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How will the climate system respond to anthropogenic forcings? One ap-
proach to this question relies on climate model projections. Current climate
projections are considerably uncertain. Characterizing and, if possible, reduc-
ing this uncertainty is an area of ongoing research. We consider the problem
of making projections of the North Atlantic meridional overturning circula-
tion (AMOC). Uncertainties about climate model parameters play a key role
in uncertainties in AMOC projections. When the observational data and the
climate model output are high-dimensional spatial data sets, the data are typi-
cally aggregated due to computational constraints. The effects of aggregation
are unclear because statistically rigorous approaches for model parameter in-
ference have been infeasible for high-resolution data. Here we develop a flex-
ible and computationally efficient approach using principal components and
basis expansions to study the effect of spatial data aggregation on paramet-
ric and projection uncertainties. Our Bayesian reduced-dimensional calibra-
tion approach allows us to study the effect of complicated error structures
and data-model discrepancies on our ability to learn about climate model
parameters from high-dimensional data. Considering high-dimensional spa-
tial observations reduces the effect of deep uncertainty associated with prior
specifications for the data-model discrepancy. Also, using the unaggregated
data results in sharper projections based on our climate model. Our compu-
tationally efficient approach may be widely applicable to a variety of high-
dimensional computer model calibration problems.

1. Introduction. Computer models play an important role in understanding
complex physical processes in modern science and engineering. They are particu-
larly important in climate science where computer models, complex deterministic
systems used to model the Earth System, are used both to study climate phenom-
ena as well as make projections about the future. A major source of uncertainty
in climate projections is due to uncertainties about model parameters. Parameter
calibration involves characterizing our knowledge about a model parameter by us-
ing observational data. Here we use calibration to refer to a statistical method that
summarizes information about a parameter in terms of a probability distribution.
In this distribution parameter values that generate output more compatible with
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observational data are assigned higher probabilities than parameters less compat-
ible with observations. Calibration of the parameters using observational data is
hence one avenue to reduce the uncertainty in future projections. A number of
issues and challenges arise when performing statistical calibration of model pa-
rameters. Because each run of the computer model is computationally expensive,
computer model output is typically obtained for a relatively small sample of pa-
rameter values. Furthermore, the model output at each parameter setting may be
high dimensional and in the form of spatial fields. A sound statistical approach to
this problem needs to simultaneously address the spatial dependence in the data
and model outputs, account for various sources of uncertainty and remain com-
putationally efficient. Computational efficiency is key in order to utilize all the
relevant observations at the appropriate scale; previous methods for climate model
calibration have relied on heavy data aggregation, thereby potentially discarding
valuable information.

The scientific problem motivating our statistical analysis is the projection of
the future state of the North Atlantic meridional overturning circulation (AMOC)
in response to anthropogenic climate change. The AMOC is a large-scale ocean
circulation that transports cold and dense water equatorward in the deep North
Atlantic, and warm and salty water poleward in the upper layers of the North
Atlantic. The AMOC might show a persistent weakening in response to anthro-
pogenic forcing. Because the AMOC plays an important role in heat and carbon
transport, an AMOC weakening is projected to have considerable impacts on cli-
mate, and, in response, on natural and human systems [cf. Alley et al. (2007),
Keller et al. (2005, 2007)]. We use previously published perturbed physics ensem-
ble runs [Sriver et al. (2012)] of the University of Victoria Earth System Climate
Model (UVic ESCM) [Weaver et al. (2001)] to set up the calibration problem.
Specifically, the runs model transient behavior of the climate system over the years
1800–2100. Each run starts from a control climate, obtained by running the model
from the same initial condition to equilibrium at preindustrial conditions. Vertical
ocean mixing is important in projecting the AMOC [Wunsch and Ferrari (2004)],
but most of the mixing occurs on scales below that of the UVic ESCM, hence,
mixing is “parameterized” [cf. Goes et al. (2010), Schmittner et al. (2009), Weaver
et al. (2001)] using a “vertical background diffusivity” (Kbg). The AMOC pro-
jections depend on the Kbg parameter values [e.g., Goes et al. (2010)]. The value
of Kbg is uncertain; it therefore needs to be calibrated using observations of the
climate that are informative about Kbg [cf. Bhat et al. (2012), Goes et al. (2010)].

Here, we calibrate Kbg using observations of ocean potential temperature from
the World Ocean Atlas 2009 [Antonov et al. (2010), Locarnini et al. (2010)]. The
World Ocean Atlas is a gridded data product generated by interpolation of in-
strumental observations. The observational data at irregularly distributed locations
are interpolated onto a regular grid by Barnes interpolation [Barnes (1964)]. The
parameter Kbg affects the depth of the oceanic pycnocline [Gnanadesikan (1999)]
and the AMOC [Bryan (1987), Goes et al. (2010)]. As a consequence, models with
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different Kbg values are expected to result in different ocean temperature distribu-
tions. Ocean temperatures are therefore informative about Kbg. Note that neither
data assimilation nor calibration play any role in producing the World Ocean Atlas
data set and the data product does not depend on any assumptions about vertical
diffusivity.

Both the UVic ESCM output and the observational data are spatial data sets
with more than 60,000 spatial locations. Of particular interest is how data aggre-
gation affects the calibration result for Kbg. Often observations of climate and
climate model outputs are 3-D spatial fields. When the spatial data sets are large it
is common practice to aggregate them into 1-D or 2-D patterns [Bhat et al. (2012),
Drignei, Forest and Nychka (2008), Forest, Stone and Sokolov (2008), Goes et al.
(2010), Olson et al. (2012), Sansó and Forest (2009), Schmittner et al. (2009)]
either to avoid computational issues or because the skill of the models at higher
resolution may not always be trusted.

An important and interesting question is what information, if any, is lost by this
data aggregation. Aggregating data for model calibration may increase or decrease
the model parameter uncertainty depending on the relative importance of several
processes. Data aggregation may lead to information loss which would result in
larger uncertainties about the calibrated parameters. On the other hand, data ag-
gregation can potentially reduce the magnitude of model errors, for instance, due
to unresolved variability or structural errors in the climate models, which could
in turn lead to smaller uncertainties about the calibrated parameters. We hypothe-
size for the scientific questions and models we consider here that data aggregation
may lead to considerable loss of information resulting in increased uncertainties
about model parameters. Increased uncertainties about parameters propagates to
increased uncertainty in climate projections, which can impact risk- and decision-
analysis.

We adopt a Gaussian process-based approach to the calibration problem
[Kennedy and O’Hagan (2001), Sacks et al. (1989)]. Gaussian processes provide
flexible statistical interpolators or “emulators” of the computer model across var-
ious parameter settings and are therefore attractive for climate model calibration
[cf. Bhat et al. (2012), Sansó and Forest (2009)]. Unfortunately, the likelihood
evaluations involved in fitting such models can become prohibitive with high-
dimensional spatial data due to the expensive matrix operations involved. Current
approaches for high-dimensional computer model calibration can reduce the com-
putational burden and make likelihood evaluation feasible for moderately large
data sets (spatial fields observed at a few thousand locations) or data sets that are
on a regular and complete grid [Bayarri et al. (2007), Bhat et al. (2012), Higdon
et al. (2008)]. However, to our knowledge, no current calibration approach can
overcome the computational challenge of dealing with large spatial data sets (more
than tens of thousands of data points) on an incomplete grid. Here an incomplete
grid refers to one with a large number of missing points (about 40%).
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The impact of data aggregation on climate model calibration is a largely unan-
swered question due to the inability of existing methods to analyze large spa-
tial data sets of both computer model output and observations. Throughout this
manuscript we will use “large” to refer to data sets that comprise over tens of
thousands of spatial observations. Here we develop a computationally efficient ap-
proach that handles large data sets. This approach gives us the freedom to carry out
a careful study of the effects of data aggregation, for example, comparing calibra-
tion based on unaggregated three-dimensional data with calibration based on ag-
gregated two-dimensional or one-dimensional data. Our approach also enables one
to investigate the interaction between data aggregation and data-model discrepan-
cies and errors when inferring computer model parameters. In our simulated exam-
ples, we have shown that the method can handle complicated model-observation
discrepancy processes without sacrificing computational efficiency.

The remainder of this paper is organized as follows. In Section 2 we provide
a description of the data set. In Section 3 we describe our two-stage framework
for climate model calibration and the associated computational challenges. In Sec-
tion 4 we propose a general model calibration approach in a reduced-dimensional
space that uses a combination of principal components and a basis representation
to overcome computational challenges. In Section 5 we provide implementation
details and in Section 6 we discuss the results from simulated examples and real
data. We conclude this paper with caveats and future directions in Section 7.

2. Data description. Our goal is to build an emulator based on spatial out-
put from UVic ESCM and to calibrate vertical ocean diffusivity (Kbg) using ocean
potential temperature data. The UVic ESCM runs are 3-dimensional patterns of
the mean ocean potential temperature over 1955–2006 at 250 parameter settings.
The parameters controlling model outputs are vertical ocean diffusivity (Kbg), an-
thropogenic aerosol scaling factor (Ascl) and climate sensitivity (Cs). Note that we
converted longwave radiation feedback factor, which is one of the original input
parameters for UVic, into Cs using a simple spline fit. We refer to Sriver et al.
(2012) for the design points and details of the ensemble runs.

To avoid problems related to model artifacts and sparse sampling, we excluded
data beyond 60◦N and 80◦S and 3000 m in depth [Bhat et al. (2012), Key et al.
(2004), Schmittner et al. (2009)]. UVic ESCM outputs are on a 77 (latitude) × 100
(longitude) × 13 (depth) grid, but the number of locations that have nonmissing
observations is 65,595. The missing values occur because there is no ocean at
the locations in the UVic ESCM representation. At each grid point we compute
a temporal mean over the time period of 1955–2006 to average out the effect of
unresolved internal variability.

The observational data are on a 180 (latitude) × 360 (longitude) × 33 (depth)
grid, and we remap this observed data into the UVic model grid using a linear
interpolation using only the nearby points. See Figures A1 and A2 in the supple-
mentary material [Chang et al. (2014)] for comparison between the UVic model
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FIG. 1. Plots of ocean temperature patterns averaged over 1955–2006. A UVic ESCM run (the
first row) and the observational data from World Ocean Atlas 2009 (the second row). The left column
shows the latitude–depth profiles of zonal mean, and the right column displays the longitude–latitude
profiles of vertical mean. Note that the model run shown here is an example of 250 model runs
described in Section 2. (a) and (b) Latitude–depth pattern (Kbg = 0.2, Ascl = 1.5, Cs = 3.976).
(c) and (d) Latitude–depth pattern (observational data).

grid and the observational data grid. This results in a relatively small reduction
to 61,051 data points. The model output locations are also adjusted accordingly.
We convert the observed in situ temperature field into the potential temperature
field in order to (i) have the same measurement unit with UVic ESCM output and
(ii) adjust the effect of pressure on ocean temperature. We obtain potential tem-
perature from the in situ temperature [Locarnini et al. (2010)] and salinity fields
[Antonov et al. (2010)] using the UNESCO equation of state [UNESCO (1981)]
following Bryden (1973) and Fofonoff (1977). During the conversion procedure,
we assume a simplified ocean pressure field varying as a function of latitude and
depth [Lovett (1978)]. As we do for the UVic ESCM output, we compute a tem-
poral mean over 1955–2006 at each location. Figure 1 shows examples of UVic
ESCM model runs and the converted observational data.

3. Model calibration framework. Our computer model calibration frame-
work consists of two stages, (i) model emulation and (ii) parameter calibration
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[Bayarri et al. (2007), Bhat et al. (2012)]. First, we construct an emulator that in-
terpolates computer model outputs at different parameter settings using Gaussian
random fields [Sacks et al. (1989)]. This can be viewed as statistical interpolation
or “kriging” [Cressie (1994)] in the computer model parameter space. Second, we
infer the computer model parameters by relating observational data to computer
model output using the emulator, while considering observational error and allow-
ing for systematic discrepancies between the model and observations [Kennedy
and O’Hagan (2001)]. Note that this two-stage approach has some advantages
over fully Bayesian methods that combine the two stages into a single inferential
step. By constructing an emulator solely based on computer model output [Bhat
et al. (2012), Liu, Bayarri and Berger (2009), Rougier (2008)], this two-stage ap-
proach ensures that inference in the emulation stage is not contaminated by model
discrepancy and observational error. In addition, separating the emulation stage
from calibration provides an easier way to diagnose the accuracy of an emulator.
Furthermore, computations are faster and parameter identifiability problems are
reduced.

Let Y(s, θ) denote the computer model output at the spatial location s =
(longitude, latitude, depth) ∈ S ⊆ R

3 and the model parameter setting θ ∈ �,
where S is the spatial domain of the process and � is the computer model param-
eter space, typically a subset of a unidimensional or multidimensional Euclidean
space. In our calibration problem, � ⊂ R

3 since there are three input parameters.
Furthermore, Z(s) is the corresponding observation at the spatial location s. Since
each run of the climate model is computationally expensive, we can obtain com-
puter model outputs only for a relatively small number of design points p. We
denote these design points in the parameter space by θ1, . . . , θp ∈ �. Let Yi ∈R

n

be the computer model output at each parameter setting θ i for i = 1, . . . , p. Each
computer model output Yi = (Y (s1, θ i ), . . . , Y (sn, θ i))

T is a spatial process ob-
served at n different spatial locations (s1, . . . , sn). In our calibration problem,
n = 61,501 and p = 250. Let Y be the vector of concatenated computer model
outputs such that Y = (Y1, . . . ,Yp)T . We denote the observed spatial process at n

locations by Z = (Z(s1), . . . ,Z(sn))
T . Note that we assume that the locations for

each model output and observation data are the same. If they are different, one can
interpolate either of them depending on which one has a higher resolution. Our
objective is to infer the parameter θ by combining information from Z and Y.

3.1. Two-stage emulation and calibration. We first outline our general frame-
work for emulation and calibration.

Model emulation using Gaussian random fields. As described in Bhat et al.
(2012), a standard approach to approximate the climate model output is using a
Gaussian process such that

Y ∼ N
(
Xβ,�(ξy)

)
,
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with a np × b covariate matrix X and a vector of regression coefficient β . The
covariates in X are the spatial locations (e.g., latitude, longitude and depth) and
the climate parameters. The covariate matrix X contains all the spatial coordinates
and the parameter settings used to define the covariance matrix �(ξy). The vector
ξy contains all the parameters determining the covariance matrix �(ξy). In our
application, since the mean term Xβ is set to 0 (see Section 4.2.1 for more details),
we fit a Gaussian random field to Y by finding the maximum likelihood estimate
(MLE) of only ξy , denoted by ξ̂y .

The fitted Gaussian random field defines the probability model for the computer
model output at any location s ∈ S and parameter setting θ ∈ �. Therefore, the
Gaussian process model provides a predictive distribution of computer model out-
put at any untried value of θ given the existing output Y [Sacks et al. (1989)]. We
denote the resulting interpolated process by η(θ ,Y) and call it an emulator process.
This approach automatically provides a quantification of interpolation uncertainty.

Model calibration using Gaussian random field model. Once an emulator
η(θ ,Y) is available, we model the observational data Z,

Z = η(θ ,Y) + δ + ε,(3.1)

where ε ∼ N(0, σ 2I) is an independently and identically distributed observational
error and δ is a data-model discrepancy term. The discrepancy δ is also modeled
as a Gaussian process, thus, δ ∼ N(0,�d(ξd)) with a spatial covariance matrix
�d(ξd) between the locations s1, . . . , sn and a vector of covariance parameters ξd .
The details regarding the specification of the covariance function are provided
in Section 4.2.2. This discrepancy term is crucial for parameter calibration [cf.
Bayarri et al. (2007), Bhat, Haran and Goes (2010)]. Note that this problem is ill
posed without any prior information for ξd , so an informative prior is necessary.
Our inference for θ , ξd and σ 2 is based on their resulting posterior distribution.

3.2. Challenges with high-dimensional data. High-dimensional data sets pose
considerable computational challenges due to the expensive likelihood function
calculations that involve high-dimensional matrix computations. For instance, in
the calibration problem described in Section 5, the dimensionality of the model
output and the observational data is n = 984 in the 2-D case and n = 61,051 in
the 3-D case, with p = 250. The latter example involves prohibitive computa-
tions with naïve implementations (discussed and explained in Section A1 in the
supplementary material [Chang et al. (2014)]). For instance, with n-dimensional
climate model outputs at p different parameter settings, evaluation of the likeli-
hood function requires O(n3p3) operations. Therefore, numerical methods such
as Newton–Raphson or MCMC algorithms become infeasible.
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4. Model calibration with high-dimensional spatial data. We develop a di-
mension reduction approach based on spatial basis functions to increase compu-
tational efficiency. Spatial basis functions can map high-dimensional data into a
low-dimensional space [Bayarri et al. (2007)] and find a representation of the prob-
ability model that results in lower computational cost for likelihood evaluations
[Bhat et al. (2012), Higdon et al. (2008)]. Since there may be a trade-off between
parsimony and accurate inference, it is crucial to find a set of spatial basis functions
that gives a computationally feasible likelihood formulation without considerable
loss of information. Below, we review drawbacks to the current approaches in the
context of high-dimensional spatial data and propose a new approach to overcome
these limitations.

4.1. Current approaches. Various methods have been introduced to over-
come computational challenges with models for high-dimensional spatial data.
These methods may be roughly grouped into the following three categories: low-
rank representations, likelihood approximations and sparse covariance approxi-
mations. Low-rank representation methods such as kernel convolution [Higdon
(1998)], Gaussian predictive process [Banerjee et al. (2008)] and fixed rank krig-
ing [Cressie and Johannesson (2008)] approximate spatial processes using a set
of basis functions and typically reduce the computational costs by using algo-
rithms for patterned covariance matrices, for instance, the Sherman–Morrison–
Woodbury formula. Likelihood approximation methods substitute the expensive
likelihood function with a relatively inexpensive approximation such as the Whittle
likelihood [Fuentes (2007)] or composite likelihood [Caragea and Smith (2006),
Eidsvik et al. (2013), Stein, Chi and Welty (2004), Vecchia (1988)]. Sparse co-
variance approximation methods such as covariance tapering [Furrer, Genton and
Nychka (2006)], Gaussian Markov random field approximations [Lindgren, Rue
and Lindström (2011), Simpson, Lindgren and Rue (2012)] and lattice kriging
[Nychka et al. (2013)] introduce sparsity in the covariance or precision matrix,
thereby allowing for fast computations using sparse matrix algorithms.

A few different approaches to climate model calibration with multivariate com-
puter model outputs have been developed in recent years, including Bayarri et al.
(2007), Higdon et al. (2008) and Bhat et al. (2012). These approaches, however, are
not readily applicable to the 3-D model output and observations we consider here
due to the following reasons. First, in spite of the gains in computational efficiency,
likelihood evaluations remain computationally prohibitive. The computational cost
of a single likelihood evaluation in the emulation step in Bhat et al. (2012) scales
as O(nJ 2) where J is the number of knots for the kernel basis. In Higdon et al.
(2008), the computational cost scales with O(p3J 3

y ) where Jy is the number of
principal components used to represent the data. For the 3-D calibration problem
we consider, n is 61,051 and J should be more than 3(Kv) × 3(Ascl) × 3(Cs) × 3
(depth) × 20 (longitude) × 15 (latitude) = 24,300 to ensure the number of knots to
be at least three and greater than 20% of the design points for each dimension. The
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number of principal components Jy needs be at least 20 to have more than 90%
of explained variance. Second, the transformation based on the basis matrix may
not be applicable to two- or three-dimensional spatial data. Using a wavelet trans-
formation [Bayarri et al. (2007)] requires the same dyadic (a power of 2) number
of data points for each spatial dimension, and the data need to be on a regular
grid without missing values; irregular data and missing values are common in cli-
mate model calibration problems. In addition, conducting Bayesian inference on
the joint posterior distribution may pose difficulties, both computationally as well
as in terms of prior specification and identifiability issues. For example, Higdon
et al. (2008) requires estimating 4 × Jy + 1 parameters, which translates to an
81-dimensional distribution for the 3-D case in Section 5.

4.2. Reduced-dimensional model calibration. Our method to overcome the
aforementioned challenges relies on (i) representing the spatial field using a prin-
cipal component basis and (ii) emulating each principal component separately. In-
stead of using a principal component basis to reduce the complexity of matrix
computation as in Higdon et al. (2008), we use it to map the computer model out-
puts into a low-dimensional space and construct an emulator in that space directly.
Since the principal components are uncorrelated by construction, we can build
the emulator by constructing a 1-dimensional Gaussian process for each princi-
pal component in parallel. Fitting Gaussian random fields for each principal com-
ponent requires estimation of only five parameters (see below). The likelihood
evaluations involve covariance matrices of size p × p. These features allow us to
construct the emulator in a computationally efficient and highly automated man-
ner. Moreover, since the principal component transformation can be applied to
nondyadic spatial data with irregular locations, it has a broader range of applica-
tion than wavelet transformations. In the calibration step, we develop an approach
to map the observational data into a low-dimensional space.

4.2.1. Computer model emulation. The first step of this approach is to find the
basis matrix for computer model output. We consider the computer model outputs
as an n-dimensional data set with p replications and find the principal compo-
nent basis. Let M denote the p × n matrix storing the computer model outputs
Y1, . . . ,Yp such that

M =
⎛
⎜⎝

YT
1
...

YT
p

⎞
⎟⎠ .(4.1)

Following the standard process of finding principal components, we first prepro-
cess the computer model outputs to make the column means of the matrix M all 0’s.
Applying singular value decomposition (SVD), we find the scaled eigenvectors
k1 = √

λ1e1, . . . ,kp = √
λpep , where λ1 > λ2 > · · · > λp are the ordered eigen-

values and e1, . . . , ep are the corresponding eigenvectors of the covariance matrix
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of M, where Jy � p is the number of principal components that we decide to use
in the emulator. One can choose the number of principal components by looking at

the proportion of explained variation given by
∑Jy

i=1 λi∑p
i=1 λi

. We define the basis matrix

for computer model output by Ky = (k1, . . . ,kJy ).
For each parameter setting θ i (i = 1, . . . , p), the first Jy principal components

YR
i = (YR

i1, . . . , YR
iJy

)T are computed as

YR
i = (

KT
y Ky

)−1KT
y Yi .

Let YR = (YR
1 , . . . ,YR

p )T , hence, each element of this matrix {YR}ij = YR
ij is the

j th principal component at the ith computer model parameter setting. Since the
columns in Ky are orthogonal, the principal components found here are uncorre-
lated to each other and this leads us to a parallelized emulator construction that is
similar to the wavelet transformation approach in Bayarri et al. (2007). For each
j th principal component across the parameter settings (i.e., for each j th column
of YR), we construct a Gaussian random field with the squared exponential covari-
ance function such that

Cov
(
YR

kj , Y
R
lj

) = κy,j exp

(
−

3∑
i=1

|θik − θil|2
φ2

y,ij

)
+ ζy,j 1(θk = θ l)(4.2)

with partial sill κy,j , nugget ζy,j and range parameters φy,j = (φy,1j , φy,2j ,

φy,3j )
T . Leave-10-percent-out cross-validation experiments with 50 different ran-

domly generated parameter configurations indicate that the squared exponential
covariance shows a better fit than alternatives such as the exponential covariance
(Figure A3 in the supplementary material [Chang et al. (2014)]). Note that this
choice of covariance function may yield a fitted parameter field that is too regu-
lar, resulting in imprecise estimation of the range parameters φy,ij , i = 1, . . . ,3,
j = 1, . . . , Jy . However, our purpose here is not to estimate the range parameters
precisely; the range parameters depend on the distance in the parameter space,
which is a somewhat arbitrary notion. Note also that the mean term of each Gaus-
sian process used here is set to be zero, since each of the principal components has
zero mean across the parameter settings.

We denote the collection of emulator parameters for the j th principal compo-
nent by ξy,j = (κy,j , ζy,j ,φy,j )

T . One can construct the emulator by finding the

MLE ξ̂y,j for each j separately. The emulator η(θ ,YR) is the collection of pre-
dictive processes of Jy principal components at θ defined by the covariance func-
tion (4.2) and the MLEs ξ̂y,1, . . . , ξ̂y,Jy

. Note that even though we construct the
emulator in terms of the principal components, we can make a projection Y∗ in the
original space at a new parameter setting θ∗ by computing

Y∗ = Kyη
(
θ∗,YR)

.
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To summarize, the emulation step uses the data YR
1 , . . . ,YR

Jy
of dimension p and

computes MLEs ξ̂y,1, . . . , ξ̂y,Jy
. Hence, the computational cost is reduced from

O(n3p3) to O(Jyp
3) when compared to a naïve approach. The resulting fitted

model is then used for the calibration step as described in the following section.

4.2.2. Computer model calibration. Using η(θ ,YR), the emulator for the
principal components, we reformulate the model for observational data in (3.1)
as

Z = Kyη
(
θ ,YR) + Kdν + ε,

where Kdν is a kernel convolution representation [Higdon (1998)] of the discrep-
ancy δ. ν is a vector of independent and identically distributed Normal random
variates at Jd � n locations, ν ∼ N(0, κdIJd

). a1, . . . ,aJd
∈ S . The variance pa-

rameter κd determines the magnitude of discrepancy, and the range parameters
φd,1, φd,2 > 0 specify the bandwidth of kernels. We define the kernel basis by

(Kd)ij = exp
(
−g(s1i , s2i , a1j , a2j )

φd,1
− |s3i − a3j |

φd,2

)
,(4.3)

where ski and akj are the kth elements of si and aj , respectively. Our choice for
the knot points a1, . . . ,aJd

are on a grid of 15.6 degrees in latitude, 36 degrees
in longitude and 429 m in depth. The design of these points does not affect the
resulting process unless chosen to be too sparse. The geodesic distance function
measures the great circle distance between two points on the Earth’s surface. The
function g(s1i , s2i , a1j , a2j ) is given by

r arccos
(
sin(s2i ) sin(a2j ) + cos(s2i ) cos(a2j ) cos |s1i − a1j |),

where r is the radius of Earth (6378 km). By following Higdon et al. (2008), the
range parameters are prespecified by scientific expert judgment; this reduces com-
putations and identifiability issues (see Section 5 for specification of these parame-
ters). The kernel function in (4.3) yields a valid covariance under geodesic distance
since it is strictly positive definite on a sphere [Gneiting (2013)]. We assumed sep-
arability for distance along the surface and distance along the depth. The resulting
process is approximately twice differentiable [Zhu and Wu (2010)], which pro-
duces a reasonable model for discrepancy. Even though the discrepancy model
implies an isotropic discrepancy process [Higdon (2002)], the resulting process is
flexible enough to capture the general trend in the discrepancy.

Instead of using the model (4.3) directly, we conduct calibration with reduced-
dimensional data for computational efficiency. Let ZR be a reduced version of the
original data such that

ZR = (
KT K

)−1KT Z =
(

η
(
θ ,YR

)
ν

)
+ (

KT K
)−1KT ε,
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where K = (Ky Kd). The probability model of ZR is

ZR ∼ N

((
μη

0

)
,

(
�η 0
0 κdIJd

)
+ σ 2(

KT K
)−1

)
,(4.4)

where μη and �η are the mean and covariance given by the emulator η(θ ,YR).
It is often helpful to apply singular value decomposition to Kd and use the first
JPC

d � Jd eigenvectors KPC
d in place of Kd to find ZR . In addition to the obvi-

ous computational advantage, this often results in better inference since it corre-
sponds to a regularized estimate given by ridge regression [see Hastie, Tibshirani
and Friedman (2009), page 66]; this was corroborated by our extensive simulation
studies.

Note that the term σ 2(KT K)−1 in (4.4) automatically adjusts the contribution
of each principal component to the calibration result. This can be illustrated by
considering the model without the discrepancy, and the variance in the likelihood
function is simply �η + σ 2(KT

y Ky)
−1. Since (KT

y Ky)
−1 is a diagonal matrix and

its ith diagonal element is the reciprocal of the ith eigenvalue, (KT
y Ky)

−1 inflates
the variance of principal components with small eigenvalues. Therefore, the prin-
cipal components with smaller explained variance will have less effect on the cal-
ibration result.

We now briefly examine the covariance structure implied by our model. Using
the leading Jy principal components, the covariance between computer model out-
puts at two different spatial and parametric coordinates (s1, θ1) and (s2, θ2) can be
written as

Cov
(
Y(s1, θ1), Y (s2, θ2)

) ≈ Cov

( Jy∑
i=1

√
λiei (s1)wi(θ1),

Jy∑
j=1

√
λj ej (s2)wj (θ2)

)

=
Jy∑
i=1

λiei (s1)ei (s2)Cov
(
wi(θ1),wi(θ2)

)
,

where ei (·) is the ith eigenfunction satisfying∫
Cov

(
Y(θ1, s1), Y (θ2, s2)

)
ei (s2) ds1 = λiei (s2)Cov

(
wi(θ1),wi(θ2)

)
,

with the corresponding eigenvalue λi . We let wi(·) denote the Gaussian process
of the ith principal component with the covariance function defined in (4.2). The
leading eigenfunctions give the best approximation among all possible orthogonal
bases since it minimizes the total mean square error [Jordan (1961)]. Since we can
assume different covariance functions for each principal component process, our
model can yield a nonseparable space-parameter covariance function. In contrast,
if we were to assume separability such that

Cov
(
Y(θ1, s1), Y (θ2, s2)

) = Cs(s1, s2)Cθ (θ1, θ2),
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for some positive definite covariance functions Cs and Cθ , the covariance function
for the ith principal component process becomes

Cov
(
wi(θ1),wi(θ2)

) = Cθ(θ1, θ2)λi.

The detailed derivation is provided in Section A2 in the supplementary material
[Chang et al. (2014)]. The separability assumption therefore results in a restrictive
covariance structure such that the correlation functions for all principal component
processes are the same. Hence, even though our reduced dimensional approach
utilizes a covariance that is easy to specify, it provides a richer class of covariance
functions than a separable covariance structure. Our cross-validation studies show
that our assumption is adequate for emulating the computer model (see Section 5
for details).

Priors. We estimate the joint density of θ , κd and σ 2 using the Metropolis–
Hastings algorithm. Following Bayarri et al. (2007), we allow for additional flexi-
bility by estimating the partial sill parameters κy,1, . . . , κy,Jy for the emulator. Prior
specification for the parameters in the observational model is straightforward. The
discrepancy variance κd and the observational error variance σ 2 receive inverse-
gamma priors with small shape parameter values. The prior for each parameter
is a uniform distribution over a broad range or determined by scientific knowl-
edge. In order to stabilize the inference, we put an informative prior to encourage
κy,1, . . . , κy,Jy to vary around their estimated values in the emulation stage. See
Section 5 for more details about prior specifications for our problem.

Computing. The computational costs may be summarized as follows:

(1) Find the basis matrix Ky = (
√

λ1e1, . . . ,
√

λJy eJy ) by computing the sin-

gular value decomposition of M in (4.1). This computation is of order O(n3), but
needs to be done only once.

(2) Compute YR where its ith row is the transpose of (KT
y Ky)

−1KT
y Yi .

(3) Construct a Gaussian random field for each column of YR by finding the
MLE ξ̂y,i for each i = 1, . . . , Jy . The computational cost is of order O(Jyp

3) for
each likelihood evaluation.

(4) Compute ZR = (KT K)−1KT Z. The computational complexity of this step
is O((Jy + Jd)3).

(5) Using Metropolis–Hastings, draw an MCMC sample of θ , σ 2, κd and
κy,1, . . . , κy,Jy from the joint posterior distribution based on the model in (4.4).
The computational cost for each likelihood evaluation is of order O((Jy + Jd)3).
The overall cost of our implementation is O(pJ 3

y ) for the emulation step and
O((Jy + Jd)3) for the calibration step.

5. Implementation details. We apply our method to data at three different
aggregation levels. In the 1-D case, we compute the vertical means at n = 13 dif-
ferent depth points [Goes et al. (2010)]. In the 2-D case, the zonal means are com-
puted at n = 984 latitude and depth points [Bhat et al. (2012)]. We use the original



662 CHANG, HARAN, OLSON AND KELLER

pattern without any aggregation in the 3-D case (n = 61,051). The number of prin-
cipal components is determined to have more than 90% of the explained variation.
The number of components is 5 for the 1-D, 10 for the 2-D and 20 for the 3-D
case. We also tried using 10 principal components for the 1-D, 20 for the 2-D and
30 for the 3-D case to have more than 95% explained variation, but did not find
any improvement in the calibration result.

We use all 250 design points in the parameter space to build the emulator. We
conducted leave-10-percent-out cross-validation and the results show that our em-
ulator can predict the model output precisely. For the 2-D (latitude–depth) case, for
instance, the emulator based on principal components can reproduce well the spa-
tial pattern at any given parameter setting. More specifically, we randomly held out
25 model runs from the model output and then predicted these “hold outs” based
on the remaining 225 model runs using our emulator. An example of our results
is shown in Figure 2, which indicates that the predicted output and the original
output are essentially indistinguishable. Other cross-validation results, including
for the 3-D case, are similar. In addition, we found that the root mean squared
error was very small relative to the scale of the data. We also tested the predic-
tion performance of our emulator for the principal components using uncorrelated
standardized prediction errors [Bastos and O’Hagan (2009)] (see Section A3 in the
supplementary material [Chang et al. (2014)] for details). The graphical diagnos-
tics in Figure A4 in the supplementary material [Chang et al. (2014)] show that
our emulators predict the processes of leading principal components reasonably
well.

We fix Cs and Ascl at the default values of the UVic ESCM in the calibration
stage and make an inference only for Kbg. The default values are 1 for Ascl and
3.819 for Cs. One may choose to integrate out these two parameters, but since
the ocean temperature field lacks strong information about Ascl and Cs, their es-
timated posterior densities are overly dispersed. This introduces unnecessary bias
in the estimate of Kbg due to the highly nonlinear relationship between climate
parameters [Olson et al. (2012)], thus, we decided not to integrate out those two
parameters.

Following Bhat et al. (2012), we assume a flat prior with a broad range for Kbg,
from 0.05 to 0.55. The variance for the observational error (σ 2) and the model dis-
crepancy (κd ) receive inverse-Gamma priors, and we denote them by IG(aν, bν)

and IG(az, bz). We set the shape parameters for them to be aν = 2 and az = 2. To
check the sensitivity of our approach to prior specifications, we tried four different
combinations, (2,2), (2,100), (100,2) and (100,100) for bν and bz. The emulator
variances κy,1, . . . , κy,Jy also receive inverse-Gamma priors with a shape param-
eter of 5. The scale parameters are determined to have modes at their estimated
values in the emulation stage. Because of parameter identifiability problems which
in turn affected computation, we fixed the range parameter for depth at 3000 m and
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FIG. 2. An example of our leave-10-percent-out cross-validation experiment for 2-D case (lati-
tude–depth patterns). The first row shows the comparison between the raw original output and the
raw emulated output. The second row shows the same comparison using detrended outputs, which
are computed by subtracting the mean across the parameter settings at each location.

for surface as 4800 km. The knot points (a1, . . . ,aJd
) are on a grid of 15.6 degrees

in latitude, 36 degrees in longitude and 429 m in depth. The design of these points
does not affect the resulting process unless chosen to be too sparse. We found that
a wide range of the different settings for these parameters gave the same inference
result for Kbg and, hence, our particular choices did not affect the results. The
number of knot locations for the discrepancy kernel is 800 in the 3-D case, 80 in
the 2-D case and 13 in the 1-D case. The number of principal components used for
the discrepancy is 200 in the 3-D case, 20 in the 2-D case and 5 in the 1-D case.
The number of principal components was determined using standard practice—
by ensuring that at least 95% of the variability in the data was explained in each
case. In order to check the robustness of our results, we tried different numbers of
principal components. For example, when we increased the number of principal
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components to 300 in the 3-D case, 30 in the 2-D case and 8 in the 1-D case we
found that we obtained virtually identical calibration results.

Finally, we note that we ran an MCMC algorithm with 25,000 iterations for
the calibration step. We carefully checked our results by comparing summaries
(e.g., posterior density estimates) based on the first 15,000 runs with those ob-
tained from the entire 25,000 runs and verified that our MCMC-based estimates
are reliable.

6. Results.

6.1. Computational benefit. The biggest challenge in the considered analysis
is the computational cost of evaluating the likelihood function in the 3-D case,
which requires dealing with 61,051-dimensional spatial data sets. To our knowl-
edge, current approaches cannot address this problem with reasonable computa-
tional effort (discussed below). In the emulation stage, the required number of
principal components is about 20 for the 3-D case for reasonable accuracy and this
means we still need to invert a (p ×Jy)× (p ×Jy) = 5000×5000 covariance ma-
trix for the likelihood evaluation in the emulation stage if one uses the formulation
due to Higdon et al. (2008). Moreover, the number of parameters to be estimated
is 20 × 4 + 1 = 81 (Jy × the number of parameters for each Gaussian process
emulator + one nugget parameter), and this also possibly increases computational
cost significantly. The method of Bhat et al. (2012) requires multiplication of a
J × n = 24,300 × 61,501 matrix into another n × J = 61,501 × 24,300 matrix in
the likelihood evaluation, and this makes the likelihood evaluation computationally
prohibitive.

The approximate computational time in emulation stage for the 1-D, 2-D and
3-D cases for different methods are illustrated in Figure 3. Our approximation was
derived as follows:

(computing time for our approach) × (complexity for a method)

(complexity for our approach)
.

The computing time for our approach is for the PORT routine in R [David (1990),
Gay (1983)] run on a system with Intel Xeon E5450 Quad-Core 3.0 GHz (without
parallelization). Note that this approximated computing time for other approaches
is optimistic; we believe that they will probably take longer than indicated. We use
this to suggest that even when viewing the other approaches’ cost optimistically,
our method provides dramatically reduced computational time. We also note here
that the computing time for our approach can be further reduced by parallelization.
We describe some experimental results on computing time reduction using parallel
computing in Section A4 in the supplementary material [Chang et al. (2014)].
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FIG. 3. Comparison of computational costs for the emulation step between the current approaches
and the new approach. The green box near the bottom right corner shows computing times that are
practical, ranging from one second to three months.

6.2. The effect of data aggregation on climate model calibration. In order to
study the effect of data aggregation on climate model calibration, we conducted
a study with pseudo-observational data. The simulated data are generated as fol-
lows:

(1) Choose the 3-D pattern of UVic ESCM output with Kbg = 0.2, Ascl = 1.5
and Cs = 3.976 as the synthetic truth. The values for Ascl and Cs were selected
based on the fact that they were the closest parameter values to the default values
for the UVic model; the value for Kbg was obtained from the posterior mode from
previously published work [cf. Bhat et al. (2012)].

(2) Compute three different 3-D patterns of residuals between the observational
data (Wold Ocean Atlas 2009 data described above) and the UVic model outputs
with Kbg = 0.1, Kbg = 0.2 and Kbg = 0.3. The values for Ascl and Cs are the same
as in step 1. Average them over each location to compute a pseudo-residual. This
is a more realistic and challenging residual than one obtained by simulation from
a simple error model, for example, a realization from a Gaussian process model.
For brevity, we describe here just this most challenging case; our methods worked
even better in terms of posterior variance when error processes were assumed to
be simpler.

(3) Superimpose the pseudo-residual on the synthetic truth to construct pseudo-
observational data in 3-D.

(4) Aggregate the 3-D pseudo-observational data into 2-D and 1-D by integrat-
ing the ocean temperature with respect to water volume.
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FIG. 4. Prior sensitivity test in the simulated example. Calibration of Kbg value based on: (a) 1-D
depth profile, (b) 2-D latitude–depth pattern, (c) 3-D nonaggregated data. Each line represents pos-
terior density from four different priors: (bv = 2, bz = 2) (Prior 1, solid red line), (bv = 2, bz = 100)

(Prior 2, dashed red line), (bv = 100, bz = 2) (Prior 3, solid blue line) and (bv = 100, bz = 100)

(Prior 4, dashed blue line). The solid vertical line represents the true value of Kbg in the synthetic

truth. bv and bz are hyperparameters of κd and σ 2, respectively, in (4.4).

The calibration results based on this simulated example are shown in Figure 4. The
sensitivity test indicates that the posterior distribution of Kbg in the 1-D and the
2-D cases relies on the specification of priors. This deep uncertainty is drastically
reduced when the full data set (3-D) is used. A comparison result based on the real
data from Ocean Atlas 2009 is shown in Figure 5. As in the simulated example, the
calibration results based on the 3-D data are more robust to the prior specification.

In addition to the experiment above, we also examined the effect of random
sampling of spatial locations, which may be considered a reasonable alternative
to averaging over particular dimensions. As an illustrative example we randomly
chose 1300 grid points from the 3-D locations using simple random sampling and
calibrated Kbg based on only the selected points. By repeating the same experiment
with 10 different random samples, we found that calibration results are substan-
tially different across the samples (see Figure A5 in the supplementary material
[Chang et al. (2014)]). These results indicate that sampling of spatial locations
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FIG. 5. Prior sensitivity test using observational data from the World Ocean Atlas 2009. Calibra-
tion results based on: (a) 1-D depth profile, (b) 2-D latitude–depth pattern, (c) 3-D nonaggregated
data. Each line represents posterior density from four different priors: (bv = 2, bz = 2) (Prior 1,
solid red line), (bv = 2, bz = 100) (Prior 2, dashed red line), (bv = 100, bz = 2) (Prior 3, solid blue
line) and (bv = 100, bz = 100) (Prior 4, dashed blue line), where bv and bz are hyperparameters of
κd and σ 2, respectively, in (4.4).

may introduce additional sampling errors to the calibration results; using all avail-
able data points is therefore desirable.

Using the full pattern of the 3-D data has important benefits, as it drastically
reduces the deep uncertainty due to different prior specifications. We hypothesize
that this is because the full nonaggregated spatial patterns contain more informa-
tion about both the observational error and the discrepancy. In order to reflect the
uncertainty due to prior choice to our density estimate for Kbg, we show in Figure 6
the posterior distributions when the prior is assumed to be with equal probability
any one of the 4 priors considered, along with the resulting AMOC projections.
We define AMOC projection as the annual maximum value of the meridional over-
turning streamfunction in the Atlantic between 0◦ and 70◦N. The corresponding
projections for AMOC change between 1970 to 1999 mean and 2070 to 2099 mean
indicate that the unaggregated pattern gives a much narrower 95% predictive in-
terval than the aggregated ones. Therefore, data aggregation increases the deep
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FIG. 6. Combined posterior densities of Kbg from different prior specifications (lower left), the
relationship between Kbg and projected AMOC change of the 2070–2099 mean from the 1970–1999
mean (upper left), and the resulting AMOC change projections (upper right) using 1-D (solid black
line), 2-D (dashed red line) and 3-D (dotted blue line) data with their 95% credible intervals (bars
at the right).

uncertainty surrounding AMOC projection, and using unaggregated data reduces
uncertainty regarding the future behavior of the AMOC.

7. Discussion.

7.1. Summary. We have considered here the problem of calibrating a climate
model parameter, Kbg, in an Earth System Model of Intermediate complexity by
using spatial observations of the potential temperature. In order to study the effects
on both calibration and climate projections of using unaggregated versions of the
data, we develop new methods that are computationally tractable for calibration
with high-dimensional spatial data sets. Using our methods, we show that utilizing
3-D spatial data reduces the uncertainty about Kbg and is more robust to various
prior specifications than calibration based on 2-D or 1-D aggregated versions of
the data. The results suggest that using unaggregated data is valuable for reducing
deep uncertainty associated with different priors. We note that we have tested our
method in several other real data calibration problems and have obtained similar
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results. For example, we carried out calibration for Kbg using a completely differ-
ent set of observations, CFC-11 [Bhat et al. (2012)], and found again that using the
3-D pattern sharpened our inference about Kbg when compared to 2-D patterns.

We have demonstrated here that our computer model calibration approach is
computationally efficient even when dealing with high-dimensional data. By ex-
ploiting the orthogonality of a principal components decomposition of the data,
this method can keep the computational cost affordable for high-dimensional data
with more than 60,000 spatial locations and 250 parameter settings. In addition,
our simulated examples show that our approach can handle complicated model-
observation discrepancies. The method can be easily extended to allow for cal-
ibration with multiple tracers—we can simply consider the variance–covariance
matrix for all tracers and use its principal components to build an emulator. For
the 2-D case, the posterior densities from using a separable covariance structure
are not very different from our PCA-based approach; in fact, the bias appears to
be slightly smaller for our approach (Figure A6 in the supplementary material
[Chang et al. (2014)]). Moreover, our method results in a sharper density, which is
an important criterion for calibration performance [cf. Gneiting, Balabdaoui and
Raftery (2007)]. For larger data, it is more challenging to devise a simple but flex-
ible approach that scales as well as the PCA-based method. We note here that
our approach can be applied to even larger data sets. In climate science, data sets
consisting of millions of data points are common. Our calibration approach in prin-
ciple applies immediately to such data. A potential computational bottleneck is the
SVD. However, we note that the SVD needs to be performed only once and we
sidestep issues related to memory management since we do not have to store the
large matrices. Furthermore, high-dimensional SVD is an active area of research
and, hence, computationally efficient approaches are being developed [cf. Baglama
and Reichel (2005), Halko, Martinsson and Tropp (2011)].

In the context of computer model calibration for making climate projections in
general, we find that spatial data aggregation appears to generally lead to larger
uncertainties (Figure 6), which is consistent with what we had hypothesized about
the model and observations. This implies that the effect of information loss on
the calibrated parameter is more important than the effect of reduction in model
errors by aggregation. From a climate projections and decision-making perspec-
tive, the projections we obtain can be used as an input to integrated assessment or
economic models; reduced uncertainties may therefore have tangible implications.
Our method is immediately available for use with other climate models and obser-
vational products. By virtue of unlocking the full wealth of previously untapped
information in large three-dimensional data sets, our method has a strong potential
to improve projections of a host of policy-relevant climate variables.

7.2. Caveats. A general issue with principal components is also worth con-
sidering in this context: the principal components for the computer model outputs
are selected based on explained variation and, thus, there is no guarantee that these
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leading principal components carry the most important information about the cli-
mate parameters. However, our extensive study of the effect of changing the num-
ber of principal components suggests that this is not problematic in our context.
Our results are consistent with the recent theoretical results in Artemiou and Li
(2009) that suggest that there is a low probability that other (nonleading) princi-
pal components will have a strong correlation with the climate parameters. We
hypothesize that our principal components-based approach does not lose valuable
information about the climate parameters. In the discrepancy model, one important
simplifying assumption is the separability between surface and depth effects. Our
simulated example shows that the separability assumption provides a good approx-
imation to the realistic discrepancy process. Nonseparable covariance function that
combines geodesic distance and Euclidean distance remains as an avenue of on-
going and alive research and the subject of future work. Furthermore, our study
of calibration with simulated examples shows that even though the number of Kbg
settings at which the model is run is relatively sparse, there is enough information
to reliably calibrate Kbg based on our emulator.

Our study is also subject to the usual caveats with respect to scientific conclu-
sions. First, we ignore the interpolation uncertainty when we compute the density
of AMOC projection based on the density of Kbg. Second, the result is based on
a single data set and, thus, we cannot fully evaluate the effect of structural uncer-
tainty due to the model-observation discrepancy and unresolved natural variability
cannot be accounted for; this variability could impact conclusions as well [Olson
et al. (2013)]. These caveats, of course, apply to almost all existing approaches to
climate model calibration and projection.
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