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We propose a self-tuning
√

Lasso method that simultaneously resolves
three important practical problems in high-dimensional regression analysis,
namely it handles the unknown scale, heteroscedasticity and (drastic) non-
Gaussianity of the noise. In addition, our analysis allows for badly behaved
designs, for example, perfectly collinear regressors, and generates sharp
bounds even in extreme cases, such as the infinite variance case and the noise-
less case, in contrast to Lasso. We establish various nonasymptotic bounds for√

Lasso including prediction norm rate and sparsity. Our analysis is based on
new impact factors that are tailored for bounding prediction norm. In order
to cover heteroscedastic non-Gaussian noise, we rely on moderate deviation
theory for self-normalized sums to achieve Gaussian-like results under weak
conditions. Moreover, we derive bounds on the performance of ordinary least
square (ols) applied to the model selected by

√
Lasso accounting for possi-

ble misspecification of the selected model. Under mild conditions, the rate
of convergence of ols post

√
Lasso is as good as

√
Lasso’s rate. As an ap-

plication, we consider the use of
√

Lasso and ols post
√

Lasso as estimators
of nuisance parameters in a generic semiparametric problem (nonlinear mo-
ment condition or Z-problem), resulting in a construction of

√
n-consistent

and asymptotically normal estimators of the main parameters.

1. Introduction. We consider a nonparametric regression model:

yi = f (zi) + σεi, i = 1, . . . , n,(1.1)

where yi’s are the outcomes, zi ’s are vectors of fixed basic covariates, εi’s are inde-
pendent noise, f is the regression function and σ is an unknown scaling parameter.
The goal is to recover the values (fi)

n
i=1 = (f (zi))

n
i=1 of the regression function

f at zi ’s. To achieve this goal, we use linear combinations of technical regressors
xi = P(zi) to approximate f , where P(zi) is a dictionary of p-vector of transfor-
mations of zi . We are interested in the high dimension low sample size case, where
we potentially use p > n, to obtain a flexible approximation. In particular, we are
interested in cases where the regression function can be well approximated by a
sparse linear function of xi .
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The model above can be written as yi = x′
iβ0 + ri + σεi , where fi = f (zi)

and ri := fi − x′
iβ0 is the approximation error. The vector β0 is defined as a so-

lution of an optimization problem to compute the oracle risk, which balances bias
and variance (see Section 2). The cardinality of the support of β0 is denoted by
s := ‖β0‖0. It is well known that ordinary least squares (ols) is generally incon-
sistent when p > n. However, the sparsity assumption, namely that s � n, makes
it possible to estimate these models effectively by searching for approximately
the right set of the regressors. In particular, �1-penalization has played a central
role [14, 15, 18, 35, 40, 47, 52, 54]. It was demonstrated that �1-penalized least
squares estimators can achieve the rate σ

√
s/n

√
logp, which is very close to the

oracle rate σ
√

s/n achievable when the true model is known. Importantly, in the
context of linear regression, these �1-regularized problems can be cast as convex
optimization problems which make them computationally efficient (computable
in polynomial time). We refer to [14–17, 27, 38, 39, 42, 47] for a more detailed
review of the existing literature which has focused on the homoscedastic case.

In this paper, we attack the problem of nonparametric regression under non-
Gaussian, heteroscedastic errors εi , having an unknown scale σ . We propose to
use a self-tuning

√
Lasso which is pivotal with respect to the scaling parameter σ ,

and which handles non-Gaussianity and heteroscedasticity in the errors. The result-
ing rates and performance guarantees are very similar to the Gaussian case, due to
the use of self-normalized moderate deviation theory. Such results and properties,1

particularly the pivotality with respect to the scale, are in contrast to the previous
results and methods on others �1-regularized methods, for example, Lasso and
Dantzig selector that use penalty levels that depend linearly on the unknown scal-
ing parameter σ .

There is now a growing literature on high-dimensional linear models2 allow-
ing for unknown scale σ . Städler et al. [43] propose a �1-penalized maximum
likelihood estimator for parametric Gaussian regression models. Belloni et al.
[12] consider

√
Lasso for a parametric homoscedastic model with both Gaussian

and non-Gaussian errors and establish that the choice of the penalty parameter in√
Lasso becomes pivotal with respect to σ . van de Geer [49] considers an equiva-

lent formulation of the (homoscedastic)
√

Lasso to establish finite sample results
and derives results in the parametric homoscedastic Gaussian setting. Chen and
Dalalyan [21] consider scaled fused Dantzig selector to allow for different spar-
sity patterns and provide results under homoscedastic Gaussian errors. Belloni and

1Earlier literature, for example, in bounded designs [15], provides bounds using refinements of Ne-
mirovski’s inequality; see [26]. These results provide rates as good as in the Gaussian case. However,
when the design is unbounded (e.g., regressors generated as realizations of independent Gaussian
random variables), the rates of convergence provided by these techniques are no longer sharp. The
use of self-normalized moderate deviations in the present context allows to handle the latter cases,
with sharp rates.

2There is also a literature on penalized median regression, which can be used in the case of sym-
metric errors, since these methods are independent of the unknown σ , cf. [5, 53].
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Chernozhukov [6] study Lasso with a plug-in estimator of the noise level based on
Lasso iterations in a parametric homoscedastic setting. Chrétien and Darses [24]
study plug-in estimators and a trade-off penalty choice between fit and penalty in
the parametric case with homoscedastic Gaussian errors under random support as-
sumption (similar to [19]) using coherence condition. In a trace regression model
for recovery of a matrix, [34] proposes and analyses a version of the

√
Lasso under

homoscedasticity. A comprehensive review is given in [30]. All these works rely
essentially on the restricted eigenvalue condition [14] and homoscedasticity and
do not differentiate penalty levels across components.

In order to address the nonparametric, heteroscedastic and non-Gaussian cases,
we develop covariate-specific penalty loadings. To derive a practical and theoret-
ically justified choice of penalty level and loadings, we need to account for the
impact of the approximation error. We rely on moderate deviation theory for self-
normalized sums of [33] to achieve Gaussian-like results in many non-Gaussian
cases provided logp = o(n1/3), improving upon results derived in the parametric
case that required logp � logn, see [12]. (In the context of standard Lasso, the
self-normalized moderate deviation theory was first employed in [3].)

Our first contribution is the proposal of new design and noise impact factors,
in order to allow for more general designs. Unlike previous conditions, these fac-
tors are tailored for establishing performance bounds with respect to the prediction
norm, which is appealing in nonparametric problems. In particular, collinear de-
signs motivate our new condition. In studying their properties, we further exploit
the oracle based definition of the approximating function. The analysis based on
these impact factors complements the analysis based on restricted eigenvalue pro-
posed in [14] and compatibility condition in [48], which are more suitable for
establishing rates for �k-norms.

The second contribution is a set of finite sample upper bounds and lower bounds
for estimation errors under prediction norm, and upper bounds on the sparsity of
the

√
Lasso estimator. These results are “geometric,” in that they hold conditional

on the design and errors provided some key events occur. We further develop prim-
itive sufficient conditions that allow for these results to be applied to heteroscedas-
tic non-Gaussian errors. We also give results for other norms in the supplementary
material [2].

The third contribution develops properties of the estimator that applies ordinary
least squares (ols) to the model selected by

√
Lasso. Our focus is on the case

that
√

Lasso fails to achieve perfect model selection, including cases where the
oracle model is not completely selected by

√
Lasso. This is usually the case in a

nonparametric setting. This estimator intends to remove the potentially significant
bias toward zero introduced by the �1-norm regularization employed in the

√
Lasso

estimator.
The fourth contribution is to study two extreme cases: (i) parametric noiseless

case and (ii) nonparametric infinite variance case.
√

Lasso has interesting theoret-
ical properties for these two extreme cases. For case (i),

√
Lasso can achieves
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exact recovery in sharp contrast to Lasso. For case (ii),
√

Lasso estimator can
still be consistent with penalty choice that does not depend on the scale of the
noise. We develop the necessary modifications of the penalty loadings and derive
finite-sample bounds for the case of symmetric noise. When noise is Student’s t-
distribution with 2 degrees of freedom, we recover Gaussian-noise rates up to a
multiplicative factor of log1/2 n.

The final contribution is to provide an application of
√

Lasso methods to a
generic semiparametric problem, where some low-dimensional parameters are of
interest and

√
Lasso methods are used to estimate nonparametric nuisance param-

eters. These results extend the
√

n consistency and asymptotic normality results
of [3, 8] on a rather specific linear model to a generic nonlinear problem, which
covers smooth frameworks in statistics and in econometrics, where the main pa-
rameters of interest are defined via nonlinear instrumental variable/moment con-
ditions or Z-conditions containing unknown nuisance functions (as in [20]). This
and all the above results illustrate the wide applicability of the proposed estimation
procedure.

Notation. To make asymptotic statements, we assume that n → ∞ and p =
pn → ∞, and we allow for s = sn → ∞. In what follows, all parameters are in-
dexed by the sample size n, but we omit the index whenever it does not cause
confusion. We work with i.n.i.d., independent but not necessarily identically dis-
tributed data, (wi)

n
i=1, with k-dimensional real vectors wi containing yi ∈ R and

zi ∈Rpz , the latter taking values in a set Z . We use the notation (a)+ = max{a,0},
a ∨ b = max{a, b} and a ∧ b = min{a, b}. The �2-norm is denoted by ‖ · ‖, the
�1-norm is denoted by ‖ · ‖1, the �∞-norm is denoted by ‖ · ‖∞, and the �0-“norm”
‖ · ‖0 denotes the number of nonzero components of a vector. The transpose of
a matrix A is denoted by A′. Given a vector δ ∈ Rp , and a set of indices T ⊂
{1, . . . , p}, we denote by δT the vector in which δTj = δj if j ∈ T , δTj = 0 if j /∈
T , and by |T | the cardinality of T . For a measurable function f :Rk →R, the sym-
bol E[f (wi)] denotes the expected value of f (wi); En[f (w)] denotes the average
n−1∑n

i=1 f (wi); Ē[f (w)] denotes the average expectation n−1∑n
i=1 E[f (wi)];

and Gn(f (w)) denotes n−1/2∑n
i=1(f (wi) − E[f (wi)]). We will work with re-

gressor values (xi)
n
i=1 generated via xi = P(zi), where P(·) :Z �→ Rp is a mea-

surable dictionary of transformations, where p is potentially larger than n. We
define the prediction norm of a vector δ ∈ Rp as ‖δ‖2,n = {En[(x′δ)2]}1/2, and
given values y1, . . . , yn we define Q̂(β) = En[(y − x′β)2]. We use the notation
a � b to denote a ≤ Cb for some constant C > 0 that does not depend on n (and,
therefore, does not depend on quantities indexed by n like p or s); and a �P b to
denote a = OP (b). � denotes the cumulative distribution of a standard Gaussian
distribution and �−1 its inverse function.

2. Setting and estimators. Consider the nonparametric regression model:

yi = f (zi) + σεi, εi ∼ Fi,
(2.1)

E[εi] = 0, i = 1, . . . , n, Ē
[
ε2]= 1,
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where zi are vectors of fixed regressors, εi are independent errors, and σ is the scal-
ing factor of the errors. In order to recover the regression function f , we consider
linear combinations of the covariates xi = P(zi) which are p-vectors of transfor-
mation of zi normalized so that En[x2

j ] = 1 (j = 1, . . . , p).
The goal is to estimate the value of the nonparametric regression function f

at the design points, namely the values (fi)
n
i=1 := (f (zi))

n
i=1. In the nonparamet-

ric settings, the regression functions f are generically nonsparse. However, often
they can be well approximated by a sparse model x′β0. One way to find such ap-
proximating model is to let β0 be a solution of the following risk minimization
problem:

min
β∈Rp

En

[(
f − x′β

)2]+ σ 2‖β‖0

n
.(2.2)

The problem (2.2) yields the so called oracle risk—an upper bound on the risk of
the best k-sparse least squares estimator in the case of homoscedastic Gaussian
errors, that is, the best estimator among all least squares estimators that use k out
of p components of xi to estimate fi . The solution β0 achieves a balance between
the mean square of the approximation error ri := fi −x′

iβ0 and the variance, where
the latter is determined by the complexity ‖β0‖0 of the model (number of nonzero
components of β0).

In what follows, we call β0 the target parameter value, T := supp(β0) the oracle
model, s := |T | = ‖β0‖0 the dimension of the oracle model, and x′

iβ0 the oracle
or the best sparse approximation to fi . We note that T is generally unknown. We
summarize the preceding discussion as follows.

CONDITION ASM. We have data {(yi, zi) : i = 1, . . . , n} that for each n obey
the regression model (2.1), where yi are the outcomes, zi are vectors of fixed basic
covariates, the regressors xi := P(zi) are transformations of zi , and εi are i.n.i.d.
errors. The vector β0 is defined by (2.2) where the regressors xi are normalized so
that En[x2

j ] = 1, j = 1, . . . , p. We let

T := supp(β0), s := |T |, ri := fi − x′
iβ0 and c2

s := En

[
r2].(2.3)

REMARK 1 (Targeting x′
iβ0 is the same as targeting fi ’s). We focus on es-

timating the oracle model x′
iβ0 using estimators of the form x′

i β̂ , and we seek
to bound estimation errors with respect to the prediction norm ‖β̂ − β0‖2,n :=
{En[(x′β0 − x′β̂)2]}1/2. The bounds on estimation errors for the ultimate target fi

then follow from the triangle inequality, namely√
En

[(
f − x′β̂

)2]≤ ‖β̂ − β0‖2,n + cs.(2.4)

REMARK 2 (Bounds on the approximation error). The approximation errors
typically satisfy cs ≤ Kσ

√
(s ∨ 1)/n for some fixed constant K , since the opti-

mization problem (2.2) balances the (squared) norm of the approximation error
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(the norm of the bias) and the variance; see [4, 6, 45]. In particular, this condi-
tion holds for wide classes of functions; see Example S of Section 4 dealing with
Sobolev classes and Section C.2 of supplementary material [2].

2.1. Heteroscedastic
√

Lasso. In this section, we formally define the estima-
tors which are tailored to deal with heteroscedasticity.

We propose to define the
√

Lasso estimator as

β̂ ∈ arg min
β∈Rp

√
Q̂(β) + λ

n
‖	β‖1,(2.5)

where Q̂(β) = En[(y − x′β)2], 	 = diag(γ1, . . . , γp) is a diagonal matrix of
penalty loadings. The scaled �1-penalty allows component specific adjustments
to more efficiently deal with heteroscedasticity.3 Throughout, we assume γj ≥ 1
for j = 1, . . . , p.

In order to reduce the shrinkage bias of
√

Lasso, we consider the post model se-
lection estimator that applies ordinary least squares (ols) to a model T̂ that contains
the model selected by

√
Lasso. Formally, let T̂ be such that

supp(β̂) = {
j ∈ {1, . . . , p} : |β̂j | > 0

}⊆ T̂ ,

and define the ols post
√

Lasso estimator β̃ associated with T̂ as

β̃ ∈ arg min
β∈Rp

√
Q̂(β) :βj = 0 if j /∈ T̂ .(2.6)

A sensible choice for T̂ is simply to set T̂ = supp(β̂). Moreover, we allow for
additional components (potentially selected through an arbitrary data-dependent
procedure) to be added, which is relevant for practice.

2.2. Typical conditions on the Gram matrix. The Gram matrix En[xx′] plays
an important role in the analysis of estimators in this setup. When p > n, the
smallest eigenvalue of the Gram matrix is 0, which creates identification problems.
Thus, to restore identification, one needs to restrict the type of deviation vectors δ

corresponding to the potential deviations of the estimator from the target value β0.
Because of the �1-norm regularization, the following restricted set is important:

�c̄ = {
δ ∈ Rp :‖	δT c‖1 ≤ c̄‖	δT ‖1, δ �= 0

}
for c̄ ≥ 1.

The restricted eigenvalue κc̄ of the Gram matrix En[xx′] is defined as

κc̄ := min
δ∈�c̄

√
s‖δ‖2,n

‖	δT ‖1
.(2.7)

3When errors are homoscedastic, we can set 	 = Ip . In the heteroscedastic case, using 	 = Ip may
require setting λ too conservatively, leading to over-penalization and worse performance bounds. In
the paper, we develop data-dependent choice of 	 that allows us to avoid over-penalization thereby
improving the performance.
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The restricted eigenvalues can depend on n, T , and 	, but we suppress the depen-
dence in our notation. The restricted eigenvalues (2.7) are variants of the restricted
eigenvalue introduced in [14] and of the compatibility condition in [48] that ac-
commodate the penalty loadings 	. They were proven to be useful for many de-
signs of interest specially for establishing �k-norm rates. Below we suggest their
generalizations that are useful for deriving rates in prediction norm.

The minimal and maximal m-sparse eigenvalues of a matrix M ,

φmin(m,M) := min‖δT c‖0≤m,δ �=0

δ′Mδ

‖δ‖2 ,

(2.8)

φmax(m,M) := max‖δT c‖0≤m,δ �=0

δ′Mδ

‖δ‖2 .

Typically, we consider M = En[xx′] or M = 	−1En[xx′]	−1. When M is
not specified, we mean M = En[xx′], that is, φmin(m) = φmin(m,En[xx′]) and
φmax(m) = φmax(m,En[xx′]). These quantities play an important role in the spar-
sity and post model selection analysis. Moreover, sparse eigenvalues provide a
simple sufficient condition to bound restricted eigenvalues; see [14].

3. Finite-sample analysis of
√

Lasso. Next, we establish several finite-
sample results regarding the

√
Lasso estimator. Importantly, these results are based

on new impact factors that can be very well behaved under repeated (i.e., collinear)
regressors, and which strictly generalize the restricted eigenvalue (2.7) and com-
patibility constants.

The following event plays a central role in the analysis:

λ/n ≥ c
∥∥	−1S̃

∥∥∞ where S̃ := En

[
x(σε + r)

]
/

√
En

[
(σε + r)2

]
(3.1)

is the score of Q̂1/2 at β0 (S̃ = 0 if En[(σε + r)2] = 0). Throughout the section, we
assume such event holds. Later we provide choices of λ and 	 based on primitive
conditions such that the event in (3.1) holds with a high probability.

3.1. New noise and design impact factors. We define the following noise and
design impact factors for a constant c > 1:

�c := sup
‖δ‖2,n>0,δ∈Rc

|S̃′δ|
‖δ‖2,n

,(3.2)

κ̄ := inf‖	(β0+δ)‖1<‖	β0‖1

√
s‖δ‖2,n

‖	β0‖1 − ‖	(β0 + δ)‖1
,(3.3)

where Rc := {δ ∈ Rp :‖	δ‖1 ≥ c(‖	(β0 + δ)‖1 − ‖	β0‖1)}. For the case β0 = 0,
we define �c = 0 and κ̄ = ∞. These quantities depend on n, β0 and 	, albeit we
suppress this when convenient.
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An analysis based on the quantities �c and κ̄ will be more general than the one
relying only on restricted eigenvalues (2.7). This follows because (2.7) yields one
possible way to bound both κ̄ and �c, namely,

κ̄ ≥ κ := inf
δ∈int(�1)

√
s‖δ‖2,n

‖	δT ‖1 − ‖	δT c‖1
≥ min

δ∈�1

√
s‖δ‖2,n

‖	δT ‖1
≥ min

δ∈�c̄

√
s‖δ‖2,n

‖	δT ‖1
= κc̄,

�c ≤ sup
δ∈�c̄

‖	−1S̃‖∞‖	δ‖1

‖δ‖2,n

≤ sup
δ∈�c̄

‖	−1S̃‖∞(1 + c̄)‖	δT ‖1

‖δ‖2,n

≤ (1 + c̄)
√

s

κc̄

‖	−1S̃‖∞,

where c > 1 and c̄ := (c + 1)/(c − 1) > 1. The quantities κ̄ and �c can be well
behaved (i.e., κ̄ > 0 and �c < ∞) even in the presence of repeated (i.e., collinear)
regressors (see Remark 4 for a simple example), while restricted eigenvalues and
compatibility constants would be zero in that case.

The design impact factor κ̄ in (3.3) strictly generalizes the original restricted
eigenvalue (2.7) proposed in [14] and the compatibility constants proposed in [48]
and in [46].4 The design conditions based on these concepts are relatively weak,
and hence (3.3) is a useful concept.

The noise impact factor �c also plays an important role. It depends on the noise,
design and approximation errors, and can be controlled via empirical process meth-
ods. Note that under (3.1), the deviation δ̂ = β̂ − β0 of the

√
Lasso estimator from

β0 obeys δ̂ ∈ Rc, explaining its appearance in the definition of �c. The lemmas
below summarize the above discussion.

LEMMA 1 (Bounds on and invariance of design impact factor). Under Condi-
tion ASM, we have κ̄ ≥ κ ≥ κ1 ≥ κc̄. Moreover, if copies of regressors are included
with the same corresponding penalty loadings, the lower bound κ on κ̄ does not
change.

LEMMA 2 (Bounds on and invariance of noise impact factor). Under Condi-
tion ASM, we have �c ≤ (1+ c̄)

√
s‖	−1S̃‖∞/κc̄. Moreover, if copies of regressors

with indices j ∈ T c are included with the same corresponding penalty loadings,
�c does not change (see also Remark 4).

4The compatibility condition defined in [46] is defined as: ∃ν(T ) > 0 such that

inf
δ∈�3

√
s‖δ‖2,n

(1 + ν(T ))‖	δT ‖1 − ‖	δT c‖1
> 0.

We have that κ̄ ≥ κ , where κ corresponds to setting ν(T ) = 0 and using �1 in place of �3, which
strictly weakens [46]’s definition. Allowing for ν(T ) = 0 is necessary for allowing collinear regres-
sors.
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LEMMA 3 (Estimators belong to restricted sets). Assume that for some c > 1
we have λ/n ≥ c‖	−1S̃‖∞, then δ̂ ∈ Rc. The latter condition implies that δ̂ ∈ �c̄

for c̄ = (c + 1)/(c − 1).

3.2. Finite-sample bounds on
√

Lasso. In this section, we derive finite-sample
bounds for the prediction norm of the

√
Lasso estimator. These bounds are estab-

lished under heteroscedasticity, without knowledge of the scaling parameter σ , and
using the impact factors proposed in Section 3.1. For c > 1, let c̄ = (c+1)/(c−1)

and consider the conditions

λ/n ≥ c
∥∥	−1S̃

∥∥∞ and ζ̄ := λ
√

s/(nκ̄) < 1.(3.4)

THEOREM 1 (Finite sample bounds on estimation error). Under Condition
ASM and (3.4), we have

‖β̂ − β0‖2,n ≤ 2
√

Q̂(β0)Bn, Bn := �c + ζ̄

1 − ζ̄ 2
.

We recall that the choice of λ does not depend on the scaling parameter σ .
The impact of σ in the bound of Theorem 1 comes through the factor Q̂1/2(β0) ≤
σ
√
En[ε2] + cs where cs is the size of the approximation error defined in Condi-

tion ASM. Moreover, under typical conditions that imply κc̄ to be bounded away
from zero, for example, under Condition P of Section 4 and standard choice of
penalty, we have with a high probability

Bn �
√

s log(p ∨ n)

n
�⇒ ‖β̂ − β0‖2,n � σ

√
s log(p ∨ n)

n
.

Thus, Theorem 1 generally leads to the same rate of convergence as in the case of
the Lasso estimator that knows σ since En[ε2] concentrates around 1 under (2.1)
and provided a law of large numbers holds. We derive performance bounds for
other norms of interest in the supplementary material [2].

The next result deals with Q̂(β̂) as an estimator for Q̂(β0) and σ 2.

THEOREM 2 (Estimation of σ ). Under Condition ASM and (3.4)

−2�c

√
Q̂(β0)Bn ≤

√
Q̂(β̂) −

√
Q̂(β0) ≤ 2ζ̄

√
Q̂(β0)Bn.

Under only Condition ASM, we have∣∣√Q̂(β̂) − σ
∣∣≤ ‖β̂ − β0‖2,n + cs + σ

∣∣En

[
ε2]− 1

∣∣.
We note that further bounds on |En[ε2] − 1| are implied by von Bahr–Esseen’s

and Markov’s inequalities, or by self-normalized moderate deviation (SNMD) the-
ory as in Lemma 4. As a result, the theorem implies consistency |Q̂1/2(β̂) − σ | =
oP (1) under mild moment conditions; see Section 4. Theorem 2 is also useful for
establishing the following sparsity properties.
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THEOREM 3 (Sparsity bound for
√

Lasso). Suppose Condition ASM, (3.4),
Q̂(β0) > 0, and 2�cBn ≤ 1/(cc̄). Then we have∣∣supp(β̂)

∣∣≤ s · 4c̄2(Bn/ζ̄ κ̄)2 min
m∈Mφmax

(
m,	−1En

[
xx′]	−1),

where M = {m ∈ N :m > sφmax(m,	−1En[xx′]	−1) ·8c̄2(Bn/(ζ̄ κ̄))2}. Moreover,
if κc̄ > 0 and ζ̄ < 1/

√
2 we have∣∣supp(β̂)

∣∣≤ s · (4c̄2/κc̄

)2 min
m∈M∗ φmax

(
m,	−1En

[
xx′]	−1),

where M∗ = {m ∈N :m > sφmax(m,	−1En[xx′]	−1) · 2(4c̄2/κc̄)
2}.

REMARK 3 (On the sparsity bound). Section 4 will show that under minimal
and maximal sparse eigenvalues of order s logn bounded away from zero and from
above, Theorem 3 implies that with a high probability∣∣supp(β̂)

∣∣� s := ∣∣supp(β0)
∣∣.

That is, the selected model’s size will be of the same order as the size of the oracle
model. We note, however, that the former condition is merely a sufficient condi-
tion. The bound | supp(β̂)| � s will apply for other designs of interest. This can
be the case even if κc̄ = 0 (e.g., in the aforementioned design, if we change it by
adding a single repeated regressor).

REMARK 4 (Maximum sparse eigenvalue and sparsity). Consider the case of
f (z) = z with p repeated regressors xi = (zi, . . . , zi)

′ where |z| ≤ K . In this case,
one could set 	 = I · K . In this setting, there is a sparse solution for

√
Lasso,

but there is also a solution which has all p nonzero coefficients. Nonetheless, the
bound for the prediction error rate will be well behaved since κ̄ and ζ̄ are invariant
to the addition of copies of z and

κ̄ ≥ 1/K and �c = ∣∣En[εz]
∣∣/{En

[
ε2]En

[
z2]}1/2 �P 1/

√
n

under mild moment conditions on the noise (e.g., Ē[|ε|3] ≤ C). In this case,
φmax(m,	−1En[xx′]	−1) = (m + 1)En[z2]/K2 and the set M only contains in-
tegers larger than p, leading to the trivial bound m̂ ≤ p.

3.3. Finite-sample bounds on ols post
√

Lasso. Next, we consider the ols es-
timator applied to the model T̂ that was selected by

√
Lasso or includes such

model (plus other components that the data analyst may wish to include), namely
supp(β̂) ⊆ T̂ . We are interested in the case when model selection does not work
perfectly, as occurs in applications.

The following result establishes performance bounds for the ols post
√

Lasso
estimator. Following [6], the analysis accounts for the data-driven choice of com-
ponents and for the possibly misspecified selected model (i.e., T � T̂ ).
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THEOREM 4 (Performance of ols post
√

Lasso). Under Condition ASM
and (3.4), let supp(β̂) ⊆ T̂ , and m̂ = |T̂ \ T |. Then we have that the ols post√

Lasso estimator based on T̂ satisfies

‖β̃ − β0‖2,n ≤ σ
√

s + m̂‖En[xε]‖∞√
φmin(m̂)

+ 2cs + 2
√

Q̂(β0)Bn.

The result is derived from the sparsity of the model T̂ and from its approximat-
ing ability. Note the presence of the new term ‖En[xε]‖∞. Bounds on ‖En[xε]‖∞
can be derived using the same tools used to justify the penalty level λ, via mod-
erate deviation theory for self-normalized sums [33], Gaussian approximations to
empirical processes [22, 23] or empirical process inequalities as in [5]. Under mild
conditions, we have ‖En[xε]‖∞ ≤ C

√
log(pn)/n with probability 1 − o(1).

3.4. Two extreme cases. Case (i): Parametric noiseless case. Consider the
case that σ = 0 and cs = 0. Therefore, the regression function is exactly sparse,
f (zi) = x′

iβ0. In this case,
√

Lasso can exactly recover the f and even β0 under
weak conditions under a broad range of penalty levels.

THEOREM 5 (Exact recovery for the parametric noiseless case). Under Con-
dition ASM, let σ = 0 and cs = 0. Suppose that λ > 0 obeys the growth restriction
ζ̄ = λ

√
s/[nκ̄] < 1. Then we have ‖β̂ − β0‖2,n = 0, and if, moreover, κ1 > 0, then

β̂ = β0.

REMARK 5 (Perfect recovery and Lasso). It is worth mentioning that for any
λ > 0, unless β0 = 0, Lasso cannot achieve exact recovery. Moreover, it is not
obvious how to properly set the penalty level for Lasso even if we knew a priori
that it is a parametric noiseless model. In contrast,

√
Lasso can automatically adapt

to the noiseless case.

Case (ii): Nonparametric infinite variance. We conclude this section with the
infinite variance case. The finite sample theory does not rely on E[ε2] < ∞.
Instead it relies on the choice of penalty level and penalty loadings to satisfy
λ/n ≥ c‖	−1S̃‖∞. Under symmetric errors, we exploit the sub-Gaussian property
of self-normalized sums [25] to develop a choice of penalty level λ and loadings
	 = diag(γj , j = 1, . . . , p), where

λ = (1 + un)c
√

n
{
1 +

√
2 log(2p/α)

}
and γj = max

1≤i≤n
|xij |,(3.5)

where un is defined below and typically we can select un = o(1).

THEOREM 6 (
√

Lasso prediction norm for symmetric errors). Consider a non-
parametric regression model with data (yi, zi)

n
i=1, yi = f (zi) + σεi , xi = P(zi)
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such that En[x2
j ] = 1 (j = 1, . . . , p), εi’s are independent symmetric errors, and

β0 defined as any solution to (2.2). Let the penalty level and loadings as in (3.5).
Assume that there exist sequences of constants η1 ≥ 0 and η2 ≥ 0 both con-
verging to 0 and a sequence of constants 0 ≤ un ≤ 1 such that P(En[σε2] >

(1 + un)En[(σε + r)2]) ≤ η1 and P(En[ε2] ≤ {1 + un}−1) ≤ η2 for all n. If
ζ̄ = λ

√
s/[nκ̄] < 1, then with probability at least 1 − α − η1 − η2 we have

λ/n ≥ c‖	−1S̃‖∞ and

‖β̂ − β0‖2,n ≤ 2Bn

(
cs + σ

√
En

[
ε2
])

.

The rate of convergence will be affected by how fast En[ε2] diverges. That is,
the final rate will depend on the particular tail properties of the distribution of
the noise. The rate also depends on un through λ. In many examples, un can be
chosen as a constant or even a sequence going to zero sufficiently slowly, as in the
next corollary where εi follows a t distribution with 2 degrees of freedom, that is,
εi ∼ t (2).

COROLLARY 1 [
√

Lasso prediction norm for εi ∼ t (2)]. Under the setting of
Theorem 6, suppose that εi ∼ t (2) and are i.i.d. for all i. Then for any τ ∈ (0,1/2),

with probability at least 1 − α − 3
2τ − 2 log(4n/τ)

nun/[1+un] − 72 log2 n

n1/2(logn−6)2 , we have λ/n ≥
c‖	−1S̃‖∞ and, if ζ̄ = λ

√
s/[nκ̄] < 1, we have

‖β̂ − β0‖2,n ≤ 2
(
cs + σ

√
log(4n/τ) + 2

√
2/τ

)
Bn.

REMARK 6 [Asymptotic performance in t (2) case]. Provided that regressors
are uniformly bounded and satisfy the sparse eigenvalues condition (4.3), we have
that the restricted eigenvalue κc̄ is bounded away from zero for the specified choice
of 	. Because Corollary 1 ensures λ/n ≥ c‖	−1S̃‖∞ with the stated probability,
by Lemmas 1 and 2 we have

�c + ζ̄ � λ
√

s

nκc̄

� (1 + un)

√
s log(p ∨ n)

n
�⇒ Bn �

√
s log(p ∨ n)

n
.

Therefore, under these design conditions, assuming that s log(p/α) = o(n) and
that σ is fixed, and setting 1/α = o(logn), we can select un = 1/2 and τ = 1/ logn

in Corollary 1, to conclude that the
√

Lasso estimator satisfies

‖β̂ − β0‖2,n � (cs + σ
√

logn)

√
s log(p ∨ n)

n
,(3.6)

with probability 1 − α(1 + o(1)). Despite the infinite variance, the bound (3.6)
differs from the Gaussian noise case only by a

√
logn factor.
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4. Asymptotics analysis under primitive conditions. In this section, we for-
mally state an algorithm to compute the estimators and we provide rates of con-
vergence results under simple primitive conditions.

We propose setting the penalty level as

λ = c
√

n�−1(1 − α/2p),(4.1)

where α controls the confidence level, and c > 1 is a slack constant similar to [14],
and the penalty loadings according to the following iterative algorithm.

ALGORITHM 1 (Estimation of square-root Lasso loadings). Choose α ∈
(1/n,1/2] and a constant K ≥ 1 as an upper bound on the number of iterations.
(0) Set k = 0, λ as in (4.1), and γ̂j,0 = max1≤i≤n |xij | for each j = 1, . . . , p.
(1) Compute the

√
Lasso estimator β̂ based on the current penalty loadings

	 = 	̂k = diag{γ̂j,k, j = 1, . . . , p}. (2) Set

γ̂j,k+1 := 1 ∨
√
En

[
x2
j

(
y − x′β̂

)2]
/

√
En

[(
y − x′β̂

)2]
.

(3) If k > K , stop; otherwise set k ← k + 1 and go to step 1.

REMARK 7 (Parameters of the algorithm). The parameter 1 − α is a confi-
dence level which guarantees near-oracle performance with probability at least
1 − α; we recommend α = 0.05/ logn. The constant c > 1 is the slack parameter
used as in [14]; we recommend c = 1.01. In order to invoke moderate deviation
theorem for self-normalized sums, we need to be able to bound with a high proba-
bility: √

En

[
x2
j ε2

]
/

√
En

[
ε2
]≤ γj,0.(4.2)

The choice of γ̂j,0 = max1≤i≤n |xij | automatically achieves (4.2). Nonetheless, we
recommend iterating the procedure to avoid unnecessary over-penalization, since
at each iteration more precise estimates of the penalty loadings are achieved. These
recommendations are valid either in finite or large samples under the conditions
stated below. They are also supported by the numerical experiments (see Section G
of supplementary material [2]).

REMARK 8 (Alternative estimation of loadings). Algorithm 1 relies on the√
Lasso estimator β̂ . Another possibility is to use the ols post

√
Lasso estimator β̃ .

This leads to similar theoretical and practical results. Moreover, we can define
the initial penalty loading as γ̂j,0 = W {En[x4

j ]}1/4 where the kurtosis parameter

W > {Ē[ε4]}1/4/{Ē[ε2]}1/2 is pivotal with respect to the scaling parameter σ , but
we need to assume an upper bound for this quantity. The purpose of this param-
eter is to bound the kurtosis of the marginal distribution of errors, namely that of
F̄ε(v) = n−1∑n

i=1 P(εi ≤ v). We recommend W = 2, which permits a wide class
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of marginal distributions of errors, in particular it allows F̄ε to have tails as heavy
as those of t (a) with a > 5. This method also achieves (4.2); see Section C.1 of
supplementary material [2].

The following is a set of simple sufficient conditions which yields practical
corollaries. Let �n ↗ ∞ be a sequence of positive constants.

CONDITION P. The noise and regressors obey supn≥1 Ē[|ε|q] < ∞, q > 4,
infn≥1 min1≤j≤p En[x2

j E[ε2]] > 0, supn≥1 max1≤j≤p En[|xj |3E[|ε|3]] < ∞ and

sup
n≥1

φmax
(
s�n,En

[
xx′])/φmin

(
s�n,En

[
xx′])< ∞.(4.3)

Moreover, we have that maxi≤n,j≤p |xij |2/�n = o(1), logp ≤ C(n/ log2 n)1/3,
�2
ns log(p ∨ n) ≤ Cn/ logn, s ≥ 1, and c2

s ≤ Cσ 2(s log(p ∨ n)/n).

Condition P imposes conditions on moments that allow us to use results of
the moderate deviation theory for self-normalized sums, weak requirements on
(s,p,n), well behaved sparse eigenvalues as a sufficient condition on the design
to bound the impact factors and a mild condition on the approximation errors (see
Remark 2 for a discussion and references).

The proofs in this section rely on the following result due to [33].

LEMMA 4 (Moderate deviations for self-normalized sums). Let X1, . . . ,Xn

be independent, zero-mean random variables and δ ∈ (0,1]. Let Sn,n = nEn[X],
V 2

n,n = nEn[X2],Mn = {Ē[|X|2+δ]}1/{2+δ}/{Ē[X2]}1/2 < ∞ and jn ≤
nδ/(2(2+δ))M−1

n . For some absolute constant A, uniformly on 0 ≤ |x| ≤
nδ/(2(2+δ))M−1

n /jn − 1, we have∣∣∣∣P(Sn,n/Vn,n ≥ x)

(1 − �(x))
− 1

∣∣∣∣≤ A

j2+δ
n

.

The following theorem summarizes the asymptotic performance of
√

Lasso,
based upon Algorithm 1, for commonly used designs.

THEOREM 7 (Performance of
√

Lasso and ols post
√

Lasso under Condition P).
Suppose Conditions ASM and P hold. Let α ∈ (1/n,1/ logn), c ≥ 1.01, the
penalty level λ be set as in (4.1) and the penalty loadings as in Algorithm 1. Then
for all n ≥ n0, with probability at least 1 − α{1 + C̄/ logn} − C̄{n−1/2 logn +
n1−q/4} we have

‖β̂ − β0‖2,n ≤ σC̄

√
s log(n ∨ (p/α))

n
,
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√
En

[(
f − x′β̂

)2]≤ σC̄

√
s log(n ∨ (p/α))

n
,

‖β̂ − β0‖1 ≤ σC̄

√
s2 log(n ∨ (p/α))

n
and

∣∣supp(β̂)
∣∣≤ C̄s,

where n0 and C̄ depend only on the constants in Condition P. Moreover, the ols
post

√
Lasso estimator satisfies with the same probability for all n ≥ n0,

‖β̃ − β0‖2,n ≤ σC̄

√
s log(n ∨ (p/α))

n
,

√
En

[(
f − x′β̃

)2]≤ σC̄

√
s log(n ∨ (p/α))

n
and

‖β̂ − β0‖1 ≤ σC̄

√
s2 log(n ∨ (p/α))

n
.

REMARK 9 (Gaussian-like performance and normalization assumptions).
Theorem 7 yields bounds on the estimation errors that are “Gaussian-like,” namely
the factor

√
log(p/α) and other constants in the performance bound are the same

as if errors were Gaussian, but the probabilistic guarantee is not 1 − α but rather
1 − α + o(1), which together with mildly more restrictive growth conditions is
the cost of non-Gaussianity. We also note that the normalization En[x2

j ] = 1,
j = 1, . . . , p is not used in the construction of the estimator, and the results of
the theorem hold under the condition: C1 ≤ En[x2

j ] ≤ C2, j = 1, . . . , p uniformly
for all n ≥ n0, for some positive, finite constants C1 and C2.

The results above establish that
√

Lasso achieves the same near oracle rate of
convergence as Lasso despite not knowing the scaling parameter σ . They allow
for heteroscedastic errors with mild restrictions on its moments. Moreover, it al-
lows for an arbitrary number of iterations. The results also establish that the upper
bounds on the rates of convergence of

√
Lasso and ols post

√
Lasso coincide under

these conditions. This is confirmed also by Monte–Carlo experiments reported in
the supplementary material [2], with ols post

√
Lasso performing no worse and

often outperforming
√

Lasso due to having a much smaller bias. Notably, this the-
oretical and practical performance occurs despite the fact that

√
Lasso may in gen-

eral fail to correctly select the oracle model T as a subset and potentially select
variables not in T .

EXAMPLE S (Performance for Sobolev balls and p-rearranged Sobolev balls).
In this example, we show how our results apply to an important class of Sobolev
functions, and illustrates how modern selection drastically reduces the dependency
on knowing the order of importance of the basis functions.
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Suppose that zi ’s are generated as i.i.d. from Uniform(0,1), xi ’s are formed
as (xij )

p
j=1 with xij = Pj (zi), σ = 1, and εi ∼ N(0,1). Following [45], consider

an orthonormal bounded basis {Pj (·)}∞j=1 in L2[0,1], consider functions f (z) =∑∞
j=1 θjPj (z) in a Sobolev space S(α,L) for some α ≥ 1 and L > 0. This space

consists of functions whose Fourier coefficients θ satisfy
∑∞

j=1 |θj | < ∞ and

θ ∈ �(α,L) =
{
θ ∈ �2(N) :

∞∑
j=1

j2αθ2
j ≤ L2

}
.

We also consider functions in a p-rearranged Sobolev space RS(α,p,L).
These functions take the form f (z) = ∑∞

j=1 θjPj (z) such that
∑∞

j=1 |θj | < ∞
and θ ∈ �R(α,p,L), where

�R(α,p,L) =

⎧⎪⎪⎨⎪⎪⎩θ ∈ �2(N) :

∃ permutationϒ : {1, . . . , p} → {1, . . . , p}
p∑

j=1

j2αθ2
ϒ(j) +

∞∑
j=p+1

j2αθ2
j ≤ L2

⎫⎪⎪⎬⎪⎪⎭ .

Note that S(α,L) ⊂RS(α,p,L).
In the supplementary material [2], we show that the rate-optimal choice for

the size of the support of the oracle model β0 is s � n1/[2α+1]. This rate can be
achieved with the support consisting of indices j that correspond to the s largest
coefficients |θj |. The oracle projection estimator β̂or that uses these “ideal” s

components achieves optimal prediction error rate uniformly over the regression
functions f ∈ S(α,L) or f ∈ RS(α,p,L): (En[{f − ∑∞

j=1 β̂or
j Pj (z)}2])1/2 �P

n−α/[2α+1]. Under mild regularity conditions, as in Theorem 7,
√

Lasso estimator
β̂ that uses xi = (P1(zi), . . . ,Pp(z))′ achieves a near-optimal rate uniformly over
the regression functions f ∈ S(α,L) or f ∈ RS(α,p,L):√

En

[(
f − x′β̂

)2]�P n−α/[2α+1]√log(n ∨ p),

without knowing the “ideal” s components among xi . The same statement also
holds for the ols post

√
Lasso estimator β̃ .

Therefore, the
√

Lasso and ols post
√

Lasso estimators achieve near oracle rates
uniformly over rearranged Sobolev balls under mild conditions. As a contrast, con-
sider the “naive oracle” series projection estimator that uses the first s components
of the basis, assuming that the parameter space is S(α,L). This estimator achieves
the optimal rate for the Sobolev space S(α,L), but fails to be uniformly consis-
tent over p-rearranged Sobolev space RS(α,p,L), since we can select a model
f ∈ RS(α,p,L) such that its first s Fourier coefficients are zero, and the remain-
ing coefficients are nonzero, therefore, the “naive oracle” fit will be 0 plus a cen-
tered noise, and the estimator will be inconsistent for this f .

We proceed to state a result on estimation of σ 2 under the asymptotic frame-
work.
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COROLLARY 2 (Estimation of σ 2 under asymptotics). Suppose Condi-
tions ASM and P hold. Let α ∈ (1/n,1/ logn), c ≥ 1.01, the penalty level λ be
set as in (4.1) and the penalty loadings as in Algorithm 1. Then for all n ≥ n0, with
probability at least 1 − α{1 + C̄/ logn} − C̄{n−1/2 logn + n1−q/4} − 2δ,∣∣Q̂(β̂) − σ 2∣∣≤ σ 2C̄s log(n ∨ (p/α))

n
+ σ 2C̄

√
s log(p ∨ n)√
δn1−1/q

+ σ 2C̄√
δn

.

Moreover, provided further that s2 log2(p ∨ n) ≤ Cn/ logn, we have that{
σ 2ξn

}−1
n1/2(Q̂(β̂) − σ 2)⇒ N(0,1),

where ξ2
n = Ē[{ε2 − E[ε2]}2].

This result extends [6, 44] to the heteroscedastic, non-Gaussian cases.

5. An application to a generic semi-parametric inference problem. In this
section, we present a generic application of the methods of this paper to semipara-
metric problems, where some lower-dimensional structural parameter is of interest
and the

√
Lasso or ols post

√
Lasso are used to estimate the high-dimensional nui-

sance function. We denote the true value of the target parameter by θ0 ∈ � ⊂ Rd ,
and assume that it satisfies the following moment condition:

E
[
ψ
(
wi, θ0, h0(zi)

)]= 0, i = 1, . . . , n,(5.1)

where wi is a random vector taking values in W , containing vector zi taking values
in Z as a subcomponent; the function (w, θ, t) �→ ψ(w, θ, t) = (ψj (w, θ, t))dj=1
is a measurable map from an open neighborhood of W × � × T , a subset of
Rdw+d+dt , to Rd , and z �→ h0(z) = (h0m(z))Mm=1 is the nuisance function mapping
Z to T ⊂ RM . We note that M and d are fixed and do not depend on n in what
follows.

Perhaps the simplest, that is linear, example of this kind arises in the instru-
mental variable (IV) regression problem in [3, 8], where ψ(wi, θ0, h0(zi)) =
(ui − θ0di)h0(zi), where ui is the response variable, di is the endogenous vari-
able, zi is the instrumental variable, h0(zi) = E[di |zi] is the optimal instrument,
and E[(ui − θ0di)|zi] = 0. Other examples include partially linear models, hetero-
geneous treatment effect models, nonlinear instrumental variable, Z-problems as
well as many others (see, e.g., [1, 3, 7, 9–11, 13, 20, 28, 29, 31, 32, 49, 55, 56]),
which all give rise to nonlinear moment conditions with respect to the nuisance
functions.

We assume that the nuisance functions h0 arise as conditional expectations of
some variables that can be modeled and estimated in the approximately sparse
framework, as formally described below. For instance, in the example mentioned
above, the function h0 is indeed a conditional expectation of the endogenous vari-
able given the instrumental variable. We let ĥ = (ĥm)Mm=1 denote the estimator of
h0, which obeys conditions stated below. The estimator θ̂ of θ0 is constructed as
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any approximate εn-solution in � to a sample analog of the moment condition
above: ∥∥En

[
ψ
(
w, θ̂, ĥ(z)

)]∥∥≤ εn where εn = o
(
n−1/2).(5.2)

The key condition needed for regular estimation of θ0 is the orthogonality con-
dition:

E
[
∂tψ

(
wi, θ0, h0(zi)

)|zi

]= 0, i = 1, . . . , n,(5.3)

where here and below we use the symbol ∂t to abbreviate ∂
∂t ′ . For instance, in

the IV example this condition holds, since ∂tψ(wi, θ0, h0(zi)) = (ui − θ0di) and
E[(ui − θ0di)|zi] = 0 by assumption. In other examples, it is important to con-
struct the scores that have this orthogonality property. Generally, if we have a
score, which identifies the target parameter but does not have the orthogonality
property, we can construct the score that has the required property by projecting
the original score onto the orthocomplement of the tangent space for the nuisance
parameter; see, for example, [36, 50, 51] for detailed discussions. This often results
in a semiparametrically efficient score function.

The orthogonality condition reduces sensitivity to “crude” estimation of the nui-
sance function h0. Indeed, under appropriate sparsity assumptions stated below, the
estimation errors for h0, arising as sampling, approximation, and model selection
errors, will be of order oP (n−1/4). The orthogonality condition together with other
conditions will guarantee that these estimation errors do not impact the first-order
asymptotic behavior of the estimating equations, so that√

nEn

[
ψ
(
w, θ̂, ĥ(z)

)]= √
nEn

[
ψ
(
w, θ̂, h0(z)

)]+ oP (1).(5.4)

This leads us to a regular estimation problem, despite ĥ being highly nonregular.
In what follows, we shall denote by c and C some positive constants, and by Ln

a sequence of positive constants that may grow to infinity as n → ∞.

CONDITION SP. For each n, we observe the independent data vectors (wi)
n
i=1

with law determined by the probability measure P = Pn. Uniformly, for all n the
following conditions hold. (i) The true parameter values θ0 obeys (5.1) and is inte-
rior relative to �, namely there is a ball of fixed positive radius centered at θ0 con-
tained in �, where � is a fixed compact subset of Rd . (ii) The map ν �→ ψ(w,ν)

is twice continuously differentiable with respect to ν = (νk)
K
k=1 = (θ, t) for all

ν ∈ � × T , where T is convex, with supν∈�×T |∂νk
∂νr ψj (wi, ν)| ≤ Ln a.s., for all

k, r ≤ K , j ≤ d , and i ≤ n. The conditional second moments of the first derivatives
are bounded as follows: P-a.s. E(supν∈�×T |∂νk

ψj (wi, ν)|2|zi) ≤ C for each k, j

and i. (iii) The orthogonality condition (5.3) holds. (iv) The following identifiabil-
ity condition holds: for all θ ∈ �, ‖Ē[ψ(w, θ,h0(z))]‖ ≥ 2−1(‖Jn(θ − θ0)‖ ∧ c),
where Jn := Ē[∂θψ(w, θ0, h0(z))] has singular values bounded away from zero
and above. (v) Ē[‖ψ(w, θ0, h0(z))‖3] is bounded from above.

In addition to the previous conditions, Condition SP imposes standard identifi-
ability and certain smoothness on the problem, requiring second derivatives to be
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bounded by Ln, which is allowed to grow with n subject to restrictions specified
below. It is possible to allow for nondifferentiable ψ at the cost of a more compli-
cated argument; see [11]. In what follows, let δn ↘ 0 be a sequence of constants
approaching zero from above.

CONDITION AS. The following conditions hold for each n. (i) The func-
tion h0 = (h0m)Mm=1 :Z �→ T is approximately sparse, namely, for each m,
h0m(·)= ∑p

l=1 Pml(·)β0ml + rm(·), where Pml :Z �→ R are approximating func-
tions, β0m = (β0ml)

p
l=1 obeys | supp(β0m)| ≤ s, s ≥ 1, and the approximation

errors (rm)Mm=1 :Z → R obey Ē[r2
m(z)] ≤ Cs log(p ∨ n)/n. There is an esti-

mator ĥm(·) = ∑p
l=1 Pml(·)β̂ml of h0m such that, with probability at least 1 −

δn, ĥ = (ĥm)Mm=1 maps Z into T , β̂m = (β̂ml)
p
l=1 satisfies ‖β̂m − β0m‖1 ≤

C
√

s2 log(p ∨ n)/n and En[(ĥm(z) − h0m(z))2] ≤ Cs log(p ∨ n)/n for all m.

(ii) The scalar random variables ψ̇mjl(wi) := ∂tmψj (wi, θ0, h0(z))Pml(zi) obey
maxm,j,l En[|ψ̇mjl(w)|2] ≤ L2

n with probability at least 1 − δn and maxm,j,l

(Ē[|ψ̇mjl(w)|3])1/3/(Ē[|ψ̇mjl(w)|2])1/2 ≤ Mn. (iii) Finally, the following growth
restrictions hold as n → ∞:

L2
ns

2 log2(p ∨ n)/n → 0 and log(p ∨ n)n−1/3M2
n → 0.(5.5)

The assumption records a formal sense in which approximate sparsity is used,
as well as requires reasonable behavior of the estimator ĥ. In the previous sec-
tions, we established primitive conditions under which this behavior occurs in
problems where h0 arise as conditional expectation functions. By virtue of (5.5)
the assumption implies that {En(ĥm(z) − h0m(z))2}1/2 = oP (n−1/4). It is stan-
dard that the square of this term multiplied by

√
n shows up as a linearization

error for
√

n(θ̂ − θ0) and, therefore, this term does not affect its first-order be-
havior. Moreover, the assumption implies by virtue of (5.5) that ‖β̂m − β0m‖1 =
oP (L−1

n (log(p∨n))−1), which is used to control another key term in the lineariza-
tion as follows:
√

nmax
j,m,l

∣∣En

[
ψ̇mjl(w)

]∣∣‖β̂m − β0m‖1 �P Ln

√
log(p ∨ n)‖β̂m − β0m‖1 = oP (1),

where the bound follows from an application of the moderate deviation inequalities
for self-normalized sums (Lemma 4). The idea for this type of control is borrowed
from [3], who used it in the IV model above.

THEOREM 8. Under Conditions SP and AS, the estimator θ̂ that obeys
equation (5.2) and θ̂ ∈ � with probability approaching 1, satisfies

√
n(θ̂ −

θ0) = −J−1
n

1√
n

∑n
i=1 ψ(wi, θ0, h0(zi)) + oP (1). Furthermore, provided �n =

Ē[ψ(w, θ0, h0(z))ψ(w, θ0, h0(z))
′] has eigenvalues bounded away from zero,

�−1/2
n Jn

√
n(θ̂ − θ0) ⇒ N(0, I ).
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This theorem extends the analogous result in [3, 8] for a specific linear problem
to a generic nonlinear setting, and could be of independent interest in many prob-
lems cited above. The theorem allows for the probability measure P = Pn to change
with n, which implies that the confidence bands based on the result have certain
uniform validity (“honesty”) with respect to P, as formalized in [10], thereby con-
structively addressing [37]’s critique. See [11] for a generalization of the result
above to the case dim(θ0) � n.

EXAMPLE PL. It is instructive to conclude this section by inspecting the ex-
ample of approximately sparse partially linear regression [9, 10], which also nests
the sparse linear regression model [55]. The partially linear model of [41] is

yi = diθ0 + g(zi) + εi, E[εi |zi, di] = 0,

di = m(zi) + vi, E[vi |zi] = 0.

The target is the real parameter θ0, and an orthogonal score function ψ for this
parameter is ψ(wi, θ, t) = (yi − θ(di − t2) − t1)(di − t2), where t = (t1, t2)

′ and
wi = (yi, di, z

′
i)

′. Let �(zi) := θ0m(zi) + g(zi), and h0(zi) := (�(zi),m(zi))
′ =

(E[yi |zi],E[di |zi])′. Note that

E
[
ψ
(
wi, θ0, h0(zi)

)|zi

]= 0 and E
[
∂tψ

(
wi, θ, h0(zi)

)|zi

]= 0,

so the orthogonality condition holds. If the regression functions �(zi) and m(zi)

are approximately sparse with respect to xi = P(zi), we can estimate them by√
Lasso or ols post

√
Lasso regression of yi on xi and di on xi , respectively. The

resulting estimator θ̂ of θ0, defined as a solution to (5.2), is a
√

Lasso analog of
Robinson’s [41] estimator. If assumptions of Theorem 8 hold, θ̂ obeys

�−1/2
n Jn

√
n(θ̂ − θ0) ⇒ N(0,1)

for Jn = Ē[v2] and �n = Ē[ε2v2]. In a homoscedastic model, θ̂ is semiparamet-
rically efficient, since its asymptotic variance �n/J

2
n reduces to the efficiency

bound E[ε2]/E[v2] of Robinson [41]; as pointed out in [9, 10]. In the linear re-
gression model, this estimator is first-order equivalent to, but different in finite
samples from, a one-step correction from the scaled Lasso proposed in [55]; in
the partially linear model, it is equivalent to the post-double selection method
of [9, 10].

APPENDIX A: PROOFS OF SECTION 3

PROOF OF LEMMA 1. The first result holds by the inequalities given in the
main text.
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To show the next statement, note that T does not change by including repeated
regressors (indeed, since T is selected by the oracle (2.2), T will not contain re-
peated regressors). Let R denote the set of repeated regressors and x̃i = (x′

i , z
′
i )

′
where xi ∈ Rp is the vector of original regressors and zi ∈ R|R| the vector of
repeated regressors. We denote by 	̃ and ‖ · ‖2,ñ the penalty loadings and the
prediction norm associated with (x̃i)

n
i=1. Let δ̃ = (δ1′

, δ2′
)′, where δ1 ∈ Rp and

δ2 ∈ R|R|, define δ̄2 ∈ Rp so that δ̄2
j = δ2

j if j ∈ R, and δ̄2
j = 0 if j /∈ R, and denote

δ = δ1 + δ̄2. It follows that

κ ≥ ‖δ̃‖2,ñ

‖	̃δ̃T ‖1 − ‖	̃δ̃T c‖1
= ‖δ‖2,n

‖	δ1
T ‖1 − ‖	δ1

T c‖1 − ‖	δ̄2
T ‖1 − ‖	δ̄2

T c‖1
,

which is minimized in the case that δ1 = δ and δ̄2 = 0. Thus, the worst case for κ̄

correspond to δ̄2 = 0 which corresponds to ignoring the repeated regressors. �

PROOF OF LEMMA 2. The first part is shown in the main text. The second
part is proven in supplementary material [2]. �

PROOF OF LEMMA 3. By definition of β̂ ,
√

Q̂(β̂) −
√

Q̂(β0) ≤ λ
n
‖	β0‖1 −

λ
n
‖	β̂‖1. By convexity of

√
Q̂, by −S̃ ∈ ∂

√
Q̂(β0), and by λ/n ≥ cn‖	−1S̃‖∞,

we have
√

Q̂(β̂) −
√

Q̂(β0) ≥ −S̃′δ̂ ≥ −‖	−1S̃‖∞‖	δ̂‖1 ≥ − λ
cn

‖	δ̂‖1 where
δ̂ = β̂ − β0. Combining the lower and upper bounds yields ‖	δ̂‖1 ≥ c(‖	(β0 +
δ̂)‖1 − ‖	β0‖1). Thus, δ̂ ∈ Rc; that δ̂ ∈ �c̄ follows by a standard argument based
on elementary inequalities. �

PROOF OF THEOREM 1. First, note that by Lemma 3 we have δ̂ := β̂ − β0 ∈
Rc. By optimality of β̂ and definition of κ̄ , ζ̄ = λ

√
s/[nκ̄], we have√

Q̂(β̂) −
√

Q̂(β0) ≤ λ

n
‖	β0‖1 − λ

n
‖	β̂‖1 ≤ ζ̄‖δ̂‖2,n.(A.1)

Multiplying both sides by
√

Q̂(β̂) +
√

Q̂(β0) and since (a + b)(a − b) = a2 − b2

‖δ̂‖2
2,n ≤ 2En

[
(σε + r)x′δ̂

]+ (√
Q̂(β̂) +

√
Q̂(β0)

)
ζ̄‖δ̂‖2,n.(A.2)

From (A.1), we have
√

Q̂(β̂) ≤
√

Q̂(β0) + ζ̄‖δ̂‖2,n so that

‖δ̂‖2
2,n ≤ 2En

[
(σε + r)x′δ̂

]+ 2
√

Q̂(β0)ζ̄‖δ̂‖2,n + ζ̄ 2‖δ̂‖2
2,n.

Since |En[(σε + r)x ′δ̂]| =
√

Q̂(β0)|S̃′δ̂| ≤
√

Q̂(β0)�c‖δ̂‖2,n, we obtain

‖δ̂‖2
2,n ≤ 2

√
Q̂(β0)�c‖δ̂‖2,n + 2

√
Q̂(β0)ζ̄‖δ̂‖2,n + ζ̄ 2‖δ̂‖2

2,n,
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and the result follows provided ζ̄ < 1. �

PROOF OF THEOREM 2. We have δ̂ := β̂ − β0 ∈ Rc under the condition that
λ/n ≥ c‖	−1S̃‖∞ by Lemma 3. We also have ζ̄ = λ

√
s/[nκ̄] < 1 by assumption.

First, we establish the upper bound. By the previous proof, we have in-
equality (A.1). The bound follows from Theorem 1 to bound ‖δ̂‖2,n. To estab-

lish the lower bound, by convexity of
√

Q̂ and the definition of �c we have√
Q̂(β̂)−

√
Q̂(β0) ≥ −S̃′δ̂ ≥ −�c‖δ̂‖2,n. Thus, by Theorem 1 we obtain

√
Q̂(β̂)−√

Q̂(β0) ≥ −2
√

Q̂(β0)�cBn.
Moreover, by the triangle inequality∣∣√Q̂(β̂) − σ

∣∣≤ ∣∣√Q̂(β̂) − σ
{
En

[
ε2]}1/2∣∣+ σ

∣∣{En

[
ε2]}1/2 − 1

∣∣
and the right-hand side is bounded by ‖β̂ − β0‖2,n + cs + σ |En[ε2] − 1|. �

PROOF OF THEOREM 3. For notational convenience, we denote φn(m) =
φmax(m,	−1En[xx′]	−1). We shall rely on the following lemma, whose proof
is given after the proof of this theorem.

LEMMA 5 (Relating sparsity and prediction norm). Under Condition ASM,
let G ⊆ supp(β̂). For any λ > 0, we have

λ

n

√
Q̂(β̂)

√|G| ≤√|G|∥∥	−1S̃
∥∥∞

√
Q̂(β0)

+
√

φmax
(|G \ T |,	−1En

[
xx′]	−1

)‖β̂ − β0‖2,n.

Define m̂ := | supp(β̂) \ T |. In the event λ/n ≥ c‖	−1S̃‖∞, by Lemma 5(√
Q̂(β̂)

Q̂(β0)
− 1

c

)
λ

n

√
Q̂(β0)

√∣∣supp(β̂)
∣∣≤√

φn(m̂)‖β̂ − β0‖2,n.(A.3)

Under the condition ζ̄ = λ
√

s/[nκ̄] < 1, we have by Theorems 1 and 2 that(
1 − 2�cBn − 1

c

)
λ

n

√
Q̂(β0)

√∣∣supp(β̂)
∣∣≤√

φn(m̂)2
√

Q̂(β0)Bn,

where Bn = �c+ζ̄

1−ζ̄ 2 . Since we assume 2�cBn ≤ 1/(cc̄), we have√∣∣supp(β̂)
∣∣≤ 2c̄

√
φn(m̂)

n

λ
Bn = √

s
√

φn(m̂)2c̄Bn/(ζ̄ κ̄),

where the last equality follows from ζ̄ = λ
√

s/[nκ̄].
Let L := 2c̄Bn/(ζ̄ κ̄). Consider any m ∈M, and suppose m̂ > m. Therefore, by

the sublinearity of maximum sparse eigenvalues (see Lemma 3 in [6]), φn(�m) ≤
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���φn(m) for � ≥ 1, and m̂ ≤ | supp(β̂)| we have m̂ ≤ s · � m̂
m

�φn(m)L2. Thus, since
�k� < 2k for any k ≥ 1 we have m < s · 2φn(m)L2 which violates the condition
of m ∈ M and s. Therefore, we must have m̂ ≤ m. Repeating the argument once
more with m̂ ≤ m we obtain m̂ ≤ s · φn(m)L2. The result follows by minimizing
the bound over m ∈ M.

To show the second part, by Lemma 2 and λ/n ≥ c‖	−1S̃‖∞, we have �c ≤
λ
√

s
nκc̄

1+c̄
c

. Lemma 1 yields κ̄ ≥ κc̄ and recall ζ̄ = λ
√

s/(nκ̄). Therefore,

Bn/(ζ̄ κ̄) ≤ 1 + {(λ√
s/(nκc̄))((1 + c̄)/c)}{nκ̄/(λ

√
s)}

κ̄(1 − ζ̄ 2)

≤ 1 + (1 + c̄)/c

κc̄(1 − ζ̄ 2)
= c̄

κc̄(1 − ζ̄ 2)
≤ 2c̄

κc̄

,

where the last inequality follows from the condition ζ̄ ≤ 1/
√

2. Thus, it follows
that 4c̄2(Bn/(ζ̄ κ̄))2 ≤ (4c̄2/κc̄)

2 which implies M∗ ⊆ M. �

PROOF OF LEMMA 5. Recall that 	 = diag(γ1, . . . , γp). β̂ is the solution of
a conic optimization problem (see Section H.1 of supplementary material [2]). Let
â denote the solution to its dual problem: maxa∈Rn En[ya] :‖	−1En[xja]‖∞ ≤
λ/n,‖a‖ ≤ √

n. By strong duality En[yâ] = ‖Y−Xβ̂‖√
n

+ λ
n

∑p
j=1 γj |β̂j |. Moreover,

by the first-order optimality conditions, En[xj â]β̂j = λγj |β̂j |/n holds for every
j = 1, . . . , p. Thus, we have

En[yâ] = ‖Y − Xβ̂‖√
n

+
p∑

j=1

En[xj â]β̂j = ‖Y − Xβ̂‖√
n

+En

[
â

p∑
j=1

xj β̂j

]
.

Rearranging the terms, we have En[(y − x′β̂)â] = ‖Y − Xβ̂‖/√n.

If ‖Y − Xβ̂‖ = 0, we have
√

Q̂(β̂) = 0 and the statement of the lemma triv-
ially holds. If ‖Y − Xβ̂‖ > 0, since ‖â‖ ≤ √

n the equality can only hold for

â = √
n(Y − Xβ̂)/‖Y − Xβ̂‖ = (Y − Xβ̂)/

√
Q̂(β̂).

Next, note that for any j ∈ supp(β̂) we have En[xj â] = sign(β̂j )λγj/n. There-
fore, for any subset G ⊆ supp(β̂) we have√

Q̂(β̂)
√|G|λ

= ∥∥	−1(X′(Y − Xβ̂)
)
G

∥∥
≤ ∥∥	−1(X′(Y − Xβ0)

)
G

∥∥+ ∥∥	−1(X′X(β0 − β̂)
)
G

∥∥
≤√|G|n∥∥	−1En

[
x(σε + r)

]∥∥∞

+ n

√
φmax

(|G \ T |,	−1En

[
xx′]	−1

)‖β̂ − β0‖2,n
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=√|G|n
√

Q̂(β0)
∥∥	−1S̃

∥∥∞

+ n

√
φmax

(|G \ T |,	−1En

[
xx′]	−1

)‖β̂ − β0‖2,n,

where we used∥∥	−1(X′X(β̂ − β0)
)
G

∥∥≤ sup
‖αT c‖0≤|G\T |,‖α‖≤1

∣∣α′	−1X′X(β̂ − β0)
∣∣

≤ sup
‖αT c‖0≤|G\T |,‖α‖≤1

∥∥α′	−1X′∥∥∥∥X(β̂ − β0)
∥∥

≤ n

√
φmax

(|G \ T |,	−1En

[
xx′]	−1

)‖β̂ − β0‖2,n. �

PROOF OF THEOREM 4. In this proof, let f = (f1, . . . , fn)
′, R = (r1, . . . ,

rn)
′, ε = (ε1, . . . , εn)

′ (n-vectors) and X = [x1; . . . ;xn]′ (an n × p matrix). For
a set of indices S ⊂ {1, . . . , p}, define PS = X[S](X[S]′X[S])−X[S]′, where we
interpret PS as a null operator if S is empty. We have that f −Xβ̃ = (I −PT̂ )f −
σPT̂ ε, where I is the identity operator. Therefore,√

n‖β0 − β̃‖2,n = ‖Xβ0 − Xβ̃‖
= |f − Xβ̃ − R‖

(A.4)
= ∥∥(I −PT̂ )f − σPT̂ ε − R

∥∥
≤ ∥∥(I −PT̂ )f

∥∥+ σ‖PT̂ ε‖ + ‖R‖
where ‖R‖ ≤ √

ncs . Since for m̂ = |T̂ \ T |, we have∥∥X[T̂ ](X[T̂ ]′X[T̂ ])−∥∥op ≤
√

1/φmin
(
m̂,En

[
xx′])=

√
1/φmin(m̂),

[where the bound is interpreted as +∞ if φmin(m̂) = 0], the term ‖PT̂ ε‖ in (A.4)
satisfies

‖PT̂ ε‖ ≤
√

1/φmin(m̂)
∥∥X[T̂ ]′ε/√n

∥∥≤
√

|T̂ |/φmin(m̂)
∥∥X′ε/

√
n
∥∥∞.

Therefore, we have ‖β̃ − β0‖2,n ≤ σ
√

s+m̂‖En[xε]‖∞√
φmin(m̂)

+ cs + cT̂ , where cT̂ =
minβ∈Rp

√
En[(f − x′βT̂ )2]. Since supp(β̂) ⊆ T̂ and (3.4) holds,

cT̂ = min
β∈Rp

{
En

[(
f − x′βT̂

)2]}1/2 ≤ {
En

[(
f − x′β̂

)2]}1/2

≤ cs + ‖β0 − β̂‖2,n ≤ cs + 2
√

Q̂(β0)Bn,

where we have used Theorem 1. �

PROOF OF THEOREM 5. Note that because σ = 0 and cs = 0, we have√
Q̂(β0) = 0 and

√
Q̂(β̂) = ‖β̂ − β0‖2,n. Thus, by optimality of β̂ we have

‖β̂ − β0‖2,n + λ
n
‖	β̂‖1 ≤ λ

n
‖	β0‖1 which implies ‖	β̂‖1 ≤ ‖	β0‖1. Moreover,
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δ = β̂ −β0 satisfies ‖δ‖2,n ≤ λ
n
(‖	β0‖1 −‖	β̂‖1) ≤ ζ̄‖δ‖2,n, where ζ̄ = λ

√
s

nκ̄
< 1.

Hence, ‖δ‖2,n = 0.
Since ‖	β̂‖1 ≤ ‖	β0‖1 implies δ ∈ �1, it follows that 0 = √

s‖δ‖2,n ≥
‖	δT ‖1/κ1 ≥ 1

2‖	δ‖1/κ1, which implies that δ = 0 if κ1 > 0. �

PROOF OF THEOREM 6. If λ/n ≥ c‖	−1S̃‖∞ and ζ̄ = λ
√

s/[nκ̄] < 1, by

Theorem 1 we have ‖β̂ − β0‖2,n ≤ 2
√

Q̂(β0)Bn, and the bound on the prediction

norm follows by
√

Q̂(β0) ≤ cs + σ
√
En[ε2].

Thus, we need to show that the choice of λ and 	 ensures the event
λ/n ≥ c‖	−1S̃‖∞ with probability no less than 1 − α − η1 − η2. Since γj =
max1≤i≤n |xij | ≥ En[x2

j ] = 1, by the choice of un we have

P

(
c
∥∥	−1S̃

∥∥∞ >
λ

n

)
≤ P

(
max

1≤j≤p

c|En[(σε + r)xj ]|
γj

√
En[(σε)2] >

λ

n(1 + un)1/2

)
+ η1

≤ I + II + η1,

I := P

(
max

1≤j≤p

|En[εxj ]|
γj

√
En[ε2]

>

√
2 log(2p/α)√

n

)
,

II := P

( ‖En[rx]‖∞√
En[(σε)2] >

(1 + un)
1/2

√
n

)
.

We invoke the following lemma, which is proven in [6]—see step 2 of the proof
of [6]’s Theorem 2; for completeness, supplementary material [2] also provides
the proof.

LEMMA 6. Under Condition ASM, we have ‖En[xr]‖∞ ≤ min{ σ√
n
, cs}.

By Lemma 6, ‖En[rx]‖∞ ≤ σ/
√

n and P(En[ε2] ≤ {1 + un}−1) ≤ η2, we have
II ≤ P(

√
En[(ε)2] ≤ {1 + un}−1/2) ≤ η2. Also,

I ≤ p max
1≤j≤p

P

(√
n|En[εxj ]|√
En[x2

j ε2]
>
√

2 log(2p/α)

)
≤ α

where we used that γj

√
En[ε2] ≥

√
En[x2

j ε2], the union bound, and the subGaus-
sian inequality for self-normalized sums stated in Theorem 2.15 of [25], since εi’s
are independent and symmetric by assumption. �

PROOF OF COROLLARY 1. See supplementary material [2]. �
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APPENDIX B: PROOFS OF SECTION 4

PROOF OF THEOREM 7. The proof is given in supplementary material [2]
and follows from Theorems 1–3 with the help of Lemma 7 in supplementary ma-
terial [2]. �

PROOF OF COROLLARY 2. See supplementary material [2]. �

APPENDIX C: PROOFS FOR SECTION 5

PROOF OF THEOREM 8. Throughout the proof, we use the notation

B(w) := max
j,k

sup
ν∈�×T

∣∣∂νk
ψj (w, ν)

∣∣, τn :=
√

s log(p ∨ n)/n.

Step 1. (A preliminary rate result.) In this step, we claim that ‖θ̂ −θ0‖ �P τn. By
definition, ‖En[ψ(w, θ̂, ĥ(z))]‖ ≤ εn and θ̂ ∈ � with probability 1 − o(1), which
implies via triangle inequality that with the same probability:∥∥Ē

[
ψ
(
w,θ,h0(z)

)]|θ=θ̂

∥∥≤ εn + I1 + I2 �P τn,

where I1 and I2 are defined in step 2 below, and the last bound also follows from
step 2 below and from the numerical tolerance obeying εn = o(n−1/2) by assump-
tion. Since by Condition SP(iv), 2−1(‖Jn(θ̂ − θ0)‖ ∧ c) is weakly smaller than the
left-hand side of the display, we conclude that ‖θ̂ − θ0‖ �P τn, using that singular
values of Jn are bounded away from zero uniformly in n by Condition SP(v).

Step 2. (Define and bound I1 and I2.) We claim that:

I1 := sup
θ∈�

∥∥Enψ
(
w,θ, ĥ(z)

)−Enψ
(
w,θ,h0(z)

)∥∥�P τn,

I2 := sup
θ∈�

∥∥Enψ
(
w,θ,h0(z)

)− Ēψ
(
w,θ,h0(z)

)∥∥�P n−1/2.

Using Taylor’s expansion, for h̃(z; θ, j) denoting a point on a line connecting
vectors h0(z) and h(z), which can depend on θ and j ,

I1 ≤
d∑

j=1

M∑
m=1

sup
θ∈�

∣∣En

[
∂tmψj

(
w,θ, h̃(z; θ, j)

)(
ĥm(z) − h0m(z)

)]∣∣
≤ dM

{
EnB

2(w)
}1/2 max

m

{
En

(
ĥm(z) − h0m(z)

)2}1/2
,

where the last inequality holds by definition of B(w) given earlier and Hölder’s
inequality. Since ĒB2(w) ≤ C by Condition SP(ii), EnB

2(w) �P 1 by Markov’s
inequality. By this, by Condition AS(i), by d and M fixed, conclude that I1 �P τn.
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Using Jain–Marcus’ theorem, as stated in Example 2.11.13 in [51], we con-
clude that

√
nI2 �P 1. Indeed the hypotheses of that example follow from the

assumption that � is a fixed compact subset of Rd , and from the Lipschitz prop-
erty, ‖ψ(w, θ,h0(z))−ψ(w, θ̃, h0(z))‖ ≤ √

dB(w)‖θ̃ −θ‖ holding uniformly for
all θ and θ̃ in �, with ĒB2(w) ≤ C.

Step 3. (Main step.) We have that
√

n‖Enψ(w, θ̂, ĥ(z))‖ ≤ εn

√
n. Application

of Taylor’s theorem and the triangle inequality gives∥∥√nEnψ
(
w,θ0, h0(z)

)+Jn

√
n(θ̂ −θ0)

∥∥≤ ε
√

n+‖II1‖+‖II2‖+‖II3‖ = oP (1),

where Jn = Ē∂θψ(w, θ0, h0(z)), the terms II1, II2 and II3 are defined and bounded
below in step 4; the oP (1) bound follows from step 4 and from εn

√
n = o(1)

holding by assumption. Conclude using Condition SP(iv) that∥∥J−1
n

√
nEnψ

(
w,θ0, h0(z)

)+ √
n(θ̂ − θ0)

∥∥= oP (1),

which verifies the first claim of the theorem. Application of Liapunov’s central
limit theorem in conjunction with Condition SP(v) and the conditions on �n im-
posed by the theorem imply the second claim.

Step 4. (Define and bound II1, II2 and II3.) Let II1 := (II1j )
d
j=1 and II2 =

(II2j )
d
j=1, where

II1j :=
M∑

m=1

√
nEn

[
∂tmψj

(
w,θ0, h0(z)

)(
ĥm(z) − h0m(z)

)]
,

II2j :=
K∑

r,k=1

√
nEn

[
∂νk

∂νr ψj

(
w, ν̃(w; j)

){̂
νr(w) − ν0r (w)

}{̂
νk(w) − ν0k(w)

}]
,

II3 := √
n
(
En∂θψ

(
w,θ0, h0(z)

)− Jn

)
(θ̂ − θ0),

where ν0(w) := (ν0k(w))Kk=1 := (θ ′
0, h0(z)

′)′; K = d +M ; ν̂(w) := (̂νk(w))Kk=1 :=
(θ̂ ′, ĥ(z)′)′, and ν̃(w; j) is a vector on the line connecting ν0(w) and ν̂(w) that may
depend on j . We show in this step that ‖II1‖ + ‖II2‖ + ‖II3‖ �P o(1).

The key portion of the proof is bounding II1, which is very similar to the argu-
ment given in [3] (pages 2421–2423). We repeat it here for completeness. We split
II1 = III1 + III2 = (III1j )

d
j=1 + (III2j )

d
j=1, where

III1j :=
M∑

m=1

√
nEn

[
∂tmψj

(
w,θ0, h0(z)

) p∑
l=1

Pml(z)(β̂ml − β0ml)

]
,

III2j :=
M∑

m=1

√
nEn

[
∂tmψj

(
w,θ0, h0(z)

)
rm(z)

]
.

Using Hölder inequality, maxj |III1j | ≤ M maxj,m,l |√nEnψ̇mjl(w)|‖β̂m −β0m‖1.
By Condition AS(i) maxm ‖β̂m − β0m‖1 ≤ C

√
sτn with probability at least 1 − δn.
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Moreover, using Eψ̇mjl(wi) = 0 for all i, which holds by the orthogonality
property (5.3), and that maxj,m,l En|ψ̇mjl(w)|2 ≤ L2

n with probability at least
1 − δn by Condition AS(ii), we can apply Lemma 4 on the moderate de-
viations for self-normalized sum, following the idea in [3], to conclude that
maxj,m,l |√nEnψ̇mjl(w)| ≤ √

2 log(pn)Ln with probability 1 − o(1). Note that
this application requires the side condition

√
2 log(pn)Mnn

−1/6 = o(1) be satis-
fied for Mn defined in Condition AS(ii), which indeed holds by Condition AS(iii).
We now recall the details of this calculation:

P
(
max
j,m,l

∣∣√nEnψ̇mjl(w)
∣∣>√

2 log(pn)Ln

)
≤ P

(
max
j,m,l

∣∣√nEnψ̇mjl(w)
∣∣/√En

∣∣ψ̇mjl(w)
∣∣2 >

√
2 log(pn)

)
+ δn

≤ dMp max
j,m,l

P
(∣∣√nEnψ̇mjl(w)

∣∣/√En

∣∣ψ̇mjl(w)
∣∣2 >

√
2 log(pn)

)+ δn

≤ dMp2
(
1 − �

(√
2 log(pn)

))(
1 + o(1)

)+ δn ≤ dMp
2

pn

(
1 + o(1)

)+ δn

= o(1),

where the penultimate inequality occurs due to the application of Lemma 4 on
moderate deviations for self-normalized sums. Putting bounds together we con-
clude that ‖III1‖ ≤ √

d maxj |III1j | �P Ln

√
log(p ∨ n)

√
sτn = o(1), where o(1)

holds by the growth restrictions imposed in Condition AS(iii).
The bound on III2 also follows similarly to [3]. III2j is a sum of M terms, each

having mean zero and variance of order s log(p ∨ n)/n = o(1). Indeed, the mean
zero occurs because

n−1/2
n∑

i=1

E
[
∂tmψj

(
wi, θ0, h0(zi)

)
rm(zi)

]= n−1/2
n∑

i=1

E
[
0 · rm(zi)

]= 0

for each mth term, which holds by E[∂tmψj (wi, θ0, h0(zi))|zi] = 0, that is, the
orthogonality property (5.3), and the law of iterated expectations. To derive the
variance bound, note that for each mth term the variance is

n−1
n∑

i=1

E
[{

∂tmψj

(
wi, θ0, h0(zi)

)}2
r2
m(zi)

]≤ CĒ
[
r2
m(z)

]≤ C2s log(p ∨ n)/n,

which holds by E[{∂tmψj (wi, θ0, h0(zi))}2|zi] ≤ E[B2(w)|zi] ≤ C a.s. by virtue
of Condition SP(iii), and the law iterated expectations; the last bound in the dis-
play holds by AS(i). Hence, var(III2j ) ≤ M2C2s log(p∨n)/n � s log(p∨n)/n =
o(1). Therefore, ‖III2‖ ≤ ∑d

j=1 |III2j | �P

√
s log(p ∨ n)/n = o(1) by Cheby-

shev’s inequality.
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To deduce that ‖II2‖ = oP (1), we use Condition AS(i)–(iii), the claim of step 1,
and Hölder inequalities, concluding that

max
j

|II2j | ≤ √
nK2Ln max

k
En

{̂
νk(w) − ν0k(w)

}2 �P

√
nLnτ

2
n = o(1).

Finally, since ‖II3‖ ≤ √
n‖(En∂θψ(w, θ0, h0(z)) − Jn)‖op‖θ̂ − θ0‖ and since

‖En∂θψ(w, θ0, h0(z)) − Jn‖op �P n−1/2 by Chebyshev’s inequality, using that
ĒB2(w) ≤ C by Condition AS(ii), and ‖θ̂ − θ0‖ �P τn by step 1, conclude that
‖II3‖ �P τn = o(1). �
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/14-AOS1204SUPP; .pdf). The mate-
rial contains deferred proofs, additional theoretical results on convergence rates
in �2, �1 and �∞, lower bound on the prediction rate, and Monte-Carlo simula-
tions.
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