H Bls( 8,7 Zs n))ﬂisw*l( _FSQT,(ZS,Ti))(l NLS)%_l fsn( STi)

X H Bis (Fs ‘rl(zS TL))IMS'YL*]- (1 - Fy -rl(zs ‘rz))(l pra )= lfs n(zs ‘rz)
I¢N(5),1#£]

Hjsj— (I—pjs)vi—1
XB (FST](25 Tg)) (I_Fs‘rj(zb T])> fg‘rj(zsﬁj)'

Conditionally on the remaining sites, the full conditional distribution of the z; ; is
a function of the sites in the neighbourhood of j, i.e.

W(Zt,rj |Zt7p:t71,7'j ) zt+1:t+p,‘rj ) thp:t,rj,l ) ztfp:t,‘rjurl ) 0)
t+p

X H H BZQ 87’1 29 TZ))“"'S% (1 _Fs TZ(ZS Tz))(l_“w)%_l fsc?r,;(z&ﬂ)

s=t—pieN(j)
HjisYj—
XB]S< sor (Zs 7-7)) o (1*F (Zs 7'7) s,Tj(Zsﬂ‘j)

it exp(oj)—1 (1—pj¢) exp(o;)—1
x Bjt (F2, (210,)) (1-F2 oy 12 (i)

1 )(1—Mjs)’w—1

3The function csaps was used to perform cubic smoothing spline interpolation in Matlab.
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1-F°

Hj,t+k exp(o;)—1
) ( t4k,7; (Zt+k,rj)

(I—ptj,t4%) exp(o;)—1
X H Bj vk ( t+k,7 (Zt4k,r;) )

pit exp(oi)—1 (1—pse) exp(o)—1
X H Blt( t,Ti Zt Tz)) (1 _Ftc,?‘r,-(ztﬂ'i)> :
1€EN(7)

(28)

Similarly, it is easy to check that the full conditional distribution for the jth site, for
t=T—-p+1,...,Tis

W(Zt,rj |Zt7p:t71,7'j ) Zt+1:t7T,‘rj ) thp:t,‘r]-,l ) thp:t,‘errl ) 0)

x L(zp41.7(6)

pjeexp(oj)—1
x Bj (Fth,- (Ztﬁj)) (

)<14¢ﬁ1>cxp<aj>fl

1 - Ft?‘f‘j (Zt,Tj) t,7; (ztﬂ—j)

)Mj,wrk exp(o;)—1 ( )(1—Mj,t+k)exp(0j)—1

X H Bj vk ( t+k,T; (Zt4k,m;)

pir exp(o;)—1 (1—pie) exp(oi)—1
X H Bit ( Zt n)) (1 - F (Zf n))
1EN(5)

1= F8, ()

(29)

with H2:1 = 1. The full conditionals are not trivial to simulate from, thus we apply an
MH step with proposal distribution

Bitvie—1
Q201,75 2000 20m,00,0) o (B2 (2)) (1-F2,2) 2 (2)

Which can be simulated exactly as follows: y* ~ Be(u;t exp(o;), (1 — p;¢) exp(o;)) and

= FtQTfl( *). This choice of the proposal distribution leads to a simplification of
the logarithmic acceptance probability. For the jth site, with t = p+1,...,T — p the
acceptance probability is

10g p= Z (log Bit — log B:t + Ait (,u;kt - ,ult) eXp(Ui))
1EN(H)

)(1*Hjt)%'t*1 0

P
+ Z (log Bjtik —1og Bjf . + Ajuesr (165511 — tjerr) exp(oy))
k=1

with B, = Bit(p; exp(04), (1 — i) exp(o4)) and

p
pi = | o + Z OkjYt—k,i + Z Briyek + Bjiy”
k=1 KEN (i),k#j

which follows by the definition of neighbourhood system, that is, if ¢ € N(j) then
J € N(i), and with B}y, = Bjir(pjry, exp(oj), (1 — pjfy) exp(o;)) and

P
Wi =9 o+ Y ayekrit Y Brivek + aky”
I=1,1#k kEN(5)
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With regards to the MH step for the full conditional distributions of the jth site, for
t=T—-—p+1,...,T the calculation of the acceptance probability is similar to the one
given here above and is omitted for the sake of conciseness of the paper.
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