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Abstract: We present a metric-based framework for analyzing statistical
variability of the neural spike train data that was introduced in an earlier
paper on this section [14]. Treating the smoothed spike trains as functional
data, we apply the extended Fisher-Rao Riemannian metric, first intro-
duced in Srivastava et al. [9], to perform: (1) pairwise alignment of spike
functions, (2) averaging of multiple functions, and (3) alignment of spike
functions to the mean. The last item results in separation phase and ampli-
tude components from the functional data. Further, we utilize proper met-
rics on these components for classification of activities represented by spike
trains. This approach is based on the square-root slope function (SRSF)
representation of functions that transforms the Fisher-Rao metric into the
standard L

2 metric and, thus, simplifies computations. We compare our
registration results with some current methods and demonstrate an appli-
cation of our approach in neural decoding to infer motor behaviors.

Keywords and phrases: Function registration, Fisher-Rao metric, Karcher
mean, neural spike train, motor cortex.
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1. Introduction

While introducing the spike train data being considered here, Wu et al. [14]
describe a need for phase-amplitude separation in functional data obtained by
smoothing spike trains. They argue that phase and amplitude components con-
tain specific information about underlying neural signals, and one can facili-
tate decoding using metrics involving these two components individually. Here
we will apply a recently-developed method for function registration to analyze
smoothed spike trains. As described in [14], the data is a set of spike trains in
primate motor cortex recorded during four different movement patterns. Our
goal is to register, or align, the smoothed spike trains using nonlinear warp-
ing functions. Then, we seek to use these components to quantify the temporal
variability in the data and perform neural decoding with respect to different
behaviors. We remark that the extended Fisher-Rao method is developed for
real-valued functions that are absolutely continuous. Since the recorded dis-
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crete spike trains have already been smoothed using a Gaussian kernel, this
requirement is easily met.

In the following we briefly introduce the methodology and then present a
variety of results on smoothed spike trains involving their registration and anal-
ysis.

2. Extended Fisher-Rao framework

This framework was originally motivated by shape analysis of curves in Eu-
clidean spaces [8] and was introduced for functional data analysis in the papers
[9, 4, 11]. It has also been used in several accompanying papers, e.g. [5, 12, 1], in
this special section. We summarize the main ideas and refer the reader to these
papers for details.

Mathematical setup For simplification on presentation, we rescale the time
domain to be [0, 1] and let H be the set of orientation-preserving diffeomor-
phisms of the unit interval [0, 1]: H = {h : [0, 1] → [0, 1]|h(0) = 0, h(1) = 1,
h is a diffeo}. The elements of H form a group (with composition being the
binary operation) with identity element being hid(t) = t. We will use ‖f‖ to

denote the L2 norm (
∫ 1

0 |f(t)|2dt)1/2. Let F denote the set of all absolutely con-
tinuous functions on the interval [0, 1]. For any f ∈ F , we define its square-root

slope function (SRSF) as q : [0, 1] → R, q(t) ≡ sign(ḟ(t))

√

|ḟ(t)|. It can be

shown that that if f is absolutely continuous then its resulting SRSF is square
integrable. Thus, we will define L

2([0, 1],R) (or simply L
2) to be the set of all

SRSFs. For every q ∈ L
2 there exists a function f (unique up to a constant, or

a vertical translation) such that the given q is the SRSF of that f . If we warp

a function f by h, the SRSF of f ◦ h is given by: q̃(t) = q(h(t))
√

ḣ(t). We will

denote this transformation by (q, h) = (q ◦ h)
√

ḣ.
Let F0 ⊂ F denote the set of functions f such that ḟ > 0. For any f ∈ F0 and

v1, v2 ∈ Tf (F0), where Tf (F0) is the tangent space to F0 at f , the Fisher-Rao
Riemannian metric is defined as the inner product:

〈〈v1, v2〉〉f =
1

4

∫ 1

0

v̇1(t)v̇2(t)
1

|ḟ(t)|
dt. (1)

It is the nonparametric version of the more common parametric form used in
statistics [7, 3]. This metric is somewhat complicated for directly using in func-
tional data analysis. For instance, it is not easy to derive geodesic equation
between arbitrary points in F under this metric. However, a small transforma-
tion provides an enormous simplification of this task. It has been shown in [9, 8]
that under the SRSF representation, the Fisher-Rao Riemannian metric be-
comes the standard L

2 metric. Furthermore, this construction can be extended
from F0 to full F , since the space of SRSFs of all elements of F is simply the L2

space. Therefore, it is called an extension of the Fisher-Rao metric. As a con-
sequence, the corresponding geodesics in the SRSF space are straight lines and
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the geodesic distance is simply the L2 norm. More precisely, if we let q1, q2 ∈ L
2

denote the SRSFs of f1, f2 ∈ F , respectively, then the extended Fisher-Rao
distance between them in F is simply dFR(f1, f2) = ‖q1 − q2‖.

The success of this framework comes from an important isometry property.
More precisely, for any two SRSFs q1, q2 ∈ L

2 and h ∈ H, ‖(q1, h)− (q2, h)‖ =
‖q1 − q2‖. Due to this isometry, we can formally define phase and amplitude
components of functions, and impose distances on these components as follows.
The amplitude of a function f is formally defined to be its orbit under H, given
by [f ] = closure{f ◦h|h ∈ H}; it is the set of all warpings of a function, and their
limit points. The corresponding set in the SRSF space is: [q] = closure{(q, h)|
h ∈ H} ⊂ L

2, where q is the SRSF of f . Let S denote the set of all such orbits
in L

2. To compare amplitudes of any two functions we need a metric on S.

Definition 1. For any two functions f1, f2 ∈ F and the corresponding SRSFs,
q1, q2 ∈ L

2, we define the amplitude distance da to be:

da([q1], [q2]) = min
h∈H

‖q1 − (q2, h)‖, (2)

and the optimal time warping from q2 to q1 is computed as:

h∗ = argmin
h∈H

‖q1 − (q2, h)‖. (3)

h∗ is also called the relative phase of f2 with respect to f1. One can show
that da is a proper distance (i.e. it satisfies positive definiteness, symmetry, and
the triangle inequality) on S. The solution to the optimization in Eqn. 3 comes
from a dynamic programming algorithm in a discretized domain [9]. Eqn. 2 also
provides a tool for pairwise registration, or separation of relative phase, between
two functions.

Multiple function registration For a set of given functions, our goal is to
separate their phase and amplitude components by warping/aligning them to
a template. The template is selected such that its amplitude and phase denote
the mean amplitudes and mean phases of the given functions. It is constructed
in three steps: 1) For a given collection of functions {fi}, and their SRSFs {qi},
we compute the mean of their amplitudes {[qi]} under da in S; we will call it [µ].
2) We select an element, call it µq, of this orbit in such a way that the relative
phases of qis to µq, obtained via using Eqn. 2, have an average of hid. 3) The

{hi}s are then used to align {fi} using f̃i = fi ◦ hi. The set {f̃i} forms the
amplitudes and the set {hi} forms the phases of {fi}. The details are presented
next.

Step 1 (Mean amplitude function in S). At first, we consider the problem of
finding the mean of the amplitudes of given functions.

Definition 2. Define the mean amplitude [µ] of the given amplitudes {[qi]} as
a local minimum of the sum of squares of amplitude distances:

[µ] = argmin
[q]∈S

n
∑

i=1

da([q], [qi])
2. (4)
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We emphasize that the amplitude mean [µ] is actually an orbit, rather than
being a single function. The full algorithm for computing the mean amplitude
is given next.

Algorithm 1 (Mean of amplitudes {[qi]} in S).

1. Initialization step: Select µ = qj , where j is any index in argmin1≤i≤n ||qi−
1
n

∑n
k=1 qk||.

2. For each qi find h∗
i by solving: h∗

i = argminh∈H ‖µ− (qi, h)‖.
3. Compute the aligned SRSFs using q̃i 7→ (qi, h

∗
i ).

4. If the increment ‖ 1
n

∑n
i=1 q̃i−µ‖ is small, then stop. Else, update the mean

using µ 7→ 1
n

∑n
i=1 q̃i and return to step 2.

The iterative update in Steps 2–4 is based on the gradient of the cost function
given in Eqn. 4.

Step 2 (Mean relative phase). So far [µ] is just an amplitude and does not
have a phase. We allocate it a phase which is the mean of phases associated
with the given functions {fi}. The resulting function is treated as a template
or a reference for final alignment. This construction is accomplished through a
notion called the center of an orbit (see [9]).

Definition 3. For a given set of SRSFs q1, q2, . . . , qn and q, define an element
q̃ of [q] as the center of the orbit [q] with respect to the set {qi} if the warping
functions {hi}, where hi = argminh∈H ‖q̃ − (qi, h)‖, have the mean hid.

In other words, the relative phases of given functions with respect to this
center is identity. The center is constructed as follows.

Algorithm 2 (Center of an orbit). WLOG, let q be any element of the orbit [q].

1. For each qi find hi by solving: hi = argminh∈H ‖q − (qi, h)‖.
2. Compute the mean h̄n of all {hi}. The center of [q] wrt {qi} is given by

q̃ = (q, h̄−1
n ).

Let h∗
i be the warping that aligns qi to q̃. One can show that h∗

i = hi ◦ h̄
−1
n , and

therefore the mean of {h∗
i } is h̄n ◦ h̄−1

n = hid. We will apply this setup in our
problem by finding the center of [µ] with respect to the SRSFs {qi}.

Now we can utilize Algorithms 1 and 2 to present the full procedure for
functional alignment.

Phase-amplitude separation algorithm We are given a set of functions
{fi} on [0, 1]. Let {qi} denote the SRSFs of {fi}, respectively.

1. Computer the mean amplitude of {[qi]} in S using Algorithm 1. Denote
it by [µ].

2. Find the center of [µ] w.r.t. {qi} using Algorithm 2; call it µq.
3. For i = 1, 2, . . . , n, find the relative phases h∗

i by solving: h∗
i =

argminh∈H ‖µq − (qi, h)‖.
4. Return the warping functions {h∗

i }, the aligned SRSFs q̃i = (qi, h
∗
i ), and

the aligned functions f̃i = fi ◦ h
∗
i .
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(A) {fi} (C) {h∗

i
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Fig 1. (A) Given spike train functions in Path 1. (B) The mean and mean ± std of the given
functions. (C) The optimal warping function for registration. (D) Aligned functions. (E) The
mean and mean ± std of the aligned functions.

The aligned function {f̃i} are used to display the amplitudes and {h∗
i } denote

the phases of the input functions.

3. Experimental results

Here we present the registration and decoding results for the spike train data
using this framework.

3.1. Within class registration

The phase-amplitude separation of 60 functions in Path 1, using our algorithm,
is shown in Fig. 1. The original functions {fi} are shown in Panel (A), and their
cross-sectional mean and mean ± standard deviations (std) of {fi} are shown
in Panel (B). The relative phases {h∗

i } and the corresponding aligned functions
{f̃i} are shown in Panels (C) and (D), respectively. We see that most of the
warping functions are around the identity hid(t) = t. This indicates that spike
train functions in Path 1 only have slight variability in time axis for registration.
Finally, we show the cross-sectional mean and mean ± std of {f̃i} in Panel (E).
It is observed that while the given data (in Panel (A)) shows a lot of phase
variability (in peak and valley locations), this variability is removed with a
tighter alignment of functions with sharper peaks and valleys (in Panel (D)).

The registrations within Paths 2, 3 and 4 are shown in three rows, respec-
tively, in Fig. 2. The three panels in each row show the original functions, the
phase components, and the aligned functions, respectively. Similar to the result
in Path 1, all functions can be properly aligned with slight adjustments on the
time axis.
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Fig 2. First row: the given smoothed spike train functions in Path 2 (left panel), the optimal
warping function for registration (middle panel), and the aligned functions (right panel).
Second row and third row: same as the first row except for Path 3 and Path 4, respectively.

Comparison with other alignment methods Here we compare our align-
ment performance with several previous methods – principal analysis by con-
ditional expectation (PACE) presented in [10], the self-modeling registration
(SMR) in [2], and the minimum second eigenvalue (MSE) in [6]. Due to space
limitation, we only show the registration result of each method only on spike
data from Path 1 in Fig. 3. We see that, as compared to the original unaligned
data (see Fig. 1A), the PACE, SMR and MSE methods do not fully align the
main features (i.e. peaks and valleys) in the spike train functions; we can still
observe many unaligned features. In contrast, our method appears to perfectly
align all peaks and valleys in the data, and the registration performance is clearly
superior to the other three methods. Moreover, this method is completely pa-
rameter free.

3.2. Across class registration

We have shown the registration result of spike trains within each path. All
these functions can also be pooled and aligned together. For example, we can
put together all 120 spike train functions in Paths 1 and 4, and then apply
the alignment algorithm. The result is shown in the first row of Fig. 4. We
can see that these functions are very well aligned (shown in the fourth panel).
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(A) PACE (B) SMR
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(C) MSE (D) Our Method
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Fig 3. (A) Aligned function using PACE. (B) Aligned functions using SMR. (C) Aligned
functions using MSE. (D) Aligned functions using the extended Fisher-Rao metric.

The aligned functions are also very similar to those obtained for Paths 1 and 4
individually (Fig. 1(D) and the right panel in the third row in Fig. 2). However,
the alignment here is based on overall template, rather than individual, class-
based templates. Note that functions in Path 1 concentrate around the beginning
time (0–2 sec) whereas the functions in Path 4 concentrate around ending time
(3–5 sec). Therefore, most phase functions in Path 1 (top row, second panel) are
slightly above the 45◦ line, which indicates that the concentrated period slightly
move right in the time domain. In contrast, most warping functions in Path 4
(top row, third panel) are slightly below the 45◦ line which indicates moving in
the left direction.

Similarly, we can register the 120 spike trains in Paths 2 and 3 (see first panel,
row 2 in Fig. 4), where functions in Path 2 concentrate around (1–3 sec) whereas
the functions in Path 3 concentrate around (2–4 sec). The aligned functions are
shown in the fourth panel in the bottom row. By removing the phase variability,
these functions are concentrated between (1–4 sec). Looking at the warping
functions in Path 2 (bottom row, second panel), we find similar pattern as
that in Path 1 (moving rightward). In this case, the warping is relatively more
moderate due to lower contrast to Path 3 in the time domain. In contrast,
warping functions in Path 3 (bottom row, third panel) are slightly below the
45◦ line which indicates moving in the left direction.

3.3. Neural decoding using phase distance

From Figs. 1 and 2, we can see that the optimal warpings are close to identity
hid(t) = t within the same path. However, the optimal warpings between spike
trains from different paths can be more drastic because the their dominant peaks
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distribute differently. Here we will utilize this temporal difference to decode
neural activity and infer the movement path from the given neural signals. To
emphasize those phase differences, we will estimate the relative phases of these
spike trains functions directly. For f1, f2 ∈ F , let h∗ be the relative phase
of f2 with respect to f1 as given in Eqn. 3 (defined using the SRSFs). The
relative phase difference between these two functions can be quantified as the
intrinsic distance between h∗ and the identity hid. We denote this distance in
time warping as phase distance [13] and compute it as:

dp(f1, f2) = cos−1

(
∫ 1

0

√

ḣ∗(t)dt

)

.

For all 240 trials (60 trials in each path) in the data, we compute all pairwise dp
distances. As a summary, we found that the average distances within the same
path (over all 4 paths) is 0.54 ± 0.09, but across different paths is 0.60± 0.05.
This indicates that the phase-distances can properly address the dissimilarity
of spike trains between different paths, and therefore can be used to infer the
movement path using neural activity. Based on these distances, we perform the
standard leave-one-out cross-validation to infer movement path using observed
spike train functions. It is found that the decoding accuracy is 71% with respect
to the 4 different paths. This result clearly outperforms a random guess with
25% accuracy.

4. Summary

Characterizing the temporal variability of neural firing pattern has been a cen-
tral problem in neural coding. In this paper, we apply the extended Fisher-
Rao Riemannian framework to separate phase-amplitude components in spike
train functions and to measure the differences in these components across ob-
servations. Experimental results shows that this framework is very successful in
phase-amplitude separation, and the performance is superior to several previous
methods. We also present some preliminary neural decoding a distance in the
time domain (i.e., variability in the phase), and significant improvement over
random guess is obtained.
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