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FORWARD–BACKWARD STOCHASTIC DIFFERENTIAL
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The purpose of this paper is to provide a detailed probabilistic analysis
of the optimal control of nonlinear stochastic dynamical systems of McKean–
Vlasov type. Motivated by the recent interest in mean-field games, we high-
light the connection and the differences between the two sets of problems. We
prove a new version of the stochastic maximum principle and give sufficient
conditions for existence of an optimal control. We also provide examples for
which our sufficient conditions for existence of an optimal solution are sat-
isfied. Finally we show that our solution to the control problem provides ap-
proximate equilibria for large stochastic controlled systems with mean-field
interactions when subject to a common policy.

1. Introduction. The purpose of this paper is to provide a detailed proba-
bilistic analysis of the optimal control of nonlinear stochastic dynamical systems
of McKean–Vlasov type. The present study is motivated in part by a recent surge
of interest in mean-field games.

Stochastic differential equations (SDEs) of McKean–Vlasov type are usually
referred to as nonlinear SDEs, the term nonlinear emphasizing the possible de-
pendence of the coefficients upon the marginal distributions of the solutions, and
having no bearing on a possible nonlinear dependence upon the state variable. This
special feature of the coefficients, even when the latter are nonrandom, creates non-
local feedback effects which rule out the standard Markov property. Including the
marginal distribution in the state of the system could restore the Markov property
at the cost of a leap in complexity of the state of the process. The latter would
have to include a probability measure and subsequently become infinite dimen-
sional. While the analysis of the infinitesimal generator could be done with tools
developed for infinite dimensional differential operators, the standard differential
calculus, even in infinite dimension, would have a hard time capturing the fact that
the second component of the state process would have to match the statistical dis-
tribution of the first component. Yet, the complexity of a pathwise analysis is still
reasonable and can be efficiently handled by means of standard tools in stochas-
tic calculus. This suggests the design of a completely probabilistic approach for
tackling the optimal control of these nonlinear systems.
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The analysis of SDEs of McKean–Vlasov type has a long history. These equa-
tions were first introduced by McKean [18] to provide a rigorous treatment of
special nonlinear partial differential equations (PDEs). Later on, they were studied
for their own sake and in a more general setting. See, for example, [13, 19, 23] for
existence and uniqueness results. Properties of the solutions have been studied in
the framework of the propagation of chaos, as McKean–Vlasov equations appear
as effective equations describing dynamical systems of large populations subject
to a mean-field interaction.

However, the optimal control of dynamics driven by McKean–Vlasov SDEs
seems to be a brand new problem, incredulously ignored in the stochastic control
literature. Solving a McKean–Vlasov SDE is commonly done by a fixed point ar-
gument: First one fixes a set of candidates for the marginal distributions, and then
one solves the resulting standard SDE, the fixed point argument being to demand
that the marginal distributions of the solution be equal to the marginal distribu-
tions one started from. A stochastic control problem adds an extra optimization
layer to the fixed point. This formulation bears a lot of resemblance to the mean-
field game (MFG) problem as originally formulated by Lasry and Lions [14–16]
and, simultaneously, by Caines, Huang and Malhamé [12]. The similarities and
the differences between the two problems were identified and discussed in [10],
where it is clearly emphasized that optimizing first and searching for a fixed point
afterwards leads to the solution of a mean-field game problem, while finding the
fixed point first and then optimizing afterwards leads to the solution of the optimal
control of McKean–Vlasov SDEs. The solutions to both problems describe equi-
librium states of large populations of individuals whose interactions and objective
functions are of mean-field type. The differences between these notions of equilib-
rium are subtle and depend upon the formulation of the optimization component
of the equilibrium model. Simple examples of linear quadratic models are pro-
vided in [10] to illustrate these differences. The connection between the optimal
control of McKean–Vlasov SDEs and large population equilibriums is addressed
in Section 6 below.

Since the dynamics described by McKean–Vlasov SDEs are genuinely non-
Markovian, it is natural to approach the optimization problem using a suitable
version of the Pontryagin stochastic maximum principle, rather than a contrived
adaptation of the Hamilton–Jacobi–Bellman paradigm. The stochastic Pontryagin
approach is based on the Introduction (and the manipulation) of adjoint processes
defined as solutions of adjoint backward stochastic differential equations (BSDEs).
Writing these equations involves partial derivatives of the Hamiltonian function
with respect to the state variable, but, in the case of McKean–Vlasov SDEs, the
marginal distributions of the solutions are full-fledged variables of the Hamilto-
nian function and need to be differentiated in search for criticality. We believe that
this is the main reason for the stalemate in the existing literature: Only dynamics
depending upon moments of the marginal distributions have been considered so
far, and in those cases, differentiability with respect to the measure can be done by
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standard calculus chain rules; see, for example, [2, 4]. The right notion of differen-
tiability was identified by Lions in his Lectures at the Collège de France [17], and
thoroughly explained in Cardaliaguet’s notes [6]. Our first contribution is to review
this notion of differentiability, generalize the definition of adjoint processes to the
case of measure dependent Hamiltonians and enhance the standard proofs of the
necessary condition for optimality to cover the case of McKean–Vlasov dynamics.
We also generalize the sufficient condition for convex Hamiltonians to the case of
McKean–Vlasov dynamics.

The stochastic Pontryagin principle is a very powerful tool. However, the in-
sights it provides come at the price of restrictive assumptions on the models. Case
in point, our results rely on a set of technical assumptions which limit the class
of models to dynamics given by coefficients which are essentially linear in the
state, control and measure variables and costs which are convex in the state and
the control variables. While seemingly restrictive, these assumptions are typical in
the applications of the stochastic Pontryagin principle to control problems. Note
that the convexity of the space of controls is an assumption which is only made for
the sake of simplicity. More general spaces could be handled at the cost of using
spike variation techniques and adding one extra adjoint equation. See, for exam-
ple, [26], Chapter 3, for a discussion of the classical (i.e., non-McKean–Vlasov)
case. Without the motivation from specific applications, we chose to refrain from
providing this level of generality and avoid an excessive overhead in notation and
technicalities which, in our mind, can only obscure the thrust of the paper.

The necessary part of the stochastic Pontryagin principle suggests to search the
control set for a candidate minimizing the Hamiltonian function (this goes often
under the name of satisfying the Isaacs condition), while the sufficient part pro-
poses to insert the formula for the minimizer into the forward equation governing
the dynamics, and the adjoint backward equation providing the adjoint processes.
The presence of the minimizer in both of these equations creates a strong coupling
between the forward and backward equations, and the solution of the control prob-
lem reduces de facto to the solution of a forward backward stochastic differential
equation (FBSDE). Implementing this strategy in the present situation leads to the
analysis of FBSDEs where the marginal distributions of the solutions appear in the
coefficients of the equations. We call these equations mean-field FBSDEs, or FBS-
DEs of McKean–Vlasov type. To the best of our knowledge, these equations have
not been studied before. A rather general existence result was recently proposed
in [8], but one of the assumptions (boundedness of the coefficients with respect
to the state variable) precludes the application of this result to the linear quadratic
(LQ) models often used as benchmarks in stochastic control. Here, we take advan-
tage of the convexity of the Hamiltonian to apply the continuation method intro-
duced in [21], and prove existence and uniqueness of the solution of the FBSDE
at hand, extending and refining the results of [8] to the models considered in this
paper. Restoring the Markov property by extending the state space, as alluded to
earlier, we identify the backward component of the solution of this FBSDE to a
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function of the forward component and its marginal distribution. This function is
known as the decoupling field of the FBSDE. In the classical cases, it can be found
by solving a PDE. In the present set-up, such a PDE would be infinite dimensional
as it would involve differentiation with respect to the state of the forward dynam-
ics as well as its distribution. Precisely, it would read as an infinite dimensional
Hamilton–Jacobi–Bellman equation. This PDE is related to what Lions calls the
master equation (or master PDE) in his lectures on mean-field games [17]. How-
ever, we emphasize the fact that, in the framework of mean-field games, the master
equation is not a Hamilton–Jacobi–Bellman equation, as the MFG equilibriums do
not solve an optimization problem. As explained in [17], formulating the mas-
ter PDE is already very delicate and technical. Solving it is even more elusive.
For that reason, we choose to leave the discussion of the connections between
McKean–Vlasov FBSDEs and master equations to a forthcoming paper; see [7].

As already mentioned, McKean–Vlasov SDEs describe the asymptotic behav-
ior of mean-field interacting particle systems as the number of particles tends to
infinity. Asymptotically, particles become independent of each others, and each
single one of them satisfies the same McKean–Vlasov SDE; see [13, 23]. Such a
phenomenon is usually referred to as propagation of chaos. When particle evo-
lutions are controlled, each particle attempting to minimize an energy functional,
it is natural to investigate equilibriums inside the population, especially when the
number of particles tends to infinity. In such a framework, the theory of mean-field
games focuses on asymptotic Nash equilibriums, which correspond to particles (or
agents) choosing their strategies in an individual way. Alternatively, we show that
our solution of the optimal control of McKean–Vlasov SDEs provides strategies
leading to approximate equilibriums when agents use a common policy. Not sur-
prisingly, the identification of approximate equilibriums in feedback form requires
strong regularity properties of the decoupling field of the FBSDE. We prove these
properties by tailor-made arguments.

We end this Introduction with a quick summary of the contents of the paper.
The notation and definitions specific to McKean–Vlasov SDEs are given in Sec-
tion 2. The following Section 3 provides the definitions and first properties of
the differentiation and convexity of functions of measures. It also introduces the
Hamiltonian function of the stochastic control problem, and the definition of the
adjoint processes as solutions of McKean–Vlasov BSDEs. Section 4 is devoted to
the generalization of the Pontryagin stochastic maximum principle. Proofs of the
sufficient and necessary conditions for optimality are given in full detail. Section 5
contains the technical details of the solution of the mean-field FBSDE derived
from the stochastic maximum principle. This FBSDE is central to the analysis of
the control problem. In Section 6, we make the connection with controlled interact-
ing particle systems. We show how our strategy permits to construct approximate
equilibriums for large populations using a common control policy function. The
paper closes with an Appendix devoted to the proof of a crucial technical result
about the Lipschitz property of functions of state variables and measures.
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2. Probabilistic set-up of McKean–Vlasov equations. In what follows, we
assume that W = (Wt)0≤t≤T is an m-dimensional standard Wiener process de-
fined on a probability space (�,F,P), and F = (Ft )0≤t≤T is its natural filtration
possibly augmented with an independent σ -algebra F0. For each random vari-
able/vector or stochastic process X, we denote by PX the law (alternatively called
the distribution) of X.

The stochastic dynamics of interest in this paper are given by a stochastic pro-
cess X = (Xt)0≤t≤T , satisfying a nonlinear SDE of the form

dXt = b(t,Xt ,PXt , αt ) dt + σ(t,Xt ,PXt , αt ) dWt , 0 ≤ t ≤ T ,(1)

where the drift and diffusion coefficients of the state Xt of the system are given
by the pair of deterministic functions (b, σ ) : [0, T ] ×R

d ×P2(R
d) × A → R

d ×
R

d×m, and α = (αt )0≤t≤T is a progressively measurable process with values in
a measurable space (A,A). Typically, A will be an open subset of an Euclidean
space R

k and A the σ -field induced by the Borel σ -field of this Euclidean space.
Also, for each measurable space (E,E), we use the notation P(E) for the space of
probability measures on (E,E), assuming that the σ -field E on which the measures
are defined is understood. When E is a metric or a normed space (most often R

d ),
we denote by Pp(E) the subspace of P(E) of the probability measures of order p,
namely those probability measures which integrate the pth power of the distance
to a fixed point whose choice is irrelevant in the definition of Pp(E). The term
nonlinear, used for describing (1), does not refer to the fact that the coefficients b

and σ could be nonlinear functions of x, but instead to the fact that they depend
not only on the value of the unknown process Xt at time t , but also on its marginal
distribution PXt . In that framework, we shall assume that the drift coefficient b and
the volatility σ satisfy the following assumptions:

(A1) the function [0, T ] � t �→ (b, σ )(t,0, δ0,0) ∈ R
d × R

d×m is square inte-
grable;

(A2) ∃c > 0, ∀t ∈ [0, T ], ∀α,α′ ∈ A, ∀x, x′ ∈ R
d , ∀μ,μ′ ∈ P2(R

d),∣∣b(t, x,μ,α) − b
(
t, x′,μ′, α′)∣∣+ ∣∣σ(t, x,μ,α) − σ

(
t, x′,μ′, α′)∣∣

≤ c
[∣∣x − x′∣∣+ ∣∣α − α′∣∣+ W2

(
μ,μ′)],

where W2(μ,μ′) denotes the 2-Wasserstein distance. For a general p > 1, the p-
Wasserstein distance Wp(μ,μ′) is defined on Pp(E) by

Wp

(
μ,μ′)= inf

{[∫
E×E

|x − y|pπ(dx, dy)

]1/p

;

π ∈ P2(E × E) with marginals μ and μ′
}
.

Notice that if X and X′ are random variables of order p, then Wp(PX,PX′) ≤
[E|X − X′|p]1/p .
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The set A of so-called admissible control processes α is defined as the set of
A-valued progressively measurable processes α ∈ H

2,k , where H
2,n denotes the

Hilbert space

H
2,n :=

{
Z ∈ H

0,n; E
∫ T

0
|Zs |2 ds < +∞

}

with H
0,n standing for the collection of all Rn-valued progressively measurable

processes on [0, T ]. By (A.1) and (A.2), any α ∈ A satisfies

E

∫ T

0

[∣∣b(t,0, δ0, αt )
∣∣2 + ∣∣σ(t,0, δ0, αt )

∣∣2]dt < +∞.

Together with the Lipschitz assumption (A.2), this guarantees that, for any α ∈ A,
there exists a unique solution X = Xα of (1), and that moreover this solution sat-
isfies

E sup
0≤t≤T

|Xt |p < +∞(2)

for every p ∈ [1,2]. See, for example, [13, 23] for a proof. The stochastic opti-
mization problem which we consider is to minimize the objective function

J (α) = E

{∫ T

0
f (t,Xt ,PXt , αt ) dt + g(XT ,PXT

)

}
,(3)

over the set A of admissible control processes α = (αt )0≤t≤T . The running cost
function f is a real valued deterministic function on [0, T ] × R

d × P2(R
d) × A,

and the terminal cost function g is a real valued deterministic function on R
d ×

P2(R
d). In particular, it is worth mentioning that all the coefficients involved in the

definition of the stochastic optimization problem are assumed to be deterministic.
Part of the results obtained in the paper can be extended to random coefficients.
We refer the reader to Section 5.7. Assumptions on the cost functions f and g will
be spelled out later.

The McKean–Vlasov dynamics posited in (1) are sometimes called of mean-
field type. This is justified by the fact that the uncontrolled stochastic differential
equations of McKean–Vlasov type first appeared in the infinite particle limit of
large systems of particles with mean-field interactions; see, for example, [13, 19,
23]. Typically, the dynamics of such a system of N particles are given by a system
of N SDEs of the form

dXi
t = bi(t,X1

t , . . . ,X
N
t

)
dt + σ i(t,X1

t , . . . ,X
N
t

)
dWi

t ,

where the Wi’s are N independent standard Wiener processes in R
m, the σ i ’s

are N deterministic functions from [0, T ] × R
N×d into the space of d × m real

matrices and the bi ’s are N deterministic functions from [0, T ] × R
N×d into R

d .
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The interaction between the particles is said to be of mean-field type when the
functions bi and σ i are of the form

bi(t, x1, . . . , xN) = b
(
t, xi, μ̄

N
x

)
,

σ i(t, x1, . . . , xN) = σ
(
t, xi, μ̄

N
x

)
, i = 1, . . . ,N,

for some deterministic function b from [0, T ] ×R
d ×P(Rd) into R

d , and σ from
[0, T ]×R

d ×P(Rd) into the space of d ×m real matrices. Here, for each N -tuple
x = (x1, . . . , xN), we denote by μ̄N

x , or μ̄N when no confusion is possible, the
empirical probability measure defined by

μ̄N
x

(
dx′)= 1

N

N∑
j=1

δxj

(
dx′),(4)

and for each x, by δx the unit point mass (Dirac) measure at x. We shall come
back to this formulation of the problem in the last section of the paper when
we use results from the propagation of chaos to construct approximate equilib-
riums. Indeed, as highlighted in Section 6, the optimization problem for controlled
McKean–Vlasov dynamics considered here, also reads as the limit as N tends to
infinity, of the optimal states of N interacting players using a common policy.

We emphasize that the optimization problem (3) differs from the optimization
problem encountered in the theory of mean-field games. Differences between these
optimization problems are discussed in [10]. When solving a mean-field game
problem, the optimization of the cost functional (3) is performed for a fixed flow
of probability measures. In other words, the argument (PXt )0≤t≤T in (1) and (3) is
kept fixed as α varies, and the controlled processes are driven by the same flow of
measures, which is not necessarily the flow of marginal distributions of the process
(Xt)0≤t≤T , but merely an input. Solving the corresponding mean-field game then
consists of identifying a flow of probability measures, that is, an input, such that
the optimal states have precisely the input as flow of statistical distributions.

Useful notation. Given a function h :Rd → R and a vector p ∈ R
d , we will

denote by ∂h(x) · p the action of the gradient of h onto p. When h :Rd →R
�, we

will also denote by ∂h(x) · p the action of the gradient of h onto p, the resulting
quantity being an element of R�. When h :Rd → R

� and p ∈ R
�, we will denote

by ∂h(x) � p the element of Rd defined by ∂x[h(x) · p] where · is understood as
the inner product in R

�.

3. Preliminaries. We now introduce the notation and concepts needed for
the analysis of the stochastic optimization problem associated with the control
of McKean–Vlasov dynamics.
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3.1. Differentiability and convexity of functions of measures. There are many
notions of differentiability for functions defined on spaces of measures, and re-
cent progress in the theory of optimal transportation have put some of them in the
limelight. See, for example, [1, 24] for exposés of these geometric approaches in
textbook form. However, the notion of differentiability, which we find convenient
for the type of stochastic control problem studied in this paper, is slightly differ-
ent. It is more of a functional analytic nature. We believe that it was introduced by
Lions in his lectures at the Collège de France. See [6] for a readable account. This
notion of differentiability is based on the lifting of functions P2(R

d) � μ �→ H(μ)

into functions H̃ defined on the Hilbert space L2(�̃;Rd) over some probability
space (�̃, F̃, P̃) by setting H̃ (X̃) = H(P̃

X̃
) for X̃ ∈ L2(�̃;Rd), �̃ being a Polish

space and P̃ an atomless measure. Then a function H is said to be differentiable
at μ0 ∈ P2(R

d) if there exists a random variable X̃0 with law μ0, in other words
satisfying P̃

X̃0
= μ0, such that the lifted function H̃ is Fréchet differentiable at X̃0.

Whenever this is the case, the Fréchet derivative of H̃ at X̃0 can be viewed as an
element of L2(�̃;Rd) by identifying L2(�̃;Rd) and its dual. It then turns out that
its distribution depends only upon the law μ0 and not upon the particular random
variable X̃0 having distribution μ0. See Section 6 in [6] for details. This Fréchet
derivative [DH̃ ](X̃0) is called the representation of the derivative of H at μ0 along
the variable X̃0. Since it is viewed as an element of L2(�̃;Rd), by definition,

H(μ) = H(μ0) + [DH̃ ](X̃0) · (X̃ − X̃0) + o
(‖X̃ − X̃0‖2

)
(5)

whenever X̃ and X̃0 are random variables with distributions μ and μ0, respectively,
the dot product being here the L2-inner product over (�̃, F̃, P̃) and ‖ · ‖2 the as-
sociated norm. It is shown in [6] that, as a random variable, this Fréchet derivative
is of the form h̃(X̃0) for some deterministic measurable function h̃ :Rd → R

d ,
which is uniquely defined μ0-almost everywhere on R

d . The equivalence class of
h̃ in L2(Rd,μ0) being uniquely defined, we can denote it by ∂μH(μ0) [or ∂H(μ0)

when no confusion is possible]. We shall call ∂μH(μ0) the derivative of H at μ0
and most often identify it with a function ∂μH(μ0)(·) :Rd � x �→ ∂μH(μ0)(x) ∈
R

d [or by ∂H(μ0)(·) when no confusion is possible]. Notice that ∂μH(μ0) allows
us to express [DH̃ ](X̃0) as a function of any random variable X̃0 with distribu-
tion μ0, irrespective of where this random variable is defined. In particular, the
differentiation formula (5) is invariant by modification of the space �̃ and of the
variables X̃0 and X̃ used for the representation of H , in the sense that [DH̃ ](X̃0)

always reads as ∂μH(μ0)(X̃0), whatever the choices of �̃, X̃0 and X̃ are. It is plain
to see how this works when the function H is of the form

H(μ) =
∫
Rd

h(x)μ(dx) = 〈h,μ〉(6)

for some scalar differentiable function h defined on R
d . Indeed, in this case,

H̃ (X̃) = Ẽ[h(X̃)] and DH̃(X̃) · Ỹ = Ẽ[∂h(X̃) · Ỹ ], and we can think of ∂μH(μ)
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as the deterministic function ∂h. We shall use this particular example to recover
the Pontryagin principle proved in [2] for scalar interactions, as a particular case
of the general Pontryagin principle which we prove below. Example (6) highlights
the fact that this notion of differentiability is very different from the usual one.
Indeed, given the fact that the function H defined by (6) is linear in the measure μ,
when viewed as an element of the dual of a function space, one should expect the
derivative to be h and NOT h′!

A nice, though quite technical, feature of this notion of differentiation is given
by the following result.

LEMMA 3.1. Given a differentiable function H :P2(R
d) → R, one can rede-

fine, for each μ ∈ P2(R
d), ∂μH(μ)(·) :Rd � x �→ ∂μH(μ)(x) on a μ-negligible

set in such a way that the mapping P2(R
d)×R

d � (μ, x) �→ ∂μH(μ)(x) is jointly
measurable when P2(R

d) is equipped with the Borel σ -field generated by the weak
convergence topology or, indistinguishably, by the 2-Wasserstein topology. When-
ever ∂μH(μ)(·) has a continuous version, the version constructed above for mea-
surability reasons coincides with it.

The proof is deferred to the Appendix. The notion of differentiability used in
this paper is best understood as differentiation of functions of limits of empirical
measures (or linear combinations of Dirac point masses) in the directions of the
atoms of the measures. We illustrate this fact in the next two propositions.

PROPOSITION 3.2. Given a function u :P2(R
d) → R and an integer N ≥ 1,

we define the empirical projection of u onto R
d by

ūN :
(
R

d)N � x = (x1, . . . , xN) �→ u

(
1

N

N∑
i=1

δxi

)
.

If u is differentiable on P2(R
d), then ūN is differentiable on (Rd)N and, for all

i ∈ {1, . . . ,N},

∂xi
ūN (x) = ∂xi

ūN (x1, . . . , xN) = 1

N
∂u

(
1

N

N∑
j=1

δxj

)
(xi).

PROOF. On (�̃, F̃, P̃), consider a uniformly distributed random variable ϑ

over the set {1, . . . ,N}. Then, for any fixed x = (x1, . . . , xN) ∈ (Rd)N , xϑ is a
random variable having the distribution μ̄N = N−1∑N

i=1 δxi
. In particular, with

the same notation as above for ũ,

ūN (x) = ūN (x1, . . . , xN) = ũ(xϑ).

Therefore, for h = (h1, . . . , hN) ∈ (Rd)N ,

ūN (x + h) = ũ(xϑ + hϑ) = ũ(xϑ) + Dũ(xϑ) · hϑ + o
(|h|),
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the dot product being here the L2-inner product over (�̃, F̃, P̃), from which we
deduce

ūN (x + h) = ūN (x) + 1

N

N∑
i=1

∂u
(
μ̄N )(xi)hi + o

(|h|),
which is the desired result. �

The mapping Dũ :L2(�̃;Rd) → L2(�̃;Rd) is said to be Lipschitz continuous
if there exists a constant C > 0 such that, for any square integrable random vari-
ables X̃ and Ỹ in L2(�̃;Rd), it holds ‖Dũ(X̃) − Dũ(Ỹ )‖2 ≤ C‖X̃ − Ỹ‖2. In such
a case, the Lipschitz property can be transferred onto L2(�) and then rewritten as

E
[∣∣∂u(PX)(X) − ∂u(PY )(Y )

∣∣2]≤ C2
E
[|X − Y |2],(7)

for any square integrable random variables X and Y in L2(�;Rd). From our dis-
cussion of the construction of ∂u, notice that, for each μ, ∂u(μ)(·) is only uniquely
defined μ-almost everywhere. The following lemma (the proof of which is de-
ferred to the Appendix) then says that, in the current framework, there is a Lips-
chitz continuous version of ∂u(μ)(·):

LEMMA 3.3. Given a family of Borel-measurable mappings (v(μ)(·) :Rd →
R

d)μ∈P2(R
d ) indexed by the probability measures of order 2 on R

d , assume that
there exists a constant C such that, for any square integrable random variables ξ

and ξ ′ in L2(�;Rd), it holds

E
[∣∣v(Pξ )(ξ) − v(Pξ ′)

(
ξ ′)∣∣2]≤ C2

E
[∣∣ξ − ξ ′∣∣2].(8)

Then, for each μ ∈ P2(R
d), one can redefine v(μ)(·) on a μ-negligeable set in

such a way that

∀x, x′ ∈R
d

∣∣v(μ)(x) − v(μ)
(
x′)∣∣≤ C

∣∣x − x′∣∣,
for the same C as in (8).

By (7), we can use Lemma 3.3 in order to define ∂u(μ)(x) for every μ and
every x while preserving the Lipschitz property in the variable x. From now on,
we shall use this version of ∂u. So, if μ,ν ∈ P2(R

d) and X and Y are random
variables such that PX = μ and PY = ν, we have

E
[∣∣∂u(μ)(X) − ∂u(ν)(X)

∣∣2]
≤ 2
(
E
[∣∣∂u(μ)(X) − ∂u(ν)(Y )

∣∣2]+E
[∣∣∂u(ν)(Y ) − ∂u(ν)(X)

∣∣2])
≤ 4C2

E
[|Y − X|2],
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where we used the Lipschitz property (7) of the derivative together with the result
of Lemma 3.3 applied to the function ∂u(ν). Now, taking the infimum over all the
couplings (X,Y ) with marginals μ and ν, we obtain

inf
X,PX=μ

E
[∣∣∂u(μ)(X) − ∂u(ν)(X)

∣∣2]≤ 4C2W2(PX,PY )2,

and since the left-hand side depends only upon μ and not on X as long as PX = μ,
we get

E
[∣∣∂u(μ)(X) − ∂u(ν)(X)

∣∣2]≤ 4C2W2(μ, ν)2.(9)

We will use the following consequence of this estimate:

PROPOSITION 3.4. Let u be a differentiable function on P2(R
d) with a

Lipschitz derivative, and let μ ∈ P2(R
d), x = (x1, . . . , xN) ∈ (Rd)N and y =

(y1, . . . , yN) ∈ (Rd)N . Then, with the same notation as in the statement of Propo-
sition 3.2, we have

∂ūN(x) · (y − x)

= 1

N

N∑
i=1

∂u(μ)(xi)(yi − xi) +O
[
W2(μ̄N ,μ)

(
N−1

N∑
i=1

|xi − yi |2
)1/2]

,

the dot product being here the usual Euclidean inner product and O standing for
the Landau notation.

PROOF. Using Proposition 3.2, we get

∂ūN(x) · (y − x)

=
N∑

i=1

∂xi
ūN (x)(yi − xi) = 1

N

N∑
i=1

∂u
(
μ̄N )(xi)(yi − xi)

= 1

N

N∑
i=1

∂u(μ)(xi)(yi − xi)

+ 1

N

N∑
i=1

[
∂u
(
μ̄N )(xi) − ∂u(μ)(xi)

]
(yi − xi).

Now, by the Cauchy–Schwarz inequality,∣∣∣∣∣ 1

N

N∑
i=1

[
∂u
(
μ̄N )(xi) − ∂u(μ)(xi)

]
(yi − xi)

∣∣∣∣∣
≤
(

1

N

N∑
i=1

∣∣∂u
(
μ̄N )(xi) − ∂u(μ)(xi)

∣∣2)1/2(
1

N

N∑
i=1

|yi − xi |2
)1/2
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= (Ẽ[∣∣∂u
(
μ̄N )(xϑ) − ∂u(μ)(xϑ)

∣∣2])1/2
(

1

N

N∑
i=1

|yi − xi |2
)1/2

≤ 2CW2
(
μ̄N ,μ

)( 1

N

N∑
i=1

|yi − xi |2
)1/2

,

if we use the same notation for ϑ as in the proof of Proposition 3.2, and apply the
estimate (9) with X = xϑ , μ = μ̄N and ν = μ. �

REMARK 3.5. We shall use the estimate of Proposition 3.4 when xi = Xi

when the Xi’s are independent Rd -valued random variables with common dis-
tribution μ. Whenever μ ∈ P2(R

d), the law of large numbers ensures that the
Wasserstein distance between μ and the empirical measure μ̄N tends to 0 a.s.,
that is,

P

[
lim

n→+∞W2
(
μ̄N ,μ

)= 0
]
= 1;

see, for example, Section 10 in [22]. Since we can find a constant C > 0, indepen-
dent of N , such that

W 2
2
(
μ̄N ,μ

)≤ C

(
1 + 1

N

N∑
i=1

|Xi |2
)
,

we deduce from the law of large numbers again that (W 2
2 (μ̄N ,μ))N≥1 is uniformly

integrable, so that the convergence to 0 also holds in the L2 sense,

lim
n→+∞E

[
W 2

2
(
μ̄N ,μ

)]= 0.(10)

Whenever
∫
Rd |x|d+5μ(dx) < ∞, the rate of convergence can be specified. We

indeed have the following standard estimate on the Wasserstein distance between
μ and the empirical measure μ̄N :

E
[
W 2

2
(
μ̄N ,μ

)]≤ CN−2/(d+4),(11)

for some constant C > 0. See, for example, Section 10 in [22]. Proposition 3.4 then
says that, when N is large, the gradient of ūN at the empirical sample (Xi)1≤i≤N

is close to the sample (∂u(μ)(Xi))1≤i≤N , the accuracy of the approximation being
specified in the L2(�) norm by (11) when μ is sufficiently integrable.

3.2. Joint differentiability and convexity. Joint differentiability. We often con-
sider functions h :Rn × P2(R

d) � (x,μ) → h(x,μ) ∈ R depending on both an
n-dimensional x and a probability measure μ. Joint differentiability is then de-
fined according to the same procedure: h is said to be jointly differentiable if the
lifting h̃ :Rn × L2(�̃;Rd) � (x, X̃) �→ h(x, P̃

X̃
) is jointly differentiable. In such a
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case, we can define the partial derivatives in x and μ: they read R
n × P2(R

d) �
(x,μ) �→ ∂xh(x,μ) and R

n × P2(R
d) � (x,μ) �→ ∂μh(x,μ)(·) ∈ L2(Rd,μ),

respectively. The partial Fréchet derivative of h̃ in the direction X̃ thus reads
L2(�̃;Rd) � (x, X̃) �→ D

X̃
h̃(x, X̃) = ∂μh(x, P̃

X̃
)(X̃) ∈ L2(�̃;Rd). The state-

ment and the proof of Lemma 3.1 can be easily adapted to the joint measurability
of Rn ×P2(R

d) ×R
d � (x,μ, x′) �→ ∂μh(x,μ)(x′).

We often use the fact that joint continuous differentiability in the two arguments
is equivalent with partial differentiability in each of the two arguments and joint
continuity of the partial derivatives. Here, the joint continuity of ∂xh is under-
stood as the joint continuity with respect to the Euclidean distance on R

n and the
Wasserstein distance on P2(R

d). The joint continuity of ∂μh is understood as the
joint continuity of the mapping (x, X̃) �→ ∂μh(x, P̃

X̃
)(X̃) from R

n × L2(�̃;Rd)

into L2(�̃;Rd).
When the partial derivatives of h are assumed to be Lipschitz-continuous,

we can benefit from Lemma 3.3. It says that, for any (x,μ), the representation
R

d � x′ �→ ∂μh(x,μ)(x′) makes sense as a Lipschitz function in x′ and that an
appropriate version of (9) holds true.

Convex functions of measures. We define a notion of convexity associated with
this notion of differentiability. A function h on P2(R

d) which is differentiable in
the above sense is said to be convex if, for all μ and μ′ in P2(R

d), we have

h
(
μ′)− h(μ) − Ẽ

[
∂μh(μ)(X̃) · (X̃′ − X̃

)]≥ 0(12)

whenever X̃ and X̃′ are square integrable random variables with distributions μ

and μ′, respectively. Examples are given in Section 4.3.
More generally, a function h on R

n × P2(R
d), which is jointly differentiable

in the above sense, is said to be convex if for every (x,μ) and (x′,μ′) in R
n ×

P2(R
d), we have

h
(
x′,μ′)− h(x,μ) − ∂xh(x,μ) · (x′ − x

)
(13)

− Ẽ
[
∂μh(x,μ)(X̃) · (X̃′ − X̃

)]≥ 0

whenever X̃ and X̃′ are square integrable random variables with distributions μ

and μ′, respectively.

3.3. The Hamiltonian and the dual equations. The Hamiltonian of the
stochastic optimization problem is defined as the function H given by

H(t, x,μ, y, z,α) = b(t, x,μ,α) · y + σ(t, x,μ,α) · z + f (t, x,μ,α),(14)

where the dot notation stands for the inner product in an Euclidean space. Because
we need to compute derivatives of H with respect to its variable μ, we consider
the lifting H̃ defined by

H̃ (t, x, X̃, y, z,α) = H(t, x,μ, y, z,α)(15)
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for any random variable X̃ with distribution μ, and we shall denote by ∂μH(t, x,

μ0, y, z,α) the derivative with respect to μ computed at μ0 (as defined above)
whenever all the other variables t , x, y, z and α are held fixed. We recall that
∂μH(t, x,μ0, y, z,α) is an element of L2(Rd,μ0) and that we identify it with a
function ∂μH(t, x,μ0, y, z,α)(·) :Rd � x̃ �→ ∂μH(t, x,μ0, y, z,α)(x̃). It satisfies

DH̃(t, x, X̃, y, z,α) = ∂μH(t, x,μ0, y, z,α)(X̃)

almost-surely under P̃.

DEFINITION 3.6. In addition to (A1)–(A2) for b and σ , assume that the co-
efficients b,σ,f and g are (jointly) differentiable with respect to x and μ. Then,
given an admissible control α = (αt )0≤t≤T ∈ A, we denote by X = Xα the corre-
sponding controlled state process. Whenever

E

∫ T

0

{∣∣∂xf (t,Xt ,PXt , αt )
∣∣2 + Ẽ

[∣∣∂μf (t,Xt ,PXt , αt )(X̃t )
∣∣2]}dt < +∞(16)

and

E
{∣∣∂xg(XT ,PXT

)
∣∣2 + Ẽ

[∣∣∂μg(XT ,PXT
)(X̃T )

∣∣2]}< +∞,(17)

we call adjoint processes of X any couple ((Yt )0≤t≤T , (Zt)0≤t≤T ) of progressively
measurable stochastic processes in H

2,d ×H
2,d×m satisfying the equation (which

we call the adjoint equation)⎧⎪⎨
⎪⎩

dYt = −∂xH(t,Xt ,PXt , Yt ,Zt , αt ) dt + Zt dWt

− Ẽ
[
∂μH(t, X̃t ,PXt , Ỹt , Z̃t , α̃t )(Xt )

]
dt,

YT = ∂xg(XT ,PXT
) + Ẽ

[
∂μg(X̃T ,PXT

)(XT )
]
,

(18)

where (X̃, Ỹ , Z̃, α̃) is an independent copy of (X,Y,Z,α) defined on the space
L2(�̃, F̃, P̃), and Ẽ denotes the expectation on (�̃, F̃, P̃).

Notice that Ẽ[∂μH(t, X̃t ,PXt , Ỹt , Z̃t , α̃t )(Xt )] is a (measurable) function of the
random variable Xt as it stands for Ẽ[∂μH(t, X̃t ,PXt , Ỹt , Z̃t , α̃t )(x)]|x=Xt (and
similarly for Ẽ[∂μg(X̃T ,PXT

)(XT )]). Notice that, when b, σ , f and g do not
depend upon the marginal distributions of the controlled state process, the extra
terms appearing in the adjoint equation and its terminal condition disappear and
this equation coincides with the classical adjoint equation of stochastic control.

Using the interpretation of the symbol � explained in Section 2, and extending
this notation to derivatives of the form ∂μh(μ)(x) � p = (∂μ[h(μ) · p])(x), the
adjoint equation rewrites

dYt = −[∂xb(t,Xt ,PXt , αt ) � Yt + ∂xσ (t,Xt ,PXt , αt ) � Zt

+ ∂xf (t,Xt ,PXt , αt )
]
dt + Zt dWt

(19)
− Ẽ
[
∂μb(t, X̃t ,PXt , α̃t )(Xt ) � Ỹt + ∂μσ(t, X̃t ,PXt , α̃t )(Xt ) � Z̃t

+ ∂μf (t, X̃t ,PXt , α̃t )(Xt )
]
dt,
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with the terminal condition YT = ∂xg(XT ,PXT
) + Ẽ[∂μg(X̃T ,PXT

)(XT )]. No-
tice that ∂xb and ∂xσ are bounded since b and σ are assumed to be c-
Lipschitz continuous in the variable x; see (A2). Notice also that the terms
E[|∂μb(t, X̃t ,PXt , α̃t )(Xt )|2]1/2 and E[|∂μσ(t, X̃t ,PXt , α̃t )(Xt )|2]1/2 are also
bounded by c since b and σ are assumed to be c-Lipschitz continuous in the
variable μ with respect to the 2-Wasserstein distance. It is indeed plain to check
that, given a differentiable function h :P2(R

d) →R, the notion of differentiability
being defined as above, it holds E[|∂μh(X)|2]1/2 ≤ c, for any μ ∈ P2(R

d) and any
random variable X having μ as distribution, when h is c-Lipschitz continuous in μ

with respect to the 2-Wasserstein distance.
Notice finally that, given an admissible control α ∈ A and the corresponding

controlled state process X = Xα , despite conditions (16)–(17) and despite the
fact that the first part of the equation appears to be linear in the unknown pro-
cesses Yt and Zt , existence and uniqueness of a solution (Y,Z) of the adjoint
equation is not provided by standard results on backward stochastic differential
equations (BSDEs) as the distributions of the solution processes (more precisely
their joint distributions with the control and state processes α and X) appear in
the coefficients of the equation. However, a slight modification of the original ex-
istence and uniqueness result of Pardoux and Peng [20] shows that existence and
uniqueness still hold in our more general setting. The main lines of the proof are
given in [5], Proposition 3.1 and Lemma 3.1. However, Lemma 3.1 in [5] does
not apply directly since the coefficients (∂μb(t, X̃t ,PXt , α̃t )(Xt ) � Ỹt )0≤t≤T and
(∂μσ(t, X̃t ,PXt , α̃t )(Xt )� Z̃t )0≤t≤T are not Lipschitz continuous in Ỹ and Z̃ uni-
formly in the randomness; see Condition (C1) in [5]. Actually, a careful inspection
of the proof shows that the bounds

EẼ
[∣∣∂μb(t, X̃t ,PXt , α̃t )(Xt ) � Ỹt

∣∣2]≤ c′
E
[|Yt |2],

EẼ
[∣∣∂μσ(t, X̃t ,PXt , α̃t )(Xt) � Z̃t

∣∣2]≤ c′
E
[|Zt |2],

are sufficient to make the whole argument work and thus to prove existence and
uniqueness of a solution (Y,Z) satisfying

E

[
sup

0≤t≤T

|Yt |2 +
∫ T

0
|Zt |2 dt

]
< +∞.

4. Pontryagin principle for optimality. In this section, we discuss sufficient
and necessary conditions for optimality when the Hamiltonian satisfies appropriate
assumptions of convexity. Generally speaking, the role of convexity is twofold. On
one hand, convexity permits one to give a quite elegant proof of the necessary part
of the Pontryagin principle. The proof of the necessary part is indeed based on a
perturbation argument of the optimal controls. In the case when the set A is convex
(recalling that controls are A-valued), and the Hamiltonian H is convex in α, the
choice of the perturbation is quite simple. In the standard non-McKean–Vlasov
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case, other kinds of perturbations have been considered, allowing for extensions of
the necessary condition to nonconvex cases; see, for instance, the monograph [26].
To keep the paper at a reasonable level of technicality, we refrain from discussing
such a relaxation here; see, however, Proposition 4.6 for a slight relaxation. On the
other hand, convexity also plays a major role in the proof of the sufficient part. It
is indeed mandatory to require the Hamiltonian H to be convex in x, μ and α for
establishing the converse of the Pontryagin principle. As explained in Section 5,
the typical example is to require b and σ to be linear in x, μ and α, which imposes
the same kind of limitation as in the non-McKean–Vlasov case. All these convexity
conditions will be specified next, depending upon the framework.

For the time being, we state the regularity assumptions which will be used
throughout the section. Referring to Section 3.2 for definitions of joint differen-
tiability, we assume:

(A3) The functions b, σ and f are differentiable with respect to (x,α), the
maps (x,μ,α) �→ ∂x(b, σ, f )(t, x,μ,α) and (x,μ,α) �→ ∂α(b, σ, f )(t, x,μ,α)

being continuous for any t ∈ [0, T ]. The functions b, σ and f are also differ-
entiable with respect to the variable μ in the sense given above, the mapping
R

d × L2(�;Rd) × A � (x,X,α) �→ ∂μ(b, σ, f )(t, x,PX,α)(X) ∈ L2(�;Rd×d ×
R

(d×m)×d × R
d) being continuous for any t ∈ [0, T ]. Similarly, the function g

is differentiable with respect to x, the mapping (x,μ) �→ ∂xg(x,μ) being con-
tinuous. The function g is also differentiable with respect to the variable μ, the
mapping R

d × L2(�;Rd) � (x,X) �→ ∂μg(x,PX)(X) ∈ L2(�;Rd) being contin-
uous.

(A4) The coefficients ((b, σ, f )(t,0, δ0,0))0≤t≤T are uniformly bounded. The
derivatives ∂x(b, σ ) and ∂α(b, σ ) are uniformly bounded and the norm of the
mapping x′ �→ ∂μ(b, σ )(t, x,μ,α)(x′) in L2(Rd,μ) is also uniformly bounded
[i.e., uniformly in (t, x,μ,α)]. There exists a constant L such that, for any
R ≥ 0 and (t, x,μ,α) such that |x|,‖μ‖2, |α| ≤ R, |∂x(f, g)(t, x,μ,α)| and
|∂αf (t, x,μ,α)| are bounded by L(1 + R), and the L2(Rd,μ)-norm of x′ �→
∂μ(f, g)(t, x,μ,α)(x′) is bounded by L(1 + R). Here, we have used the notation

‖μ‖2
2 =
∫
Rd

|x|2 dμ(x), μ ∈P2
(
R

d).
Notice that (A3)–(A4) covers (A1)–(A2).

4.1. A necessary condition. We assume that the sets A and A of admissible
controls are convex, we fix α ∈ A, and as before, we denote by X = Xα the cor-
responding controlled state process, namely the solution of (1) with given initial
condition X0 = x0. Our first task is to compute the Gâteaux derivative of the cost
functional J at α in all directions. In order to do so, we choose β ∈ H

2,k such that
α + εβ ∈A for ε > 0 small enough. We then compute the variation of J at α in the
direction of β (think of β as the difference between another element of A and α).
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Letting (θt = (Xt ,PXt , αt ))0≤t≤T , we define the variation process V =
(Vt )0≤t≤T to be the solution of the equation

dVt = [γt · Vt + ρt (P(Xt ,Vt )) + ηt

]
dt + [γ̃t · Vt + ρ̃t (P(Xt ,Vt )) + η̃t

]
dWt,(20)

with V0 = 0, where the coefficients γt , δt , ρt , γ̃t , ρ̃t and η̃t are defined as

γt = ∂xb(t, θt ), γ̃t = ∂xσ (t, θt ),

ηt = ∂αb(t, θt ) · βt , η̃t = ∂ασ (t, θt ) · βt ,

which are progressively measurable bounded processes with values in R
d×d ,

R
(d×m)×d , Rd and R

d×m, respectively (the parentheses around d × m indicating
that γ̃t · u is seen as an element of Rd×m whenever u ∈ R

d ), and

ρt = Ẽ
[
∂μb(t, θt )(X̃t ) · Ṽt

]= Ẽ
[
∂μb(t, x,PXt , α)(X̃t ) · Ṽt

]∣∣
x=Xt

α=αt

,

(21)
ρ̃t = Ẽ

[
∂μσ(t, θt )(X̃t ) · Ṽt

]= Ẽ
[
∂μσ(t, x,PXt , α)(X̃t ) · Ṽt

]∣∣
x=Xt

α=αt

,

which are progressively measurable bounded processes with values in R
d and

R
d×m, respectively, and where (X̃t , Ṽt ) is an independent copy of (Xt ,Vt ). As

expectations of functions of (X̃t , Ṽt ), ρt and ρ̃t depend upon the joint distribution
of Xt and Vt . In (20) we wrote ρt (P(Xt ,Vt )) and ρ̃t (P(Xt ,Vt )) in order to stress the
dependence upon the joint distribution of Xt and Vt . Even though we are dealing
with possibly random coefficients, the existence and uniqueness of the variation
process is guaranteed by Proposition 2.1 of [13] applied to the couple (X,V ) and
the system formed by (1) and (20). Because of our assumption on the boundedness
of the partial derivatives of the coefficients, V satisfies E sup0≤t≤T |Vt |p < ∞ for
every finite p ≥ 1.

LEMMA 4.1. For each ε > 0 small enough, we denote by αε the admissible
control defined by αε

t = αt + εβt , and by Xε = Xαε
the corresponding controlled

state. We have

lim
ε↘0

E

[
sup

0≤t≤T

∣∣∣∣X
ε
t − Xt

ε
− Vt

∣∣∣∣2
]

= 0.(22)

PROOF. For the purpose of this proof we set θε
t = (Xε

t ,PXε
t
, αε

t ) and V ε
t =

ε−1(Xε
t − Xt) − Vt . Notice that V ε

0 = 0 and that

dV ε
t =

[
1

ε

[
b
(
t, θε

t

)− b(t, θt )
]− ∂xb(t, θt ) · Vt − ∂αb(t, θt ) · βt

− Ẽ
[
∂μb(t, θt )(X̃t ) · Ṽt

]]
dt

+
[

1

ε

[
σ
(
t, θε

t

)− σ(t, θt )
]− ∂xσ (t, θt ) · Vt − ∂ασ (t, θt ) · βt(23)
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− Ẽ
[
∂μσ(t, θt )(X̃t ) · Ṽt

]]
dWt

= V
ε,1
t dt + V

ε,2
t dWt .

Now for each t ∈ [0, T ] and each ε > 0, we have

1

ε

[
b
(
t, θε

t

)− b(t, θt )
]= ∫ 1

0
∂xb
(
t, θ

λ,ε
t

) · (V ε
t + Vt

)
dλ +

∫ 1

0
∂αb
(
t, θ

λ,ε
t

) · βt dλ

+
∫ 1

0
Ẽ
[
∂μb
(
t, θ

λ,ε
t

)(
X̃

λ,ε
t

) · (Ṽ ε
t + Ṽt

)]
dλ,

where, in order to simplify a little bit the notation, we have set X
λ,ε
t = Xt +

λε(V ε
t + Vt), α

λ,ε
t = αt + λεβt and θ

λ,ε
t = (X

λ,ε
t ,P

X
λ,ε
t

, α
λ,ε
t ). Computing the

“dt”-term, we get

V
ε,1
t =

∫ 1

0
∂xb
(
t, θ

λ,ε
t

) · V ε
t dλ +

∫ 1

0
Ẽ
[
∂μb
(
t, θ

λ,ε
t

)(
X̃

λ,ε
t

) · Ṽ ε
t

]
dλ

+
∫ 1

0

[
∂xb
(
t, θ

λ,ε
t

)− ∂xb(t, θt )
] · Vt dλ

+
∫ 1

0

[
∂αb
(
t, θ

λ,ε
t

)− ∂αb(t, θt )
] · βt dλ

+
∫ 1

0
Ẽ
[(

∂μb
(
t, θ

λ,ε
t

)(
X̃

λ,ε
t

)− ∂μb(t, θt )(X̃t )
) · Ṽt

]
dλ

=
∫ 1

0
∂xb
(
t, θλ,ε) · V ε

t dλ +
∫ 1

0
Ẽ
[
∂μb
(
t, θ

λ,ε
t

)(
X̃

λ,ε
t

) · Ṽ ε
t

]
dλ

+ I
ε,1
t + I

ε,2
t + I

ε,3
t .

By (A4), the three last terms of the above right-hand side are bounded in
L2([0, T ] × �), uniformly in ε. Next, we treat the diffusion part V

ε,2
t in the same

way using Jensen’s inequality and the Burkholder–Davis–Gundy inequality to con-
trol the quadratic variation of the stochastic integrals. Consequently, going back
to (23), we see that, for any S ∈ [0, T ],

E

[
sup

0≤t≤S

∣∣V ε
t

∣∣2]≤ c′ + c′
∫ S

0
E

[
sup

0≤s≤t

∣∣V ε
s

∣∣2]dt,

where as usual c′ > 0 is a generic constant which can change from line to line. Ap-
plying Gronwall’s inequality, we deduce that E[sup0≤t≤T |V ε

t |2] ≤ c′. Therefore,
we have

lim
ε↘0

E

[
sup

0≤λ≤1
sup

0≤t≤T

∣∣Xλ,ε
t − Xt

∣∣2]= 0.
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We then prove that I ε,1, I ε,2 and I ε,3 converge to 0 in L2([0, T ] × �) as ε ↘ 0.
Indeed,

E

∫ T

0

∣∣I ε,1
t

∣∣2 dt = E

∫ T

0

∣∣∣∣
∫ 1

0

([
∂xb
(
t, θ

λ,ε
t

)− ∂xb(t, θt )
] · Vt

)
dλ

∣∣∣∣
2

dt

≤ E

∫ T

0

∫ 1

0

∣∣∂xb
(
t, θ

λ,ε
t

)− ∂xb(t, θt )
∣∣2|Vt |2 dλdt.

Since the function ∂xb is bounded and continuous in x, μ and α, the above right-
hand side converges to 0 as ε ↘ 0. A similar argument applies to I

ε,2
t and I

ε,3
t .

Again, we treat the diffusion part V
ε,2
t in the same way using Jensen’s inequality

and the Burkholder–Davis–Gundy inequality. Consequently, going back to (23),
we finally see that, for any S ∈ [0, T ],

E

[
sup

0≤t≤S

∣∣V ε
t

∣∣2]≤ c′
∫ S

0
E

[
sup

0≤s≤t

∣∣V ε
s

∣∣2]dt + cε,

where limε↘0 cε = 0. Finally, we get the desired result applying Gronwall’s in-
equality. �

We now compute the Gâteaux derivative of the objective function.

LEMMA 4.2. The function α �→ J (α) is Gâteaux differentiable in the direc-
tion β , and its derivative is given by

d

dε
J (α + εβ)

∣∣∣
ε=0

= E

∫ T

0

[
∂xf (t, θt ) · Vt + Ẽ

[
∂μf (t, θt )(X̃t ) · Ṽt

]+ ∂αf (t, θt ) · βt

]
dt(24)

+E
[
∂xg(XT ,PXT

) · VT + Ẽ
[
∂μg(XT ,PXT

)(X̃T ) · ṼT

]]
.

PROOF. We use freely the notation introduced in the proof of the previous
lemma:

d

dε
J (α + εβ)

∣∣∣
ε=0

(25)

= lim
ε↘0

1

ε
E

[∫ T

0

[
f
(
t, θε

t

)− f (t, θt )
]
dt + [g(Xε

T ,PXε
T

)− g(XT ,PXT
)
]]

.

Computing the two limits separately, we get

lim
ε↘0

1

ε
E

∫ T

0

[
f
(
t, θε

t

)− f (t, θt )
]
dt

= lim
ε↘0

1

ε
E

∫ T

0

∫ 1

0

d

dλ
f
(
t, θ

λ,ε
t

)
dλdt
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= lim
ε↘0

E

∫ T

0

∫ 1

0

[
∂xf
(
t, θ

λ,ε
t

) · (V ε
t + Vt

)
+ Ẽ
[
∂μf

(
t, θ

λ,ε
t

)(
X̃

λ,ε
t

) · (Ṽ ε
t + Ṽt

)]
+ ∂αf

(
t, θ

λ,ε
t

) · βt

]
dλdt

= E

∫ T

0

[
∂xf (t, θt ) · Vt + Ẽ

[
∂μf (t, θt )(X̃t ) · Ṽt

]+ ∂αf (t, θt ) · βt

]
dt,

using the hypothesis on the continuity and growth of the derivatives of f , the uni-
form convergence proven in the previous lemma and standard uniform integrability
arguments. The second term in (25) is tackled in a similar way. �

Observing that conditions (16)–(17) are satisfied under (A3)–(A4), the duality
relationship is given by:

LEMMA 4.3. Given (Yt ,Zt )0≤t≤T as in Definition 3.6, it holds

E[YT · VT ] = E

∫ T

0

[
Yt · (∂αb(t, θt ) · βt

)+ Zt · (∂ασ (t, θt ) · βt

)
(26)

− ∂xf (t, θt ) · Vt − Ẽ
[
∂μf (t, θt )(X̃t ) · Ṽt

]]
dt.

PROOF. Letting �t = (Xt ,PXt , Yt ,Zt , αt ) and using the definitions (20) of
the variation process V , and (18) or (19) of the adjoint process Y , integration by
parts gives

YT · VT = Y0 · V0 +
∫ T

0
Yt · dVt +

∫ T

0
dYt · Vt +

∫ T

0
d[Y,V ]t

= MT +
∫ T

0

[
Yt · (∂xb(t, θt ) · Vt

)+ Yt · Ẽ[∂μb(t, θt )(X̃t ) · Ṽt

]
+ Yt · (∂αb(t, θt ) · βt

)
− ∂xH(t,�t) · Vt − Ẽ

[
∂μH(t, �̃t )(Xt ) · Vt

]
+ Zt · (∂xσ (t, θt ) · Vt

)+ Zt · Ẽ[∂μσ(t, θt )(X̃t ) · Ṽt

]
+ Zt · (∂ασ (t, θt ) · βt

)]
dt,

where (Mt)0≤t≤T is a mean zero integrable martingale. By taking expectations on
both sides and applying Fubini’s theorem,

EẼ
[
∂μH(t, �̃t )(Xt) · Vt

]
= EẼ

[
∂μH(t,�t)(X̃t ) · Ṽt

]
= EẼ

[(
∂μb(t, θt )(X̃t ) · Ṽt

) · Yt + (∂μσ(t, θt )(X̃t ) · Ṽt

) · Zt

+ ∂μf (t, θt )(X̃t ) · Ṽt

]
.
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By commutativity of the inner product, cancellations occur, and we get the desired
equality (26). �

By putting together the duality relation (26) and (24) we get:

COROLLARY 4.4. The Gâteaux derivative of J at α in the direction of β can
be written as

d

dε
J (α + εβ)

∣∣∣
ε=0

= E

∫ T

0

[
∂αH(t,Xt ,PXt , Yt ,Zt , αt ) · βt

]
dt.(27)

PROOF. Using Fubini’s theorem, the second expectation appearing in the ex-
pression (24) of the Gâteaux derivative of J given in Lemma 4.2 can be rewritten
as

E
[
∂xg(XT ,PXT

) · VT + Ẽ
(
∂μg(XT ,PXT

)(X̃T ) · ṼT

)]
= E
[
∂xg(XT ,PXT

) · VT

]+EẼ
[
∂μg(X̃T ,PXT

)(XT ) · VT

]
= E[YT · VT ],

and using the expression derived in Lemma 4.3 for E[YT · VT ] in (24) gives the
desired result. �

The main result of this subsection is the following theorem.

THEOREM 4.5. Under the above assumptions, if we assume further that the
Hamiltonian H is convex in α, the admissible control (αt )0≤t≤T ∈ A is optimal,
(Xt)0≤t≤T is the associated (optimally) controlled state, and (Yt ,Zt )0≤t≤T are the
associated adjoint processes solving the adjoint equation (18), then we have

∀α ∈ A H(t,Xt ,PXt , Yt ,Zt , αt ) ≤ H(t,Xt ,PXt , Yt ,Zt , α),
(28)

dt ⊗ dP-a.e.

PROOF. Since A is convex, given β ∈ A, we can choose the perturbation αε
t =

αt + ε(βt − αt) which is still in A for 0 ≤ ε ≤ 1. Since α is optimal, we have the
inequality

d

dε
J
(
α + ε(β − α)

)∣∣∣
ε=0

= E

∫ T

0

[
∂αH(t,Xt ,PXt , Yt ,Zt , αt ) · (βt − αt)

]
dt ≥ 0.

By convexity of the Hamiltonian with respect to the control variable α ∈ A, we
conclude that

E

∫ T

0

[
H(t,Xt ,PXt , Yt ,Zt , βt ) − H(t,Xt ,PXt , Yt ,Zt , αt )

]
dt ≥ 0,
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for all β . Now, if for a given (deterministic) α ∈ A we choose β in the following
way:

βt(ω) =
{

α, if (t,ω) ∈ C,

αt (ω), otherwise,

for an arbitrary progressively-measurable set C ⊂ [0, T ] × � (i.e., C ∩ [0, t] ∈
B([0, t]) ⊗Ft for any t ∈ [0, T ]), we see that

E

∫ T

0
1C

[
H(t,Xt ,PXt , Yt ,Zt , α) − H(t,Xt ,PXt , Yt ,Zt , αt )

]
dt ≥ 0,

from which we conclude that

H(t,Xt ,PXt , Yt ,Zt , α) − H(t,Xt ,PXt , Yt ,Zt , αt ) ≥ 0, dt ⊗ dP-a.e.,

which is the desired conclusion. �

When convexity of the set A fails, the following weaker version of the stochastic
Pontryagin principle holds:

PROPOSITION 4.6. Keep the same assumptions as above, but do not re-
quire A to be convex and H to be convex in α. Assume that the admissible control
(αt )0≤t≤T ∈ A is optimal, (Xt)0≤t≤T is the associated (optimally) controlled state
and (Yt ,Zt )0≤t≤T are the associated adjoint processes solving the adjoint equa-
tion (18). Then we have

∂αH(t,Xt ,PXt , Yt ,Zt , αt ) = 0, dt ⊗ dP-a.e.

PROOF. Given ε0 > 0, β ∈ R
k with |β| = 1, and a progressively-measurable

set C ⊂ [0, T ] × �, we let

βt = β1
C∩{dist(αt ,A�)>ε0},

for t ∈ [0, T ]. By construction, αt + εβt ∈ A for all t ∈ [0, T ] and ε ∈ (0, ε0).
Following the proof of Theorem 4.5, we claim

E

∫ T

0

[
∂αH(t,Xt ,PXt , Yt ,Zt , αt ) · βt

]
dt ≥ 0,

from which we deduce that

1{dist(αt ,A�)>ε0}∂αH(t,Xt ,PXt , Yt ,Zt , αt ) · β ≥ 0, dt ⊗ dP-a.e.

As β and ε0 are arbitrary, we finally get

1{dist(αt ,A�)>0}∂αH(t,Xt ,PXt , Yt ,Zt , αt ) = 0, dt ⊗ dP-a.e.

Recalling that A is open, the result follows. �



FBSDES AND MCKEAN–VLASOV 2669

4.2. A sufficient condition. The necessary condition for optimality identified
in the previous subsection can be turned into a sufficient condition for optimality
under some technical assumptions.

THEOREM 4.7. Under the same assumptions of regularity on the coefficients
as before, let α ∈ A be an admissible control, (Xt = Xα

t )0≤t≤T the corresponding
controlled state process and (Yt ,Zt )0≤t≤T the corresponding adjoint processes.
Let us also assume that:

(1) R
d ×P2(R

d) � (x,μ) �→ g(x,μ) is convex;
(2) R

d × P2(R
d) × A � (x,μ,α) �→ H(t, x,μ,Yt ,Zt , α) is convex dt ⊗ dP

almost everywhere.

If

H(t,Xt ,PXt , Yt ,Zt , αt ) = inf
α∈A

H(t,Xt ,PXt , Yt ,Zt , α), dt ⊗ dP-a.e.(29)

then α is an optimal control, that is, J (α) = infα′∈A J (α′).

PROOF. Let α′ ∈ A be a generic admissible control, and X′ = Xα′
the cor-

responding controlled state. By definition of the objective function of the control
problem, we have

J (α) − J
(
α′)

= E
[
g(XT ,PXT

) − g
(
X′

T ,PX′
T

)]+E

∫ T

0

[
f (t, θt ) − f

(
t, θ ′

t

)]
dt

(30)

= E
[
g(XT ,PXT

) − g
(
X′

T ,PX′
T

)]+E

∫ T

0

[
H(t,�t) − H

(
t,�′

t

)]
dt

−E

∫ T

0

{[
b(t, θt ) − b

(
t, θ ′

t

)] · Yt + [σ(t, θt ) − σ
(
t, θ ′

t

)] · Zt

}
dt

by definition of the Hamiltonian, with the notation θt = (Xt ,PXt , αt ) and �t =
(Xt ,PXt , Yt ,Zt , αt ) (and similarly for θ ′

t and �′
t ). The function g being convex,

we have

g(x,μ) − g
(
x′,μ′)≤ ∂xg(x,μ) · (x − x′)+ Ẽ

[
∂μg(x,μ)(X̃) · (X̃ − X̃′)],

so that

E
[
g(XT ,PXT

) − g
(
X′

T ,PX′
T

)]
≤ E
[
∂xg(XT ,PXT

) · (XT − X′
T

)+ Ẽ
[
∂μg(XT ,PXT

)(X̃T ) · (X̃T − X̃′
T

)]]
(31)

= E
[(

∂xg(XT ,PXT
) + Ẽ

[
∂μg(X̃T ,PXT

)(XT )
]) · (XT − X′

T

)]
= E
[
YT · (XT − X′

T

)]= E
[(

XT − X′
T

) · YT

]
,
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where we used Fubini’s theorem and the fact that the “tilde random variables”
are independent copies of the “nontilde variables.” Using the adjoint equation and
taking the expectation, we get

E
[(

XT − X′
T

) · YT

]
= E

[∫ T

0

(
Xt − X′

t

) · dYt +
∫ T

0
Yt · d[Xt − X′

t

]

+
∫ T

0

[
σ(t, θt ) − σ

(
t, θ ′

t

)] · Zt dt

]

= −E

∫ T

0

[
∂xH(t,�t) · (Xt − X′

t

)+ Ẽ
[
∂μH(t, �̃t )(Xt )

] · (Xt − X′
t

)]
dt

+E

∫ T

0

[[
b(t, θt ) − b

(
t, θ ′

t

)] · Yt + [σ(t, θt ) − σ
(
t, θ ′

t

)] · Zt

]
dt,

where we used integration by parts and the fact that Yt solves the adjoint equation.
Using Fubini’s theorem and the fact that �̃t is an independent copy of �t , the
expectation of the second term in the second line can be rewritten as

E

∫ T

0

{
Ẽ
[
∂μH(t, �̃t )(Xt )

] · (Xt − X′
t

)}
dt

= EẼ

∫ T

0

{[
∂μH(t,�t)(X̃t )

] · (X̃t − X̃′
t

)}
dt(32)

= E

∫ T

0
Ẽ
[
∂μH(t,�t)(X̃t ) · (X̃t − X̃′

t

)]
dt.

Consequently, by (30), (31) and (32), we obtain

J (α) − J
(
α′)

≤ E

∫ T

0

[
H(t,�t) − H

(
t,�′

t

)]
dt

(33)

−E

∫ T

0

{
∂xH(t,�t) · (Xt − X′

t

)+ Ẽ
[
∂μH(t, �̃t )(Xt ) · (X̃t − X̃′

t

)]}
dt

≤ 0,

because of the convexity assumption on H [see, in particular, (13)], and because
of the criticality of the admissible control (αt )0≤t≤T , see (29), which says the first
order derivative in α vanishes. �

4.3. Special cases. We consider a set of particular cases which already ap-
peared in the literature, and we provide the special forms of the stochastic Pon-
tryagin principle which apply in these cases. We discuss only sufficient conditions
for optimality for the sake of definiteness. The corresponding necessary conditions
can easily be derived from the results of Section 4.1.
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Scalar interactions. In this subsection we show how the model handled in [2]
appears as a specific example of our more general formulation. We consider scalar
interactions for which the dependence upon the probability measure of the coef-
ficients is through functions of scalar moments of the measure. More specifically,
we assume that

b(t, x,μ,α) = b̂
(
t, x, 〈ψ,μ〉, α), σ (t, x,μ,α) = σ̂

(
t, x, 〈φ,μ〉, α),

f (t, x,μ,α) = f̂
(
t, x, 〈γ,μ〉, α), g(x,μ) = ĝ

(
x, 〈ζ,μ〉)

for some scalar functions ψ , φ, γ and ζ with at most quadratic growth at ∞, and
functions b̂, σ̂ and f̂ defined on [0, T ] × R

d × R × A with values in R
d , Rd×m

and R, respectively, and a real valued function ĝ defined on R
d × R. We use the

bracket notation 〈h,μ〉 to denote the integral of the function h with respect to the
measure μ. The functions b̂, σ̂ , f̂ and ĝ are similar to the functions b, σ , f and g

with the variable μ, which was a measure, replaced by a numeric variable, say r .
Reserving the notation H for the Hamiltonian we defined above, we have

H(t, x,μ, y, z,α)

= b̂
(
t, x, 〈ψ,μ〉, α) · y + σ̂

(
t, x, 〈φ,μ〉, α) · z + f̂

(
t, x, 〈γ,μ〉, α).

We then proceed to derive the particular form taken by the adjoint equation in the
present situation. We start with the terminal condition as it is easier to identify.
According to (18), it reads

YT = ∂xg(XT ,PXT
) + Ẽ

[
∂μg(X̃T ,P

X̃T
)(XT )

]
.

Since the terminal cost is of the form g(x,μ) = ĝ(x, 〈ζ,μ〉), given our definition
of differentiability with respect to the variable μ, we know, as a generalization
of (6), that ∂μg(x,μ)(·) reads

∂μg(x,μ)
(
x′)= ∂r ĝ

(
x, 〈ζ,μ〉)∂ζ

(
x′), x′ ∈R

d .

Therefore, the terminal condition YT can be rewritten as

YT = ∂xĝ
(
XT ,E

[
ζ(XT )

])+ Ẽ
[
∂r ĝ
(
X̃T ,E

[
ζ(XT )

])]
∂ζ(XT ),

which is exactly the terminal condition used in [2] once we remark that the “tildes”
can be removed since X̃T has the same distribution as XT . Within this framework,
convexity in μ is quite easy to check. Here is a typical example borrowed from [2]:
if g and ĝ do not depend on x, then the function P2(R

d) � μ �→ g(μ) = ĝ(〈ζ,μ〉)
is convex if ζ is convex and ĝ is nondecreasing and convex.

Similarly, ∂μH(t, x,μ, y, z,α) can be identified to the R
d -valued function de-

fined by

∂μH(t, x,μ, y, z,α)
(
x′)

= [∂r b̂
(
t, x, 〈ψ,μ〉, α)� y

]
∂ψ
(
x′)+ [∂r σ̂

(
t, x, 〈φ,μ〉, α)� z

]
∂φ
(
x′)

+ ∂r f̂
(
t, x, 〈γ,μ〉, α)∂γ

(
x′),
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and the dynamic part of the adjoint equation (18) rewrites

dYt = −{∂xb̂
(
t,Xt ,E

[
ψ(Xt)

]
, αt

)� Yt + ∂xσ̂
(
t,Xt ,E

[
φ(Xt)

]
, αt

)� Zt

+ ∂xf̂
(
t,Xt ,E

[
γ (Xt)

]
, αt

)}
dt

+ Zt dWt

− {Ẽ[∂r b̂
(
t, X̃t ,E

[
ψ(Xt)

]
, α̃t

)� Ỹt

]
∂ψ(Xt)

+ Ẽ
[
∂r σ̂
(
t, X̃t ,E

[
φ(Xt)

]
, α̃t

)� Z̃t

]
∂φ(Xt)

+ Ẽ
[
∂r f̂
(
t, X̃t ,E

[
γ (Xt)

]
, α̃t

)]
∂γ (Xt)

}
dt,

which, again, is exactly the adjoint equation used in [2] once we remove the
“tildes.”

REMARK 4.8. The mean–variance portfolio optimization example discussed
in [2] and the solution proposed in [3] and [10] of the optimal control of linear-
quadratic (LQ) McKean–Vlasov dynamics are based on the general form of the
Pontryagin principle proven in this section as applied to the scalar interactions
considered in this subsection.

First order interactions. In the case of first order interactions, the dependence
upon the probability measure is linear in the sense that the coefficients b, σ , f and
g are given in the form

b(t, x,μ,α) = 〈b̂(t, x, ·, α),μ
〉
, σ (t, x,μ,α) = 〈σ̂ (t, x, ·, α),μ

〉
,

f (t, x,μ,α) = 〈f̂ (t, x, ·, α),μ
〉
, g(x,μ) = 〈ĝ(x, ·),μ〉

for some functions b̂, σ̂ and f̂ defined on [0, T ]×R
d ×R

d ×A with values in R
d ,

R
d×m and R, respectively, and a real valued function ĝ defined on R

d × R
d . The

form of this dependence comes from the original derivation of the McKean–Vlasov
equation as limit of the dynamics of a large system of particles evolving according
to a system of stochastic differential equations with mean-field interactions of the
form

dXi
t = 1

N

N∑
j=1

b̂
(
t,Xi

t ,X
j
t

)
dt + 1

N

N∑
j=1

σ̂
(
t,Xi

t ,X
j
t

)
dW

j
t ,

(34)
i = 1, . . . ,N,

for t ∈ [0, T ], where Wi ’s are N independent standard Wiener processes in R
d .

In the present situation the linearity in μ implies that ∂μg(x,μ)(x′) = ∂x′ ĝ(x, x′),
and similarly,

∂μH(t, x,μ, y, z,α)
(
x′)= ∂x′ b̂

(
t, x, x′, α

)� y + ∂x′ σ̂
(
t, x, x′, α

)� z

+ ∂x′ f̂
(
t, x, x′, α

)
,
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and the dynamic part of the adjoint equation (18) rewrites

dYt = −Ẽ
[
∂xĤ (t,Xt , X̃t , Yt ,Zt , αt ) + ∂x′Ĥ (t, X̃t ,Xt , Ỹt , Z̃t , α̃t )

]
dt + Zt dWt,

if we use the obvious notation

Ĥ
(
t, x, x′, y, z,α

)= b̂
(
t, x, x′, α

) · y + σ̂
(
t, x, x′, α

) · z + f̂
(
t, x, x′, α

)
,

and the terminal condition is given by

YT = Ẽ
[
∂xĝ(XT , X̃T ) + ∂x′ ĝ(X̃T ,XT )

]
.

5. Solvability of forward–backward systems. We now turn to the applica-
tion of the Pontryagin stochastic maximum principle to the solution of the optimal
control of McKean–Vlasov dynamics. The strategy is to identify a minimizer of
the Hamiltonian, and to use it in the forward dynamics and the adjoint equation.
This creates a coupling between these equations, leading to the study of an FBSDE
of mean-field type. As explained in the Introduction, the existence results proven
in [9] and [8] do not cover some of the solvable models (such as the LQ mod-
els). Here we establish existence and uniqueness by taking advantage of the spe-
cific structure of the equation, inherited from the underlying optimization problem.
Assuming that the terminal cost and the Hamiltonian satisfy the same convexity
assumptions as in the statement of Theorem 4.7, we indeed prove that unique solv-
ability holds by applying the continuation method, originally exposed within the
framework of FBSDEs in [21]. Some of the results of this section were announced
in the note [10].

5.1. Technical assumptions. We state the conditions we shall use from now
on. These assumptions subsume assumptions (A1)–(A4) introduced in Sections 2
and 4. As it is most often the case in applications of the stochastic maximum
principle, we choose A = R

k , and we consider a linear model for the forward
dynamics of the state.

(B1) The drift b and the volatility σ are linear in μ, x and α. They read

b(t, x,μ,α) = b0(t) + b1(t)μ̄ + b2(t)x + b3(t)α,

σ (t, x,μ,α) = σ0(t) + σ1(t)μ̄ + σ2(t)x + σ3(t)α,

for some bounded measurable deterministic functions b0, b1, b2 and b3 with val-
ues in R

d , Rd×d , Rd×d and R
d×k , and σ0, σ1, σ2 and σ3 with values in R

d×m,
R

(d×m)×d , R(d×m)×d and R
(d×m)×k [the parentheses around d ×m indicating that

σi(t)ui is seen as an element of Rd×m whenever ui ∈ R
d , with i = 1,2, or ui ∈ R

k ,
with i = 3], and where we use the notation μ̄ = ∫ x dμ(x) for the mean of a mea-
sure μ.
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(B2) The functions f and g satisfy the same assumptions as in (A.3)–(A4) in
Section 4 (with respect to some constant L). In particular, there exists a constant
L̂ such that ∣∣f (t, x′,μ′, α′)− f (t, x,μ,α)

∣∣+ ∣∣g(x′,μ′)− g(x,μ)
∣∣

≤ L̂
[
1 + ∣∣x′∣∣+ |x| + ∣∣α′∣∣+ |α| + ‖μ‖2 + ∥∥μ′∥∥

2

]
× [∣∣(x′, α′)− (x,α)

∣∣+ W2
(
μ′,μ

)]
.

(B3) There exists a constant ĉ > 0 such that the derivatives of f and g with
respect to (x,α) and x, respectively, are ĉ-Lipschitz continuous with respect to
(x,α,μ) and (x,μ), respectively, the Lipschitz property in the variable μ being
understood in the sense of the 2-Wasserstein distance. Moreover, for any t ∈ [0, T ],
any x, x′ ∈ R

d , any α,α′ ∈ R
k , any μ,μ′ ∈ P2(R

d) and any R
d -valued random

variables X and X′ having μ and μ′ as distributions,

E
[∣∣∂μf

(
t, x′,μ′, α′)(X′)− ∂μf (t, x,μ,α)(X)

∣∣2]
≤ ĉ
(∣∣(x′, α′)− (x,α)

∣∣2 +E
[∣∣X′ − X

∣∣2]),
E
[∣∣∂μg

(
x′,μ′)(X′)− ∂μg(x,μ)(X)

∣∣2]
≤ ĉ
(∣∣x′ − x

∣∣2 +E
[∣∣X′ − X

∣∣2]).
(B4) The function f is convex with respect to (x,μ,α) for t fixed, in such a

way that, for some λ > 0,

f
(
t, x′,μ′, α′)− f (t, x,μ,α)

− ∂(x,α)f (t, x,μ,α) · (x′ − x,α′ − α
)− Ẽ

[
∂μf (t, x,μ,α)(X̃) · (X̃′ − X̃

)]
≥ λ
∣∣α′ − α

∣∣2,
whenever X̃, X̃′ ∈ L2(�̃, Ã, P̃;Rd) with distributions μ and μ′, respectively. The
function g is also assumed to be convex in (x,μ) (on the same model, but with
λ = 0).

We refer to Section 3.2 for a discussion of the conditions (B3) and (B4).
By comparing (7) with (B3), we notice that the liftings L2(�̃;Rd) � X̃ �→
f (t, x, P̃

X̃
, α) and L2(�̃;Rd) � X̃ �→ g(x, P̃

X̃
) have Lipschitz continuous deriva-

tives. As a consequence, Lemma 3.3 applies, and for any t ∈ [0, T ], x ∈ R
d ,

μ ∈ P2(R
d) and α ∈ R

k , there exist versions of R
d � x′ �→ ∂μf (t, x,μ,α)(x′)

and R
d � x′ �→ ∂μg(x,μ)(x′) which are ĉ-Lipschitz continuous.

Following example (6), we also emphasize that b and σ obviously satisfy (B3).

5.2. The Hamiltonian and the adjoint equations. The drift and the volatility
being linear, the Hamiltonian takes the particular form

H(t, x,μ, y, z,α) = [b0(t) + b1(t)μ̄ + b2(t)x + b3(t)α
] · y

+ [σ0(t) + σ1(t)μ̄ + σ2(t)x + σ3(t)α
] · z + f (t, x,μ,α),
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for t ∈ [0, T ], x, y ∈ R
d , z ∈ R

d×m, μ ∈ P2(R
d) and α ∈ R

k . Given (t, x,μ, y,

z) ∈ [0, T ] ×R
d ×P2(R

d) ×R
d ×R

d×m, the function R
k � α �→ H(t, x,μ, y, z,

α) is strictly convex so that there exists a unique minimizer α̂(t, x,μ, y, z)

α̂(t, x,μ, y, z) = argmin
α∈Rk

H(t, x,μ, y, z,α).(35)

Assumptions (B1)–(B4) above being slightly stronger than the assumptions used
in [9], we can follow the arguments given in the proof of Lemma 2.1 of [9] in or-
der to prove that, for all (t, x,μ, y, z) ∈ [0, T ] ×R

d ×P2(R
d) ×R

d ×R
d×m, the

function [0, T ]×R
d ×P2(R

d)×R
d ×R

d×m � (t, x,μ, y, z) �→ α̂(t, x,μ, y, z) is
measurable, locally bounded and Lipschitz-continuous with respect to (x,μ, y, z),
uniformly in t ∈ [0, T ], the Lipschitz constant depending only upon λ, the supre-
mum norms of b3 and σ3 and the Lipschitz constant of ∂αf in (x,μ). Except
maybe for the Lipschitz property with respect to the measure argument, these facts
were explicitly proved in [9]. The regularity of α̂ with respect to μ follows from
the following remark. If (t, x, y, z) ∈ [0, T ] ×R

d ×R
d ×R

d×m is fixed and μ,μ′
are generic elements in P2(R

d), α̂ and α̂′ denoting the associated minimizers, we
deduce from the convexity assumption (B4),

2λ
∣∣α̂′ − α̂

∣∣2 ≤ (α̂′ − α̂
) · [∂αf

(
t, x,μ, α̂′)− ∂αf (t, x,μ, α̂)

]
= (α̂′ − α̂

) · [∂αH
(
t, x,μ, y, z, α̂′)− ∂αH(t, x,μ, y, z, α̂)

]
= (α̂′ − α̂

) · [∂αH
(
t, x,μ, y, z, α̂′)− ∂αH

(
t, x,μ′, y, z, α̂′)](36)

= (α̂′ − α̂
) · [∂αf

(
t, x,μ, α̂′)− ∂αf

(
t, x,μ′, α̂′)]

≤ C
∣∣α̂′ − α̂

∣∣W2
(
μ′,μ

)
,

the passage from the second to the third line following from the identity

∂αH(t, x,μ, y, z, α̂) = ∂αH
(
t, x,μ′, y, z, α̂′)= 0.

For each admissible control α = (αt )0≤t≤T , if we denote the corresponding solu-
tion of the state equation by X = (Xα

t )0≤t≤T , then the adjoint BSDE (18) intro-
duced in Definition 3.6 reads

dYt = −∂xf (t,Xt ,PXt , αt ) dt − b
†
2(t)Yt dt − σ

†
2 (t)Zt dt + Zt dWt

(37)
− Ẽ
[
∂μf (t, X̃t ,PXt , α̃t )(Xt )

]
dt − b

†
1(t)E[Yt ]dt − σ

†
1 (t)E[Zt ]dt.

Given the necessary and sufficient conditions proven in the previous section, our
goal is to use the control (α̂t )0≤t≤T defined by α̂t = α̂(t,Xt ,PXt , Yt ,Zt ) where α̂

is the minimizer function constructed above, and (Xt , Yt ,Zt )0≤t≤T is a solution of
the FBSDE

dXt = [b0(t) + b1(t)E[Xt ] + b2(t)Xt + b3(t)α̂(t,Xt ,PXt , Yt ,Zt )
]
dt

+ [σ0(t) + σ1(t)E[Xt ] + σ2(t)Xt + σ3(t)α̂(t,Xt ,PXt , Yt ,Zt )
]
dWt,(38)
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dYt = −[∂xf
(
t,Xt ,PXt , α̂(t,Xt ,PXt , Yt ,Zt )

)+ b
†
2(t)Yt + σ

†
2 (t)Zt

]
dt

+ Zt dWt

− {Ẽ[∂μf
(
t, X̃t ,PXt , α̂(t, X̃t ,PXt , Ỹt , Z̃t )

)
(Xt)

]
+ b

†
1(t)E[Yt ] + σ

†
1 (t)E[Zt ]}dt,

with the initial condition X0 = x0, for a given deterministic point x0 ∈ R
d , and the

terminal condition YT = ∂xg(XT ,PXT
) + Ẽ[∂μg(X̃T ,PXT

)(XT )].

5.3. Main result. Here is the main existence and uniqueness result:

THEOREM 5.1. Under (B1)–(B4), the forward–backward system (38) is
uniquely solvable.

PROOF. The proof is an adaptation of the continuation method used in [21]
to handle standard FBSDEs satisfying appropriate monotonicity conditions. Gen-
erally speaking, it consists in proving that existence and uniqueness are kept pre-
served when the coefficients in (38) are slightly perturbed. Starting from an initial
case for which existence and uniqueness are known to hold, we then establish The-
orem 5.1 by modifying iteratively the coefficients so that (38) is eventually shown
to belong to the class of uniquely solvable systems.

A natural and simple strategy then consists in modifying the coefficients in a
linear way. Unfortunately, this might generate heavy notation. For this reason, we
use the following conventions.

First, as in Section 4.1, the notation (�t)0≤t≤T stands for the generic notation
for denoting a process of the form (Xt ,PXt , Yt ,Zt , αt )0≤t≤T with values in R

d ×
P2(R

d) × R
d × R

d×m × R
k . We will then denote by S the space of processes

(�t)0≤t≤T such that (Xt , Yt ,Zt , αt )0≤t≤T is (Ft )0≤t≤T progressively-measurable,
(Xt)0≤t≤T and (Yt )0≤t≤T have continuous trajectories and

‖�‖S = E

[
sup

0≤t≤T

[|Xt |2 + |Yt |2]+
∫ T

0

[|Zt |2 + |αt |2]dt

]1/2

< +∞.(39)

Similarly, the notation (θt )0≤t≤T is the generic notation for denoting a pro-
cess (Xt ,PXt , αt )0≤t≤T with values in R

d × P2(R
d) × R

k . All the processes
(θt )0≤t≤T that are considered below appear as the restrictions of an extended pro-
cess (�t)0≤t≤T ∈ S.

Moreover, we call an initial condition for (38) a square-integrable F0-
measurable random variable ξ with values in R

d , that is, an element of L2(�,F0,

P;Rd). Recall indeed that F0 can be chosen as a σ -algebra independent of
(Wt)0≤t≤T . In comparison with the statement of Theorem 5.1, this permits us
to generalize the case when ξ is deterministic.
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Finally, we call an input for (38) a four-tuple I = ((Ib
t ,Iσ

t ,If
t )0≤t≤T ,Ig

T ),

(Ib
t )0≤t≤T , (Iσ

t )0≤t≤T and (If
t )0≤t≤T being three square-integrable progressively-

measurable processes with values in R
d , Rd×m and R

d , respectively, and Ig
T de-

noting a square-integrable FT -measurable random variable with values in R
d .

Such an input is specifically designed to be injected into the dynamics of (38), Ib

being plugged into the drift of the forward equation, Iσ into the volatility of the
forward equation, If into the bounded variation term of the backward equation
and Ig into the terminal condition of the backward equation. The space of inputs
is denoted by I. It is endowed with the norm

‖I‖I = E

[∣∣Ig
T

∣∣2 +
∫ T

0

[∣∣Ib
t

∣∣2 + ∣∣Iσ
t

∣∣2 + ∣∣If
t

∣∣2]dt

]1/2

.(40)

We then put:

DEFINITION 5.2. For any γ ∈ [0,1], any ξ ∈ L2(�,F0,P;Rd) and any input
I ∈ I, the FBSDE

dXt = (γ b(t, θt ) + Ib
t

)
dt + (γ σ(t, θt ) + Iσ

t

)
dWt,

(41)
dYt = −(γ {∂xH(t,�t) + Ẽ

[
∂μH(t, �̃t )(Xt )

]}+ If
t

)
dt + Zt dWt,

for t ∈ [0, T ], with the optimality condition

αt = α̂(t,Xt ,PXt , Yt ,Zt ), t ∈ [0, T ],(42)

and with X0 = ξ as initial condition and

YT = γ
{
∂xg(XT ,PXT

) + Ẽ
[
∂μg(X̃T ,PXT

)(XT )
]}+ Ig

T

as terminal condition, is referred to as E(γ, ξ,I).
Whenever (Xt , Yt ,Zt )0≤t≤T is a solution, (Xt ,PXt , Yt ,Zt , αt )0≤t≤T is referred

to as the associated extended solution.

REMARK 5.3. The way the coupling is summarized between the forward and
backward equations in (41) is a bit different from the way equation (38) is written.
In the formulation used in the statement of Lemma 5.2, the coupling between the
forward and the backward equations follows from the optimality condition (42).
Because of that optimality condition, the two formulations are equivalent: When
γ = 1 and I ≡ 0, the pair (41)–(42) coincides with (38).

The following lemma is proved in the next subsection:

LEMMA 5.4. Given γ ∈ [0,1], we say that property (Sγ ) holds true if, for any
ξ ∈ L2(�,F0,P;Rd) and any I ∈ I, the FBSDE E(γ, ξ,I) has a unique extended
solution in S. With this definition, there exists δ0 > 0 such that, if (Sγ ) holds true
for some γ ∈ [0,1), then (Sγ+η) holds true for any η ∈ (0, δ0] satisfying γ +η ≤ 1.

Given Lemma 5.4, Theorem 5.1 follows from a straightforward induction as
(S0) obviously holds true. �
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5.4. Proof of Lemma 5.4. The proof follows from Picard’s contraction theo-
rem. As in the statement, consider indeed γ such that (Sγ ) holds true. For η > 0,
ξ ∈ L2(�,F0,P;Rd) and I ∈ I, we then define a mapping � from S into itself
whose fixed points coincide with the solutions of E(γ + η, ξ,I).

The definition of � is as follows. Given a process � ∈ S, we denote by �′ the
extended solution of the FBSDE E(γ, ξ,I ′) with

Ib,′
t = ηb(t, θt ) + Ib

t ,

Iσ,′
t = ησ(t, θt ) + Iσ

t ,

If,′
t = η∂xH(t,�t) + ηẼ

[
∂μH(t, �̃t )(Xt )

]+ If
t ,

Ig,′
T = η∂xg(XT ,PXT

) + ηẼ
[
∂μg(X̃T ,PXT

)(XT )
]+ Ig

T .

By assumption, it is uniquely defined, and it belongs to S, so that the mapping
� :� �→ �′ maps S into itself. It is then clear that a process � ∈ S is a fixed point
of � if and only if � is an extended solution of E(γ + η, ξ,I). So we only need
to prove that � is a contraction when η is small enough. This is a consequence of
the following lemma:

LEMMA 5.5. Let γ ∈ [0,1] such that (Sγ ) holds true. Then there exists a
constant C, independent of γ , such that, for any ξ, ξ ′ ∈ L2(�,F0,P;Rd) and
I,I ′ ∈ I, the respective extended solutions � and �′ of E(γ, ξ,I) and E(γ, ξ ′,I ′)
satisfy ∥∥� − �′∥∥

S
≤ C

(
E
[∣∣ξ − ξ ′∣∣2]1/2 + ∥∥I − I ′∥∥

I

)
.

Given Lemma 5.5, we indeed check that � is a contraction when η is small
enough. Given �1 and �2 two processes in S and denoting by �′,1 and �′,2 their
respective images by �, we deduce from Lemma 5.5 that∥∥�′,1 − �′,2∥∥

S
≤ Cη

∥∥�1 − �2∥∥
S
,

which is enough to conclude.

5.5. Proof of Lemma 5.5. The strategy follows from a mere variation on the
proof of the classical stochastic maximum principle. With the same notation as
in the statement, and with the convention of expanding � as (Xt ,PXt , Yt ,Zt ,

αt )0≤t≤T and letting (θt = (Xt ,PXt , αt ))0≤t≤T , we compute

E
[(

X′
T − XT

) · YT

]
= E
[(

ξ ′ − ξ
) · Y0

]
− γ

{
E

∫ T

0

[
∂xH(t,�t) · (X′

t − Xt

)+ Ẽ
[
∂μH(t, �̃t )(Xt )

] · (X′
t − Xt

)]
dt
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−E

∫ T

0

[[
b
(
t, θ ′

t

)− b(t, θt )
] · Yt + [σ (t, θ ′

t

)− σ(t, θt )
] · Zt

]
dt

}

−
{
E

∫ T

0

[(
X′

t − Xt

) · If
t + (Ib

t − Ib,′
t

) · Yt + (Iσ
t − Iσ,′

t

) · Zt

]
dt

}

= T0 − γ T1 − T2.

Following (31),

E
[(

X′
T − XT

) · YT

]
= γE

[(
∂xg(XT ,PXT

) + Ẽ
[
∂μg(X̃T ,PXT

)(XT )
]) · (X′

T − XT

)]
+E
[(
Ig,′

T − Ig
T

) · YT

]
≤ γE

[
g
(
X′

T ,PX′
T

)− g(XT ,PXT
)
]+E

[(
Ig,′

T − Ig
T

) · YT

]
.

Identifying the two expressions above and repeating the proof of Theorem 4.7, we
obtain

γ J
(
α′)− γ J (α)

(43)

≥ γ λE

∫ T

0

∣∣αt − α′
t

∣∣2 dt + T0 − T2 +E
[(
Ig

T − Ig,′
T

) · YT

]
.

Now we can reverse the roles of α and α′ in (43). Denoting by T ′
0 and T ′

2 the
corresponding terms in the inequality and summing both inequalities, we deduce
that

2γ λE

∫ T

0

∣∣αt − α′
t

∣∣2 dt + T0 + T ′
0 − (T2 + T ′

2
)+E

[(
Ig

T − Ig,′
T

) · (YT − Y ′
T

)]≤ 0.

The sum T2 + T ′
2 reads

T2 + T ′
2 = E

∫ T

0

[−(If
t − If,′

t

) · (Xt − X′
t

)+ (Ib
t − Ib,′

t

) · (Yt − Y ′
t

)
+ (Iσ

t − Iσ,′
t

) · (Zt − Z′
t

)]
dt.

Similarly,

T0 + T ′
0 = −E

[(
ξ − ξ ′) · (Y0 − Y ′

0
)]

.

Therefore, using Young’s inequality, there exists a constant C (the value of which
may change from line to line), C being independent of γ , such that, for any ε > 0,

γE

∫ T

0

∣∣αt − α′
t

∣∣2 dt ≤ ε
∥∥� − �′∥∥2

S
+ C

ε

(
E
[∣∣ξ − ξ ′∣∣2]+ ∥∥I − I ′∥∥2

I

)
.(44)
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Now, we observe that, by standard estimates for BSDEs, there exists a constant C,
independent of γ , such that

E

[
sup

0≤t≤T

∣∣Yt − Y ′
t

∣∣2 +
∫ T

0

∣∣Zt − Z′
t

∣∣2 dt

]
(45)

≤ CγE

[
sup

0≤t≤T

∣∣Xt − X′
t

∣∣2 +
∫ T

0

∣∣αt − α′
t

∣∣2 dt

]
+ C

∥∥I − I ′∥∥2
I
.

Similarly,

E

[
sup

0≤t≤T

∣∣Xt − X′
t

∣∣2]
(46)

≤ E
[∣∣ξ − ξ ′∣∣2]+ CγE

∫ T

0

∣∣αt − α′
t

∣∣2 dt + C
∥∥I − I ′∥∥2

I
.

From (45), (46) and (44), we deduce that

E

[
sup

0≤t≤T

∣∣Xt − X′
t

∣∣2 + sup
0≤t≤T

∣∣Yt − Y ′
t

∣∣2 +
∫ T

0

∣∣Zt − Z′
t

∣∣2 dt

]

≤ CγE

∫ T

0

∣∣αt − α′
t

∣∣2 dt + C
(
E
[∣∣ξ − ξ ′∣∣2]+ ∥∥I − I ′∥∥2

I

)
(47)

≤ Cε
∥∥� − �′∥∥2

S
+ C

ε

(
E
[∣∣ξ − ξ ′∣∣2]+ ∥∥I − I ′∥∥2

I

)
.

Using the Lispchitz property of α̂(t, ·, ·, ·, ·) and choosing ε small enough, we
complete the proof.

5.6. Decoupling field. The notion of decoupling field, also referred to as an
FBSDE value function, plays a main role in the machinery of forward–backward
equations. Indeed, it provides a representation of the value Yt of the backward
component at time t , as a function of the value Xt of the forward component. When
the coefficients of the forward–backward equation are random, the decoupling field
is a random field. When the coefficients are deterministic, the decoupling field is
a deterministic function, which solves a specific partial differential equation. Here
is the structure of the decoupling field in the McKean–Vlasov framework:

LEMMA 5.6. For any t ∈ [0, T ] and any ξ ∈ L2(�,Ft ,P;Rd), there exists a
unique solution, denoted by (X

t,ξ
s , Y

t,ξ
s ,Z

t,ξ
s )t≤s≤T , of (38) on [t, T ] with X

t,ξ
t = ξ

as initial condition.
For any μ ∈ P2(R

d), there exists a measurable mapping u(t, ·,μ) :Rd � x �→
u(t, x,μ) such that

P
(
Y

t,ξ
t = u(t, ξ,Pξ )

)= 1.(48)
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Moreover, there exists a constant C, depending only on the parameters in (B1)–
(B4), such that, for any t ∈ [0, T ] and any ξ1, ξ2 ∈ L2(�,Ft ,P;Rd),

E
[∣∣u(t, ξ1,Pξ1

)− u
(
t, ξ2,Pξ2

)∣∣2]≤ CE
[∣∣ξ1 − ξ2∣∣2].(49)

The proof is given below. For the time being, we notice that the additional vari-
able Pξ is for free in the above writing since we could set v(t, ·) = u(t, ·,Pξ ) and

then have Y
t,ξ
t = v(t, ξ). The additional variable Pξ is specified to emphasize the

non-Markovian nature of the equation over the state space R
d : starting from two

different initial conditions, the decoupling fields might not be the same, since the
law of the initial conditions might be different. It is important to keep indeed in
mind that, in the Markovian framework, the decoupling field is the same for all pos-
sible initial conditions, thus yielding the connection with partial differential equa-
tions. Here the Markov property holds, but over the enlarged space R

d ×P2(R
d),

thus justifying the use of the extra variable Pξ . Nevertheless, we often remove the
dependence upon Pξ in the remaining of the paper.

An important fact is that the representation formula (48) can be extended to the
whole path:

PROPOSITION 5.7. Under (B1)–(B4), for any ξ ∈ L2(�,F0,P;Rd), there
exists a measurable mapping v : [0, T ] ×R

d →R
d such that

P
(∀t ∈ [0, T ], Y 0,ξ

t = v
(
t,X

0,ξ
t

))= 1.

It satisfies sup0≤t≤T |v(t,0)| < +∞. Moreover, there exists a constant C such that
v(t, ·) is C-Lipschitz continuous for any t ∈ [0, T ].

We start with the following:

PROOF OF LEMMA 5.6. Given t ∈ [0, T ) and ξ ∈ L2(�,Ft ,P;Rd), existence
and uniqueness of a solution of (38) on [t, T ] with ξ as initial condition is a direct
consequence of Theorem 5.1, more precisely of its proof since we are starting from
a random initial condition. Using as underlying filtration the augmented filtration
F

t generated by ξ and by (Ws − Wt)t≤s≤T , we deduce that Y
t,ξ
t coincides a.s.

with a σ(ξ)-measurable R
d -valued random variable. In particular, there exists a

measurable function uξ (t, ·) :Rd →R
d such that P[Y t,ξ

t = uξ (t, ξ)] = 1.

We now claim that the law of (ξ, Y
t,ξ
t ) only depends upon the law of ξ . This

directly follows from the version of the Yamada–Watanabe theorem for FBS-
DEs [11]. Since uniqueness holds pathwise, it also holds in law, so that given
two initial conditions with the same law, the solutions also have the same laws.
Therefore, given another R

d -valued random vector ξ ′ with the same law as ξ ,
it holds (ξ, uξ (t, ξ)) ∼ (ξ ′, uξ ′(t, ξ ′)). In particular, for any measurable function
v :Rd → R

d , the random variables uξ (t, ξ) − v(ξ) and uξ ′(t, ξ ′) − v(ξ ′) have the
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same law. Choosing v = uξ (t, ·), we deduce that uξ ′(t, ·) and uξ (t, ·) are a.e. equal
under the probability measure Pξ . To put it differently, denoting by μ the law of ξ ,
there exists an element u(t, ·,μ) ∈ L2(Rd,μ) such that uξ (t, ·) and uξ ′(t, ·) coin-
cide μ a.e. with u(t, ·,μ). Identifying u(t, ·,μ) with one of its version, this proves
that

P
(
Y

t,ξ
t = u(t, ξ,μ)

)= 1.

When t > 0, we notice that, for any μ ∈ P2(R
d), there exists an Ft -measurable

random variable ξ such that μ = Pξ . In such a case, the procedure we just de-
scribed permits us to define u(t, ·,μ) for any μ ∈ P2(R

d). The situation may be
different when t = 0 as F0 may reduce to events of measure zero or one. In such
a case, F0 can be enlarged without any loss of generality in order to support Rd -
valued random variables with arbitrary distributions.

The Lipschitz property (49) of u(0, ·, ·) is a direct consequence of Lemma 5.5
with γ = 1. By a time shift, the same argument applies to u(t, ·, ·). �

We now turn to the following:

PROOF OF PROPOSITION 5.7. For the sake of simplicity, we denote the pro-
cess (X

0,ξ
t , Y

0,ξ
t ,Z

0,ξ
t )0≤t≤T by (Xt , Yt ,Zt )0≤t≤T . The proof is then a combina-

tion of Lemmas 3.3 and 5.6. Indeed, given t ∈ (0, T ], Lemma 5.6 says that the
family (u(t, ·,μ))μ∈P2(R

d ) satisfies (8) since any μ ∈ P2(R
d) can be seen as the

law of some Ft -measurable random vector ζ . Therefore, for μ = PXt , we can find
a mapping w(t, ·) that is C-Lipschitz continuous [for the same C as in (49)] and
that coincides with u(t, ·,PXt ) a.e. under the probability measure PXt . It satisfies

∀t ∈ [0, T ] P
[
Yt = w(t,Xt)

]= 1,(50)

since Yt = Y
t,Xt
t . In particular,

sup
0≤t≤T

∣∣w(t,0)
∣∣≤ sup

0≤t≤T

E
[|Yt |]+ sup

0≤t≤T

E
[∣∣w(t,Xt) − w(t,0)

∣∣]
(51)

≤ sup
0≤t≤T

E
[|Yt |]+ C sup

0≤t≤T

E
[|Xt |]< +∞.

For any integer n ≥ 1, we then let

v(n)(t, x) = 1[0,T /2n](t)w
(

T

2n
, x

)
+

2n∑
k=2

1((k−1)T /2n,kT /2n](t)w
(

kT

2n
, x

)
,

for t ∈ [0, T ] and x ∈ R
d . Denoting by v(n),i the ith coordinate of v(n) for any

i ∈ {1, . . . , d}, we also let

vi(t, x) = lim sup
n→+∞

v(n),i(t, x), t ∈ [0, T ], x ∈ R
d,
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and then v(t, x) = (v1(t, x), . . . , vd(t, x)). As each of the v(n) is a Borel mea-
surable function on [0, T ] × R

d , so is v. Similarly, v satisfies (51) and, for any
t ∈ [0, T ], v(t, ·) is C-Lipschitz continuous.

Finally, we notice that, for any t ∈ Dn = {kT /2n, k ∈ {1, . . . ,2n}}, with n ∈
N \ {0}, and for � ≥ n,

v(�)(t, ·) = w(t, ·) = v(t, ·),
so that, w(t, ·) = v(t, ·) for any t ∈ D =⋃n≥1 Dn. Therefore, D being countable,
we deduce from (50) that the event

A = {ω ∈ � :∀t ∈ D, Yt (ω) = w
(
t,Xt (ω)

)= v
(
t,Xt (ω)

)}
has full measure, that is, P(A) = 1. On the event A, we notice that, for any t ∈
(0, T ],

Yt = lim
n→+∞Ytn = lim

n→+∞v(tn,Xtn),

where (tn)n≥1 is the sequence of points in D such that, for any n ≥ 1, tn ∈ Dn and
tn −T/2n < t ≤ tn. Since v(tn, ·) is C-Lipschitz continuous, we deduce that, on A,

Yt = lim
n→+∞v(tn,Xt),

which shows that the sequence (v(tn,Xt))n≥1 is convergent. Now we observe
that v(tn,Xt) is also equal to v(n)(t,Xt). Therefore, the limit must coincide with
v(t,Xt ). This proves that, on the event A, Yt = v(t,Xt ) for any t ∈ (0, T ]. By the
same argument, the same equality holds true for t = 0. The case t = 0 is handled
separately for notational reasons since the definition of vn at time 0 is different.

�

5.7. Comments, conjectures and future prospects. A first question concerns
the possible extension of the above results to the case of random coefficients. It
is indeed well known that the classical Pontryagin stochastic maximum principle
also applies to systems with random coefficients. The same should hold true in the
McKean–Vlasov case with a modicum of care.

Basically, Theorems 4.5 (necessary condition in the Pontryagin principle), 4.7
(sufficient condition in the Pontryagin principle) and 5.1 are still valid for random
coefficients. Allowing random coefficients means that b, σ and f may depend
upon the realization ω ∈ � in a progressively-measurable way with respect to the
filtration F = (Ft )0≤t≤T , and that g may also depend upon the randomness in a
measurable way with respect to the σ -field FT . The various assumptions, which
may differ from one theorem to another, are then supposed to hold true pathwise
under the probability measure P. The shape of the underlying adjoint backward
equation is then the same as that one in (18), provided that the independent copy
made from the space (�,F,P) to the space (�̃, F̃, P̃) also takes into account the
dependence upon the randomness. This means that, in (18), the value of ∂μH in
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∂μH(t, X̃t ,PXt , Ỹt , Z̃t , α̃t ) must be computed along the corresponding realization
ω̃ ∈ �̃ (as X̃t , Ỹt , Z̃t and α̃t actually stand for X̃t (ω̃), Ỹt (ω̃), Z̃t (ω̃) and α̃t (ω̃)).
This principle holds true for all the “copies” considered in the computations.

It seems much less clear how the results about the decoupling field can be ex-
tended to the random setting. Indeed Y

t,ξ
t is already random, so that the decoupling

field uξ introduced in the proof of Lemma 5.6 is also random. Following the proof
of Lemma 5.6, we can write it as uξ (ω, t, x), but the shape of uξ cannot be entirely
described by the law of ξ as it also relies on the joint law of ξ and (b, f, σ, g).
Unfortunately, the proofs of Lemma 3.3 and Proposition 5.7 rely on a coupling
argument which fails when the decoupling field depends on the joint distribution
of ξ and (b, f, σ, g).

Going back to the original case of deterministic coefficients, an interesting chal-
lenge is to identify an analytical counterpart of the probabilistic approach to the op-
timization problem. In the standard (non-McKean–Vlasov) setting, the optimiza-
tion problem can be tackled by solving the Hamilton–Jacobi–Bellman equation
satisfied by the value function. In the McKean–Vlasov setting, the problem is much
more challenging. As highlighted by Proposition 5.7, the problem could be given a
Markov structure on the enlarged space Rd ×P2(R

d). As a result, the correspond-
ing Hamilton–Jacobi–Bellman equation, if it exists, would hold as a partial differ-
ential equation on [0, T ]×R

d ×P2(R
d). We do believe that the differential calcu-

lus presented in Section 3 should allow to write such a Hamilton–Jacobi–Bellman
equation rigorously. It would be of the same general structure as the so-called
master equation of mean-field games suggested by Lions in his lectures at the Col-
lège de France, and described in the notes by Cardaliaguet [6] in a case of some
first order differential games. We believe that the differences between those two
equations should be borne by the following fundamental distinction. The master
equation for controlled McKean–Vlasov processes is expected to be a Hamilton–
Jacobi–Bellman equation as it derives from an optimization problem, whereas the
master equation for mean-field games is not a Hamilton–Jacobi–Bellman equa-
tion since the fixed point condition describing equilibriums in a mean-field game
does not derive from an optimization criterion. We investigate this question in the
forthcoming work [7].

6. Propagation of chaos and approximate equilibrium. In this section, we
show how the solution of the optimal control of McKean–Vlasov dynamics can
provide equilibriums for N -player games when N tends to +∞.

Throughout this section, assumptions (B1)–(B4) are in force. For each integer
N ≥ 1, we consider a stochastic system whose time evolution is given by a system
of N coupled stochastic differential equations of the form

dUi
t = b

(
t,Ui

t , ν̄
N
t , βi

t

)
dt + σ

(
t,Ui

t , ν̄
N
t , βi

t

)
dWi

t ,
(52)

1 ≤ i ≤ N,with ν̄N
t = 1

N

N∑
j=1

δ
U

j
t
,
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with t ∈ [0, T ] and Ui
0 = x0, 1 ≤ i ≤ N . Here ((βi

t )0≤t≤T )1≤i≤N are as-
sumed to be progressively measurable with respect to the filtration generated by
(W 1, . . . ,WN). They take values in R

k , and have finite L2 norms over [0, T ] × �

∀i ∈ {1, . . . ,N} E

∫ T

0

∣∣βi
t

∣∣2 dt < +∞,

where, for convenience, we have fixed an infinite sequence ((Wi
t )0≤t≤T )i≥1 of

independent m-dimensional Brownian motions. One should think of Ui
t as the

(private) state at time t of agent or player i ∈ {1, . . . ,N}, βi
t being the action taken

at time t by player i. For each 1 ≤ i ≤ N , we denote by

JN,i(β1, . . . , βN )= E

[
g
(
Ui

T , ν̄N
T

)+ ∫ T

0
f
(
t,Ui

t , ν̄
N
t , βi

t

)
dt

]
(53)

the cost to the ith player. We frame the problem in the same set-up as in the case
of the mean-field game models studied in [9], but the rule we apply for minimiz-
ing the cost is different. Indeed, we now minimize the cost over exchangeable
strategies: when the family (βi,Wi)1≤i≤N is exchangeable (with a slight abuse of
terminology, we shall say that the strategy is exchangeable), the costs to all the
players are the same. We use the notation JN,i(β) = JN(β) for this common cost.
From a practical point of view, restricting the minimization to exchangeable strate-
gies means that the players agree to use a common policy, which is not the case in
the standard mean-field game approach.

Our first goal is to compute the limit

lim
N→+∞ inf

β
JN(β),

the infimum being taken over exchangeable strategies. Another one is to identify,
for each integer N , a specific set of ε-optimal strategies and the corresponding
state evolutions.

6.1. Limit of the costs and non-Markovian approximate equilibriums. Recall
that we denote by J the optimal cost,

J = E

[
g(XT ,μT ) +

∫ T

0
f
(
t,Xt ,μt , α̂(t,Xt ,μt , Yt ,Zt )

)
dt

]
,(54)

where (Xt , Yt ,Zt )0≤t≤T is the solution to (38) with X0 = x0 as initial condition,
(μt )0≤t≤T denoting the flow of marginal probability measures μt = PXt , for 0 ≤
t ≤ T .

For the purpose of comparison, we introduce (X̄1, . . . , X̄N), each X̄i standing
for the solution of the forward equation in (38) when driven by the Brownian
motion Wi . To put it differently, (X̄1, . . . , X̄N) solves the system (52) when the
empirical distribution ν̄N

t is replaced by μt , and βi
t is given by βi

t = ᾱi
t with

ᾱi
t = α̂

(
t, X̄i

t ,μt , Ȳ
i
t , Z̄

i
t

)
,
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the pair (Ȳ i, Z̄i) solving the backward equation in (38) when driven by Wi . Notice
that the processes ((�̄i

t = (X̄i
t ,μt , Ȳ

i
t , Z̄

i
t , ᾱ

i
t ))0≤t≤T )1≤i≤N are independent. Our

first result in this direction is the following.

THEOREM 6.1. Under assumptions (B1)–(B4),

lim
N→+∞ inf

β
JN(β) = J,

the infimum being taken over (square integrable) strategies β = (β1, . . . , βN) such
that the family (βi,Wi)1≤i≤N is exchangeable. Moreover, the non-Markovian con-
trol ᾱ = (ᾱ1, . . . , ᾱN) is an approximate optimal control in the sense that

lim
N→+∞JN(ᾱ) = J.

PROOF. The proof consists in comparing JN(β) to J for a given exchangeable
strategy β . Once again, it relies on a variant of the Pontryagin stochastic maximum
principle proven in Section 4. With the above notation, we have

JN(β) − J = E
[
g
(
Ui

T , ν̄N
T

)− g
(
X̄i

T ,μT

)]
+E

[∫ T

0

(
f
(
s,Ui

s , ν̄
N
s , βi

s

)− f
(
s, X̄i

s,μs, ᾱ
i
s

))
ds

]
,

the identity holding for any 1 ≤ i ≤ N . Therefore, we can write

JN(β) − J = T i
1 + T i

2 ,(55)

with

T i
1 = E

[(
Ui

T − X̄i
T

) · Ȳ i
T

]+E

[∫ T

0

(
f
(
s,Ui

s , ν̄
N
s , βi

s

)− f
(
s, X̄i

s,μs, ᾱ
i
s

))
ds

]
,

T i
2 = E

[
g
(
Ui

T , ν̄N
T

)− g
(
X̄i

T ,μT

)]−E
[(

Ui
T − X̄i

T

) · ∂xg
(
X̄i

T ,μT

)]
−EẼ

[(
Ũ i

T − ˜̄Xi
T

) · ∂μg
(
X̄i

T ,μT

)( ˜̄Xi
T

)]
= T i

2,1 − T i
2,2 − T i

2,3,

where we used Fubini’s theorem with the independent copies denoted with a tilde
“ ·̃ ”.

Analysis of T i
2 . Using the diffusive effect of independence, we claim

T i
2,3 = EẼ

[(
Ũ i

T − ˜̄Xi
T

) · ∂μg
(
X̄i

T ,μT

)( ˜̄Xi
T

)]

= 1

N

N∑
j=1

Ẽ
[(

Ũ i
T − ˜̄Xi

T

) · ∂μg
( ˜̄Xj

T ,μT

)( ˜̄Xi
T

)]
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+O
(
Ẽ
[∣∣Ũ i

T − ˜̄Xi
T

∣∣2]1/2
Ẽ

[∣∣∣∣∣ 1

N

N∑
j=1

∂μg
( ˜̄Xj

T ,μT

)( ˜̄Xi
T

)

−E
[
∂μg
(
X̄i

T ,μT

)( ˜̄Xi
T

)]∣∣∣∣∣
2]1/2)

= 1

N

N∑
j=1

E
[(

Ui
T − X̄i

T

) · ∂μg
(
X̄

j
T ,μT

)(
X̄i

T

)]

+E
[∣∣Ui

T − X̄i
T

∣∣2]1/2O
(
N−1/2),

where O(·) stands for the Landau notation. Therefore, taking advantage of the
exchangeability in order to handle the remainder, we obtain

1

N

N∑
i=1

T i
2,3 = 1

N2

N∑
j=1

N∑
i=1

E
[(

Ui
T − X̄i

T

) · ∂μg
(
X̄

j
T ,μT

)(
X̄i

T

)]

+E
[∣∣U1

T − X̄1
T

∣∣2]1/2O
(
N−1/2).

Introducing a random variable ϑ from (�̃, F̃, P̃) into R with uniform distribution
on {1, . . . ,N} as in the proof of Proposition 3.2, we can write

1

N

N∑
i=1

T i
2,3 = 1

N

N∑
j=1

EẼ
[(

Uϑ
T − X̄ϑ

T

) · ∂μg
(
X̄

j
T ,μT

)(
X̄ϑ

T

)]

+E
[∣∣U1

T − X̄1
T

∣∣2]1/2O
(
N−1/2).

Finally, defining the flow of empirical measures

μ̄N
t = 1

N

N∑
j=1

δ
X̄

j
t
, t ∈ [0, T ],

and using (B3), Propositions 3.2 and 3.4, and Remark 3.5 to estimate the distance
W2(μ̄

N
T ,μT ), the above estimate gives

1

N

N∑
i=1

T i
2,3 = 1

N

N∑
j=1

EẼ
[(

Uϑ
T − X̄ϑ

T

) · ∂μg
(
X̄

j
T , μ̄N

T

)(
X̄ϑ

T

)]

+E
[∣∣U1

T − X̄1
T

∣∣2]1/2O
(
�N(d)

)
,

where we used the notation �N(d) for any function of N which could be used as
an upper bound for

E
[
W 2

2
(
μ̄N

T ,μT

)]1/2 +
(∫ T

0
E
[
W 2

2
(
μ̄N

t ,μt

)]
dt

)1/2

= O
(
�N(d)

)
.(56)
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By Remark 3.5, the left-hand side tends to 0 as N tends to +∞, since the func-
tion [0, T ] � t �→ E[W 2

2 (μ̄N
t ,μt )] can be bounded independently of N . Therefore,

(�N(d))N≥1 is always chosen as a sequence that converges to 0 as N tends to +∞.
When sup0≤t≤T |X̄1

t | has finite moment of order d +5, Remark 3.5 says that �N(d)

can be chosen as N−1/(d+4). In any case, we will assume that �N(d) ≥ N−1/2. Go-
ing back to (55),

1

N

N∑
i=1

T i
2

= 1

N

N∑
i=1

{
E
[
g
(
Ui

T , ν̄N
T

)− g
(
X̄i

T , μ̄N
T

)]−E
[(

Ui
T − X̄i

T

) · ∂xg
(
X̄i

T , μ̄N
T

)]

−EẼ
[(

Uϑ
T − X̄ϑ

T

) · ∂μg
(
X̄i

T , μ̄N
T

)(
X̄ϑ

T

)]}
+ (1 +E

[∣∣U1
T − X̄1

T

∣∣2]1/2)O(�N(d)
)
,

where we used the local Lipschitz property of g and Remark 3.5 to replace μT

by μ̄N
T .

Noticing that a.s. under P, the law of Uϑ
T (resp., X̄ϑ

T ) under P̃ is the empirical
distribution ν̄N

T (resp., μ̄N
T ), we can apply the convexity property of g [see (13)] to

get

1

N

N∑
i=1

T i
2 ≥ (1 +E

[∣∣U1
T − X̄1

T

∣∣2]1/2)O(�N(d)
)
.(57)

Analysis of T i
1 . Using Itô’s formula and Fubini’s theorem, we obtain

T i
1 = E

[∫ T

0

(
H
(
s,Ui

s , ν̄
N
s , Ȳ i

s , Z̄
i
s, β

i
s

)− H
(
s, X̄i

s,μs, Ȳ
i
s , Z̄

i
s, ᾱ

i
s

))
ds

]

−E

[∫ T

0

(
Ui

s − X̄i
s

) · ∂xH
(
s, X̄i

s,μs, Ȳ
i
s , Z̄

i
s, ᾱ

i
s

)
ds

]
(58)

−EẼ

[∫ T

0

(
Ũ i

s − ˜̄Xi
s

) · ∂μH
(
s, X̄i

s,μs, Ȳ
i
s , Z̄

i
s, ᾱ

i
s

)( ˜̄Xi
s

)
ds

]

= T i
1,1 − T i

1,2 − T i
1,3.

Using the regularity properties (B2) and (B3) of the Hamiltonian, (56), and recall-
ing that the limit process (X̄i

t ,μt , Ȳ
i
t , Z̄

i
t , ᾱ

i
t )0≤t≤T has finite S-norm [see (39)],

we get

T i
1,1 = E

[∫ T

0

(
H
(
s,Ui

s , ν̄
N
s , Ȳ i

s , Z̄
i
s, β

i
s

)− H
(
s, X̄i

s, μ̄
N
s , Ȳ i

s , Z̄
i
s, ᾱ

i
s

))
ds

]

+O
(
�N(d)

)
,(59)
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T i
1,2 = E

[∫ T

0

(
Ui

s − X̄i
s

) · ∂xH
(
s, X̄i

s, μ̄
N
s , Ȳ i

s , Z̄
i
s, ᾱ

i
s

)
ds

]

+
(
E

∫ T

0

∣∣U1
s − X̄1

s

∣∣2 ds

)1/2

O
(
�N(d)

)
.

Finally, using the diffusive effect of independence, we have

1

N

N∑
i=1

T i
1,3

= 1

N

N∑
i=1

EẼ

[∫ T

0

(
Ui

s − X̄i
s

) · ∂μH
(
s, ˜̄Xi

s,μs,
˜̄Y i

s,
˜̄Zi

s,
˜̄αi
s

)(
X̄i

s

)
ds

]

= 1

N2

N∑
j=1

N∑
i=1

E

[∫ T

0

(
Ui

s − X̄i
s

) · ∂μH
(
s, X̄j

s ,μs, Ȳ
j
s , Z̄j

s , ᾱj
s

)(
X̄i

s

)
ds

]

+
(
E

∫ T

0

∣∣U1
s − X̄1

s

∣∣2 ds

)1/2

O
(
N−1/2).

By (B3), Propositions 3.2 and 3.4, we have

1

N

N∑
i=1

T i
1,3

= 1

N

N∑
i=1

EẼ

[∫ T

0

(
Uϑ

s − X̄ϑ
s

) · ∂μH
(
s, X̄i

s,μs, Ȳ
i
s , Z̄

i
s, ᾱ

i
s

)(
X̄ϑ

s

)
ds

]

+
(
E

∫ T

0

∣∣U1
s − X̄1

s

∣∣2 ds

)1/2

O
(
N−1/2)(60)

= 1

N

N∑
i=1

EẼ

[∫ T

0

(
Uϑ

s − X̄ϑ
s

) · ∂μH
(
s, X̄i

s, μ̄
N
s , Ȳ i

s , Z̄
i
s, ᾱ

i
s

)(
X̄ϑ

s

)
ds

]

+
(
E

∫ T

0

∣∣U1
s − X̄1

s

∣∣2 ds

)1/2

O
(
�N(d)

)
.

In order to complete the proof, we evaluate the missing term in the Taylor expan-
sion of T i

1 in (58), namely

1

N

N∑
i=1

E

[∫ T

0

(
βi

s − ᾱi
s

) · ∂αH
(
s, X̄i

s, μ̄
N
s , Ȳ i

s , Z̄
i
s, ᾱ

i
s

)
ds

]
,
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in order to benefit from the convexity of H . We use Remark 3.5 once more,

E

[∫ T

0

(
βi

s − ᾱi
s

) · ∂αH
(
s, X̄i

s, μ̄
N
s , Ȳ i

s , Z̄
i
s, ᾱ

i
s

)
ds

]

= E

[∫ T

0

(
βi

s − ᾱi
s

) · ∂αH
(
s, X̄i

s,μs, Ȳ
i
s , Z̄

i
s, ᾱ

i
s

)
ds

]
(61)

+
(
E

∫ T

0

∣∣βi
s − ᾱi

s

∣∣2 ds

)1/2

O
(
�N(d)

)

=
(
E

∫ T

0

∣∣βi
s − ᾱi

s

∣∣2 ds

)1/2

O
(
�N(d)

)
,

since ᾱ is an optimizer for H . Using the convexity of H and taking advantage
of the exchangeability, we finally deduce from (58), (59), (60) and (61) that there
exists a constant c > 0 such that

1

N

N∑
i=1

T i
1 ≥ cE

∫ T

0

∣∣β1
s − ᾱ1

s

∣∣2 ds

+O
(
�N(d)

)(
1 + sup

0≤t≤T

E
[∣∣U1

t − X̄1
t

∣∣2]+E

∫ T

0

∣∣β1
s − ᾱ1

s

∣∣2 ds

)1/2

.

By (57) and (55), we deduce that

JN(β) ≥ J + cE

∫ T

0

∣∣β1
s − ᾱ1

s

∣∣2 ds

+O
(
�N(d)

)(
1 + sup

0≤t≤T

E
[∣∣U1

t − X̄1
t

∣∣2]+E

∫ T

0

∣∣β1
s − ᾱ1

s

∣∣2 ds

)1/2

.

From the inequality

sup
0≤t≤T

E
[∣∣U1

t − X̄1
t

∣∣2]≤ CE

∫ T

0

∣∣β1
s − ᾱ1

s

∣∣2 ds,

which holds for some constant C independent of N , we deduce that

JN(β) ≥ J − C�N(d),(62)

for a possibly new value of C. This proves that

lim inf
N→+∞ inf

β
JN(β) ≥ J.

In order to prove Theorem 6.1, it only remains to find a sequence of controls
(βN)N≥1 such that

lim sup
N→+∞

JN (βN )≤ J.
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More precisely, we are about to show that

lim sup
N→+∞

JN(ᾱ) ≤ J,

thus proving that ᾱ = (ᾱ1, . . . , ᾱN) is an approximate equilibrium, though non-
Markovian. Denoting by (X1, . . . ,XN) the solution of (52) with βi

t = ᾱi
t , classical

estimates from the theory of propagation of chaos (see, e.g., [23] or [13]) imply
that

sup
0≤t≤T

E
[∣∣Xi

t − X̄i
t

∣∣2]= sup
0≤t≤T

E
[∣∣X1

t − X̄1
t

∣∣2]= O
(
N−1).

It is then plain to deduce that

lim sup
N→+∞

JN(ᾱ) ≤ J.

This completes the proof. �

6.2. Approximate equilibriums with distributed closed loop controls. When σ

does not depend upon α, we are able to provide an approximate equilibrium us-
ing only distributed controls in closed loop form. This is of real interest from the
practical point of view. Indeed, in a such case, the optimizer α̂ of the Hamilto-
nian, as defined in (35), does not depend on z. It thus reads as α̂(t, x,μ, y). By
Proposition 5.7, this says that the optimal control (αt )0≤t≤T in Theorem 5.1 has
the feedback form

αt = α̂
(
t,Xt ,μt , v(t,Xt)

)
, t ∈ [0, T ].(63)

The reader may wonder why we make this assumption on σ . Indeed, when σ de-
pends upon α, the process Zt at time t is also expected to read as a function of
t and Xt , since such a representation is known to hold in the classical decoupled
forward–backward setting. Even if we feel that it is indeed possible to prove such
a representation in our more general setting, we refrain from doing it here for
the following reasons: (i) from a practical point of view, for equation (63) to be
meaningful, one would want the feedback function to be Lipschitz-continuous, as
the Lipschitz property ensures that the stochastic differential equation obtained by
plugging (63) into the forward equation in (38) is solvable; (ii) in the current frame-
work, the function v is known to be Lipschitz continuous by Proposition 5.7, but
proving the same result for the representation of Zt in terms of Xt seems to be re-
ally challenging—notice that it is already challenging in the standard case, that is,
without any McKean–Vlasov interaction; (iii) we finally mention that, in any case,
the relationship between Zt and Xt , if it exists, must be rather intricate as Zt is
expected to solve the equation Zt = ∂xv(t,Xt )σ (t,Xt ,PXt , α̂(t,Xt ,PXt , Yt ,Zt )),
which can be formally derived by identifying martingale integrands when expand-
ing Yt = v(t,Xt ) by a formal application of Itô’s formula. This equation has been
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investigated in [25] in the standard case, but we are convinced that extending
this analysis to the current setting, though possible, would be very technical and
lengthy, and distract us from the main thrust of this section.

Now, for each integer N , we can consider the solution (X1
t , . . . ,X

N
t )0≤t≤T of

the system of N stochastic differential equations

dXi
t = b

(
t,Xi

t ,μ
N
t , α̂

(
t,Xi

t ,μt , v
(
t,Xi

t

)))
dt + σ

(
t,Xi

t ,μ
N
t

)
dWi

t
(64)

with μN
t = 1

N

N∑
j=1

δ
X

j
t
,

with t ∈ [0, T ] and Xi
0 = x0. The system (64) is well posed since v satisfies Propo-

sition 5.7, and the minimizer α̂(t, x,μt , y) is Lipschitz continuous and at most of
linear growth in the variables x, μ and y, uniformly in t ∈ [0, T ]. The processes
(Xi)1≤i≤N give the dynamics of the private states of the N players in the stochastic
differential game of interest when the players use the strategies

α
N,i
t = α̂

(
t,Xi

t ,μt , v
(
t,Xi

t

))
, 0 ≤ t ≤ T , i ∈ {1, . . . ,N}.(65)

These strategies are in closed loop form. They are even distributed since, at each
time t ∈ [0, T ], a player only needs to know his own private state in order to com-
pute the value of the action to take at that time. By the linear growth of v and of
the minimizer α̂, it holds, for any p ≥ 2,

sup
N≥1

max
1≤i≤N

E

[
sup

0≤t≤T

∣∣Xi
t

∣∣p]< +∞,(66)

the expectation being actually independent of i since the strategy is obviously
exchangeable. We then have the following approximate equilibrium property:

THEOREM 6.2. In addition to assumptions (B1)–(B4), assume that σ does
not depend upon α. Then

JN(β) ≥ JN (αN )−O
(
N−1/(d+4)),

for any β = (β1, . . . , βN) such that (βi,Wi)1≤i≤N is exchangeable, where αN is
defined in (65).

PROOF. We use the same notation as in the proof of Theorem 6.1.
Since ᾱ1

t now reads as α̂(t, X̄1
t ,μt , v(t, X̄1

t )) for 0 ≤ t ≤ T , we first notice,
by the growth property of v, that E[sup0≤t≤T |X̄1

t |p] < +∞ for any p ≥ 1. As
mentioned in (11) in Remark 3.5, this says that �N(d) in the lower bound

JN(β) ≥ J − C�N(d),

[see (62)] can be chosen as N−1/(d+4).
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Moreover, since v(t, ·) is Lipschitz continuous, using once again classical es-
timates from the theory of propagation of chaos (see, e.g., [23] or [13]), we also
have

sup
0≤t≤T

E
[∣∣Xi

t − X̄i
t

∣∣2]= sup
0≤t≤T

E
[∣∣X1

t − X̄1
t

∣∣2]= O
(
N−1),

so that

sup
0≤t≤T

E
[∣∣αN,i

t − ᾱi
t

∣∣2]= sup
0≤t≤T

E
[∣∣αN,1

t − ᾱ1
t

∣∣2]= O
(
N−1),

for any 1 ≤ i ≤ N . It is then plain to deduce that

JN (αN )≤ J + C�N(d).

This completes the proof. �

APPENDIX

A.1. Proof of Lemma 3.1. First step. The proof is based on the fact that,
for a bounded continuous function � :Rd × R

d → R
d , the mapping L2(�̃;Rd) ×

R
d � (X̃, x) �→ �(X̃, x) ∈ L2(�̃;Rd) is continuous and thus measurable, where

L2(�̃;Rd) is the quotient of the space of square-integrable random variables by
the P̃ almost sure equality and �(X̃, x) is an abuse of notation for denoting the class
(in L2(�̃;Rd)) of �(χ̃, x), with χ̃ a random variable matching X̃ almost surely.
Measurability is preserved by replacing � by 1I ◦ � for an interval I , as 1I can be
written as the pointwise limit of continuous functions.

Here is the way we apply this simple remark. Denoting by “·” the inner product
in L2(�̃;Rd), the mapping [L2(�̃;Rd)]2 � (X̃, Ỹ ) �→ [DH̃ ](X̃) · Ỹ is measurable
as the pointwise limit of measurable mappings. Therefore, for any vector e ∈ R

d

and any ε > 0, the mapping L2(�̃;Rd)×R
d � (X̃, x) �→ [DH̃ ](X̃) · (e1{|X̃−x|≤ε})

is jointly measurable. Then the mapping ψ = (ψ1, . . . ,ψd) :L2(�̃;Rd) × R
d →

R
d given by

ψi(X̃, x) = lim inf
ε↘0

[ [DH̃ ](X̃) · (ei1{|X̃−x|≤ε})
P̃(|X̃ − x| ≤ ε)

1{P̃(|X̃−x|≤ε)>0}
]

is also jointly measurable, where (e1, . . . , ed) is the canonical basis. By Lebesgue–
Besicovitch differentiation theorem, ψ(X̃, ·) is a version of ∂μH(P̃

X̃
)(·) in

L2(Rd,P
X̃
). If ∂μH(P̃

X̃
)(·) admits a continuous version, then it coincides with

it.
Second step. In order to complete the proof, we prove that we can find a

measurable mapping P2(R
d) � μ �→ X̃μ ∈ L2(�̃;Rd) with X̃μ ∼ μ. By chain

rule, this will show that the mapping P2(R
d) × R

d � (μ, x) �→ ψ(X̃μ, x) is
measurable. We first consider the case μ([0,1)d) = 1. Given some n ≥ 0, we
split the hypercube [0,1)d into (2n)d hypercubes of the form Qn(k1, . . . , kd) =
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∏d
i=1[ki/2n, (ki + 1)/2n), with (k1, . . . , kd) ∈ (Z ∩ [0,2n − 1])d . For any d-tuple

(k1, . . . , kd), we let Mn,μ(k1, . . . , kd) = μ(Qn(k1, . . . , kd)).
The strategy is to arrange the cylinders Qn(k1, . . . , kd) increasingly according

to some order. To this end, we observe that, for any 1 ≤ i ≤ d , ki/2n may be
uniquely written as

ki

2n
=

n∑
j=1

εj (ki)

2j
,(67)

with εj (ki) ∈ {0,1}. Given (k1, . . . , kd) and (k′
1, . . . , k

′
d) in (Z∩[0,2n −1])d , with

(k1, . . . , kd) �= (k′
1, . . . , k

′
d), we say that (k1, . . . , kd) ≺ (k′

1, . . . , k
′
d) if, letting

p = inf
{
j ∈ {1, . . . , n} :

(
εj (k1), . . . , εj (kd)

) �= (εj

(
k′

1
)
, . . . , εj

(
k′
d

))}
,

q = inf
{
i ∈ {1, . . . , d} : εp(ki) �= εp

(
k′
i

)}
,

it holds 0 = εp(kq) < εp(k′
q) = 1. In other words, the order is defined by taking

into account first the index j in (67) and then the coordinate i.
Then we can divide the interval [0,1) into a family (I n,μ(k1, . . . , kd)), with

(k1, . . . , kd) ∈ (Z ∩ [0,2n − 1])d , of (2n)d disjoint (possibly empty) intervals,
closed at the left end and open at the right end, of length Mn,μ(k1, . . . , kd)

each, and ordered increasingly according to ≺. This means that, for any x ∈
In,μ(k1, . . . , kd) and x′ ∈ In,μ(k′

1, . . . , k
′
d), x < x′ if (k1, . . . , kd) ≺ (k′

1, . . . , k
′
d).

Then we let

X̃n,μ = ∑
(k1,...,kd )∈(Z∩[0,2n−1])d

(
2−nk1, . . . ,2−nkd

)
1{η̃∈In,μ(k1,...,kd )},

where η̃ : �̃ → (0,1) is uniformly distributed. It is then plain to check that the
mapping μ �→ X̃n,μ is measurable from the Borel subset of P2(R

d) made of
probability measures μ satisfying μ([0,1)d) = 1 to L2(�̃;Rd). Indeed, writ-
ing In,μ(k1, . . . , kd) as [an,μ(k1, . . . , kd), bn,μ(k1, . . . , kd)), the mapping μ �→
(an,μ(k1, . . . , kd), bn,μ(k1, . . . , kd)) is measurable [the mapping μ �→ Mn,μ(k1,

. . . , kd) is measurable, and the intervals are constructed in a canonical way from
their lengths]. Then, as explained in the beginning of the proof, the functions
μ �→ 1{η̃≥an,μ(k1,...,kd )} and μ �→ 1{η̃<bn,μ(k1,...,kd )} can be proved to be measurable
by approximating the indicator functions by continuous functions.

We then notice that, for any bounded and continuous function �,

Ẽ
[
�
(
X̃n,μ)]
= ∑

(k1,...,kd )∈(Z∩[0,2n−1])d
�

(
k1

2n
, . . . ,

kd

2n

)
μ
(
Qn(k1, . . . , kd)

)

→
∫
Rd

�(x) dμ(x),
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proving that X̃n,μ converges in law to μ as n tends to +∞. Moreover, because of
our choice of ordering, we have

In,μ(k1, . . . , kd) = ⋃
(εi )i=1,...,d∈{0,1}d

I n+1,μ(2k1 + ε1, . . . ,2kd + εd).

The reason is that, for any other (k′
1, . . . , k

′
d) ≺ (k1, . . . , kd) in {0,2n − 1}d , it must

hold In+1,μ(2k′
1 + ε′

1, . . . ,2k′
d + ε′

d) ≺ In+1,μ(2k1 + ε1, . . . ,2kd + εd) for any
ε1, ε

′
1, . . . , εd, ε′

d ∈ {0,1} (and the same with ≺ replaced by �). As a by-product,
there exists a constant C, independent of n and μ, such that

Ẽ
[∣∣X̃n,μ − X̃n+1,μ

∣∣2]1/2 ≤ C

2n
.

This proves (X̃n,μ)n≥1 is Cauchy in L2(�̃;Rd). The limit is denoted by X̃∞,μ.
Therefore, the mapping μ �→ X̃∞,μ is measurable on the set of probability mea-
sures μ satisfying μ([0,1)d) = 1.

When the support of μ is general, we define φ�μ as the push-forward (or image)
of μ by the mapping

φ(x1, . . . , xd)

=
(

1

π
arctan(x1) + 1

2
, . . . ,

1

π
arctan(xd) + 1

2

)
, x1, . . . , xd ∈R

d .

We then let X̃μ = (X̃
μ
i )1≤i≤d , with X̃

μ
i = tan(πX̃

∞,φ�μ
i −π/2), for i ∈ {1, . . . , d}.

Clearly, X̃μ has μ as distribution. Considering a sequence of bounded continuous
functions (ζn)n≥1 converging to the identity, X̃μ is the limit of (ζn(tan(πX̃

∞,φ�μ
i −

π/2)))1≤i≤d , which is measurable with respect to μ. This proves that μ �→ X̃μ is
measurable.

A.2. Proof of Lemma 3.3. First step. We first consider the case v bounded
and assume that μ has a strictly positive continuous density p on the whole R

d , p

and its derivatives being of exponential decay at infinity. We claim that there exists
a continuously differentiable one-to-one function from (0,1)d onto R

d such that,
whenever η1, . . . , ηd are d independent random variables uniformly distributed on
(0,1), U(η1, . . . , ηd) has distribution μ. It satisfies for any (z1, . . . , zd) ∈ (0,1)d

∂Ui

∂zi

(z1, . . . , zd) �= 0,
∂Uj

∂zi

(z1, . . . , zd) = 0, 1 ≤ i < j ≤ d.

The result is well known when d = 1. In such a case, U is the inverse of the
cumulative distribution function of μ. In higher dimension, U can be constructed
by an induction argument on the dimension. Assume indeed that some Û has been
constructed for the first marginal distribution μ̂ of μ on R

d−1, that is, for the
push-forward of μ by the projection mapping R

d � (x1, . . . , xd) �→ (x1, . . . , xd−1).
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Given (x1, . . . , xd−1) ∈ R
d−1, we then denote by p(·|x1, . . . , xd−1) the conditional

density of μ given the d − 1 first coordinates

p(xd |x1, . . . , xd−1) = p(x1, . . . , xd)

p̂(x1, . . . , xd−1)
, x1, . . . , xd−1 ∈ R

d−1,

where p̂ denotes the density of μ̂ (which is continuously differentiable and pos-
itive). We then denote by (0,1) � zd �→ U(d)(zd |x1, . . . , xd−1) the inverse of the
cumulative distribution function of the law of density p(·|x1, . . . , xd−1). It satisfies

Fd

(
U(d)(zd |x1, . . . , xd−1)|x1, . . . , xd−1

)= zd,

with

Fd(xd |x1, . . . , xd−1) =
∫ xd

−∞
p(y|x1, . . . , xd−1) dy,

which is continuously differentiable in (x1, . . . , xd) (using the exponential de-
cay of the density at infinity). By the implicit function theorem, the mapping
R

d−1 × (0,1) � (x1, . . . , xd−1, zd) �→ U(d)(zd |x1, . . . , xd−1) is continuously dif-
ferentiable. The partial derivative with respect to zd is given by

∂U(d)

∂zd

(zd |x1, . . . , xd−1) = 1

p(U(d)(zd |x1, . . . , xd−1)|x1, . . . , xd−1)
,

which is nonzero. We now let, for (z1, . . . , zd) ∈ (0,1)d ,

U(z1, . . . , zd) = (Û (z1, . . . , zd−1),U
(d)(zd |Û (z1, . . . , zd−1)

))
.

By construction, U(η1, . . . , ηd) has distribution μ: Û (η1, . . . , ηd−1) has distri-
bution μ̂, and the conditional law of Ud(η1, . . . , ηd) given η1, . . . , ηd−1 is the
conditional law of μ given the d − 1 first coordinates, since Ud(η1, . . . , ηd) =
U(d)(ηd |Û (η1, . . . , ηd−1)). It satisfies [∂Ud/∂zd ](z1, . . . , zd) > 0 and, for i < d ,
[∂Ui/∂zd ](z1, . . . , zd) = 0. In particular, since Û is assumed (by induction) to be
one-to-one and [∂Ud/∂zd ](z1, . . . , zd) > 0, U must be one-to-one as well. As the
Jacobian matrix of U is triangular with nonzero elements on the diagonal, it is
invertible. By the global inversion theorem, U is a diffeomorphism: the range of
U is the support of μ, that is, Rd . This proves that U is one-to-one from (0,1)d

onto R
d .

Second step. We still consider the case v bounded and assume that μ has a
strictly positive continuous density p on the whole R

d , p and its derivatives being
of exponential decay at infinity. We will use the mapping U constructed in the first
step. For three random variables ξ , ξ ′ and G in L2(�;Rd), the pair (ξ, ξ ′) being
independent of G, the random variables ξ and ξ ′ having the same distribution and
G being normally distributed with mean 0 and covariance matrix given by the
identity Id in dimension d , in notation G ∼ Nd(0, Id), then (8) implies that, for
any integer n ≥ 1,

E
[∣∣v(ξ + n−1G,Pξ+n−1G

)− v
(
ξ ′ + n−1G,Pξ+n−1G

)∣∣2]≤ C2
E
[∣∣ξ − ξ ′∣∣2].
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In particular, setting

vn(x) = E
[
v
(
x + n−1G,Pξ+n−1G

)]
= nd

(2π)d/2

∫
Rd

v(y,Pξ+n−1G) exp
(
−n2 |x − y|2

2

)
dy,

we have

E
[∣∣vn(ξ) − vn

(
ξ ′)∣∣2]≤ C2

E
[∣∣ξ − ξ ′∣∣2].(68)

Notice that vn is infinitely differentiable with bounded derivatives.
We now choose a specific coupling for ξ and ξ ′. Indeed, we know that for

any η = (η1, . . . , ηd) and η′ = (η′
1, . . . , η

′
d), with uniform distributions on (0,1)d ,

U(η) and U(η′) have the same distribution as ξ . Without any loss of general-
ity, we then assume that the probability space (�,F,P) is given by (0,1)d × R

d

endowed with its Borel σ -algebra and the product of the Lebesgue measure on
(0,1)d and of the Gaussian measure Nd(0, Id). The random variables η and G

are then chosen as the canonical mappings η : (0,1)d × R
d � (z, y) �→ z and

G : (0,1)d ×R
d � (z, y) �→ y.

We then define η′ as a function of the variable z ∈ (0,1)d only. For a given
z0 = (z0

1, . . . , z
0
d) ∈ (0,1)d and for h small enough so that the open ball B(z0, h)

of center z0 and radius h is included in (0,1)d , we let

η′(z) =
{

z − 2
(
zd − z0

d

)
ed, if z ∈ B

(
z0, h

)
,

z, outside,

where ed is the dth vector of the canonical basis, that is, η′ matches locally the
symmetry with respect to the hyperplane containing z0 and orthogonal to ed .
Clearly, η′ preserves the Lebesgue measure. We rewrite (68) as∫

(0,1)d

∣∣vn

(
U
(
η(z)

))− vn

(
U
(
η′(z)

))∣∣2 dz

≤ C2
∫
(0,1)d

∣∣U (η(z)
)− U

(
η′(z)

)∣∣2 dz,

or equivalently∫
|r|<h

∣∣vn

[
U
(
z0 + r − 2rded

)]− vn

(
U
(
z0 + r

))∣∣2 dr

(69)
≤ C2

∫
|r|<h

∣∣U (z0 + r − 2rded

)− U
(
z0 + r

)∣∣2 dr.

Since U is continuously differentiable, we have

vn

(
U
(
z0 + r

))= vn

(
U
(
z0))+ ∂vn

(
U
(
z0)) · [∂U

(
z0) · r]+ o(r),
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where ∂U(z0) is a d × d matrix. We deduce that

vn

[
U
(
z0 + r − 2rded

)]− vn

(
U
(
z0 + r

))

= −2
d∑

i=1

∂vn

∂xi

(
U
(
z0))∂Ui

∂zd

(
z0)rd + o(r)

= −2
∂vn

∂xd

(
U
(
z0))∂Ud

∂zd

(
z0)rd + o(r),

since ∂Ui/∂zd = 0 for i �= d , and∫
|r|<h

∣∣vn

[
U
(
z0 + r − 2rded

)]− vn

(
U
(
z0 − r

))∣∣2 dr

(70)

= 4
∣∣∣∣∂vn

∂xd

(
U
(
z0))∂Ud

∂zd

(
z0)∣∣∣∣

2 ∫
|r|<h

r2
d dr + o

(
hd+2).

Similarly, ∫
|r|<h

∣∣U (z0 + r − 2rded

)− U
(
z0 + r

)∣∣2 dr

(71)

= 4
∣∣∣∣∂Ud

∂zd

(
z0)∣∣∣∣

2 ∫
|r|<h

r2
d dr + o

(
hd+2),

and putting together (69), (70) and (71), we obtain∣∣∣∣∂vn

∂xd

(
U
(
z0))∂Ud

∂zd

(
z0)∣∣∣∣

2

≤ C2
∣∣∣∣∂Ud

∂zd

(
z0)∣∣∣∣

2

.

Since [∂Ud/∂zd ](z0) is different from zero, we deduce that∣∣∣∣∂vn

∂xd

(
U
(
z0))∣∣∣∣

2

≤ C2,

and since U is a one-to-one mapping from (0,1)d onto R
d , and z0 ∈ (0,1)d is

arbitrary, we conclude that |[∂vn/∂xd ](x)| ≤ C, for any x ∈ R
d . By changing the

basis used for the construction of U (we used the canonical basis but we could use
any orthonormal basis), we have |∇vn(x)e| ≤ C for any x, e ∈ R

d with |e| = 1.
This proves that the functions (vn)n≥1 are uniformly bounded and C-Lipschitz
continuous. We then denote by v̂ the limit of a subsequence converging for the
topology of uniform convergence on compact subsets. For simplicity, we keep the
index n to denote the subsequence. Assumption (8) implies

E
[∣∣vn(ξ) − v(ξ,Pξ )

∣∣2]≤ E
[∣∣v(ξ + n−1G,Pξ+n−1G

)− v(ξ,Pξ )
∣∣2]≤ C2n−2,

and taking the limit n → +∞, we deduce that v̂ and v(·,Pξ ) coincide Pξ almost
everywhere. This completes the proof when v is bounded, and ξ has a continuous
positive density p, p and its derivatives being of exponential decay at infinity.
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Third step. When v is bounded, and ξ is bounded and has a general distribution,
we approximate ξ by ξ + n−1G again. Then ξ + n−1G has a positive continu-
ous density, the density and its derivatives being of Gaussian decay at infinity, so
that, by the second step, the function R

d � x �→ v(x,Pξ+n−1G) can be assumed to
be C-Lipschitz continuous for each n ≥ 1. Extracting a convergent subsequence
and passing to the limit as above, we deduce that v(·,Pξ ) admits a C-Lipschitz
continuous version.

When v is bounded but ξ is not bounded, we approximate ξ by its orthogonal
projection on the ball of center 0 and radius n. We then complete the proof in a
similar way.

Finally when v is not bounded, we approximate v by (ψn(v))n≥1 where, for
each n ≥ 1, ψn is a bounded smooth function from R into itself such that ψn(r) = r

for r ∈ [−n,n] and |[dψn/dr](r)| ≤ 1 for all r ∈ R. Then, for each n ≥ 1, there
exists a C-Lipschitz continuous version of ψn(v(·,Pξ )). Choosing some x0 ∈ R

d

such that |v(x0,Pξ )| < +∞, the sequence ψn(v(x0,Pξ )) is bounded so that the
sequence of functions (ψn(v(·,Pξ )))n≥1 is uniformly bounded and continuous on
compact subsets. Extracting a converging subsequence, we complete the proof in
the same way as before.
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