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Without measurement errors in predictors, discontinuity of a nonpara-
metric regression function at unknown locations could be estimated using a
number of existing approaches. However, it becomes a challenging problem
when the predictors contain measurement errors. In this paper, an error-in-
variables jump point estimator is suggested for a nonparametric generalized
error-in-variables regression model. A major feature of our method is that it
does not impose any parametric distribution on the measurement error. Its
performance is evaluated by both numerical studies and theoretical justifica-
tions. The method is applied to studying the impact of Medicare Levy Sur-
charge on the private health insurance take-up rate in Australia.

1. Introduction. This paper is motivated by our attempt to study the impact
of the Medical Levy Surcharge (MLS) tax policy on the take-up rate of the pri-
vate health insurance (PHI) in Australia. People in Australia are liable of MLS
(which is about 1 percent of their annual taxable incomes) if they do not buy PHI
and their annual taxable incomes are above a certain level. For example, the in-
come threshold for single individuals was $50,000 per annum in the 2003–2004
financial year, where the dollar sign “$” used here and throughout the paper rep-
resents the Australian Dollar (AUD). The major purposes of this tax policy were
to give people more choices of health insurance and to take a certain pressure off
the public medical system. It was expected that this policy would generate a jump
in the PHI take-up rate around the taxable income threshold. The size of the jump
could be used to evaluate the impact of the policy on the PHI take-up rate. How-
ever, the jump location may not be exactly at the threshold for the reasons given
below. First, the $500 MLS at the threshold could be lower than the net cost of
PHI, and taxpayers usually consider buying PHI only when the MLS exceeds the
cost of PHI at higher income levels. Second, the MLS is collected when taxpayers
file their tax returns after the financial year is finished, while the decision to buy
the PHI should be made before the financial year starts. Because it is difficult for
people to predict their taxable incomes accurately, they may not be aware of the

Received October 2014; revised February 2015.
1Supported in part by an NSF grant.
Key words and phrases. Bandwidth selection, demand for private health insurance, exponential

family, generalized regression, kernel smoothing, measurement errors.

883

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/15-AOAS814
http://www.imstat.org


884 KANG, GONG, GAO AND QIU

MLS issue until it occurs. So, the jump location is actually unknown and needs
to be estimated properly before the jump size can be estimated. To estimate the
jump location accurately is also helpful for understanding the demand for PHI in
Australia. This is because from the costs of the PHI and the difference between the
estimated jump point and the threshold, one can infer the true value of PHI to the
taxpayers.

There is a large literature using tax changes as a source of variation in the after-
tax price of health insurances. Most of these studies are for the US-employer-
provided health insurances. See Gruber and Poterba (1994), Finkelstein (2002),
Rodríguez and Stoyanova (2004), and Buchmueller, Didardo and Valletta (2011)
for a few examples. Rarely is it the case that the tax changes could be argued as ex-
ogenous. Jumps caused by policy design, such as the MLS in Australia, have been
argued to be exogenous locally for the individuals around it [Lee and Lemieux
(2010)].

In the statistical literature, jump detection in regression functions has been dis-
cussed by several authors, including Joo and Qiu (2009), Müller (1992, 2002), Qiu
(1991, 1994), Qiu and Yandell (1998), Wu and Chu (1993), and the references
therein. See Qiu (2005) for an overview on this topic. All existing jump detec-
tion methods assume that the explanatory variable does not have any measurement
error involved. Meanwhile, the existing literature on the error-in-variables regres-
sion modeling assumes that the measurement error distribution is known or it can
be estimated reasonably well beforehand and that the related regression function
is continuous. See, for example, Carroll, Maca and Ruppert (1999), Carroll et al.
(2006), Comte and Taupin (2007), Cook and Stefanski (1994), Delaigle (2008),
Delaigle and Meister (2007), Fan and Masry (1992), Fan and Truong (1993), Hall
and Meister (2007), Liang and Wang (2005), Staudenmayer and Ruppert (2004),
Stefanski (2000), Stefanski and Cook (1995), and Taupin (2001). Our case is much
more complicated. The available data to us are drawn from the “1% Sample Unit
Record File of Individual Income Tax Returns” for the 2003–2004 financial year,
that was developed by the Australian Tax Office (ATO) for research purposes.
Out of privacy consideration, the ATO intentionally perturbed the income data by
multiplying random numbers to the income data, and the true distribution of the
random numbers is unrevealed. Our major task here is to estimate a jump point
and the jump magnitude in a regression model when the regressor contains mea-
surement errors with an unknown distribution. This problem is much more chal-
lenging to handle, compared to the ones discussed in the papers mentioned above.
For instance, the deconvolution kernel regression estimator proposed by Fan and
Truong (1993) assumes that the characteristic function of the measurement error
distribution is completely known. Such detailed knowledge of the measurement
error distribution is unavailable in the current PHI problem. Also, when the error
distribution was misspecified in the conventional deconvolution problems, Meister
(2009) pointed out that the Mean Integrated Squared Error (MISE) of the decon-
volution kernel estimator was not bounded from above. Therefore, this estimator
can perform badly when the error distribution is not correctly specified.
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In this paper, we propose a generalized error-in-variables regression model for
describing the relationship between the PHI take-up rate and a person’s annual
taxable income. In the model, a jump point is included to accommodate the pos-
sible abrupt impact of MLS on the PHI take-up rate. A novel jump detector is
proposed as well, which takes into account the measurement errors. One feature
of our method is that it does not require the measurement error distribution to be
specified beforehand, making it applicable to the current PHI problem and other
real problems.

The remainder of the article is organized as follows. In Section 2, our proposed
model and jump detector are described in detail. In Section 3, some statistical
properties of the proposed jump detector are discussed. In Section 4, its numerical
performance is evaluated. In Section 5, an in-depth analysis of the PHI data is
presented. Several remarks conclude the article in Section 6. Some technical details
are provided in a supplementary file.

2. Proposed methodology. Let {(Wi, Yi) : i = 1, . . . , n} be a sample of n in-
dependent and identically distributed (i.i.d.) observations from the models de-
scribed below:

(i) The conditional distribution of Yi |Xi = x has probability density function
(p.d.f.) or probability mass function (p.m.f.) from the exponential family

exp
{
yθ(x) − b(θ(x))

a(φ)
+ c(y,φ)

}
,(2.1)

where Xi is the ith observation of the unobservable explanatory variable X, Yi

is the ith observation of the response variable Y , θ(x) is the canonical parame-
ter when Xi = x, φ is a scale parameter, a(φ), b(θ(x)), and c(y,φ) are certain
functions of φ, θ(x), and (y,φ), respectively.

(ii) Wi is the observed value of Xi with a measurement error, and their rela-
tionship can be described by the model

Wi = Xi + σnUi,(2.2)

where σn > 0 denotes the standard deviation of the measurement error in Xi , and
Ui is the standardized measurement error with mean 0 and variance 1. It is also
assumed that Ui ’s are i.i.d., Ui is independent of both Xi and Yi , the distribution
of Ui , denoted as fU , and the distribution of Xi , denoted as fX , are both unknown.

In model (2.1), θ(x) relates Yi to Xi . And, model (2.1) includes many com-
monly used distributions (e.g., Normal, Poisson, Binomial) as special cases. In
the current PHI problem, because ATO perturbed the income data by multiply-
ing each original income observation by a random number, the income variables
are used in log scale so that model (2.2) with additive measurement error is ap-
propriate. More specifically, Xi and Wi denote the true and observed annual tax-
able incomes in log scale, respectively, Yi denotes the status of PHI take-up (Yi
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equals 1 when a specific person buys the PHI and 0 otherwise), and Yi |Xi = x is
assumed to follow the Bernoulli distribution with the probability of success being
p(x) = P(Yi = 1|Xi = x). In such cases, the quantities θ(x), a(φ), b(θ(x)), and
c(y,φ) can be specified as follows:

θ(x) = log
(

p(x)

1 − p(x)

)
, a(φ) = 1,

b(θ) = log
(
1 + exp(θ)

)
, c(y,φ) = 0.

As discussed in Section 1, the tax policy MLS is expected to generate a jump in
p(x). So, a jump in θ(x) is expected as well.

In the PHI problem, it is important to estimate the jump position in θ(x) in order
to study the impact of the tax policy MLS on the PHI take-up. Our proposed jump
detector is described below. The true jump position of θ(x) is assumed to be at s

which is unknown. Without loss of generality, let us assume that the support of fX

is [0,1] and s ∈ (0,1). Let m(x) denote the conditional mean of Y given X = x.
Then, it can be checked from (2.1) that

m(x) = E(Y |X = x) = b′(θ(x)
)
.

For any given point x ∈ (2hn,1−2hn), let us consider its right-sided neighborhood
[x, x+hn], where hn > 0 is a bandwidth parameter. When there is no measurement
error in X, m(x+) = lim�x→0+ m(x + �x) can be estimated reasonably well [cf.
Qiu (2005), Chapter 2], by

n∑
i=1

YiKr

(
Xi − x

hn

)/ n∑
i=1

Kr

(
Xi − x

hn

)
,(2.3)

where Kr is a decreasing kernel function with the right-sided support (0,1]. In the
case when X has measurement errors involved, the estimator in (2.3) is unavailable
because Xi’s are no longer observable. It may be problematic if we simply replace
Xi’s by Wi ’s in (2.3) because we do not know whether a specific Xi is located on
the right-hand side of x or not when its observed value Wi is on the right-hand
side of x, due to the measurement error. However, as demonstrated in Figure 1,
the following fact can be observed: if Wi is close to the true jump point s, then the
corresponding unobservable Xi is likely to be on the other side of the jump location
and, consequently, Yi follows a distribution with the parameter θ(Xi) which could
be very different from θ(Wi). A one-sided kernel estimator defined in (2.3) with
the Xi’s replaced by the corresponding Wi ’s actually averages observations on
both sides of the jump location. Thus, the impact of the measurement error could
be severe in such cases. On the other hand, in the case when Wi is farther away
from s, such an impact becomes smaller. Based on this fact, let us consider a one-
step-right neighborhood of x, defined to be Nn,r(x;hn) := (x + hn, x + 2hn), and
define

m̂n,r (x+) =
n∑

i=1

YiKr

(
Wi − (x + hn)

hn

)/ n∑
i=1

Kr

(
Wi − (x + hn)

hn

)
,(2.4)
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FIG. 1. The solid line denotes the conditional mean function m(x) = E(Y |X = x) that has a jump
at s = 0.5 (marked by the vertical dashed line). The dark points denote observations of (W,Y ) where
W is the observed value of X with measurement error involved. It can be seen that the values of X

corresponding to those W values that are close to the true jump location (e.g., those fall between the
two vertical dotted lines) are likely to be on both sides of the jump.

where the kernel function Kr is the same as the one in (2.3). If x is at the jump
location, then m̂n,r (x+) should be a weighted average of observations that are on
the right-hand side of x since the observations in the neighborhood Nn,r(x;hn)

are all quite far away from the jump point. This would limit the possibility of
averaging observations on both sides of x, and thus diminish the impact of the
measurement error. However, this estimator may still have some bias for estimating
m(x+) because the X values of most observations used in m̂n,r (x+) are at least
one bandwidth above x. To address this issue, let us define

m̂n(x+) =
∑n

i=1 YiKr((Wi − x)/hn)K
∗(|m̂∗

n(Wi+) − m̂n,r (x+)|/ρn)∑n
i=1 Kr((Wi − x)/hn)K∗(|m̂∗

n(Wi+) − m̂n,r (x+)|/ρn)
,(2.5)

where the kernel function Kr is the same as the one in (2.3), K∗ is another de-
creasing kernel function with support [0,1], ρn = maxx≤Wi≤x+hn |m̂∗

n(Wi+) −
m̂n,r (x+)|, and

m̂∗
n(x+) =

n∑
j=1

YjKr

(
Wj − x

hn

)/ n∑
j=1

Kr

(
Wj − x

hn

)
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is the conventional one-sided kernel estimator of m(x+). The intuitive explana-
tion of (2.5) is as follows. From its definition, m̂∗

n(Wi+) is mainly determined by
observations close to Wi and these observations are mostly in the neighborhood
[x, x + hn]. For some of these observations, the corresponding Xi’s may be on the
left-hand side of x and, thus, the impact of the measurement error on the one-sided
estimator in (2.5) could be severe. On the other hand, the measurement error does
not have much impact on m̂n,r (x+), as explained above. The bias in m̂n,r (x+) for
estimating m(x+), due to the fact that it uses many observations that are at least
one bandwidth on the right-hand side of x, is considered significantly smaller than
the bias in m̂∗

n(Wi+) due to measurement error, because the former is due to the
variation of m(·) in a small continuity region while the latter is caused by the jump.
So, the difference m̂∗

n(Wi+) − m̂n,r (x+) can provide us a measure of the impact
of the measurement error in Wi on estimation of m(x+). If the difference is small,
then the impact of the measurement error in Wi should be small. Otherwise, its
impact should be large. The kernel function K∗ in (2.5) aims to eliminate such
an impact. Therefore, m̂n(x+) should provide a reasonable estimator for m(x+).
An estimator of m(x−) can be constructed similarly to (2.5), which is denoted as
m̂n(x−). Then, the true jump location s can be estimated by

ŝn = arg max
x∈(2hn,1−2hn)

∣∣m̂n(x+) − m̂n(x−)
∣∣,(2.6)

and the corresponding jump magnitude d in m(x) can be estimated by

d̂n = m̂n(̂sn+) − m̂n(̂sn−).(2.7)

It should be pointed out that, although the exponential family in (2.1) is parameter-
ized using the canonical parameter θ(x), the mean parameter m(x) is often easier
to interpret in practice. For this reason, both the jump location and the jump mag-
nitude are discussed above in terms of m(x), instead of θ(x). In Section 3, we will
show that under certain regularity conditions, ŝn is a consistent estimator.

In the proposed jump detector (2.6), there is one parameter hn to choose. Ac-
cording to Gijbels and Goderniaux (2004), jump detectors based on kernel smooth-
ing in cases without measurement error depend heavily on the choice of bandwidth
parameters. In simulation studies, the true jump location s could be known. Then,
hn can be chosen to be the one that minimizes |̂sn(hn) − s|, where ŝn has been
written as ŝn(hn) for convenience of discussion. In practice, s is usually unknown.
In such cases, we suggest the following bootstrap bandwidth selection procedure:

• For a given bandwidth value hn > 0, apply the proposed jump detection proce-
dure (2.4)–(2.6) to the original data set {(W1, Y1), (W2, Y2), . . . , (Wn,Yn)}, and
obtain an estimator of s, denoted as ŝn(hn).

• Draw with replacement n times from the original data set to obtain the first
bootstrap sample, denoted as {(W̃ (1)

1 , Ỹ
(1)
1 ), (W̃

(1)
2 , Ỹ

(1)
2 ), . . . , (W̃

(1)
n , Ỹ

(1)
n )}.

• Apply the proposed jump detection procedure (2.4)–(2.6) to the first bootstrap
sample, and obtain the first bootstrap estimator of s, denoted as s̃

(1)
n (hn).
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• Repeat the previous two steps B times and obtain B bootstrap estimators of s:

{̃s(1)
n (hn), s̃

(2)
n (hn), . . . , s̃

(B)
n (hn)}.

• Then, the bandwidth hn is chosen to be the minimizer of

min
hn

1

B

B∑
k=1

∣∣̂sn(hn) − s̃(k)
n (hn)

∣∣.(2.8)

It should be pointed out that, as a byproduct of the above bootstrap band-
width selection procedure, a confidence interval for s can be constructed from
the empirical distribution of {̃s(1)

n (h̃n), s̃
(2)
n (h̃n), . . . , s̃

(B)
n (h̃n)}, where h̃n de-

notes the bandwidth selected by the bootstrap. More specifically, for a given
significance level α ∈ (0,1), a 100(1 − α)% confidence interval for s is de-
fined to be (̃sn,α/2(h̃n), s̃n,1−α/2(h̃n)), where s̃n,α/2(h̃n) and s̃n,1−α/2(h̃n) de-
note the (α/2)th and (1 − α/2)th quantiles of the empirical distribution of
{̃s(1)

n (h̃n), s̃
(2)
n (h̃n), . . . , s̃

(B)
n (h̃n)}.

3. Statistical properties. In this section, we discuss some statistical prop-
erties of the proposed jump detector defined in (2.6). To this end, we have the
theorem below.

THEOREM 1. Assume that {(W1, Y1), (W2, Y2), . . . , (Wn,Yn)} are i.i.d. obser-
vations from models (2.1) and (2.2), and the following conditions are satisfied:

(1) θ(·) is a bounded, piecewise continuous function with a single jump at s

and its first-order derivative is also a bounded function,
(2) a(·), b(·), b′(·), and b′′(·) are all bounded and continuous functions,
(3) (b′)−1(·) exists and it is strictly monotone and Lipschitz-1 continuous2 in

any compact subset of the range of θ(·),
(4) the support of fX is [0,1] and s ∈ (0,1),
(5) fX is continuous, bounded, and positive on (0,1),
(6) fU is a continuous function and has a positive value at 0,
(7) the kernel functions K∗ and Kr are Lipschitz-1 continuous density functions

with the same support [0,1],
(8) the bandwidth hn satisfies the conditions that hn = o(1), and (logn)1+η/

(n1/2hn) = o(1), for some η > 1/2.

Then, we have the following results:

(i) If σn/hn = o(1), then

m̂n(x+) − m̂n(x−) = m(x+) − m(x−) + O

(
σ

2/3
n

h
2/3
n

)
+ O(βn) a.s.,

2Given an interval I ⊂ R, a function g : I → R is called Lipschitz-1 continuous if there exists a
real constant C ≥ 0 such that, for all x1 and x2 ∈ I , |g(x1) − g(x2)| ≤ C|x1 − x2|.
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where βn = hn + (logn)1+η

n1/2hn
.

(ii) If limn→∞ σn/hn = C, for some C > 0, then

m̂n(x+) − m̂n(x−)

= m(x+) − m(x−) − (
m(x+) − m(x−)

)
CK,r + O(βn) a.s.,

where

CK,r =
∫ 1

0 K∗∗
r (w)P (|U | > w/C)dw∫ 1

0 K∗∗
r (w)dw

,

and

K∗∗
r (w) = Kr(w)K∗

(∫ 1
0 Kr(v)P (v + w < CU < v + 1) dv∫ 1

0 Kr(v)P (v < CU < v + 1) dv

)
.

(iii) If the conditions in either (i) or (ii) hold, then we have

|̂sn − s| = O(hn), a.s.

Theorem 1 shows that the jump detector defined in (2.6) provides a statistically
consistent estimator of s under some regularity conditions. Its proof is given in a
supplementary file [Kang et al. (2015)]. In result (ii) of the above theorem, if K∗
and Kr are both decreasing on [0,1], then we have∫ 1

0 K∗∗
r (w)P (|U | > w/C)dw∫ 1

0 K∗∗
r (w)dw

≤
∫ 1

0 Kr(w)P (|U | > w/C)dw∫ 1
0 Kr(w)dw

.

It can be checked that if the conventional kernel estimators are used when
defining the jump detection criterion [i.e., m̂∗

n(x+) is used], then the asymp-
totic bias for m̂∗

n(x+) − m̂∗
n(x−) to estimate m(x+) − m(x−) is (m(x+) −

m(x−))
∫ 1

0 Kr(w)P (|U |>w/C)dw∫ 1
0 Kr(w)dw

, which is larger than the asymptotic bias (m(x+) −
m(x−))

∫ 1
0 K∗∗

r (w)P (|U |>w/C)dw∫ 1
0 K∗∗

r (w)dw
when we use m̂n(x+) − m̂n(x−) to estimate

m(x+)−m(x−). Therefore, the second kernel function K∗ used in (2.5) is helpful
in reducing the asymptotic bias. In Theorem 1, it is required that the measurement
error variance σ 2

n tends to 0 when the sample size n increases. In the literature, it
has been pointed out that this condition is needed for consistently estimating the
regression function when its observations have measurement errors involved and
when little prior information about the measurement error distribution is available
[cf. Delaigle (2008)].

4. Numerical studies. In this section, we present some results regarding the
numerical performance of the proposed jump detector described in Section 2,
which are organized in two subsections. Section 4.1 includes some simulation ex-
amples related to the jump detector defined in (2.6). Section 4.2 compares the
proposed jump detector to the difference-kernel-estimation (DKE) procedure that
ignores the measurement error [cf. Qiu (2005), Section 3.2].
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4.1. Numerical performance of the proposed jump detector. In this subsection,
the performance of the proposed jump detector is evaluated using two simulated
examples. In each example, we consider cases when the sample size n equals 100
or 200, fX ∼ Unif[0,1], and fU is either a Normal, a Laplace, or a Uniform dis-
tribution, with E(U) = 0 and Var(U)/Var(X) fixed at 15%. In each combination
of n and fU , the simulation is repeated 100 times. For each given bandwidth hn,
100 values of the Absolute Error (AE), defined as AE(hn) = |̂sn(hn)− s|, are com-
puted. Their average is called the Mean Absolute Error (MAE) and is denoted as
MAE(hn). The minimizer of MAE(hn) is called the optimal bandwidth and is de-
noted as hopt. In each replicated simulation, we also compute a bandwidth value
using the proposed bootstrap procedure. The average of such 100 bandwidth val-
ues is called the bootstrap bandwidth, denoted as hbt. In each example, the values
of hopt, hbt, MAE(hopt), MAE(hbt), and the empirical coverage probability (CP)
of the 95% confidence interval (see its description at the end of Section 2) com-
puted from the 100 replicated simulations are presented. In the case when n = 100
and fU is Normal, the sample that gives the median value of AE(hopt) is denoted
as S50. For that sample, the estimated jump location by (2.6) with hn = hbt and the
corresponding 95% confidence interval for s will be presented. Throughout this
section, if there is no further specification, the bootstrap sample size B is chosen
to be 999, and K∗ and Kr used in (2.4)–(2.6) are both chosen to be the Epanech-
nikov kernel function.

In the first example, the conditional distribution of Y |X = x is assumed to fol-
low the Normal distribution with density

1√
2π × 0.012

exp
{
−(y − θ(x))2

2 × 0.012

}
,

where

θ(x) =
{− sin(2πx), if x ≤ 0.5;

− sin(2πx) + 1, otherwise.

Figure 2 shows a realization of the sample S50, the true function θ(·) (solid line),
the estimated jump location ŝn (vertical dashed line), and a 95% confidence in-
terval for the true jump location s (vertical dotted lines). It can be seen that the
proposed jump detector estimates the true jump location reasonably well. The nu-
merical performance of the jump detector (2.6) based on 100 replicated simula-
tions is summarized in Table 1. From the table, it can be seen that (i) the proposed
jump detector estimates the true jump location reasonably well for various error
distributions, (ii) the performance of ŝn improves as the sample size n increases,
(iii) the bootstrap bandwidths are slightly larger than the optimal bandwidths but
they are quite close to each other, and (iv) the empirical coverage probabilities of
the proposed confidence interval for s are all close to the nominal coverage prob-
ability 0.95.
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FIG. 2. A realization of S50 in the first example with the true function of θ(·) (solid line), the
estimated jump location ŝn (vertical dashed line), and a 95% confidence interval for the true jump
location s (vertical dotted lines).

Next, we discuss the second simulation example whose setting is made similar
to that of the PHI data. Assume that the conditional distribution of Y |X = x is
Bernoulli with the probability of success being

p(x) =
{

1 − x2, if x ∈ (0,0.5];
0.5(1 − x)2, if x ∈ (0.5,1).

Figure 3 shows a realization of S50 with the true function of p(·) (solid line), the
estimated jump location ŝn (vertical dashed line), and the 95% confidence inter-
val for s (vertical dotted lines). It can be seen from the figure that the sample S50

TABLE 1
Numerical summary of the first simulation example based on 100 replicated simulations

n fU hopt hbt MAE(hopt) MAE(hbt) CP

100 Normal 0.3000 0.3008 0.0290 0.0293 0.95
Laplace 0.2931 0.2985 0.0292 0.0308 0.98
Uniform 0.2767 0.2910 0.0335 0.0347 0.96

200 Normal 0.2991 0.3074 0.0232 0.0245 0.96
Laplace 0.2902 0.3002 0.0191 0.0195 0.94
Uniform 0.2721 0.2917 0.0232 0.0239 0.97
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FIG. 3. A realization of S50 in the second example with the true function of p(·) (solid line), the
estimated jump location ŝn (vertical dashed line), and the 95% confidence interval for s (vertical
dotted lines).

has quite severe measurement errors involved and that the proposed jump detector
gives a reasonably good estimate of the true jump location. The numerical perfor-
mance of the jump detector (2.6) based on 100 replicated simulations is summa-
rized in Table 2. From the table, it can be seen that similar conclusions to those in
the first example can be made here.

4.2. Comparison to the DKE estimator. The DKE procedure [see Section 3.2
in Qiu (2005) for a detailed discussion] provides a good estimator of the true jump
position when there is no measurement error involved. In this subsection, we com-

TABLE 2
Numerical summary of the second simulation example based on 100 replicated simulations

n fU hopt hbt MAE(hopt) MAE(hbt) CP

100 Normal 0.3329 0.3448 0.0407 0.0444 0.93
Laplace 0.2758 0.2826 0.0397 0.0422 0.98
Uniform 0.3203 0.3247 0.0479 0.0484 0.97

200 Normal 0.3122 0.3100 0.0363 0.0369 0.98
Laplace 0.2820 0.2816 0.0326 0.0336 0.92
Uniform 0.2878 0.2983 0.0352 0.0352 0.94
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pare our proposed jump detector (2.6) with the DKE procedure in an artificial
example with similar setup to that of the PHI data. The proposed jump detector
is denoted as NEW and the DKE procedure is denoted as DKE. Assume that the
conditional distribution of Y |X = x is Bernoulli with the probability of success
being

p(x) =
{

25
36x2 + 0.15, if x ∈ [0,0.6);

12(x − 0.8)3 + 0.596, if x ∈ [0.6,1].
It can be seen that p(x) is a piecewise polynomial with a jump of size 0.1 at
x = 0.6, as plotted in Figure 4. In the figure, the estimated function of p(·) by the
local linear kernel (LLK) smoothing procedure is also shown. From the plot, it can
be seen that the shape of p(·) is similar to that in the PHI study, which is shown
in Figure 5. Note that the jump size in the PHI application is estimated to be 0.19
(cf. Section 5), while the jump size in this example is about half of that size. To
make this numerical study in a similar setup to that of the PHI study, which has
9685 observations distributed in the interval [9.8,11.3], we choose the sample size
n in the current example to be 6000 and the observations are in the design interval
[0,1]. In addition, fU is chosen to be N(0,0.052), and fX is either Unif[0,1],
Beta(2,2), Beta(3,2), or Beta(2,3). In each case, the simulation is repeated 100
times, the optimal bandwidth is selected based on the 100 replicated simulations,

FIG. 4. The dashed line denotes the true curve of p(·), the solid line denotes the local linear kernel
(LLK) estimate of p(·) using one realization of simulated data when fX(·) is Unif[0,1], the vertical
dot-dashed line denotes the estimated jump location ŝn, and the vertical dotted lines denote the 95%
confidence interval for s.



JUMP DETECTION WITH ERROR IN VARIABLES 895

FIG. 5. The solid line denotes the local linear kernel (LLK) estimate of p(·) in the PHI example, the
dashed line denotes the left-sided estimate of p(·), the dotted line denotes the right-sided estimate of
p(·), the dot-dash line denotes the absolute difference between the two one-sided estimates of p(·),
the long-dash vertical lines denote the 95% confidence interval for s, and the two-dash line denotes
the estimated jump location ŝn.

and the mean and standard deviation of the 100 values of |̂sn − s| and the 100
values of |(m̂n(̂sn+) − m̂n(̂sn−)) − 0.1| (i.e., the absolute bias of the estimated
jump size) are computed, respectively. They are denoted as MAE, SDAE, MABJS,
and SDABJS. The results are presented in Table 3.

TABLE 3
Numerical comparison of the proposed jump detector NEW with the DKE procedure based on 100
replicated simulations. MAE and SDAE denote the mean and standard deviation of the 100 values

of |̂sn − s|. MABJS and SDABJS denote the mean and standard deviation of the 100 values of
|(m̂n(̂sn+) − m̂n(̂sn−)) − 0.1|

DKE NEW

fX MAE SDAE MABJS SDABJS MAE SDAE MABJS SDABJS

Unif[0,1] 0.01718 0.00126 0.02598 0.00064 0.01532 0.00115 0.00511 0.00047
Beta(2,2) 0.01547 0.00109 0.02475 0.00049 0.01329 0.00108 0.00961 0.00044
Beta(3,2) 0.01607 0.00110 0.02593 0.00040 0.01305 0.00092 0.00494 0.00037
Beta(2,3) 0.01810 0.00113 0.02707 0.00055 0.01690 0.00108 0.01031 0.00058
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From Table 3, it can be seen that when there is measurement error involved,
(i) the precision of the detected jump by the proposed jump detection procedure is
better than that of the DKE procedure, across all different choices of fX , (ii) the
proposed procedure reduces the bias of the estimated jump size, which is consistent
with our discussion in Section 3, and (iii) the proposed procedure has a slightly
smaller variability for detecting the jump location and about the same variability
for estimating the jump size, compared to the DKE procedure.

5. Analysis of the PHI data. In this section, we apply our proposed jump
detector to the PHI data for evaluating the impact of MLS on the take-up rate
of PHI.

The purposes of introducing PHI in Australia were to give consumers more
choices and take some pressure off the public medical system. However, the PHI
take-up rate by Australians was very low at the beginning when the PHI was first
introduced in 1984, and the take-up rate had been declining toward the end of
1990s (the take-up rate was only about 31 percent at that time) until a series of
policies (including MLS) were introduced. Impact of some of these policy mea-
sures (e.g., Lifetime Health Cover) have been studied in a few studies, including
Butler (2002), Frech, Hopkins and MacDonald (2003), Palangkaraya and Yong
(2005), and Palangkaraya et al. (2009). But the role of MLS has not been identi-
fied separately yet. The MLS was imposed in 1997 on high-income taxpayers who
did not have private insurances. Between 1997–1998 and 2007–2008, the thresh-
old of annual taxable income at which MLS was payable was $50,000 for singles
without children and $100,000 for couples. For each dependent child in the house-
hold, the threshold increased by $3000. So, people having children may lead to
multiple jumps in the current PHI data. Unfortunately, we do not have information
on the number of children in a family. Also, multiple jump locations within a rela-
tively narrow range would be difficult to distinguish, given the measurement error
involved in the PHI data. To mitigate the effect of multiple jumps due to people
having children, this paper only focuses on singles in the current PHI data.

The data used here are from a confidentialized “1% Sample Unit Record File of
Individual Income Tax Returns” for the 2003–2004 financial year, that was devel-
oped by ATO for research purposes. The file contains just over 109,000 records of
individual tax returns and detailed information on income from various sources;
different types of tax deductions; taxable income; and the take-up of PHI by the
individuals. It also contains a limited number of demographic variables, including
gender, age group, and marital status. In this paper, we focus on singles between
20 and 69 years old, who were all subject to the same income threshold of $50,000
for the MLS. Therefore, the PHI take-up rate is expected to have a jump around
that level of the annual taxable income. In the tax and transfer system or in the
health insurance premium regime in Australia, there is no other differential treat-
ment related to the PHI take-up. Other demographic covariates (such as gender
and age) would not generate discontinuity in the take-up rate either as a function
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of the annual taxable income. So, in the current PHI data, MLS seems to be the
only factor responsible for the jump in the take-up rate.

As a method of confidentialization, ATO “perturbed” the income variables and
the deductions, and provided the following information on the way the data was
perturbed: several random numbers within a specified range for each individual
were generated, which were converted into a rate (equal probability of being pos-
itive or negative) and which was then applied to the various components of the
tax return. These rates were applied to the components in a way to try to maintain
relationships with similar items. This was achieved by grouping the components
into three broad categories: work or employment related income and deductions;
investment income and deductions; and business and other income and deductions.
Thus, there is some information about the measurement errors in the income data,
but the actual distribution of the measurement errors is impossible to be identified
based on the provided information. The sample was further restricted to minimize
the number of income sources/deduction sources so that the distribution of the er-
ror term could be more homogeneous, according to the following criteria: (1) Only
those who had positive earnings as the only sources of income were selected;
(2) Individuals whose taxable income was not positive (which means their total
tax deductions were not less than their earnings) were dropped; and (3) We further
dropped individuals whose nonwork related deductions formed a significant part
of their taxable income—specifically, we dropped those individuals whose work
related deductions were less than 90 percent of earnings when the total deductions
were more than 10 percent of earnings; whose total deductions were over 50 per-
cent of earnings; or whose total deductions were all nonwork related and the total
deductions were over 10 percent of their earnings.

The final sample for analysis contains 9685 records of individual tax returns. By
a preliminary analysis, we found that about 26% of singles bought PHI in 2003–
2004, and the PHI take-up rates for those whose annual taxable incomes were
below $50,000 and those whose annual taxable incomes were above that level
were quite different. The PHI take-up rate for the former group was about 21%
and it was about 57% for the latter group. Because ATO perturbed the income data
by multiplying each original income observation by a random number, we used
the income variable in log scale in our analysis, so that the additive measurement
error assumption in (2) is valid here.

We then use our proposed jump detector (7) to estimate the jump position, in
which the possible jump location is searched within [10,11.25] (or, equivalently,
[$22,026, $76,879] of annual taxable income). The results are shown in Figure 5,
where the estimated function of p(·) by the local linear kernel (LLK) smoothing
procedure is shown by the solid line, the left-sided and right-sided estimates of p(·)
are shown by the dashed and dotted lines, respectively, their difference is shown
by the dot-dashed line at the bottom of the plot, and the jump location estimate
ŝn and the corresponding 95% confidence interval for s are shown by the vertical
dot-dash and long-dash lines, respectively. In the plot, the related estimates look
noisier near the right end because there were fewer people who had high incomes.
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The estimated jump location is ŝn = 10.9255 (≈$55,575). The bandwidth chosen
by the bootstrap procedure is 0.0792. The 95% confidence interval for s computed
by the proposed bootstrap procedure is (10.8792, 11.0158) [≈($53,061, $60,827)],
which implies that the true jump location s is significantly larger than 10.8198
(≈$50,000). This finding confirms our intuition that people usually act later than
they are hit by the MLS. The estimated jump magnitude by (2.7) is 0.19. This
number shows that the local effect at the MLS tax policy discontinuity is quite
big. For individuals with only one income source, the policy can be considered
locally exogenous because the observations to the left and right of (but close to) the
jump position are more or less homogeneous except the policy treatment. It implies
that, among the individuals whose annual taxable income is around $55,575, MLS
brings about an extra 19% of them onto the private health system. This also implies
a negative price elasticity of PHI demand since the jump in the take-up rate can be
seen as a response to a price discount in the premium.

6. Concluding remarks. We have proposed a generalized error-in-variables
jump regression model for describing the relationship between people’s annual
taxable income and the PHI take-up rate in Australia. A novel jump detector is pro-
posed as well, which can accommodate the possible measurement errors. A major
feature of the proposed method is that it does not require much prior knowledge
on the measurement error distribution, making it applicable in practice. Its perfor-
mance is evaluated by both numerical studies and theoretical justifications. By the
proposed method, we found that the actual jump in the PHI take-up rate, caused by
the MLS tax policy, occurred at a larger taxable income value than the threshold
value used in the policy.

There is much room for further improvement of the current method. First, the
proposed jump detection method assumes that there is a single jump point at an
unknown location. By the framework of jump regression analysis [cf. Qiu (2005)],
it might be possible to extend it to cases when there are multiple jump points
and the number of jump points could be either known or unknown. Second, this
paper focuses on jump detection only. It requires much future research to develop
an appropriate method to estimate a jump regression function from observed data
with measurement errors. Third, it might be important to extend the current method
to higher-dimensional cases.
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SUPPLEMENTARY MATERIAL

Supplement to “Jump detection in generalized error-in-variables regres-
sion with an application to Australian health tax policies” (DOI: 10.1214/15-
AOAS814SUPP; .pdf). This supplemental file mainly gives the proof of Theo-
rem 1.

http://dx.doi.org/10.1214/15-AOAS814SUPP
http://dx.doi.org/10.1214/15-AOAS814SUPP
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