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Two Modeling Strategies for Empirical
Bayes Estimation
Bradley Efron

Abstract. Empirical Bayes methods use the data from parallel experiments,
for instance, observations Xk ∼ N (�k,1) for k = 1,2, . . . ,N , to estimate
the conditional distributions �k|Xk . There are two main estimation strate-
gies: modeling on the θ space, called “g-modeling” here, and modeling on
the x space, called “f -modeling.” The two approaches are described and
compared. A series of computational formulas are developed to assess their
frequentist accuracy. Several examples, both contrived and genuine, show the
strengths and limitations of the two strategies.

Key words and phrases: f -modeling, g-modeling, Bayes rule in terms of f ,
prior exponential families.

1. INTRODUCTION

Empirical Bayes methods, though of increasing use,
still suffer from an uncertain theoretical basis, enjoying
neither the safe haven of Bayes theorem nor the steady
support of frequentist optimality. Their rationale is of-
ten reduced to inserting more or less obvious estimates
into familiar Bayesian formulas. This conceals the es-
sential empirical Bayes task: learning an appropriate
prior distribution from ongoing statistical experience,
rather than knowing it by assumption. Efficient learn-
ing requires both Bayesian and frequentist modeling
strategies. My plan here is to discuss such strategies
in a mathematically simplified framework that, hope-
fully, renders them more transparent. The development
proceeds with some methodological discussion supple-
mented by numerical examples.

A wide range of empirical Bayes applications have
the following structure: repeated sampling from an un-
known prior distribution g(θ) yields unseen realiza-
tions

�1,�2, . . . ,�N.(1.1)

Each �k in turn provides an observation Xk ∼ f�k
(·)

from a known probability family fθ (x),

X1,X2, . . . ,XN.(1.2)
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On the basis of the observed sample (1.2), the statisti-
cian wishes to approximate certain Bayesian inferences
that would be directly available if g(θ) were known.
This is the empirical Bayes framework developed and
named by Robbins (1956). Both � and X are usually
one-dimensional variates, as they will be in our exam-
ples, though that is of more applied than theoretical ne-
cessity.

A central feature of empirical Bayes estimation is
that the data arrives on the x scale but inferences are
calculated on the θ scale. Two main strategies have de-
veloped: modeling on the θ scale, called g-modeling
here, and modeling on the x scale, called f -modeling.
G-modeling has predominated in the theoretical empir-
ical Bayes literature, as in Laird (1978), Morris (1983),
Zhang (1997), and Jiang and Zhang (2009). Applica-
tions, on the other hand, from Robbins (1956) onward,
have more often relied on f -modeling, recently as in
Efron (2010, 2011) and Brown, Greenshtein and Ritov
(2013).

We begin Section 2 with a discretized statement of
Bayes theorem that simplifies the nonparametric f -
modeling development of Section 3. Parameterized f -
modeling, necessary for efficient empirical Bayes esti-
mation, is discussed in Section 4. Section 5 introduces
an exponential family class of g-modeling procedures.
Classic empirical Bayes applications, an f -modeling
stronghold (including Robbins’ Poisson formula, the
James–Stein estimator and false discovery rate meth-
ods), are the subject of Section 6. The paper concludes
with a brief discussion in Section 7.
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Several numerical examples, both contrived and gen-
uine, are carried through in Sections 2 through 7. The
comparison is never one-sided: as one moves away
from the classic applications, g-modeling comes into
its own. Trying to go backward, from observations on
the x-space to the unknown prior g(θ), has an ill-posed
computational flavor. Empirical Bayes calculations are
inherently fraught with difficulties, making both of the
modeling strategies useful. An excellent review of em-
pirical Bayes methodology appears in Chapter 3 of
Carlin and Louis (2000).

There is an extensive literature, much of it focusing
on rates of convergence, concerning the “deconvolu-
tion problem,” that is, estimating the distribution g(θ)

from the observed X values. A good recent reference is
Butucea and Comte (2009). Empirical Bayes inference
amounts to estimating certain nonlinear functionals of
g(·), whereas linear functionals play a central role for
the deconvolution problem, as in Cavalier and Hengart-
ner (2009), but the two literatures are related. The de-
velopment in this paper employs discrete models that
avoid rates of convergence difficulties.

Empirical Bayes analyses often produce impressive-
looking estimates of posterior θ distributions. The
main results in what follows are a series of compu-
tational formulas—Theorems 1 through 4—giving the
accuracy of both f -model and g-model estimates. Ac-
curacy can be poor, as some of the examples show, and
in any case accuracy assessments are an important part
of the analysis.

2. A DISCRETE MODEL OF BAYESIAN INFERENCE

In order to simplify the f -modeling computations,
we will assume a model in which both the parameter
vector θ and the observed data set x are confined to
finite discrete sets:

θ ∈ θ = (θ1, θ2, . . . , θj , . . . , θm) and
(2.1)

x ∈ x = (x1, x2, . . . , xi, . . . , xn)

with m < n. The prior distribution g puts probability
gj on θj ,

g = (g1, g2, . . . , gj , . . . , gm)′.(2.2)

This induces a marginal distribution f on x,

f = (f1, f2, . . . , fi, . . . , fn)
′,(2.3)

with fi = Pr{x = xi}. Letting {pij } represent the sam-
pling probabilities

pij = Pr{xi |θj },(2.4)

the n × m matrix

P = (pij )(2.5)

produces f from g according to

f = P g.(2.6)

In the example of Figure 1, we have

θ = (−3,−2.8, . . . ,3) (m = 31),(2.7)

with g(θ) an equal mixture of a discretized N (0,0.52)

density and a density proportional to |θ |. The sampling
probabilities pij are obtained from the normal transla-
tion model ϕ(xi − θj ), ϕ the standard normal density
function, and with

x = (−4.4,−4.35, . . . ,5.2) (n = 193).(2.8)

Then f = P g produces the triangular-shaped marginal
density f (x) seen in the bottom panel. Looking ahead,
we will want to use samples from the bottom distribu-
tion to estimate functions of the top.

In the discrete model (2.1)–(2.6), Bayes rule takes
the form

Pr{θj |xi} = pijgj/fi.(2.9)

Letting pi represent the ith row of matrix P , the m-
vector of posterior probabilities of θ given x = xi is
given by

diag(pi )g/pig,(2.10)

where diag(v) indicates a diagonal matix with diagonal
elements taken from the vector v.

Now suppose t (θ) is a parameter of interest, ex-
pressed in our discrete setting by the vector of values

t = (t1, t2, . . . , tj , . . . , tm)′.(2.11)

The posterior expectation of t (θ) given x = xi is then

E{t (θ)|xi} =
m∑

j=1

tjpij gj

/
fi

(2.12)
= t′ diag(pi )g/pig.

The main role of the discrete model (2.1)–(2.6) is
to simplify the presentation of f -modeling begun in
Section 3. Basically, it allows the use of familiar ma-
trix calculations rather than functional equations. G-
modeling, Section 5, will be presented in both discrete
and continuous forms. The prostate data example of
Section 6 shows our discrete model nicely handling
continuous data.
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FIG. 1. Top: Discrete model: prior g(θ), θ = seq(−3,3,0.2); g is equal mixture of N (0,0.52) and density ∝ |θ |. Bottom: Corresponding
f (x): assuming N (θ,1) sampling, x = seq(−4.4,5.2,0.05). Note the different scales.

3. BAYES RULE IN TERMS OF f

Formula (2.12) expresses E{t (θ)|xi} in terms of the
prior distribution g. This is fine for pure Bayesian ap-
plications but in empirical Bayes work, information ar-
rives on the x scale and we may need to express Bayes
rule in terms of f. We begin by inverting (2.6), f = P g.

For now assume that the n × m matrix P (2.4)–(2.5)
is of full rank m. Then the m × n matrix

A = (
P ′P

)−1
P ′(3.1)

carries out the inversion,

g = Af.(3.2)

Section 4 discusses the case where rank(P ) is less
than m. Other definitions of A are possible; see the dis-
cussion in Section 7.

With pi denoting the ith row of P as before, let

u′ = (· · · tjpij · · ·) = t′ diag(pi ), v′ = pi(3.3)

and

U′ = u′A, V′ = v′A,(3.4)

U and V being n-vectors. (Here we are suppressing the
subscript in u = ui , etc.) Using (3.2), the Bayes poste-
rior expectation E{t |xi} (2.12) becomes

E{t |xi} = u′g
v′g

= U′f
V′f

,(3.5)

the latter being Bayes rule in terms of f. Notice that U
and V do not depend on g or f. The denominator V′f
equals f (xi) in (3.5), but not in the regularized ver-
sions of Section 4.



288 B. EFRON

In a typical empirical Bayes situation, as in Sec-
tion 6.1 of Efron (2010), we might observe indepen-
dent observations X1,X2, . . . ,XN from the marginal
density f (x),

Xk
i.i.d.∼ f (·), k = 1,2, . . . ,N,(3.6)

and wish to estimate E = E{t |xi}. For the discrete
model (2.1), the vector of counts y = (y1, y2, . . . , yn)

′,

yi = #{Xk = xi},(3.7)

is a nonparametric sufficient statistic; y follows a
multinomial distribution on n categories, N draws,
probability vector f,

y ∼ Multn(N, f),(3.8)

having mean vector and covariance matrix

y ∼ (
N f,ND(f)

)
, D(f) ≡ diag(f) − ff′.(3.9)

The unbiased estimate of f,

f̂ = y/N,(3.10)

gives a nonparametric estimate Ê of E{t |xi} by substi-
tution into (3.5),

Ê = U′f̂/V′f̂.(3.11)

Using f̂ ∼ (f,D(f)/N), a standard differential argu-
ment yields the approximate “delta method” frequen-
tist standard error of Ê. Define

Uf =
n∑

i=1

fiUi, Vf =
n∑

i=1

fiVi(3.12)

and

W = U
Uf

− V
Vf

.(3.13)

(Notice that
∑

fiWi = 0.)

THEOREM 1. The delta-method approximate stan-
dard deviation of Ê = U′f̂/V′f̂ is

sd(Ê) = 1√
N

|E| · σf (W),(3.14)

where E = U′f/V′f and

σ 2
f (W) =

n∑
i=1

fiW
2
i .(3.15)

The approximate coefficient of variation sd(Ê)/|E| of
Ê is

cv(Ê) = σf (W)/
√

N.(3.16)

PROOF. From (3.5) we compute the joint moments
of U′f̂ and V′f̂,(

U′f̂
V′f̂

)
(3.17)

∼
((

Uf

Vf

)
,

1

N

(
σ 2

f (U) σf (U,V )

σf (U,V ) σ 2
f (V )

))
,

with σ 2
f (U) = ∑

fi(Ui − Uf )2, σf (U,V ) =∑
fi(Ui − Uf )(Vi − Vf ), and σ 2

f (V ) = ∑
fi(Vi −

Vf )2. Then

Ê = U′f̂
V′f̂

= E · 1 + �̂U

1 + �̂V

.= E · (1 + �̂U − �̂V ),(3.18) [
�̂U = U′f̂ − Uf

Uf

, �̂V = V′f̂ − Vf

Vf

]
so sd(Ê2)

.= E2 var(�̂U − �̂V ), which, again us-
ing (3.9), gives Theorem 1. �

The trouble here, as will be shown, is that sd(Ê) or
cv(Ê) may easily become unmanageably large. Em-
pirical Bayes methods require sampling on the x scale,
which can be grossly inefficient for estimating func-
tions of θ .

Hypothetically, the Xk’s in (3.6) are the observable
halves of pairs (�,X),

(�k,Xk)
ind∼ g(θ)fθ (x), k = 1,2, . . . ,N.(3.19)

If the �k’s had been observed, we could estimate g
directly as ḡ = (ḡ1, ḡ2, . . . , ḡm)′,

ḡj = #{�k = θj }/N,(3.20)

leading to the direct Bayes estimate

Ē = u′ḡ/v′ḡ.(3.21)

Ē would usually be less variable than Ê (3.11) (and
would automatically enforce possible constraints on E

such as monotonicity in xk). A version of Theorem 1
applies here. Now we define

ug =
m∑

j=1

gjuj , vg =
m∑

j=1

gjvj and

(3.22)
w = u/ug − v/vg.

THEOREM 2. For direct Bayes estimation (3.21),
the delta-method approximate standard deviation of Ē

is

sd(Ē) = 1√
N

|E| · σg(w),(3.23)
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TABLE 1
Standard deviation and coefficient of variation of E{t (θ)|x = 2.5}
(for N = 1); for the three parameters (3.26), with g and f as in

Figure 1; sdf from Theorem 1 (3.14); sdd for direct Bayes
estimation, Theorem 2 (3.23); sdx from the regularized

f -modeling of Section 4, Theorem 3 (4.8)

N1/2 sd N1/2 cv

t (θ) E{t|x = 2.5} sdf sdd sdx cvf cvd cvx

Parameter (1) 2.00 8.74 3.38 2.83 4.4 1.7 1.4
Parameter (2) 4.76 43.4 13.7 10.4 9.1 2.9 2.2
Parameter (3) 0.03 43.9 0.53 1.24 1371 16 39

where

σ 2
g (w) =

m∑
j=1

gjw
2
j ;(3.24)

Ē has approximate coefficient of variation

cv(Ē) = σg(w)/
√

N.(3.25)

The proof of Theorem 2 is the same as that for Theo-
rem 1.

Table 1 concerns the estimation of E{t (θ)|x = 2.5}
for the situation shown in Figure 1. Three different pa-

rameters t (θ) are considered:

(1) t (θ) = θ,

(2) t (θ) = θ2,(3.26)

(3) t (θ) =
{

1, if θ ≤ 0,

0, if θ > 0.

In the third case, E{t (θ)|x} = Pr{θ ≤ 0|x}. Cvf is√
N cv(Ê) (3.16) so cvf/

√
N is the approximate co-

efficient of variation of Ê, the nonparametric empiri-
cal Bayes estimate of E{t (θ)|x = 2.5}. Cvd is the cor-
responding quantity (3.25), available only if we could
directly observe the �k values in (3.19), while cvx is a
regularized version of Ê described in the next section.

Suppose we wish to bound cv(Ê) below some pre-
specified value c0, perhaps c0 = 0.1. Then according to
(3.16), we need N to equal

N = (cv1 /c0)
2,(3.27)

where cv1 is the numerator σf (W) of (3.16), for exam-
ple, cvf in Table 1. For the three parameters (3.26) and
for c0 = 0.1, we would require N = 1936, 8281 and
187 million, respectively.

The vector W for parameter (3) is seen to take on
enormous values in Figure 2, resulting in σf (W) =
1370.7 for (3.16). The trouble stems from the abrupt
discontinuity of t3 at θ = 0, which destabilizes U in

FIG. 2. W vector (3.13) for f -Bayes estimation of Pr{θ ≤ 0|x = 2.5} for the model of Figure 1 (actually W12 as in Section 4; dashed curve
is W9).
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(3.13). Definition (3.4) implies U′P = u′. This says
that U′ must linearly compose u′ from the rows of P .
But in our example the rows of P are smooth functions
of the form ϕ(xi − θj ), forcing the violent cycling of
U seen in Figure 2. Section 4 discusses a regulariza-
tion method that greatly improves the accuracy of us-
ing “Bayes rule in terms of f.”

Table 1 shows that if we could sample on the θ scale,
as in (3.20), we would require “only” 25,600 �k ob-
servations to achieve coefficient of variation 0.1 for es-
timating Pr{θ ≤ 0|x = 2.5}; direct sampling is almost
always more efficient than f sampling, but that is not
the way empirical Bayes situations present themselves.
The efficiency difference is a factor of 86 for parame-
ter (3), but less than a factor of 3 for parameter (1),
t (θ) = θ . The latter is a particularly favorable case for
empirical Bayes estimation, as discussed in Section 6.

The assumption of independent sampling, (3.6) and
(3.19), is a crucial element of all our results. Indepen-
dence assumptions (often tacitly made) dominate the
empirical Bayes literature, as in Muralidharan et al.
(2012), Zhang (1997), Morris (1983), and Efron and
Morris (1975). Nonindependence effectively reduces
the effective sample size N ; see Chapter 8 of Efron
(2010). This point is brought up again in Section 6.

4. REGULARIZED f -MODELING

Fully nonparametric estimation of E = E{t (θ)|x} is
sometimes feasible, but, as seen in Table 1 of Section 3,
it can become unacceptably noisy. Some form of reg-
ularization is usually necessary. A promising approach
is to estimate f parametrically according to a smooth
low-dimensional model.

Suppose then that we have such a model, yielding f̂
as an estimate of f (2.3), with mean vector and covari-
ance matrix

f̂ ∼ (
f,�(f)/N

)
.(4.1)

In the nonparametric case (3.9) �(f) = D(f), but we
expect that we can reduce �(f) parametrically. In any
case, the delta-method approximate coefficient of vari-
ation for Ê = U′f̂/V′f̂ (3.11) is given in terms of
W (3.13):

cv(Ê) = {
W′�(f)W/N

}1/2
.(4.2)

This agrees with (3.16) in the nonparametric situa-
tion (3.9) where �(f) = diag(f) − ff′. The verification
of (4.2) is almost identical to that for Theorem 1.

Poisson regression models are convenient for the
smooth parametric estimation of f. Beginning with an

n × p structure matrix X, having rows xi for i =
1,2, . . . , n, we assume that the components of the
count vector y (3.7) are independent Poisson observa-
tions,

yi
ind∼ Poi(μi), μi = exiα

(4.3)
for i = 1,2, . . . , n,

where α is an unknown vector of dimension p. Ma-
trix X is assumed to have as its first column a vector of
1’s.

Let μ+ = ∑n
1 μi and N = ∑n

1 yi , and define

fi = μi/μ+ for i = 1,2, . . . , n.(4.4)

Then a well-known Poisson/multinomial relationship
says that the conditional distribution of y given N is

y|N ∼ Multn(N, f)(4.5)

as in (3.8). Moreover, under mild regularity conditions,
the estimate f̂ = y/N has asymptotic mean vector and
covariance matrix (as μ+ → ∞)

f̂ ∼̇ (
f,�(f)/N

)
,(4.6)

where

�(f) = diag(f)XG−1
f X′ diag(f)

(4.7) [
Gf = X′ diag(f)X

];
Equations (4.6)–(4.7) are derived from standard gen-
eralized linear model calculations. Combining (4.2)
and (4.6) gives a Poisson regression version of The-
orem 1.

THEOREM 3. The delta-method coefficient of vari-
ation for Ê = U′f̂/V′f̂ under Poisson model (4.3) is

cv(Ê) = {(
W′X

)
f

(
X′X

)−1
f

(
W′X

)′
f /N

}1/2
,(4.8)

where (
W′X

)
f = W′ diag(f)X and

(4.9) (
X′X

)
f = X′ diag(f)X,

with W as in (3.13).

The bracketed term in (4.8), times N , is recognized
as the length2 of the projection of W into the p-
dimensional space spanned by the columns of X, car-
ried out using inner product 〈a, b〉f = ∑

fiaibi . In the
nonparametric case, X equals the identity I , and (4.8)
reduces to (3.16). As in (3.14), sd(Ê) is approximated
by |E| cv(Ê). [Note: Theorem 3 remains valid as stated
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if a multinomial model for f̂ replaces the Poisson cal-
culations in (4.7).]

Cvx in Table 1 was calculated as in (4.8), with
N = 1. The structure matrix X for the example in Fig-
ure 1 was obtained from the R natural spline func-
tion ns(x, df = 5); including a column of 1’s made
X193 × 6. The improvements over cvf, the nonpara-
metric coefficients of variation, were by factors of 3, 5
and 100 for the three parameters (3.26).

The regularization in Theorem 3 takes place with re-
spect to f and f̂. Good performance also requires regu-
larization of the inversion process ĝ = Af̂ (3.2). Going
back to the beginning of Section 3, let

P = LDR′(4.10)

represent the singular value decomposition of the n ×
m matrix P , with L the n × m orthonormal matrix of
left singular vectors, R the m × m orthonormal matrix
of right singular vectors, and D the m × m diagonal
matrix of singular values,

d1 ≥ d2 ≥ · · · ≥ dm.(4.11)

Then it is easy to show that the m × n matrix

A = RD−1L′(4.12)

is the pseudo-inverse of P , which is why we could go
from f = P g to g = Af at (3.2). [Other pseudo-inverses
exist; see (7.1).]

Definition (4.12) depends on P being of full rank m,
equivalently having dm > 0 in (4.11). Whether or not
this is true, very small values of dj will destabilize A.
The familiar cure is to truncate representation (4.12),
lopping off the end terms of the singular value de-
composition. If we wish to stop after the first r terms,
we define Rr to be the first r columns of R, Lr the
first r columns of L, Dr the r × r diagonal matrix
diag(d1, d2, . . . , dr), and

Ar = RrD
−1
r L′

r .(4.13)

In fact, r = 12 was used in Figure 2 and Table 1, chosen
to make

m∑
r+1

d2
j

/ m∑
1

d2
j < 10−10.(4.14)

As in (3.1)–(3.13), let

U′
r = u′Ar, V′

r = v′Ar(4.15)

[u and v stay the same as in (3.3)],

Er = U′
r f

V′
r f

, Êr = U′
r f̂

V′
r f̂

(4.16)

TABLE 2
Coefficient of variation and standard deviation (N = 1), for

E{t |x = 2.5} as in 1; now using Poisson regression in Theorem 3,
with X based on a natural spline with 5 degrees of freedom.

Increasing choice of r , (4.13)–(4.17), decreases bias but increases
variability of Ê for parameter (3); g error from (4.20)

Parameter (1) Parameter (3)

r g error Er cvx sdx Er cvx sdx

3 0.464 1.75 1.00 1.75 0.021 3.6 0.1
6 0.254 2.00 1.34 2.68 0.027 4.6 0.1
9 0.110 2.00 1.36 2.73 0.031 8.2 0.3

12 0.067 2.00 1.41 2.83 0.032 38.6 1.2
15 0.024 2.00 1.39 2.78 0.033 494.0 16.1
18 0.012 2.00 1.39 2.78 0.033 23,820.8 783.8
21 0.006 2.00 1.40 2.80 0.033 960,036.4 31,688.8

and

Wr = Ur∑
fiUri

− Vr∑
fiVri

.(4.17)

Theorem 3 then remains valid, with Wr replacing W.
Note: Another regularization method, which will not be
pursued here, is the use of ridge regression rather than
truncation in the inversion process (3.2), as in Hall and
Meister (2007).

Reducing r reduces Wr , hence reducing (4.9) and
the approximate coefficient of variation of Êr . The re-
duction can be dramatic. W9 almost disappears com-
pared to W12 in Figure 2. Table 2 compares various
choices of r for parameters (1) and (3) (3.26). The
choice turns out to be unimportant for parameter (1)
and crucial for parameter (3).

Why not always choose a small value of r? The
trouble lies in possible bias for the estimation of E =
E{t |x}. Rather than the crucial inverse mapping g = Af
(3.2), we get an approximation

gr = Ar f = ArP g
(4.18)

= RrD
−1
r L′

rLDR′g = RrR
′
rg

[the last step following from LDR′ = LrDrR
′
r +

L(r)D(r)R
′
(r), with L(r) indicating the last m − r

columns of L, etc.; Equation (4.18) says that gr is the
projection of g into the linear space spanned by the first
r columns of R]. Then, looking at (4.15)–(4.16),

Er = U′
r f

V′
r f

= u′gr

v′gr

,(4.19)

possibly making Êr badly biased for estimating E =
u′g/v′g.
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FIG. 3. Approximation gr (4.18) with r = 6,9,12 for g in Figure 1; heavy blue curve is g.

The Er columns of Table 2 show that bias is a prob-
lem only for quite small values of r . However, the ex-
ample of Figure 1 is “easy” in the sense that the true
prior g is smooth, which allows gr to rapidly approach
g as r increases, as pictured in Figure 3. The gerror col-
umn of Table 2 shows this numerically in terms of the
absolute error

gerror =
m∑

i=1

|gri − gi |.(4.20)

A more difficult case is illustrated in Figure 4. Here
g is a mixture: 90% of a delta function at θ = 0 and
10% of a uniform distribution over the 31 points θj

in θ = (−3,−2.8, . . . ,3); P and x are as before. Now
gerror exceeds 1.75 even for r = 21; gr puts too small a
weight on θ = 0, while bouncing around erratically for
θ �= 0, often going negative.

We expect, correctly, that empirical Bayes estima-
tion of E{t (θ)|x} will usually be difficult for the sit-
uation of Figure 4. This is worrisome since its g is a
reasonable model for familiar false discovery rate anal-
yses, but see Section 6. Section 5 discusses a different
regularization approach that ameliorates, without cur-
ing, the difficulties seen here.

5. MODELING THE PRIOR DISTRIBUTION g

The regularization methods of Section 4 involved
modeling f, the marginal distribution (2.3) on the x-

space, for example, by Poisson regression in Table 2.
Here we discuss an alternative strategy: modeling g,
the prior distribution (2.2) on the θ -space. This has
both advantages and disadvantages, as will be dis-
cussed.

We begin with an m × q model matrix Q, j th row
Qj , which determines g according to

g(α) = eQα−1mφ(α)

[
φ(α) = log

m∑
1

eQjα

]
.(5.1)

[For v = (v1, v2, . . . , vm), ev denotes a vector with
components evj ; 1m is a vector of m 1’s, indicating in
(5.1) that φ(α) is subtracted from each component of
Qα.] Here α is the unknown q-dimensional natural pa-
rameter of exponential family (5.1), which determines
the prior distribution g = g(α). In an empirical Bayes
framework, g gives f = P g (2.6), and the statistician
then observes a multinomial sample y of size N from f
as in (3.8),

y ∼ Multn
(
N,P g(α)

)
,(5.2)

from which inferences about g are to be drawn.
Model (5.1)–(5.2) is not an exponential family in

y, a theoretical disadvantage compared to the Poisson
modeling of Theorem 3. [It is a curved exponential
family, Efron (1975).] We can still pursue an asymp-
totic analysis of its frequentist accuracy. Let

D(g) ≡ diag(g) − gg′,(5.3)
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FIG. 4. True g = 0.90 · δ(0) + 0.10 uniform (heavy curve); approximation gr (4.18) for r = 6,9,12,15,18,21, as labeled.

the covariance matrix of a single random draw � from
distribution g, and define

Qα = D
(
g(α)

)
Q.(5.4)

LEMMA 1. The Fisher information matrix for esti-
mating α in model (5.1)–(5.2) is

I = NQ′
αP ′ diag

(
1/f(α)

)
PQα,(5.5)

where P is the sampling density matrix (2.5), and
f(α) = P g(α).

PROOF. Differentiating log g in (5.1) gives the m×
q derivative matrix d loggi/dαk ,

d log g
dα

= [
I − 1mg(α)′

]
Q,(5.6)

so

dg
dα

= diag
(
g(α)

)d log g
dα

(5.7)
= D

(
g(α)

)
Q = Qα.

This yields df/dα = PQα and

d log f
dα

= diag
(

1

f(α)

)
PQα.(5.8)

The log likelihood from multinomial sample (5.2) is

lα(y) = y′ log f(α) + constant,(5.9)

giving score vector

dlα(y)

dα
= y′ d log f

dα
.(5.10)

Since y has covariance matrix N(diag f − ff′) (3.9), I ,
the covariance matrix of the score vector, equals

I = NQ′
αP ′ diag(1/f)

(
diag f − ff′

)
· diag(1/f)PQα(5.11)

= NQ′
αP ′(diag(1/f) − 1n1′

n

)
PQα.

Finally,

1′
nPQα = 1′

mD
(
g(α)

)
Q = 0′Q = 0(5.12)

(using the fact that the columns of P sum to 1), and
(5.11) yields the lemma. �

Standard sampling theory says that the maximum
likelihood estimate (MLE) α̂ has approximate covari-
ance matrix I−1 and that ĝ = g(α̂) has approximate
covariance, from (5.7),

cov(ĝ) = QαI−1Q′
α.(5.13)

LEMMA 2. The approximate covariance matrix for
the maximum likelihood estimate g(α̂) of g in model
(5.1)–(5.2) is

cov(ĝ)
(5.14)

= 1

N
Qα

[
Q′

αP ′ diag
(
1/f(α)

)
PQα

]−1
Q′

α.
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FIG. 5. Top: Standard deviation of E{t |x} as a function of x, for parameter (1) t (θ) = θ (with N = 1); f -modeling (solid), g-modeling
(dashed). Bottom: Now for parameter (3), t (θ) = 1 or 0 as θ ≤ 0 or > 0; using natural spline models, df = 6, for both calculations.

If we are interested in a real-valued parameter τ =
T (g), the approximate standard deviation of its MLE
τ̂ = T (g(α̂)) is

sd(τ̂ ) = [
Ṫ ′ cov(ĝ)Ṫ

]1/2
,(5.15)

where Ṫ is the gradient vector dT /dg, evaluated at ĝ.
When T (g) is the conditional expectation of a parame-
ter t (θ) (3.5),

T (g) = E{t (θ)|x = xi} = u′g/v′g,(5.16)

we compute

Ṫ (g) = w = (u/ug) − (v/vg)(5.17)

(3.23), and get the following.

THEOREM 4. Under models (5.1)–(5.2), the MLE
Ê of E{t (θ)|x = xi} has approximate standard devia-
tion

sd(Ê) = |E|[w′ cov(ĝ)w
]1/2

,(5.18)

with w as in (5.17) and cov(ĝ) from (5.14).

We can now compare sd(Ê) from g-modeling (5.18),
with the corresponding f-modeling results of Theo-
rem 3. Figure 5 does this with parameters (1) and (3)
(3.26) for the example of Figure 1. Theorem 3, mod-
ified as at (4.17) with r = 12, represents f-modeling,
now with X based on ns(x,6), a natural spline with
six degrees of freedom. Similarly for g-modeling, Q =

ns(θ,6) in (5.1); α was chosen to make g(α) very close
to the upper curve in Figure 1. (Doing so required six
rather than five degrees of freedom.)

The upper panel of Figure 5 shows f-modeling yield-
ing somewhat smaller standard deviations for parame-
ter (1), t (θ) = θ . This is an especially favorable case
for f-modeling, as discussed in Section 6. However, for
parameter (3), E = Pr{t ≤ 0|x}, g-modeling is far su-
perior. Note: in exponential families, curved or not, it
can be argued that the effective degrees of freedom of
a model equals its number of free parameters; see Re-
mark D of Efron (2004). The models used in Figure 5
each have six parameters, so in this sense the compari-
son is fair.

Parametric g-space modeling, as in (5.1), has several
advantages over the f -space modeling of Section 4:

Constraints. ĝ = exp(Qα̂ − 1mφ(α̂)) has all coordi-
nates positive, unlike the estimates seen in Figure 4.
Other constraints such as monotonicity or convexity
that may be imposed on f̂ = P ĝ by the structure of P

are automatically enforced, as discussed in Chapter 3
of Carlin and Louis (2000).

Accuracy. With some important exceptions, dis-
cussed in Section 6, g-modeling often yields smaller
values of sd(Ê), as typified in the bottom panel of Fig-
ure 5. This is particularly true for discontinuous param-
eters t (θ), such as parameter (3) in Table 1.
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Simplicity. The bias/variance trade-offs involved
with the choice of r in Section 4 are avoided and, in
fact, there is no need for “Bayes rule in terms of f.”

Continuous formulation. It is straightforward to
translate g-modeling from the discrete framework
(2.1)–(2.4) into more familiar continuous language.
Exponential family model (5.1) now becomes

gα(θ) = eq(θ)α−φ(α)

(5.19) [
φ(α) = log

∫
eq(θ)α dθ

]
,

where q(θ) is a smoothly defined 1×q vector function
of θ . Letting fθ(x) denote the sampling density of x

given θ , define

h(x) =
∫

fθ (x)g(θ)(q(θ) − q̄) dθ

(5.20) [
q̄ =

∫
g(θ)q(θ) dθ

]
.

Then the q × q information matrix I (5.5) is

I = N

∫ [
h(x)′h(x)

f (x)2

]
f (x) dx

(5.21) [
f (x) =

∫
g(θ)fθ (x) dx

]
.

A posterior expectation E = E{t (θ)|x} has MLE

Ê =
∫

t (θ)fθ (x)gα̂(θ) dθ
/∫

fθ (x)gα̂(θ) dθ.(5.22)

An influence function argument shows that E has gra-
dient

dE

dα
= E

∫
z(θ)gα(θ)(q(θ) − q̄) dθ,(5.23)

with

z(θ) = t (θ)fθ (x)gα(θ)∫
t (ϕ)fϕ(x)gα(ϕ) dϕ

(5.24)

− fθ (x)gα(θ)∫
fϕ(x)gα(ϕ) dϕ

.

Then the approximate standard deviation of Ê is

sd(Ê) =
(

dE

dα
I−1 dE

dα

′)1/2

,(5.25)

combining (5.21)–(5.24). [Of course, the integrals re-
quired in (5.25) would usually be done numerically,
implicitly returning us to discrete calculations!]

Modeling the prior. Modeling on the g-scale is con-
venient for situations where the statistician has quali-
tative knowledge concerning the shape of the prior g.
As a familiar example, large-scale testing problems of-
ten have a big atom of prior probability at θ = 0, cor-
responding to the null cases. We can accommodate
this by including in model matrix Q (5.1) a column
e0 = (0,0, . . . ,0,1,0, . . . ,0)′, with the 1 at θ = 0.

Such an analysis was carried out for the situation
in Figure 4, where the true g equaled 0.9e0 + 0.1 ·
uniform. Q was taken to be the natural spline basis
ns(θ,5) augmented by column e0, a 31 × 6 matrix. Ta-
ble 3 shows the results for t = e0, that is, for

E = E{t |x} = Pr{θ = 0|x}.(5.26)

The table gives E and sd(Ê) (5.18) for x = −4,−3,

. . . ,4 (N = 1), as well as the coefficient of variation
sd(Ê)/E.

The results are not particularly encouraging: we
would need sample sizes N on the order of 10,000
to expect reasonably accurate estimates Ê (3.27). On
the other hand, f -modeling as in Section 4 is hopeless
here. Section 6 has more to say about false discovery
rate estimates (5.26).

A random sample of N = 5000 X values was drawn
from the distribution f = P g corresponding to the true
g in Figure 4 [with P based on the normal density
ϕ(xi − θj ) as before], giving count vector y (3.7). Nu-
merical maximization yielded α̂, the MLE in model
(5.1)–(5.2), Q as in Table 3. The estimate ĝ = g(α̂)

put probability 0.920 at θ = 0, compared to true value
0.903, with nonnull distribution as shown in Figure 6.
The nonnull peaks at θ = ±2 were artifacts of the es-
timation procedure. On the other hand, ĝ correctly put

TABLE 3
Estimating E = Pr{θ = 0|x} in the situation of Figure 4; using g-modeling (5.1) with Q equal ns(x,5) augmented with a column putting a

delta function at θ = 0. Sd is sd(Ê) (5.25), cv is the coefficient of variation sd/E. (For sample size N , divide entries by N1/2.)

x −4 −3 −2 −1 0 1 2 3 4

E 0.04 0.32 0.78 0.94 0.96 0.94 0.78 0.32 0.04

N1/2· sd 0.95 3.28 9.77 10.64 9.70 10.48 9.92 3.36 0.75
N1/2· cv 24.23 10.39 12.53 11.38 10.09 11.20 12.72 10.65 19.21
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FIG. 6. MLE nonnull distribution, estimated from a sample of N = 5000 X values from f corresponding to true g in Figure 4; estimated
atom at θ = 0 was 0.92.

roughly equal nonnull probability above and below 0.
This degree of useful but crude inference should be
kept in mind for the genuine data examples of Sec-
tion 6, where the truth is unknown.

Our list of g-modeling advantages raises the ques-
tion of why f -modeling has dominated empirical
Bayes applications. The answer—that a certain class of
important problems is more naturally considered in the
f domain—is discussed in the next section. Theoreti-
cally, as opposed to practically, g-modeling has played
a central role in the empirical Bayes literature. Much of
that work involves the nonparametric maximum like-
lihood estimation of the prior distribution g(θ), some
notable references being Laird (1978), Zhang (1997)
and Jiang and Zhang (2009). Parametric g-modeling,
as discussed in Morris (1983) and Casella (1985), has
been less well developed. A large part of the effort has
focused on the “normal-normal” situation, normal pri-
ors with normal sampling errors, as in Efron and Mor-
ris (1975), and other conjugate situations. Chapter 3
of Carlin and Louis (2000) gives a nice discussion of
parametric empirical Bayes methods, including bino-
mial and Poisson examples.

6. CLASSIC EMPIRICAL BAYES APPLICATIONS

Since its post-war emergence (Robbins, 1956, Good
and Toulmin, 1956, James and Stein, 1961), empir-
ical Bayes methodology has focused on a small set

of specially structured situations: ones where certain
Bayesian inferences can be computed simply and di-
rectly from the marginal distribution of the observa-
tions on the x-space. There is no need for g-modeling
in this framework or, for that matter, any calculation of
ĝ at all. False discovery rates and the James–Stein es-
timator fall into this category, along with related meth-
ods discussed in what follows. Though g-modeling is
unnecessary here, it will still be interesting to see how
it performs on the classic problems.

Robbins’ Poisson estimation example exemplifies
the classic empirical Bayes approach: independent but
not identically distributed Poisson variates

Xk
ind∼ Poi(�k), k = 1,2, . . . ,N,(6.1)

are observed, with the �k’s notionally drawn from
some prior g(θ). Applying Bayes rule with the Pois-
son kernel e−θ θx/x! shows that

E{θ |x} = (x + 1)fx+1/fx,(6.2)

where f = (f1, f2, . . .) is the marginal distribution of
the X’s. [This is an example of (3.5), Bayes rule in
terms of f; defining ei = (0,0, . . . ,1,0, . . . ,0)′ with 1
in the ith place, U = (x + 1)ex+1, and V = ex .] Let-
ting f̂ = (f̂1, f̂2, . . .) be the nonparametric MLE (3.10),
Robbins’ estimate is the “plug-in” choice

Ê{θ |x} = (x + 1)f̂x+1/f̂x(6.3)
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FIG. 7. Prostate data. Left panel shows estimates of E{θ |x} from Tweedie’s formula (solid curve), f -modeling (circles) and g-modeling
(dots). Right panel compares standard deviations of Ê{θ |x}, for Tweedie estimates (dots), f -modeling (dashed curve) and g-modeling (solid
curve); reversals at far right are computational artifacts.

as in (3.11). Brown, Greenshtein and Ritov (2013) use
various forms of semiparametric f -modeling to im-
prove on (6.3).

The prehistory of empirical Bayes applications no-
tably includes the missing species problem; see Sec-
tion 11.5 of Efron (2010). This has the Poisson form
(6.1), but with an inference different than (6.2) as its
goal. Fisher, Corbet and Williams (1943) employed pa-
rameterized f -modeling as in Section 4, with f the
negative binomial family. Section 3.2.1 of Carlin and
Louis (2000) follows the same route for improving
Robbins’ estimator (6.3).

Tweedie’s formula (Efron, 2011) extends Robbins-
type estimation of E{θ |x} to general exponential fami-
lies. For the normal case

θ ∼ g(·) and x|θ ∼ N (θ,1),(6.4)

Tweedie’s formula is

E{θ |x} = x + l′(x)
(6.5)

where l′(x) = d

dx
logf (x),

with f (x) the marginal distribution of X. As in (6.2),
the marginal distribution of X determines E{θ |x},
without any specific reference to the prior g(θ).

Given observations Xk from model (6.4),

Xk ∼ N (�k,1) for k = 1,2, . . . ,N,(6.6)

the empirical Bayes estimation of E{θ |x} is concep-
tually straightforward: a smooth estimate f̂ (x) is ob-
tained from the Xk’s, and its logarithm l̂(x) differenti-
ated to give

Ê{θ |x} = x + l̂′(x),(6.7)

again without explicit reference to the unknown g(θ).
Modeling here is naturally done on the x-scale. [It is
not necessary for the Xk’s to be independent in (6.6),
or (6.1), although dependence decreases the accuracy
of Ê; see Theorem 8.4 of Efron (2010).]

Figure 7 concerns an application of Tweedie’s for-
mula to the prostate data, the output of a microar-
ray experiment comparing 52 prostate cancer patients
with 50 healthy controls (Efron, 2010, Section 2.1).
The genetic activity of N = 6033 genes was mea-
sured for each man. Two-sample tests comparing pa-
tients with controls yielded z-values for each gene,
X1,X2, . . . ,XN , theoretically satisfying

Xk ∼N (0,1)(6.8)

under the null hypothesis that gene k is equally ac-
tive in both groups. Of course, the experimenters were
searching for activity differences, which would man-
ifest themselves as unusually large values |Xk|. Fig-
ure 2.1 of Efron (2010) shows the histogram of the Xk

values, looking somewhat like a long-tailed version of
a N (0,1) density.
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The “smooth estimate” f̂ (x) needed for Tweedie’s
formula (6.7) was calculated by Poisson regression,
as in (4.3)–(4.7). The 6033 Xk values were put into
193 equally spaced bins, centered at x1, x2, . . . , x193,
chosen as in (2.8) with yi being the number in bin i.
A Poisson generalized linear model (4.3) then gave
MLE f̂ = (f̂1, f̂2, . . . , f̂193). Here the structure ma-
trix X was the normal spline basis ns(x, df = 5) aug-
mented with a column of 1’s. Finally, the smooth curve
f̂ (x) was numerically differentiated to give l̂′(x) =
f̂ ′(x)/f̂ (x) and Ê = x + l̂′(x).

Tweedie’s estimate Ê{θ |x} (6.7) appears as the solid
curve in the left panel of Figure 7. It is nearly zero
between −2 and 2, indicating that a large majority of
genes obey the null hypothesis (6.7) and should be esti-
mated to have θ = 0. Gene 610 had the largest observed
z-value, X610 = 5.29, and corresponding Tweedie esti-
mate 4.09.

For comparison, Ê{θ |x} was recalculated both by
f -modeling as in Section 4 and g-modeling as in
Section 5 [with discrete sampling distributions (2.4)–
(2.6) obtained from Xk ∼ N (�k,1), �k being the
“true effect size” for gene k]; f -modeling used X
and f̂ as just described, giving Êf = U ′

r f̂/V ′
r f̂, Ur

and Vr as in (4.19), r = 12; g-modeling took θ =
(−3,−2.8, . . . ,3) and Q = (ns(θ,5),1), yielding ĝ =
g(α̂) as the MLE from (5.1)–(5.2). [The R nonlinear
maximizer nlm was used to find α̂; some care was
needed in choosing the control parameters of nlm.
We are paying for the fact that the g-modeling likeli-
hood (5.2) is not an exponential family.] Then the esti-
mated posterior expectation Êg was calculated apply-
ing Bayes rule with prior ĝ. Both Êf and Êg closely
approximated the Tweedie estimate.

Standard deviation estimates for Êf [dashed curve,
from Theorem 3 with f̂ replacing f in (4.9)] and Êg

(solid curve, from Theorem 4) appear in the right panel
of Figure 7; f -modeling gives noticeably lower stan-
dard deviations for E{θ |x} when |x| is large.

The large dots in the right panel of Figure 7 are
bootstrap standard deviations for the Tweedie estimates
Ê{θ |x}, obtained from B = 200 nonparametric boot-
strap replications, resampling the N = 6033 Xk val-
ues. These closely follow the f -modeling standard de-
viations. In fact, Ê∗

f , the bootstrap replications of Êf ,

closely matched Ê∗ for the corresponding Tweedie es-
timates on a case-by-case comparison of the 200 simu-
lations. That is, Êf is numerically just about the same
as the Tweedie estimate, though it is difficult to see
analytically why this is the case, comparing formulas

(4.16) and (6.7). Notice that the bootstrap results for
Êf verify the accuracy of the delta-method calcula-
tions going into Theorem 3.

Among empirical Bayes techniques, the James–
Stein estimator is certainly best known. Its form,

θ̂ = X̄ + [
1 + (N − 3)/S

]
(Xk − X̄)

(6.9) [
S =

N∑
1

(Xk − X̄)2

]
,

again has the “classic” property of being estimated di-
rectly from the marginal distribution on the x-scale,
without reference to g(θ). The simplest application of
Tweedie’s formula, taking X in our previous discussion
to have rows (1, xi, x

2
i ), leads to formula (6.9); see Sec-

tion 3 of Efron (2011).
Perhaps the second most familiar empirical Bayes

applications relates to Benjamini and Hochberg’s
(1995) theory of false discovery rates. Here we will
focus on the local false discovery rate (fdr), which best
illustrates the Bayesian connection. We assume that
the marginal density of each observation of Xk has the
form

f (x) = π0ϕ(x) + (1 − π0)f1(x),(6.10)

where π0 is the prior probability that Xk is null, ϕ(x)

is the standard N (0,1) density exp(−1
2x2)/

√
2π , and

f1(x) is an unspecified nonnull density, presumably
yielding values farther away from zero than does the
null density ϕ.

Having observed Xk equal to some value x, fdr(x) is
the probability that Xk represents a null case (6.8),

fdr(x) = Pr{null|x} = π0ϕ(x)/f (x),(6.11)

the last equality being a statement of Bayes rule. Typ-
ically π0, the prior null probability, is assumed to be
near 1, reflecting the usual goal of large-scale testing:
to reduce a vast collection of possible cases to a much
smaller set of particularly interesting ones. In this case,
the upper false discovery rate,

ufdr(x) = ϕ(x)/f (x),(6.12)

setting π0 = 1 in (6.11), is a satisfactory substitute for
fdr(x), requiring only the estimation of the marginal
density f (x).

Returning to the discrete setting (2.9), suppose we
take the parameter of interest t (θ) to be

t = (0,0, . . . ,0,1,0, . . . ,0)′,(6.13)

with “1” at the index j0 having θj0 = 0 [j0 = 16
in (2.7)]. Then E{t (θ)|xi} equals fdr(xi), and we can
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TABLE 4
Local false discovery rate estimates for the prostate data; ûfdr and its standard deviation estimates sdf obtained from f -modeling; f̂dr and

sdg from g-modeling; sdf is substantially smaller than sdg

x −4 −3 −2 −1 0 1 2 3 4

ûfdr 0.060 0.370 0.840 1.030 1.070 1.030 0.860 0.380 0.050

sdf 0.014 0.030 0.034 0.017 0.013 0.021 0.033 0.030 0.009
sdg 0.023 0.065 0.179 0.208 0.200 0.206 0.182 0.068 0.013

f̂dr 0.050 0.320 0.720 0.880 0.910 0.870 0.730 0.320 0.040

assess the accuracy of a g-model estimate f̂dr(xi) us-
ing (5.18), the corollary to Theorem 4.

This was done for the prostate data, with the data
binned as in Figure 7, and Q = (ns(θ,5),1) as be-
fore. Theorem 4 was applied with θ as in (2.7). The
bottom two lines of Table 4 show the results. Even
with N = 6033 cases, the standard deviations of f̂dr(x)

are considerable, having coefficients of variation in the
25% range.

F -model estimates of fdr fail here, the bias/
variance trade-offs of Table 2 being unfavorable for any
choice of r . However, f -modeling is a natural choice
for ufdr, where the only task is estimating the marginal
density f (x). Doing so using Poisson regression (4.3),
with X = (ns(x,5),1), gave the top two lines of Ta-
ble 4. Now the standard deviations are substantially
reduced across the entire x-scale. [The standard devi-
ation of ûfdr can be obtained from Theorem 3, with
U = ϕ(xi)1 and V the coordinate vector having 1 in
the ith place.]

The top line of Table 4 shows ûfdr(x) exceeding 1
near x = 0. This is the penalty for taking π0 = 1
in (6.12). Various methods have been used to cor-
rect ûfdr, the simplest being to divide all of its val-
ues by their maximum. This amounts to taking π̂0 =
1/maximum,

π̂0 = 1/1.070 = 0.935(6.14)

in Table 4. [The more elaborate f -modeling program
locfdr, described in Chapter 6 of Efron (2010), gave
π̂0 = 0.932.] By comparison, the g-model MLE ĝ put
probability π̂0 = 0.852 on θ = 0.

7. DISCUSSION

The observed data X1,X2, . . . ,XN from the empir-
ical Bayes structure (1.1)–(1.2) arrives on the x scale
but the desired Bayesian posterior distribution g(θ |x)

requires computations on the θ scale. This suggests
the two contrasting modeling strategies diagrammed

in Table 5: modeling on the x scale, “f -modeling,”
permits the application of direct fitting methods, usu-
ally various forms of regression, to the X values, but
then pays the price of more intricate and less stable
Bayesian computations. We pay the price up front with
“g-modeling,” where models such as (5.2) require dif-
ficult nonconvex maximum likelihood computations,
while the subsequent Bayesian computations become
straightforward.

The comparative simplicity of model fitting on the x

scale begins with the nonparametric case: f -modeling
needs only the usual vector of proportions f̂ (3.10),
while g-modeling requires Laird’s (1978) difficult non-
parametric MLE calculations. In general, g-models
have a “hidden” quality that puts more strain on para-
metric assumptions; f -modeling has the advantage of
fitting directly to the observed data.

There is a small circle of empirical Bayes situations
in which the desired posterior inferences can be ex-
pressed as simple functions of f (x), the marginal dis-
tribution of the X observations. These are the “clas-
sic” situations described in Section 6, and account for
the great bulk of empirical Bayes applications. The
Bayesian computational difficulties of f -modeling dis-
appear here. Not surprisingly, f -modeling dominates
practice within this special circle.

“Bayes rule in terms of f ,” Section 2, allows us to
investigate how well f -modeling performs outside the

TABLE 5
f -modeling permits familiar and straightforward fitting methods
on the x scale but then requires more complicated computations
for the posterior distribution of θ ; the situation is reversed for

g-modeling

Model fitting Bayesian computations

f -modeling direct indirect
g-modeling indirect direct
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FIG. 8. g-modeling estimates of Pr{|θ | ≥ 1.5|x} for the prostate data. Dashed bars indicate ± one standard deviation, from Theorem 4.

circle. Often not very well seems to be the answer, as
seen in the bottom panel of Figure 5, for example. G-
modeling comes into its own for more general empir-
ical Bayes inference questions, where the advantages
listed in Section 5 count more heavily. Suppose, for in-
stance, we are interested in estimating Pr{|θ | ≥ 1.5|x}
for the prostate data. Figure 8 shows the g-model es-
timates and their standard deviations from Theorem 4,
with Q = ns(θ,6) as before. Accuracy is only mod-
erate here, but, nonetheless, some useful information
has been extracted from the data (while, as usual for
problems involving discontinuities on the θ scale, f -
modeling is ineffective).

Improved f -modeling strategies may be feasible,
perhaps making better use of the kinds of informa-
tion in Table 2. A reader has pointed out that pseudo-
inverses of P other than A (3.1) are available, of the
form (

P ′BP
)−1

P ′B.(7.1)

Here the matrix B might be a guess for the inverse co-
variance matrix of f̂, as motivated by generalized least
squares estimation. So far, however, situations like that
in Figure 8 seem inappropriate for f -modeling, leaving
g-modeling as the only game in town.

Theorems 3 and 4 provide accuracy assessments for
f -modeling and g-modeling estimates. These can be
dishearteningly broad. In the bottom panel of Fig-
ure 5, the “good” choice, g-modeling, would still re-
quire more than N = 20,000 independent observations

Xk to get the coefficient of variation down to 0.1 when
x exceeds 2. More aggressive g-modeling, reducing the
degrees of freedom for Q, improves accuracy, at the
risk of increased bias. The theorems act as a reminder
that, outside of the small circle of its traditional ap-
plications, empirical Bayes estimation has an ill-posed
aspect that may call for draconian model choices. [The
ultimate choice is to take g(θ) as known, that is, to be
Bayesian rather than empirical Bayesian. In our frame-
work, this amounts to tacitly assuming an enormous
amount “N” of relevant past experience.]

Practical applications of empirical Bayes methodol-
ogy have almost always taken �k and Xk in (1.1)–(1.2)
to be real-valued, as in all of our examples. This is
not a necessity of the theory (nor of its discrete imple-
mentation in Section 2). Modeling difficulties mount
up in higher dimensions, and even studies as large as
the prostate investigation may not carry enough infor-
mation for accurate empirical Bayes estimation.

There are not many big surprises in the statistics lit-
erature, but empirical Bayes theory, emerging in the
1950s, had one of them: that parallel experimental
structures like (1.1)–(1.2) carry within themselves their
own Bayesian priors. Essentially, the other N −1 cases
furnish the correct “prior” information for analyzing
each (�k,Xk) pair. How the statistician extracts that
information in an efficient way, an ongoing area of
study, has been the subject of this paper.
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