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RATE-OPTIMAL POSTERIOR CONTRACTION FOR SPARSE PCA
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Principal component analysis (PCA) is possibly one of the most widely
used statistical tools to recover a low-rank structure of the data. In the high-
dimensional settings, the leading eigenvector of the sample covariance can
be nearly orthogonal to the true eigenvector. A sparse structure is then com-
monly assumed along with a low rank structure. Recently, minimax estima-
tion rates of sparse PCA were established under various interesting settings.
On the other side, Bayesian methods are becoming more and more popular
in high-dimensional estimation, but there is little work to connect frequentist
properties and Bayesian methodologies for high-dimensional data analysis.
In this paper, we propose a prior for the sparse PCA problem and analyze its
theoretical properties. The prior adapts to both sparsity and rank. The poste-
rior distribution is shown to contract to the truth at optimal minimax rates.
In addition, a computationally efficient strategy for the rank-one case is dis-
cussed.

1. Introduction. Principal component analysis is a classical statistical tool
used to project data into a lower dimensional space while maximizing the vari-
ance [Jolliffe (1986)]. When the sample size n is small compared to the number
of variables p, Johnstone and Lu (2009) show that the standard PCA may fail in
the sense that the leading eigenvector of the sample covariance can be nearly or-
thogonal to the true eigenvector. Therefore, the recovery of principal components
in the high-dimensional setting requires extra structural assumptions. The sparse
PCA, assuming that the leading eigenvectors or eigen-subspace only depend on a
relatively small number of variables, is applied in a wide range of applications.
Estimation methods for sparse PCA problems are proposed in Zou, Hastie and
Tibshirani (2006) and d’ Aspremont et al. (2007). Amini and Wainwright (2009)
and Ma (2013) obtain rates of convergence of sparse PCA methods under the
spiked covariance model proposed in Johnstone and Lu (2009). Minimax rates
of sparse PCA problems are established by Birnbaum et al. (2013), Cai, Ma and
Wu (2014, 2013) and Vu and Lei (2013) under various interesting settings.

Bayesian methods have been very popular in high-dimensional estimation, but
there is little work to connect frequentist properties and Bayesian methodologies
for high-dimensional models. This paper serves as a bridge between the frequentist
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and Bayesian worlds by addressing the following question for high-dimensional
PCA: Is it possible for a Bayes procedure to optimally recover the leading principal
components in the sense that the posterior distribution contracts to the truth with a
minimax rate? The optimal posterior contraction rate immediately implies that the
posterior mean attains the optimal convergence rate as a point estimator.

In this paper we consider a spiked covariance model with an unknown growing
rank. We propose a sparse prior on the covariance matrix with a spiked struc-
ture and show that the induced posterior distribution contracts to the truth with
an optimal minimax rate. The assumptions are nearly identical to those in Vu and
Lei (2013), where the rank of the principal space » = O (log p) and the number
of nonzero entries of each spike s is allowed to be at the order of p'~¢ for any
c €(0,1), as long as the minimax rate ”1# — 0. In addition, we prove that the
posterior distribution consistently estimates the rank. To the best of our knowledge,
this is the first work where a Bayes procedure is able to adapt to both the sparsity
and the rank.

There are two key ingredients in our approach. The first ingredient is in the de-
sign of the prior. We propose a prior that imposes a spiked structure on a random
covariance matrix, under which each spike is sparse and orthogonal to each other.
This leads to sufficient prior concentration together with the sparse property. In
addition, each spike has a bounded /> norm under the prior distribution such that
there is a fixed eigen-gap between the spikes and the noise, which eventually leads
to consistent rank estimation. The second ingredient is in constructing appropriate
tests in the proof of posterior contraction under spectral and Frobenius norms. We
first construct a test with the alternative hypothesis outside of the neighborhood of
the true covariance under the spectral norm. For the covariance matrices inside the
neighborhood of the truth under the spectral norm, we propose a delicate way to
divide the region into many small pieces, where the likelihood ratio test is applica-
ble in each small region. A final test is then constructed by combining these small
tests. The errors are controlled by correctly calculating the covering number under
the metric for measuring the distance of subspaces.

The theoretical tools we use for this problem follow the recent line of devel-
opments in Bayesian nonparametrics pioneered by Barron (1988) and Barron,
Schervish and Wasserman (1999), which generalize the testing theory of Le Cam
(1973) and Schwartz (1965) to construct an exponentially consistent test on the
essential support of a prior to prove posterior consistency. The idea was later
extended by Ghosal, Ghosh and van der Vaart (2000) and Shen and Wasser-
man (2001) to prove rates of convergence of posterior distribution. Compared to
Bayesian nonparametrics, little work has been done for Bayesian high-dimensional
estimation, especially in the sparse setting. Castillo and van der Vaart ( 2012) is the
first work in this area. They prove rates of convergence in sparse vector estimation
for a large class of priors.

The works closely related to this paper are Banerjee and Ghosal (2014) and Pati
et al. (2014). Banerjee and Ghosal (2014) study rates of convergence for Bayesian
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precision matrix estimation by considering a conjugate prior. But as discussed in
Birnbaum et al. (2013), estimation of sparse or bandable covariance/precision ma-
trix is different from that of sparse principal subspace. The optimal rates of con-
vergence can be different. Pati et al. (2014) study Bayesian covariance matrix esti-
mation for a sparse factor model, which is similar to the spiked covariance model
in the PCA problem. Instead of estimating the principal subspace as in the PCA
problem, they consider estimating the whole covariance matrix. The posterior rate
of convergence they obtain is not optimal, especially when the rank r is allowed to
grow with the sample size n.

The paper is organized as follows. In Section 2, we introduce the sparse PCA
problem and define the parameter space. In Section 3, we propose a prior and state
the main result of the posterior convergence. Section 4 introduces an algorithm
to compute the posterior mean in the rank-one case along with other discussions.
All the proofs are presented in Section 5, with some technical results given in the
supplementary material [Gao and Zhou (2015)].

2. The sparse PCA. Let X{,..., X, be ii.d. observations from Py =
N (0, ), with X being a p x p covariance matrix with a spiked structure

,
2= 00"+ Ipxp,
=1

where 66, = 0 for any [ # k. It is easy to see that (||0y]|~161, ..., 6,11716,)
are the first » eigenvectors of X, with the corresponding eigenvalues (||6; 1% +
1,...,]I6,> + 1). The rest p — r eigenvalues are all 1. The spiked covariance is
proposed by Johnstone and Lu (2009) to model data with a sparse and low-rank
structure. An equivalent representation of the data is

@2.1) X, =VoAy*Wi+2;  fori=1,2,...,n,

where W; ~ N(0, I,x,) and Z; ~ N(0, I, ) are independent. The matrix Vj is
defined as Vo = [101]7161, ..., 116,11716,] and Ao = diag(||611%, ..., [16,]*). In
such latent variable representation, VOA(I)/ 2 W; models the signal part, which lives
in an r-dimensional subspace, and Z; is the noise part, which has the same variance
on every direction. Since the r-dimensional subspace is determined by its projec-
tion matrix Vp VOT, the goal here is to recover the principal subspace by estimating
its projection matrix in the Frobenius loss,

HVVT - V0V0T ”F

In a high-dimensional setting, extra structural assumptions are needed for con-
sistent estimation. We assume that the first r eigenvectors are sparse, in the sense
that each of them only depends on a few coordinates among the total number p.
Define Sop; = supp(6;) for I =1,2,...,r, the support of the /th eigenvector. We
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assume [ sparsity on each spike by max; <i<r 1S0,1] < s. The parameter space for
the covariance matrix is

,
=Y "6,6" +1: max |Sy| <s,6 €RP,
G(p.s.r) = ;lz 1§l§r| ol < 5,0 ’

0F o =0fork #1,16,11> € (K1, K)

where K > 0 is a constant, which we treat as being known in this paper. The
sparsity we consider matches the column sparsity in Vu and Lei (2013) in the [°
case. We require both upper and lower bounds for ||6;||>. The lower bound implies
an eigengap, which leads to rank adaptation and subspace estimation, while the
upper bound controls the spectral norm of X, which leads to estimation of the
whole covariance matrix. Vu and Lei (2013) prove that under the assumptions

c

r<mlogp and s < pl_ for some constants ¢ € (0, 1) and m > 0,

the minimax rate' of principal subspace estimation is

inf  sup P§‘;|W\7T—VOV0T||2FX

rslogp
V XZeG(p,s,r) n '

The goal of this paper is to prove an alternative result, adaptive Bayesian estima-
tion, by designing an appropriate prior I, such that

(2.2) sup  PRTI(|vvT — V()VOTH% > Mg X") < § for some M > 0,

XeG(p,s,r)
where &2 = "I j5 the minimax rate and X" ~ P{. The number § > 0 satis-

fies lim, 5 p,r)—>00 6 = 0. The posterior contraction (2.2) leads to a risk bound of
a point estimator. Let Ery be the expectation under the prior distribution IT. Con-
sider the posterior mean of the subspace projection matrix Erp (V VT |X™). Its risk
upper bound is given in the following proposition. We prove the proposition in the
supplementary material [Gao and Zhou (2015)].

PROPOSITION 2.1. Equation (2.2) implies

sup  PLIEn(VVTIX") = VoV |5 < M&® +2(p +1)s.
YeG(p,s,r)

REMARK 2.1. In this paper, the number § in (2.2) is at an order of
exp(—C'ne?) for some C’ > 0. Thus the dominating term in Me? + 2(p + r)8
is Me2. The posterior mean is a rate-optimal point estimator.

I'The minimax rate is obtained by combining Theorem 3.5 and Corollary 3.2 in Vu and Lei (2013).
The upper bound is a special case of their Corollary 3.2 because our parameter space is a subset
of theirs. The lower bound holds by observing that the least favorable class in the proof of their
Theorem 3.5 is a subset of our parameter space.
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REMARK 2.2. The matrix Eq(VV7|X") may not be a projection ma-
trix. However, it is still a valid estimator of the true projection matrix Vj VOT.
A projection matrix estimator can be obtained by projecting the posterior mean
Enq(VVT|X™) to the space of projection matrices under the Frobenius norm.
Denote the projection by VVT. It can be shown that ||VVT — VoV0 lrF <
2En(VVTIX™) = VoVy llF.

2.1. Notation. In this paper, we use I" to denote a p x p spiked covariance ma-
trix with structure I' = AAT + 1, where A = [n1, 12, ..., nelisa p x & matrix with

orthogonal columns. We use §; to denote the support of n; foreachl=1,2,...,&.
Define
= [l s 2l 2l - limell™ e,
A =diag(lln1 1% 2117, - Img [1%).

Then V is a p x £ unitary matrix, and I" has an alternative representation I' =
VAVT 4 1. We use Pr to denote the probability or the expectation under the
multivariate normal distribution N(0,T") and P to denote the product measure.
The symbol P stands for a generic probability whose distribution will be made
clear through the context. Correspondingly, we use (X, Ao, 7, 6, Sor, Vo, Ag) to
denote the true version of (I', A, &, n;, S;, V, A).

For a matrix A, we use ||A| to denote its spectral norm and || A|| r for the Frobe-
nius norm. We define U/ (d, r) to be the space of all d x r unitary matrices ford > r
such that for any U e U(d, r), UTU = I,,. For any U,V e lU(d,r), define the
distance da (-, -) by da (-, ) = IUAUT — VAVT|| £ for some diagonal matrix A.
We omit the subscript A and write d(-, -) = da (-, -) whenever A = I. The number
&2 stands for the minimax rate ”1% throughout the paper.

3. The prior and the main results. We propose a prior I1 from which we can

sample a random covariance matrix with structure I' = AAT 41 = Zlgzl man +1,
where A is a p x & matrix. The prior I1 is described as follows:

(1) foreachl e{l,..., [p}’/z]}, we randomly choose S; C {1, ..., p} by letting

the indicator I{i € S;} for each i =1, ..., p follow a Bernoulli distribution with
parameter p~(1+7);

(2) given (Sy,..., S[py/Z]), we sample a p X [p”/z] matrix A = [, ..., n[py/Z]]
from Gs, ... Spr/2)) to be specified below, and then let I = AAT 4+ 1.

The p x [p?/?] matrix A (Figure 1) may contain some zero columns under the
above sampling procedure. With slight abuse of notation, we gather those nonzero
columns to form the matrix A =[5y, ..., n¢], with S; being the support of the
column 7;. Note that ' = AAT + 1 = AAT + I, where A is a p x £ matrix. After
specifying the distribution G g, the number of nonzero columns £ is also

the rank of A.

..... S[py/Z])’
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FIG. 1. An illustration of the prior. The shaded areas are {Sl}l[iy1 1 The parts inside the dashed
lines correspond to uy, ..., u; defined in (3.2).

REMARK 3.1. The number y > 0 is a fixed constant in the prior. With
p~U+Y) as the mean for I{i € S;}, the cardinality |S;| is small with high proba-
bility under the prior distribution.

REMARK 3.2. The number [p?/?] is an upper bound of the rank &. In this
paper, we assume that the true rank r is at the order of O(log p). Since log p <
pl7/21 the range of £ covers the range of r.

We need to define a distribution G¥ on R to help introduce G(Sl,---,S[ v/ Let
p

Z=(Z1,...,2Zg) follow N (0, I;x4) and U follow the uniform distribution on the
interval [(2K)~ Y2, (2K)'/?]. Then G7; is defined to be the distribution of

Uz Uz
3.1) (—1—d)

I1Zl I1Z
Now we are ready to specify the random matrix prior G s, , .., S/ which induces
a distribution over the matrix A = (71, M2, -« mp py/2]]. For any vector v and any

subset S, we use the notation v! = (vg, vgc). We describe the prior through a
sequential sampling procedure. If |S;| = 0, we set ;1 = 0. Otherwise, we sample

s, ~ G, and let
_ (.5
n = ( 0 ) :

Suppose we have already obtained (5, ..., n;) and then sample 1,41, conditioning
on (n1,...,n). We set M+1,85,, = 0. The prior distribution of 1,41 5,,, depends
on n;, 1 <i <[, through values of »;’s on the index set Sy 1. For simplicity, denote

(3'2) (ulv"'7Ml):(nl,SH.l""vr]l,SH.l)‘
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Define I* = dim(span{uy, ..., u;}). If [S;41| — I* <0, we set n;41,5,, = 0. Oth-
erwise, let H; be the projection matrix from RS+ to the subspace spanned by
{uy,...,u;}. There is a bijective linear isometry 7; induced by H; such that

T (I — HZ)RSH—I _ R|Sl+1|_l*’ Tfl SRISH= I — HZ)RSIH_

Remember that a linear isometry preserves the norms in the sense that | 7jv|| =
- —1-
lv]. We sample u;4; from GTSI+1|_I* and let ujy1 =T “upy1. Set niy1,s,, =

u;+1. Then we have specified an+1, which is ("IT+1, i1 07). Repeating this step,
we obtain A = [ny,..., uh py/Z]]. The prior IT on the random covariance matrix I’
is now fully specified.

After collecting the nonzero 7;’s, we observe that the prior IT explicitly samples
a spiked covariance matrix I' = AAT + 1 = AAT + 1 = Zlil 771771T + I with the
number of spikes being &. The prior IT imposes orthogonality on the spikes, since
ni+1 1s sampled on the orthogonal complement of the space span{n, 12, ..., n}.
Therefore, nkT n; = 0 for each k £ [, and {||m; ! ’71}15:1 are the eigenvectors. For
each eigenvector ||7; ||_1?71, its support is in S;, whose cardinality is small under
the prior distribution. Moreover, the first £ eigenvalues are all bounded from 1 and
oo because ||;]|7 € [(QK)™!, 2K)].

Given the data X" = (X1, ..., X,,) ~ Ps, the posterior distribution is defined as

dPl dp!
3.3 M(B|X") = L(x™)d1i(r (/—Fx”dnr),
(33) (B1X") = | Zpr (X" an@) /( | 75z (x")dmam)
for any measurable set B. The following theorem is the main result of this paper.
The posterior distribution contracts to the truth with an optimal minimax rate.

THEOREM 3.1. Assume ¢ — 0, r <m(s Alog p) and n < p™ for some con-
stant m > 0. Then there exists M)C’K’m > 0, such that for any M’ > M;’K’m, we
have

sup  PETI(|VVT = VoV | > M'e|X") < exp(—Cy. k m.myne?),
XeG(p,s,r)

for some constant C, g . m'y > 0 only depending on (y, K, m, M').

Note that we have obtained the optimal posterior contraction rate under a
“mildly growing rank” regime r < mlog p, which is also assumed in Vu and Lei
(2013), for them to match the upper and lower bounds for minimax estimation.
The assumption n < p™ is a convenient but mild condition in high-dimensional
statistics to prove rates of convergence in expectation rather than with high proba-
bility; see Cai, Liu and Luo (2011), Paul and Johnstone (2012), etc. The posterior
contraction result implies the same rate of convergence in expectation of a point
estimator (Corollary 3.1), and thus we need such an assumption to hold. Addition-
ally, we assume r < ms, which means that the level of the rank is not above the
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level of sparsity. This assumption is due to the fact that Vy can be only identified
up to a unitary transformation, that is, Vg VOT = (VoQ)(VoO)T for any Q eU(r,r),
and for some Q such that each row of Vo Q may have at least r nonzero entries.

As shown in Proposition 2.1, we can use the posterior mean as a point estimator
to achieve the minimax optimal rate of convergence.

COROLLARY 3.1. Under the setting of Theorem 3.1, we have

sup  PE|Eq(VVTIX") = VoV |5 <2M'%e?,
YeG(p,s,r)

for sufficiently large (n, p, s, r).

The result follows from the fact that the 2(p + r)3 part of Proposition 2.1 is
exponentially small; hence, it is dominated by M"*&?.

4. Discussion. In Section 4.1, we state a result on posterior contraction rate
under the spectral norm. A computationally efficient algorithm is developed in
Section 4.2 for the rank-one case. In Section 4.3, we discuss the possibility of
using a simpler prior for sparse PCA.

4.1. Posterior convergence under spectral norm. In proving Theorem 3.1,
there are some by-products serving as intermediate steps. The following theorem
says that the posterior distribution concentrates on the true covariance matrix un-
der the spectral norm, and the subspace projection matrix concentrates on the true
subspace projection matrix under the spectral norm. In addition, the posterior dis-
tribution consistently estimates the rank of the true subspace. The theorem holds
under a slightly weaker assumption without assuming » < ms.

THEOREM 4.1. Consider the same prior Il and rate ¢ as in Theorem 3.1.
Assume ¢ — 0, r <mlogp and n < p™ for some constant m > 0. Then there
exists My, g m > 0, such that for any M > M, g u, we have

(4.1) sup  PLTI(IT — || > Me|X") < exp(—Ciy.k .m.myne>),
2eG(p,s,r)
sup  PRTI(|VVT — VoV | > Me|X™) < exp(—=Ciy.k.m.ayne?),
XeG(p,s,r)
(4.2) sup  PETI(E #r|X") < exp(—Coy. k.m.myne?),
ZeG(p,s.r)

for some constant C(, g m,m) only depending on (y, K,m, M).

REMARK 4.1. It is not practical to assume that K is known in Theorems 3.1
and 4.1. To weaken the assumption, we can replace the prior in (3.1) by sampling
U ~ Unif[L, I L,], for some sequence L, slowly grows to infinity as n — oo.
Then the conclusions of the two theorems still hold without knowing K.
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REMARK 4.2. The posterior rate of convergence (4.1) for estimating the
whole covariance matrix under the spectral norm does not require the assumption
161> > K~ in the definition of G(p, s, r). To remove this assumption, we need
a slightly different prior with (3.1) modified by sampling U ~ Unif[0, (2K 1727,
However, such modification may not lead to rank adaptation (4.2) due to lack of
eigengap, which is critical for establishing the result in Theorem 3.1.

REMARK 4.3. Results (4.1) and (4.2) together imply posterior convergence of
the whole covariance matrix under the Frobenius norm. This is because when & =
r,we have [T — Z|lp = [VAVT — VoAoVT Ilr < V2r|VAVT — VoAV || =
@HF — X||. Hence the convergence rate for the loss |[IT — X||F is 4/re =

r2slog p
V=

Pati et al. (2014) consider estimating the whole covariance matrix under spectral
norm in a sparse factor model. Under their assumption rs 2 log p, they obtain a

. r3slog p .
posterior convergence rate of \/ —==./logn under the loss function ||I' — X,

compared with our rate ./ ”1%.

Though an improvement over the result of Pati et al. (2014), whether ,/ ”1#
is the optimal rate of convergence for the loss functions |’ — | and |[VVT —
Vo VOT || is still an open problem. To the best of our knowledge, the only minimax
result addressing these two loss functions for sparse PCA problem is in Cai, Ma
and Wu (2014). However, they consider a different sparsity class, defined as

r
Y= Q[OIT +1: Sor
g](p9s7r): l:ZI lleJfr

0F o =0fork #1,16,11> € (K~', K)

<s,60 eRP,

Under the current setting, the results of Cai, Ma and Wu (2014) can be written as

N slo r
inf  sup PRIS —mP=2P T
X XeGi(p.s.r) n n
A A~ lo
inf  sup P§||VVT—VVT|}2xﬂ.
n

V 2eGi(p,s.r)

Observe the relation that

gl(PvSv”)Cg(P’Svr)Cgl(P»rsv”)-

Hence when r < O(log p), the minimax rates for the class G(p, s, r) under both
loss functions lie between %2 and lzg” . We claim that the posterior conver-
gence rate obtained in Theorem 4.1 is optimal when r < O(1). For a growing r, it
at most misses a factor of r.




794 C. GAO AND H. H. ZHOU

4.2. A computational strategy of the rank-one case. Bayesian procedures us-
ing sparse priors are usually harder to compute because the sampling procedure
needs to mix all possible subsets. Castillo and van der Vaart (2012) develop an
efficient algorithm for computing exact posterior mean in the setting of Bayesian
sparse vector estimation. They explore the combinatorial nature of the posterior
mean formula and show that it is sufficient to compute the coefficients of some
pth order polynomials. In this section, we use their idea to develop an algorithm
for computing approximate posterior mean for the single spike model. In this rank-
one case, there is no need for the prior to adapt to the rank. We do not need the
prior to put constraint on the /2 norm of the eigenvector as in (3.1). Thus we use
the following simple prior on the single spiked covariance:

(1) sample a cardinality g according to the distribution 7 supported on
{1,2,..., pkh;

(2) given g, sample a support S C {1, 2, ..., p} with cardinality |S| = ¢ uni-
formly from all (é’) subsets;

(3) given S, sample ns ~ N(O, I;sx|s)), let nT = (nk, nk) =k, 07) and the
covariance matrix is I' = nnT + I.

We choose 7 to be m(q) o exp(—kglog p) for some constant « > 0. We let

= Slo% be the minimax rate when r = 1. The posterior distribution induced by
the above prior has the following desired property:

g2

THEOREM 4.2. Assume ¢ — 0 and n < p™ for some constant m > 0. Then
there exists My g n > 0, such that for any M > M,k m, we have

sup  PETI(min{[ln — 61l [ +61l} > Me|X") < exp(—Ce,k mmyne>).
Yed(p,s,1)

for some constant Cc g m,m) > 0 only depending on (k, K,m, M).

Note that the loss function is the /> norm, which is stronger than the loss func-
tion used in Theorem 3.1. The theorem above is proved in the supplementary ma-
terial [Gao and Zhou (2015)]. We use the posterior mean Ep(n|X") to estimate
the spike 6.

We present a way for computing Ej (1| X"). Under the rank-one situation, rep-
resentation (2.1) can be written as

4.3) X,-J-=W,-0J-+Zl-j, i=1,....,n,j=1,...,p,

with Z;; and W; following i.i.d. N(0, 1) for all i and j. Representation (4.3) re-
sembles the Gaussian sequence model considered in Castillo and van der Vaart
(2012). Following their idea, the jth coordinate of E(n|X") can be written as

I ST [T ¢ (Xij — Winj)¢p(W") dW" dT1(1)

En(n;]X") = !
M) = T T, 6K — Wony g W) dWr Tl




BAYES SPARSE PCA 795
where ¢(W")dW" =T17_, ¢(W;)dW;---dW, and ¢ is the density function of
N (0, 1). By Fubini’s theorem, we have

N j(WHG(W™) dW"
J Dy (W)W dWn

En(n;|1X") =
where for each W",

Dy (W

")
n p

f]‘[ [T 6(Xi; — Winj)driGy
i=1j=1

:Xi: 7 > H{Hd)(xu)}]_[[/nﬂxu Winpémjdn; 1,

|S|=q j¢S li=1 jes

by the definition of the prior. In the same way,

n

)4
/n, [T 116X — Wine) dTiCn)

i=1k=1

No i (W")

-7 % 1| [Toon |

g=1 ( 1S1=q k¢S li=1
< T1 {/n¢<x,k— ,nkw(nk)dnk}
keS,k+j
x I{j GS}/njH¢(Xij — Winj)¢(;j)dn;.
i=1

Define

f&Xp=J]o&ip,

i=l

h(X.;, W") —/Hqﬁ(XU Winjeom;)dn;,
£(Xj, Wn)I/T}j ]_[¢>(X,-j — Winj)é(nj)dn;.
i=1
Then we may rewrite D, (W") and N, ;(W") as

Da(W") =3 "y Cla- W"). Ny (W) =§n(7q i(q. W").
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The critical fact observed by Castillo and van der Vaart (2012) is that C(g, W") is
the coefficient of Z49 of the polynomial

P
H FX ) +h(Xj, WZ),

and Cj(g, W") is the coefficient of Z7 of the polynomial

Z X WMz [ (FX) +h(Xa, W Z).
k(... pI\Uj}

For a given W", the coefficients {C(g, W")}, and {C;(g, W")}(j,4) can be com-
puted efficiently. In the Gaussian sequence model, there is no randomness by W",
and the posterior mean can be computed exactly by finding the coefficients of the
above polynomials. In the PCA case, we propose an approximation by first draw-
ing W', W}, ..., Wy iid. from N (0, I,x,) and then computing

r=r 25 o)/ GR(E o)

4.4)
forj=1,2,...,p

One set of coefficients takes at most O (p?) steps to compute. Thus the total com-
putational complexity is O(Tp> + Tnp) for computing coefficients of O(Tp)
polynomials and computing all the values of f(X.;), h(X j, W") and §(X.;, W").

The above strategy can be directly generalized to the multiple rank case. How-
ever, it only works for the following prior without the ability for rank adaptation.
To be specific, we assume the rank r is known. Then, the third step of the prior is
modified as follows:

(3) Given S, sample an |S| x r matrix Ag, with each entry i.i.d. N(0, 1). Let
the matrix A be defined as
_ (s
A=(%)

The covariance matrix is T = AAT + 1.

Note that instead of sampling an individual support S; for each column of A,
we sample a common support S for all columns. When r < O (1), this will not be
a problem because of the simple observation rs < s. The theoretical justification
of the prior is stated in Theorem 4.3. Denote the jth row of A by AJT. Then the
posterior mean has formula

J Nu j(WHo(W™)dW"
S Dy (W (Wmydwn

En(A;1X") =



BAYES SPARSE PCA 797

where for each W", we have
p

=37 11| oo
= l=q j¢S

g=1 q
x ]_[{f [To(xi - WiTAj)¢(Aj)dAj}’
eS i=1

and a similar formula for N, ;(W"). Note that the only difference from the rank-
one case is the inner product Wl-TA‘,-. The notation W stands for (W, ..., W,),
where each W; is an r-dimensional standard Gaussian vector. A similar formula
holds for N, ;(W"). Thus we can apply the same Monte Carlo approximation (4.4)
for Erj(Aj|X™) as is done in the rank-one case.

In addition to our method, there are other methods proposed in the literature.
A Gaussian shrinkage prior for Bayesian PCA have been developed by Bishop
(1999a, 1999b) in the classical setting, but it is not appropriate for sparse PCA.
More general shrinkage priors have been discussed in Polson and Scott (2011) and
Bhattacharya et al. (2012) for high-dimensional mean vector estimation. One can
extend the framework to sparse PCA and develop Gibbs sampling by taking ad-
vantage of the latent representation (2.1). We refer to Pati et al. (2014) and van der
Pas, Kleijn and van der Vaart (2014) for some theoretical justifications of shrinkage
priors.

4.3. Further remarks on the prior. The prior we proposed in Section 3 on the
random covariance matrix I' = AAT + I imposes orthogonality on the columns
of A. The orthogonality constraint is convenient for creating an eigengap between
the spikes and the noise. This leads to the rank adaptation (4.2). One may wonder
if a simpler prior such as the one proposed in Section 4.2 without orthogonality
constraint would also lead to a desired eigengap.

The answer is negative in the current proof technique. Let us consider the sim-
plest case where the supports Soi, So2, ..., Sor are known and So; = Spp =--- =
Sor = So. When the rank r is not known, it is necessary to sample & accord-
ing to some prior distribution. Then, after sampling the rank &, we only need to
sample a |Sg| x & submatrix of A, with rows in Sp. Let us denote the submatrix
by Ag,. Consider the prior distribution of Ag, where each element follows i.i.d.
N, 1). Assume r < s so that we can also restrict £ < s. It is easy to see that
the £th eigenvalue of the matrix I' = AAT +1is )»min(ASOAgo) + 1. Hence the

eigengap is Amin (A SOAE)). For rank adaptation (4.2), we need a positive eigengap
Amin(A SOAgo) > 0. By nonasymptotic random matrix theory [Vershynin (2010)],

4.5) H()Mmin(ASOA?g:O) > \/E — \/E _ t|§) >1— 26712/2,
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forany ¢ > 0. For /s — /& —t > 0, t cannot be larger than /s, leading to a tail not
smaller than 2 exp(—s/2). In order that there is an eigengap under the posterior dis-
tribution, the desired tail needed in the classical Bayes nonparametric theory [see
Barron (1999) and Castillo (2008)] is exp(—Cnsz) = exp(—Crslog p) for some
C > 0. Hence the random matrix theory tail in (4.5) is not enough for our purpose,
and the current proof technique does not lead to the desired posterior convergence
for this simpler prior. One may consider a larger support S with |S| < rslog p in
the prior distribution, such that the tail probability in (4.5) is exp(—Crslog p) for
some C > (. However, it can be shown that the prior does not have sufficient mass
around the truth.

Nonetheless, if we assume the rank is known and r < O (1), then rank adaptation
is not needed. In this case, the prior in Section 4.2 leads to the desired posterior

1
rate of convergence. Remember 2 = “%£2.

THEOREM 4.3. Assume ¢ — 0, n < p™ and r < m for some constant m > 0.
Then there exists My g n > 0, such that for any M > M g m, we have

sup  PROI(|[VVT = VoV] || > Me|X") < exp(—Ce.k.m.myne?),
ZeG(p,s.r)

for some constant Cc g m,m) > 0 only depending on (k, K,m, M).
It would be an interesting problem to consider whether new techniques can be
developed to prove optimal posterior rate of convergence for a simpler prior when

the rank r is not known.

5. Proofs. The results of Theorems 3.1 and 4.1 are special cases for bounding

N, (B
5.1) ppn(BIx") = pp )
n
where D, = [ ;’ﬁ; (X")dTI(T") and N,,(B) = [ %(X”)dl‘[(r‘) for different B.

To bound (5.1), it is sufficient to upper bound the numerator N,(B) and lower
bound the denominator D,,. Following Barron, Schervish and Wasserman (1999)
and Ghosal, Ghosh and van der Vaart (2000), this involves three steps:

(1) Show the prior IT puts sufficient mass near the truth; that is, we need
T(K,) > exp(—Cne?),
where K,, ={I": W <eg}.

(2) Choose an anﬁlﬁropriate subset F, and show the prior is essentially supported
on F in the sense that

I1(F°) < exp(—Cne?).

This controls the complexity of the prior. Note that it is sufficient to have
I1(F¢|X") < exp(—Cne?).
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(3) Construct a testing function ¢ for the following testing problem:
Hy:I'=%, H :Te BNF.
We need to control the testing error in the sense that

Piov sup PI(1—¢) <exp(—Cne?).
TFeBNF
Notice the constants C’s are different in the above three steps, and should satisfy
some constraints in the proof. Step 1 lower bounds the prior concentration near the
truth, which leads to a lower bound for D,,. In its original form [Schwartz (1965)],
K, is taken to be a fixed neighborhood of the truth defined through Kullback—
Leibler divergence. Step 2 and step 3 are mainly for upper bounding N, (B). The
testing idea in step 3 is initialized by Le Cam (1973) and Schwartz (1965). Step 2
goes back to Barron (1988), who proposes the idea to choose an appropriate F to
regularize the alternative hypothesis in the test; otherwise the testing function for
step 3 may never exist; see Le Cam (1973) and Barron (1989).
We list key technical lemmas needed in the proof for all three steps as follows.
From now on, all capital letters C with or without subscripts are absolute constants.
They do not depend on other quantities unless otherwise mentioned.

LEMMA 5.1. Assume ¢ — 0. Then for any b > 0, we have

PL(D, < TI(K,)exp(—(b + )ne?)) < exp(—4C2b°K ~'ne?),

where Cy > 0 is an absolute constant.

LEMMA 5.2. Assume ¢ — 0 and r Vv logn < mlog p for some m > 0. Then
we have

(K,) > exp(—(y +24mCilog K +mCy)ne?),

with some absolute constant C1 > 0.

Lemma 5.1 lower bounds the denominator D,,. It is a general result for all Gaus-
sian covariance matrix estimation problems. Lemma 5.2 lower bounds I1(K,) in
step 1.

LEMMA 5.3. Let S=S81U---US¢. Assume ¢ — 0. When r v1ogn <mlog p
for some m > 0, we have
A

PgII(|S| > Ars |X") < exp(—%

forany A > 8y~ (y +4+mCilogK +mCy).

nez) + exp(—4C2K ~'ne?),



800 C. GAO AND H. H. ZHOU

Lemma 5.3 establishes the sparse property of the prior IT. It corresponds to
step 2, where F is the sparse subset {I": |S| < Ars}. Note that the parameter space
we consider requires maxj</<, |So;| < s. The sparsity constraint in F is much
weaker, which means F is larger than the parameter space we consider. Since we
only need F to control the regularity of the parameters in the alternative for hy-
pothesis testing in step 3, the oversized J here does not cause a problem. In many
Bayes nonparametric problems, the parameter space can be negligible compared
with the set F. Zhao (2000) provides an example where the parameter space re-
ceives no prior probability, while the set F receives prior probability close to one;
see also van der Vaart and van Zanten (2008).

LEMMA 5.4. Assume ¢ — 0. There exists some constant M s x m depending
only on (A, K, m), such that for any M > M4 k m, we have a testing function ¢
satisfying

C3M2 2
Py < 3exp(— sz " )
and

CsM
sup Pr(1—¢) < exp(—3—n£2).
Te{l: [T=X||>Ms, |S|<Ars) 8

The existence of a test and its error rates in step 3 are established in Lemma 5.4.
These lemmas prove Theorem 4.1.

In order to prove Theorem 3.1, we need to establish a stronger testing procedure.
Since we have the conclusion of Theorem 4.1, it is sufficient to consider the subset
{I': |2 — I'|| < Me}. More specifically, we are going to test X = VvoVOT + 1
against the following alternative:

Hi={T=VAV +1:|vVT =W V]| ;> M'e & =r,|S| < Ars).
Note that § = 57 U --- U S¢ is the joint support. The existence of the test is estab-
lished by the following lemma.

LEMMA 5.5. Assume ¢ — 0, r Vlogn <mlogp and r < ms for some ab-
solute constant m > 0. There exists some constant M;" k.m only depending on
(A, K, m), and for any M' > M;"K’m, we have a testing function ¢ such that

P} < 3exp(—1Cs8yx M*ne?)
and

sup PE(1 — ¢) < 2exp(—Cs8y M*ne?),
et

where M =232k~ M, 8% only depending on K, and Cs is an absolute con-
stant.
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We are going to develop the proofs in several parts. In Section 5.1, we establish
the main results based on the key lemmas above. All key lemmas are proved in
the later sections. In Section 5.2, we prove Lemma 5.2, which is for the prior
concentration (step 1). In Section 5.3, we prove Lemma 5.3 by showing that the
prior puts most mass on a sparse set (step 2). Sections 5.4 and 5.5 are devoted in
proving Lemmas 5.4 and 5.5, respectively (step 3). The proof of Lemma 5.1 is
stated in supplementary material [Gao and Zhou (2015)].

5.1. Proofs of the main results. In this section we prove Theorems 3.1 and 4.1.
Since the proof of Theorem 3.1 depends on the conclusion of Theorem 4.1, we
prove the latter one first.

5.1.1. Proof of Theorem 4.1. 'We decompose the posterior by
(T =2 > Me|X") <T(IF = Z|| > Me, |S| < Ars|X") +TI(|S| > Ars | X"),
where § = §1 U---U Se. By Lemma 5.3, we have
PETI(|S| > Ars |X") < exp(—y Ang?/8) + exp(—4C2K ~'ne?),

for any A > 8y~ !(y +4 + mC;logK + mCy). From now on, we fix A to be
A=9y Yy +4+mClog K +mCy). Then it is sufficient to bound

PLTI(|T — | > Me,|S| < Ars|X").
Let ¢ be the testing function in Lemma 5.4, and we have
PEII(IT — 2| > Me, |S| < Ars|X")

< PATI(|IT — 2| > Me, |S| < Ars [X"){D,, > TI(K,) exp(—2ne*)}(1 — ¢)

+ P + PE(D, < T1(K,) exp(—2ne?)).
There are three terms on the right-hand side above. By Lemma 5.4, Pg¢ <
3CXP(—C83TA/§21182) for sufficiently large M. By Lemma 5.1, we have P3 (D, <

H(K,,)exp(—Znez)) < exp(—4C2K_1n82). Now it remains to bound the first
term. Let H| ={I": ||’ — Z|| > Me, |S| < Ars}. We have

PETI(|T — || > Me, |S| < Ars|X"){D, > TI(K,) exp(—2ne?)}(1 — ¢)

-#4(([, @

l:f dl'I(F)/D,,){D,, > H(Kn)exp(—Znez)}(l — ¢)>
exp(2ne?) n
= PE /Hl

Py,
- ()

d
d

9P\ _ gyamr)
dPL

. exp(2ne?) "
= /H1 PE(1 — ¢)dTI(T)

2 2
< SRR G P19,
IT(Ky) ren
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which is bounded by exp(— %nsz) because suppcy, Pr (1 —¢) is upper bounded
by Lemma 5.4, and [1(K,) is lower bounded by Lemma 5.2 for sufficiently
large M. By summing up the error probability, we have

PETI(||IT — || > Me|X") < exp(—Cqy.k.m.myne>),

for some constant C,, k m,m) only depending on (y, K, m, M).
To obtain the rest of the results, it is sufficient to prove

(5.2) {IT =2 <Me} C{&=r}

and

(5.3) (It == <Me}c{|vVT =WV | < KMe).
Note that

5
F=Zm771T+I,
I=1

and the eigenvalues of the covariance I" are (||m||2 +1,..., ||77;§||2 +1,1,...,1),
where the first £ eigenvalues are in the range [(2K Y4+ 1,2K) + 1] as spec-
ified by the prior. Similarly, the eigenvalues of the covariance ¥ are (||6; % +
1,..., ||9r||2 +1,1,...,1), and the first r eigenvalues are in the range [K*1 +
1, K + 1]. Suppose r < &, let v € span(V) N span(Vo)L and |[v|| = 1. Then
vIZv=1and v'Tv > A (') > 1 + (2K) ™!, which contradicts |I" — Z|| < Me.
The same argument leads to contradiction when r > &. Thus we must have § =r
when |I" — | < Me.

Finally, (5.3) is an immediate consequence of the Davis—Kahan sin-theta theo-
rem (Lemma 5.11). It is easy to check that the eigengap & in Lemma 5.11 is K.

5.1.2. Proof of Theorem 3.1. With the results from Lemma 5.3 and Theo-
rem 4.1, we decompose the posterior distribution as follows:
n(vv? — v > M'e|X")
<n(|vvT = VoVo| > M'e, T — || < Me,|S| < Ars|X")
+ (|7 = || > Me|X") 4+ T1(|S| > Ars |X")
<n(|vvT = VoVo| > M'e, & =r,1S| < Ars|X")
+ (T — 2| > Me|X") + T1(|S| > Ars|X"),

where the last inequality is due to (5.2). Note that the later two terms converge to
zero, as shown in Lemma 5.3 and Theorem 4.1. Therefore, we only need to bound

PETI(|VVT = VoVo > M'e, & =1, |S| < Ars|X").

Remembering the definition of #;, then, by Lemma 5.5, there exists a testing
function ¢ for 7| with the desired error bound. Using a similar argument as in the
proof of Theorem 4.1, we have established Theorem 3.1.
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5.2. The prior concentration of I1. We prove Lemma 5.2 in this section. The
main strategy for proving Lemma 5.2 is to explore the structure of the prior. Specif-
ically, since the prior I is defined by a sampling procedure for 7;4+; conditioning
on span{ni, ..., N}, we need to take advantage of this feature by using the chain
rule and conditional independence.

PROOF OF LEMMA 5.2. Since Apin(I') > 1, we have
IT —XF

——— == X|F.
)\min(r)

Write
O(IT - Z|lr <¢)
>TI(IC = ZllF <&l(S1,..., Siprep = (Sot, -, Sor, D, .-, 2))
X H((Sl, ey S[py/Z]) =(Sot,...,80r, 9, ..., @))
The second term in the above product is
H((Sl, el S[py/Z]) =(Sot,...,80r,9, ..., @))

r [Py/z] 1 P
> T =50 [] (1— y+1)
I=1 I=r+1 p

1 pirZ 1 [ Soi
()G

> exp(_zp—y/Z)p—rs(yH)
> exp(—(y + 2)rslog p)
because p~7/? is at a smaller order of s log p. Then we lower bound
(I —Z|r <el(S1, ..., Stprir)) = (Sot, - - -, Sor, D, ..., 9)).
When (51, ..., S[py/Z]) = (Sot1,..., 80,9, ...,9), we have

r r
> ol =66
=1

=1

IT=%lr=

.
<> |mnf =66 |5
F =1

r
= Z” N1, Sor UIT:S()] - QZ»SOIQITS()] ” F
=1

]
<> s — 01,50 11 (162,50, oo + 112,501 100
=1

,
< (\/E-i- 1)K1/ZZ m2, 500 — 61,50l
=1
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We use the notation G to represent the probability G s,
By conditional independence, we have

s,) defined in Section 3.

.....

(T = Zllr < el(St, -+, Spprizy) = (Sots -+ Sors D -+, D))

o],

r r
ZnnT — Z@@T
=1 =1
.
> G((«f2+ DK s — 0500l < s)

=1

> G(V2+ DK sy —Orsyll <enl=1,....r),
where }j_, & < ¢. In particular, we choose
gi=c(re)3vV2K), i=1,....r,
with ¢c(r, ) = %8(3«/21()". Then as long as K > 1, we have
! 1
K & <zeq
i=1 2

and
-
Z & < €.
i=1

Define 7; = ﬂ§:1 U; with
U ={(V2+ DK nisy — Oisyl <&} fori=1,...,r

Using the chain rule, we have

r—1

G(T)=GU) [ GTiITD.
=1

For each G(7;|7,—1), we present a lower bound and prove it in the supplementary
material [Gao and Zhou (2015)].

PROPOSITION 5.1. Foreachl=1,2,...,r — 1, we have
c(r,e) I+1
G(TinlT) > ——=———(3v2K)'*
T = S ek
42+ 1)K V/?
X exp(—s log (\f(—i_—)) —s 10g(2ﬁ/3)).
c(r, e

Moreover, G(U1) can be lower bounded by the above formula with | = 0.
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Using this result, we have

r—1 ,
G ) l:l_ll G(Ti1|Th) = (%) (32K ) r+D/2

(4v2+ DHK'/?

—Cyrsl
Y 1rs 0gs>

X exp(—rs log
) 1
>exp| —Cir-slogK — Cirslog— — Cirslogs |,
£
for some absolute constant C; > 0 when —K_ < 5. Therefore, we have

logK —
r—x
(Il )
)\min(r)

1
> exp(—(y +2)rslogp — Cirls logK — Cirslog— — Cyrs logs>.
€

Since
lo
82 _ rs gp,
n
we have
It = =i ,
N ———— <¢)>exp(—(y +2+mCilogK + mCy)ne”),
)\min(r)

under the assumption r V logn < mlog p for some constant m > 0. [J

5.3. The sparsity of I1. We prove Lemma 5.3 in this section. The result is
implied by the prior sparsity stated in the following lemma.

LEMMA 5.6. For the sparsity prior specified above, we have for any A > 0,

Ay
M(|S1 U--- U Sg| > Ars) < exp(—Trs logp).

PROOF OF LEMMA 5.6. First, we have
(]S U---USg| > Ars) <TI(|S; U---U Sipriz| > Ars).

Note that there is a slight abuse of notation above. The {Sl}f:1 on the left-hand side

/2
are from {Sl}l[i Vl I on the right-hand side by excluding those S; with ; = 0. Let
B =[S1U---US,y/2|. Note that B is a Binomial random variable with parameter
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o satisfying @ < p~177/2. Therefore,
P

M(B>As) < Y <Z>ak(1—a)l’—’<5 Xp: <1]z>ak

k=[Ars] k=[Ars]

P
< Y explklog p)(p~' 77/
k=[Ars]

p

A
< Z exp(—k% log p) < exp(—Tyrs logp).

k=[Ars]

Thus the proof is complete. [J

Now we are ready to prove Lemma 5.3 by upper bounding the numerator and
lower bounding the denominator of IT(|S; U---U Sg| > Ars | X). This can be done
by combining the results of Lemmas 5.6, 5.1 and 5.2.

PROOF OF LEMMA 5.3.  Since D, = [ $7 (X)dTI(I) and K, = (IL=2]lr <
z min

e}, we have
PEII(|S1 U -+ U Se| > Ars | X)
< PETI(|S1 U--- U S| > Ars|X){D, > T1(K,,) exp(—(b 4 1)ne?)}
+ PE{D, < TI(K,) exp(— (b + Dne?)}

_ exp((b+ Dne?) P / dPpp
- (K s

X)dIl(r
1U~~-US5|>ArsdPg( ) @)

+ exp(—4C2K ~1h*ne?)
IT(|S1 U---USg| > Ars)
I1(Kp)
where we have used Lemma 5.1. Using Lemmas 5.6 and Lemma 5.2, we have
IT(|S1 U---USg| > Ars) e
IT(Ky) B
Hence by choosing b = 1, we have

PEII(|S1 U+ U Se| > Ars | X)

<exp((b+ l)nez) + exp(—4C2K_1b2n82),

Ay 2
Xp<_(T —(y+2+mCilogk —|—mC1))n8 )

Ay 5
<exp|-— T—(y+4+mC110gK+mC1) ne

+ exp(—4C2 K ~ne?).
The conclusion then follows by letting A > 8y ~!(y +4+mClog K +mCy). O
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5.4. Testing in spectral norm. We prove Lemma 5.4 in this section. Because
of the constraint [S; U---U S¢| < Ars, we can break the testing problem into many
low-dimensional testing problems. Then a final test can be constructed by com-
bining the small tests. The following lemma establishes the existence of such a
low-dimensional test and bounds its error probability.

LEMMA 5.7. For the random variable Y" = (Y1, ..., Y,) in R? and any M >
0, there exists a testing function ¢, such that

4%
sup Pz(1—9¢(Y"))

{T:|IT=X|>Me)

C3Mne? M
§exp<C3d—7maX{1, = }>
4 (M2 4+2)2| 2|2

P§¢(Y") < exp(ng — ) +2exp(Cszd — C3M1/2n),

with some absolute constant C3 > 0.

Notice X is a general d x d covariance matrix for some d. It will be specified
in the proof of Lemma 5.4. To prove Lemma 5.7, we need the following random
matrix inequality. Its proof is given in the supplementary material [Gao and Zhou
(2015)].

LEMMA 5.8. LetYy,...,Y, bei.id. from N(O, 2_3), where ¥ is a d x d co-
variance matrix. Let ¥ = ,ll Y YiT be the sample covariance matrix, and then
there is an absolute constant Cz > 0, such that for any t > 0,

PL(IZ = Z|l > t|IZ])) < exp(—C3(—d +n(t A 17))).

PROOF OF LEMMA 5.7. Denote the alternative set by H; = {T': [T — Z| >
Me}, and then it will have following decomposition:

o0
H1 C U Hlj,
j=0
where
Hig={IT — 2| > Me, |T|| < (M +2)I2]]},
and for j > 1,

Hij = {(M"2 +2)(Me?) "2 8 < IF) < (M'2 +2)(Me?) S},
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We divide the alternative set into pieces so that the spectral norm of T is
bounded in each piece. For the prior in Section 3, this is not needed be-
cause the prior only samples a random covariance matrix with bounded spec-
trum. However, the prior in Section 4.2 does not impose a bounded spec-
trum constraint. The strategy for dividing the alternative set is general for both
cases.

We test each alternative hypothesis separately and then combine the test and use
the union bound to control the error. To test against Hig, we use

1 n
¢0=H[H_ZY1‘Y1'T—
3

To test against Hjj, we use

g

From Lemma 5.8, we have

> M8/2}.

Ml/2 2 -

Pl < (Cd CsM” 2)
= < exp| Czd — —ne
* 4112
and
1 & , . M'7242 i—D)/2
Pg(ﬁjSPg{‘;ZYiYiT—EH—I-HEH>72 IE](Me?) V=D

Mz —(j=1)/2

> vyl -
i=l1

1}’1
prlilz
<rel|13

<exp(Csd — C3M'=7/2pe=0=D),

Next, we control the type II error. For any I" € Hjg, we have

_ _ 1 n
PZ(1 — ¢p) < P! ||F—Z||—";ZYiYiT_ <M8/2}
i=1

1 T

<Pl E;Y,yi - >Ms/2}
=
< p" liy-ﬂ— > ||T| Me
N | i 2M2 4 2)|Z|
ol )
[,¢ — = ne
P AM2 225
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For any Hj, we have
3 1 I mMV242 —(i—1y/2
PE(L—¢;) < P} ||r||—“;ZY,-YiT—FH<fn2n(M€2) v
i=1

M2 42
> —

1 " T =
<Pl ";;YiYi -T 5
P

< pn

1 " T =
-y vyl -T
s

M
§exp(C3d— 34 nez).

Now we combine the test by ¢ = maxo<;j<co ¢;. The error of the combined test
can be bounded by

> ||F||M1/28/2}

o0
Pip <) Pig;
j=0
cen{c S) s S (1)
ex — ——=——ne¢ ex expl| — ne\ — 13-
<exp| Cs LB plt3 = Y 3 M1/2¢
C3M2 2 s . ]
< exp<C3d — 4”2_:”2118 ) —I—exp(C3d)j;exp<—JC3Mne(—M1/28>)

C3M?
< exp(C3d - m;wz) + 2exp(C3d — C3M1/2n)

and

PRI =) < P min(l = ¢,)

- (c J Ci;Mneg? {1 M })
ex — ——— maxji 1, = .
=P 4 (M1/2 +2)2| 2|2

Thus the proof is complete. [J

To prove Lemma 5.4, we combine the small tests and control the error by union
bound.

PROOF OF LEMMA 5.4. We denote the alternative set by

H ={T:|T = Z| > Mg, |S1U---US;| < Ars}.
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Define S =81 U---USg and Sp = Sp1 U - - - U Sp-. We decompose H; by

H; C U Hi g,
B:|B|<Ars

where Hy p ={I": ||’ — 2| > Me, S = B}. Define B =SU S, and it is easy to
see that

IT =) =T~ 2|,

where
P=>manz+1, =) 0305+1
I=1 I=1
Thus it is sufficient to test the following sub-problem in R for each B:

H|:T =%, H{ p:|IT — || > Me.

By Lemma 5.7, there exists ¢p depending on the observations (Y7, ...,Y,) =
(XLB, --an,B)’ such that

Ps¢p < (C (A+ Drs — & )
L exp rs ne?
3 4K?

+2exp(C3(A + 1)rs — C3M'/?n)

M? 5
< 3exp<—C3(m —(A+ 1))1’18 )

0 C3Mnée? M
sup P (1 = ¢p) < exp( C3(A + Drs — = — max 1,(—

FeH) M2 +2)2K?
M 2
< exp(—C3<Z —(A+ 1)>n8 )

Then we combine the tests by ¢ = maxp ¢p. By the union bound, we have

[Ars]

Py < (Z <5)>3exp(—C3(% —(A+ 1)>n52>

g=1
<3A (A | e”) ( C(M2 (A+1)> 2)
<3 Arsexp| Arslog Ars exp 3\ k2 ne
2
< 3exp(2Arslog p) exp(—(h(m —(A+ 1))]’182)

C3M?
< 3exp<—<43T —C3(A+1) — 2A>n€2>
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and

n M 2
sup Pr(l —¢) < exp(—Cg(— —(A+ 1))n8 )

TeH; 4

Hence the proof is complete by choosing sufficiently large M. [

5.5. Testing in subspace distance d(-,-). We prove Lemma 5.5 in this section.
At first thought, there seems to be no obvious test for testing the subspace projec-
tion matrix under the distance d(-, -) due to the complicated sparse and low-rank
structure. Our strategy is to break the alternative set into many levels and pieces.
The goal is that for each piece, it is a low-dimensional small testing problem in the
following form:

Hy:T=%,  H:|F -, <6 -,

The small testing problem can be solved by considering the likelihood ratio test.
The error bound is stated in the following lemma. Its proof is given in the supple-
mentary material [Gao and Zhou (2015)].

LEMMA 5.9. Consider observations Y" = (Y1, ...,Y,) in Re. There exist
constants §g and 8% only depending on K, and a testing function ¢ such that

PLG(Y") < 2exp(~Csdin|| = — '),

sup PE(1 = (")) < 2exp(—Cs8in|[ £ — '),
(0TI p <8k 1=}

where Cs5 > 0 is an absolute constant.

We need a lemma to bound the covering number under different subspace dis-
tances. We use N (8, H, p) to denote the § -covering number of H under the dis-
tance p. The proof of Lemma 5.10 is given in the supplementary material [Gao
and Zhou (2015)].

LEMMA 5.10. For any U e U(d,r), R, Ry > 0 and A = diag(ry,...,A,)
with o] > Xy > --- > A, we have

logN(Rie,{V €U(d,r):d(U, V) < Rae},dn)

1221 (R 1 6
71( 2t ))+r210g—ﬁ.
€

§drlog< 7
1

Last but not least, we need the following sin-theta theorem to bound the differ-
ence of subspaces by the difference of matrices.
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LEAMMA 5.11 [Davis and Kahan (1970)]. Consider symmetric matrices F
and F, with eigenvalue decomposition

F=U1D1U1T+U2D2U2T, ﬁ':U]lA)llAflT-i-UzlA)zﬁzT.

If the eigenvalues D\ are contained in an interval (a, b), and the eigenvalues 152
are excluded from the interval (a — &, b + 8) for some § > o, then

|0l =010\ < V257 IF = FliF
and
|loyul — 0,01 <87 F - F).
PROOF OF LEMMA 5.5. The proof has two major steps.

Step 1: Decompose the alternative set into many levels and pieces. We first
decompose H; by Hi C Up. |r|<ars H1,B, Where

Hig={T=VAV +1:|vVI —VV] | > M'e, & =r,S = B}.
Define B = B U S with Sy = So; U - - - U Sp,, and

—1 —1
V=m0 "y 5o Ml 31 0, 5
Vo.s =16 31701 5. 16, 5176, 5]-

Note that both Vi and V, 5 are |B| x r matrices with |B| < (A + D)rs, and
|vvT — VoVoTllp =|Vz VET Vo5 VOTB”F' Then we can rewrite Hy p as

Hip={T=VAV  +1:|VgV] =V, 5V 5l p > M'e},

where we omit §& = r for simplicity of notation, and we consider both A and Ag
r x r diagonal matrices from now on.

Note that [|A ™ ||eo V | Alle < 2K for any I' € supp(IT). We can show there
exists diagonal matrices {A1, ..., A7} C{A: A" oo V [[Alloc < 2K} such that

T
(A ]A" o VIATe <2K) (A IIA = Al <),

t=1

where log7T < rlog(l2Kﬁs‘1), because we regard (A A Yoo V | Alleo <
2K} as a subset of {A:||Allr < 2K./r} so that it is essentially a covering
number calculation in R” as in Pollard (1990). We further decompose Hp g by
Hi g C Uthl H\ g, where

Hipi={T=VAVI +1:|VaVE = Vo 5Vi 5l p > Me A = Arllp <),
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and decompose H; p; by Hi 5 C U?’;l Hy g, j, where
T . T T :
Hy . j={T=VAV +1:jM'e <|VgVy = Vo gVyslp <+ DM'e,
IA = AdllF <&}

According to Lemma 5.10, there exists
(Ur, ..., Uny CU(BL )N (U jM'e < [UUT =V 3V 5l e < G+ DM'e),
such that for some constant §x only depending on K,

{(iM'e <|V5Vg = Vo Vo glr=(+DMe}
N

J
c UlIvaaVE —UiAUT | p < (kM — e},
i=1

where M =272k~ M’, and we may bound N; by

12A1((j+l)M/+1)> , 6Jr
—— + r-log
JjorM —1 £

logN; < |l_3’|rlog(

1
<(A+ Dr3s 1og(48\/§8;11<) +r?log(6:/7) + Erzlogn,

when we choose M’ > max{Z\/ESI_(l K, %}. Using the triangle inequality, we have
|VaAVE = UinUl || < [VaAVE = Uik U |+ 118 = Aclr.
Therefore,
{IVaAVE —Uin Ul || < Gk jM — Ve, | A — Al <&}
c{|VzAVE —UAU] | < Gk jM)e).
By the sin-theta theorem (Lemma 5.11), we have
[0 A UT Vo 580V gl 2 27 PR UUT — Vo 5V
>27 12Kk iM'e > jMe.
Hence
(VA VE —UiNUT | p < Gk jM — De, | A — AllF < &)
C{IVsAVE ~UAUT | < Sk Ui UT = Ve 580V ).

Our final decomposition is Hy g, C vazjl Hi B, )i, where
Hy g ji={T=VAV +1:|VzAvI —vUin U,

<8k |U:A U — VO,BAOV()Y:B | £}
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Step 2: Combine tests from all levels and pieces. We have reduced the original
testing problem to the above small pieces for each (B, ¢, j, i). For each small piece,
it is equivalent to the testing problem in Lemma 5.9. Since we already know the

coordinates B, the testing problem is on RB . The observations in Lemma 5.9 is
Y1,....Y) = (Xl,é’ ceey Xn,é)~ The triple (X, T, ") in Lemma 5.9 corresponds
to (VO’BAOVOTB + LUAU! +1, VBAVBT + I) for every (B,t, j,i). Then by

the conclusion of Lemma 5.9, there exists a testing function ¢p ; j; with error
bounded by

2
Psépi,ji < 2eXP(_C55/1<”|| UiAtUiT - VO,BAOV()T:B ”F)
2
sup  PE(1 — g ji) <2exp(—Cs8xn|Uid Ul — Vo AoV, 5]7).
FEHB,,J‘,‘ ’
for some 8% only depending on K and some absolute constant Cs. Since
|U;AUT — V073A0V0T3||F > jMe, we have
Psdp.1, )i < 2exp(—Cs8nj*M?e?),

sup  PE(1 — ¢, j.i) <2exp(—Cs8nj>M?e?).
FGHBJJ,,'

Now we are ready to integrate these little tests step by step for each index. For
each (B, t, j), define

i = max ii
¢B,t,] 1<i<N; ¢B,l,j,l’

and we have
N;j
Pidpij <Y Pidpi. i

i=1

< 2N; exp(—Cs8ynj>M?e?)

< 2exp(—C58/K JEMPne® + (A + 1)r¥slog (4825 ' K)

1
+ r?log(65/7) + 5r2 logn).

2 2

Since we assume r V logn < mlogp and r < ms, we have r<s < mne-,

r?1og(6+/r) < mne? and r?logn < m?ne?. Hence

Pipp,.; <2exp(—(Cs8k j>M? — (A + mlog(48v28 ' K) — m — m?/2)ne?)
< Zexp(—%Csrs}(szanz),

as long as we pick

M? = 205180 " (A + D)mlog(48v285 ' K) +2C5 8% ~'m + €518~ m?.
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In addition, for each (B, t, j),

sup  Pr(l —¢p,j) < 2exp(—Cs8 j2M*ne?).
FGHLB,[,]'

For each (B, t), we define
épt = m]?}lX ®B.1,j

whose errors are bounded as follows:

Ps¢p; < Z Psdp.:,
j
1 _
< 2Zexp(—§css’,( j2M2n82>
j

1 _
<3 exp(— §C58}<M2n82>
and

sup Pl(1 —¢p.) < 2exp(—Cs8y M?ne?).
'eHp,;

For each B, we define
¢ = [max, éB.1,
and we have the errors bounded by
T
Ps¢p < ZPgdm,z
t=1

< 3ex _l ARV 24 2

< p 2C5<SKM ne“+logT
1 -

< 3exp<—§C5(S/KM2n£2 + rlog(12K\/?£1))
1 -

< 3exp<—ZC58/KM2n82)

and

sup PE(1 — ¢p) < 2exp(—Cs8y M?ne?).
I'eHp

Finally, the ultimate test is defined as

=max ¢g,
¢ 2 (0
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with type I error Py.¢ bounded by

[Ars]

XB:qubB < <Z (5))3exp<—%C58%M2n82>

g=1

1 -
< 3 Arsexp(Arslog p) exp<—1C58’KM2n82>
1 ’oag2. .2

< 3exp(2Arslog p) exp _ZCS‘SKM ne

1 ’ g2 2
<3exp|— ZC58KM —2A |ne

1 !oag2.. .2
§3eXp —§C55KM ne )

as long as we choose M? > 168/1(_1C5_ 1A, and for type II error we have

sup PP(1 — ¢) < 2exp(—Cs8y M*ne?).
et

Thus the proof is complete. [J
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Rate-optimal posterior contraction for sparse PCA” (DOI:
10.1214/14-A0S1268SUPP; .pdf). In the supplementary text [Gao and Zhou
(2015)], we present proofs of Proposition 2.1, Lemmas 5.1, 5.8, 5.10, Theorem 4.2,
Proposition 5.1 and Lemma 5.9.
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