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PERIODS
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The busy period for a queue is cast as the area swept under the
random walk until it first returns to zero. Encompassing non-i.i.d.
increments, the large-deviations asymptotics of the busy period B is
addressed, under the assumption that the increments satisfy standard
conditions, including a negative drift. The main conclusions provide
insight on the probability of a large busy period, and the manner in
which this occurs. The scaled probability of a large busy period has
the asymptote, for any b > 0,

lim
n→∞

1√
n
logP (B ≥ bn) = −K

√
b,

where K = 2

√

−
∫

λ∗

0

Λ(θ) dθ, with λ∗ = sup{θ : Λ(θ) ≤ 0},

and with Λ denoting the scaled cumulant generating function of the
increments process. The most likely path to a large swept area is
found to be a simple rescaling of the path on [0, 1] given by

ψ∗(t) = −Λ(λ∗(1− t))/λ∗.

In contrast to the piecewise linear most likely path leading the ran-
dom walk to hit a high level, this is strictly concave in general.
While these two most likely paths have distinctly different forms,
their derivatives coincide at the start of their trajectories, and at
their first return to zero.

These results partially answer an open problem of Kulick and Pal-
mowski [18] regarding the tail of the work done during a busy period
at a single server queue. The paper concludes with applications of
these results to the estimation of the busy period statistics (λ∗,K)
based on observations of the increments, offering the possibility of es-
timating the likelihood of a large busy period in advance of observing
one.

Received January 2013.
‡Financial support from the AFOSR grant FA9550-09-1-0190 is gratefully acknowl-

edged.
MSC 2010 subject classifications: Primary 60K25; secondary 60F10.
Keywords and phrases: Integrated random walks, busy periods, large deviations, sample

paths.

300

http://www.i-journals.org/ssy/
http://dx.doi.org/10.1214/13-SSY098


BUSY PERIODS 301

1. Introduction. Consider S = {Sk : k ≥ 0}, a random walk that
starts at zero and has (not necessarily i.i.d.) increments process X = {Xn :
n ≥ 0}:

S0 := 0 and Sk =

k
∑

i=1

Xi for k ≥ 1.(1)

Define the stopping time and stopped variable:

τ := inf{k ≥ 1 : Sk ≤ 0} and B =

τ
∑

i=1

Si.(2)

The tail behavior of B (and related random variables) is of interest in several
apparently distinct fields from queueing systems, to percolation, to insurance
[18, 21, 12].

By simple rescaling arguments, should the following limit exist, it must
have this form:

lim
n→∞

1√
n
log P (B ≥ nb) = −K

√
b for some K ≥ 0.(3)

This limit is established with K > 0 in [2] for the particular case of the the
M/M/1 queue. By extending results in [12] from a fixed terminal point to
the random terminal point τ via the infinite time-horizon sample path Large
Deviation Principle setup in [14], Theorem 2 establishes the limit eq. (3) for a
broad class of non-long-range dependent, light-tailed arrivals processes, pro-
viding a formula for K. The scaled Cumulant Generating Function (sCGF)
associated with the scalar LDP is denoted

Λ(θ) = lim
k→∞

1

k
logE(exp(θSk)) for θ ∈ R.(4)

Identifying λ∗ = sup{θ : Λ(θ) ≤ 0}, Theorem 2 shows that under Assump-
tions 1 and 2,

K = 2

√

−
∫ λ∗

0
Λ(θ) dθ.(5)

Its proof establishes that the most likely path to a large swept area is strictly
concave. The most likely path that first returns to zero at t = 1 is identified
to be

ψ∗(t) = − 1

λ∗
Λ(λ∗(1− t)) for t ∈ [0, 1],(6)
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Fig 1. Relationship between the scaled cumulant generation function of the increments of
the random walk, Λ, and the most likely path to large busy period, ψ∗.
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Fig 2. I.i.d. Gaussian(−1/10,1) increments. Simulated results from ten billion paths. (Left
panel) Four paths displayed. Simulated path with largest swept area 111, 524.13 and, con-
ditioned on that area, the most likely path to give rise to it as predicted by Theorem 2,
which is concave. Also shown is the simulated path that reaches the greatest height 98.36
and, conditioned on that height, the most likely path to give rise to it as deduced from
Theorem 1, which is piecewise linear. (Right panel) Logarithm of the empirical probability
that the area under busy period exceeds a given level compared with theoretical prediction
of −K

√
b and (as the asymptote does not capture the prefactor) the linear shift −K

√
b+κ,

where κ is chosen to match the offset of the empirical observation.

with all other most likely paths being simple rescalings of ψ∗, as illustrated
in Fig. 1. This is in contrast to the most likely path for the random walk to
hit a high level, which is known to be piecewise linear, e.g. [1, 15].

As an illustrative example, consider a random walk with i.i.d Gaussian
increments for which everything is calculated in closed form in Sec. 5.1.
Ten billion busy period paths were simulated and, of these, the one with
the largest swept area as well as the one that attained the greatest height
were recorded. In addition to plotting these paths in Fig. 2, conditioned on
these values the most likely paths to these events are shown. The distinct
shapes of the paths to these two unlikely events is apparent. Note that
the terminal times of the theoretically predicted paths are deductions of the
conditioned area and height, respectively, and are not constrained explicitly.
Also shown is the logarithm of the empirical probability with which the busy
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period exceeded a given value as compared to the large deviation estimate.
Up to a constant prefactor, the approximation inferred from Theorem 2 is
remarkably accurate.

These results provide a partial answer to Open Problem 3.1 of [18] regard-
ing precise asymptotics for the probability that B is large by identifying the
associated rough asymptotics and showing that most likely paths are typi-
cally strictly concave. They also reveal a lacuna in [3, Theorem 4.1] where
the most likely path is assumed to be piecewise linear.

We conclude the paper in Sec. 6 with a discussion of the practical utility of
these results. Given observations of the increments process X, estimates of
the key quantities (λ∗,K) can be created that, under additional restrictions
on X, can be shown to satisfy a large deviation principle. This offers the
possibility of accurately estimating the likelihood of a long busy period in
advance of observing one.

2. A heuristic argument. In advance of proving the results surveyed
in the introduction, we provide a heuristic argument along the lines sug-
gested by an anonymous reviewer.

We are interested in asymptotics of the event
{

τ
∑

i=1

Si ≥ bn2

}

=
⋃

m≥0

{

m
∑

i=1

Si ≥ bn2 : Si > 0, for i ∈ {1, . . . ,m− 1} and Sm ≤ 0

}

=
⋃

t>0







[nt]
∑

i=1

Si ≥ bn2 : Si > 0 for i ∈ {1, . . . , [nt]− 1} and S[nt] ≤ 0







.

As the random walk has negative drift, one suspects that these sets have
little probability for large values of t. Thus, under suitable conditions on the
increments process, one might hope to apply a generalization of the principle
of the largest term (e.g. Lemma 1.2.15 of [6]), that the exponential decay is
dominated by the most likely event, to this non-finite collection, obtaining

lim
n→∞

1

n
logP

(

τ
∑

i=1

Si ≥ bn2

)

(7)

= sup
t>0

lim
n→∞

1

n
logP





[nt]
∑

i=1

Si ≥ bn2, Si > 0, i ∈ {1, . . . , [nt]− 1}, S[nt] ≤ 0



 ,
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and so one need only establish asymptotics of the probability of the event in
the final equation (with t fixed). The difficulties that must be overcome to
make such an argument rigorous mimic those for the logarithmic asymptotics
of the supremum of a stochastic process, achieved in [16, 9, 19]. At the cost of
additional assumptions, however, these difficulties are more readily overcome
with a sample-path analysis that also reveals the form of the most likely path
[15], which is the approach that we adopt in our rigorous arguments.

Continuing with the heuristic, fix t > 0 in eq. (7), do not fret about the
positivity conditions, and consider

lim
n→∞

1

n
logP





[nt]
∑

i=1

Si ≥ bn2



 = lim
n→∞

1

n
log P





1

[nt]2

[nt]
∑

i=1

Si ≥ b
n2

[nt]2





= t lim
n→∞

1

n
log P

(

1

n2

n
∑

i=1

Si ≥
b

t2

)

with a small leap of faith in the final equality. To identify this final ex-
pression in terms of the behavior of the random walk, it would suffice to
establish that the Integrated Random Walk (i.e. the partial sums of the par-
tial sums {∑n

i=0 Si/n
2}), satisfies a large deviation principle. This LDP can

be established from [12, Theorem 5] giving the rate function

IIRW(z) = sup
θ

(

θz − θ

∫ θ

0
Λ(x)dx

)

for z ∈ R,

where Λ is the sCGF of the increments process found in eq. (4). Thus in
conjunction with eq. (7) we have

lim
n→∞

1

n
log P

(

τ
∑

i=1

Si ≥ bn2

)

= − inf
t>0

sup
θ

(

θ
b

t
− tθ

∫ θ

0
Λ(x)dx

)

(8)

and all that remains is to simplify the expression on the right hand side.
This comes about by noting that the function being optimized is convex in
θ and concave in t so that the optimization order can be interchanged. The
final expression is consistent with the limit eq. (3) established in this paper.

3. Functional setup. The framework for analysis used in this paper
was first developed for weak convergence of probability measures [22, 4, 26]
and subsequently used in the context of sample path large deviations, e.g.
[7, 20, 28, 15, 14, 11]. In particular, Ganesh and O’Connell [15] employed this
setup to establish an infinite time horizon version of Anantharam’s result [1],
proving that the most likely path to exceed a high level for a random walk
with negative drift is piecewise linear on the scale of large deviations.
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Let C[0,∞) denote the collection of real-valued continuous functions on
[0,∞). Let A[0,∞) denote the collection of the integrals of functions that are
elements of L1[0, x) for all x > 0 (for example, see Riesz and Sz.-Nagy [24]).
For each r ∈ R, define the space

Yr :=

{

φ ∈ C[0,∞) : lim
t→∞

φ(t)

(1 + t)
= r

}

(9)

and equip it with the topology induced by the norm

‖φ‖ = sup
t≥0

∣

∣

∣

∣

φ(t)

1 + t

∣

∣

∣

∣

.

Define the polygonal sample paths

Sn(t) :=
1

n
S[nt] +

(

t− [nt]

n

)

X[nt]+1, for t ∈ [0,∞),

where [t] is the least integer greater than t. The sample path process {Sn(·)}
is known to satisfy the LDP in Yr for a broad class of non-long-range de-
pendent, non-heavy-tailed random walks. For example, see [15, Theorem 1],
where [5, Theorem 2] provides general mixing and uniform tail exponent
conditions under which the prerequisites of this theorem hold. This encom-
passes increment processes that are Harris recurrent Markov chains, subject
to a Foster-Lyapunov drift condition [17]. The existence of such an LDP will
be the primary assumption in our proof of eq. (3).

4. Tail asymptotics. We shall make two assumptions. The first is the
existence of a sample path LDP for the random walk that ensures the walk
has negative drift, but a possibility of becoming positive on the scale of large
deviations.

Assumption 1. The sample path process {Sn(·)} satisfies the LDP in
Y−δ, some δ > 0, with rate function

I∞(φ) =







∫ ∞

0
I(φ̇(t))dt if φ ∈ A[0,∞) ∩ Y−δ,

+∞ otherwise,
(10)

where I is the good, strictly convex rate function associated with the random
walk {Sn(1)}, I(−δ) = 0, and I(x) <∞ for some x > 0.

Our identification of the most likely path to a large swept area will have
a surprising relationship with the most likely path to exceed a high level, so
we recall the following result of Ganesh and O’Connell.
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Theorem 1 ([15]). Under Assumption 1, the following exist and are

non-negative

x∗ = arg inf
x>0

1

x
I(x) and λ∗ =

1

x∗
I(x∗) = sup{θ : Λ(θ) ≤ 0}.(11)

Moreover, for any h > 0,

lim
n→∞

1

n
logP

(

sup
k
Sk ≥ nh

)

= −hλ∗,(12)

while the most likely path to this event is

ϕ∗(t) =

{

x∗t if t < h/x∗,

h+ (t− h/x∗)(−δ) if t ≥ h/x∗.
(13)

Note that the probability of sweeping a large area, eq. (3), decays on a
slower scale than the probability of hitting a high height, eq. (12).

For the supremum of a random walk, λ∗ determines the rate of decay of
the probability of hitting a high level as shown in eq. (12). For busy periods,
it will play a new and surprising rôle in the characterization of the most
likely path to a large swept area. The inverse of ∇I will prove central to
the development that follows. To that end, our second assumption is the
following regularity condition.

Assumption 2. The rate function I is continuously differentiable on an
interval that contains [−δ, x∗].

This assumption justifies the definition,

Ξ(r) =: (∇I)−1(r), r ∈ R, whenever the inverse exists.(14)

The inverse exists, so that Ξ is finite-valued, on an interval that contains
[Ξ(−δ),Ξ(x∗)]. That λ∗ is significant here stems from the second part of the
following lemma.

Lemma 1. The scalar λ∗ defined in eq. (11) satisfies

λ∗ = ∇I(x∗).

Moreover, it is the unique positive solution of
∫ 1

0
Ξ(λ∗s) ds = 0.(15)

Proof. The identity ∇I(x∗) = I(x∗)/x∗ follows from the first-order op-
timality condition for x∗, based on its definition in eq. (11).
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Clearly λ∗ is positive as x∗ is positive and I(x) > 0 for all x > −δ. To see
that λ∗ thus defined is a solution of eq. (15), direct substitution, change of
variables and integration by parts suffices. To see it is unique, note that it
is equivalently characterized as any positive solution of

∫ λ∗

0
Ξ(s) ds = 0.

As I is strictly convex, Ξ(x) is strictly increasing when finite. At x = 0 we
have that Ξ(0) = −δ < 0, so this equation only has one positive solution.

We will use λ∗ to define the most likely path to sweep an area over [0, 1]:

ψ∗(t) =







∫ t

0
Ξ (λ∗(1− s)) ds for t ∈ [0, 1]

(1− t)δ for t ≥ 1.

(16)

The most likely path to sweep any other area will be a simple rescaling of
this solution. This path ψ∗ is strictly concave on [0, 1] as I is strictly convex.
On this interval it is of the form found in [12] in the analysis of simulation
of queues: on differentiating each side of eq. (16), it follows that the path
satisfies the simple differential equation,

∇I
(

d
dtψ

∗(t)
)

= λ∗(1− t) for t ∈ [0, 1].(17)

Note that, thus defined, we have that

d
dtψ

∗ (0) = Ξ(λ∗) = x∗ and d
dtψ

∗ (1) = Ξ(0) = −δ.(18)

That is, remarkably, the most likely paths to sweeping a large area, ψ∗ in
eq. (16), and to exceeding a large height, ϕ∗ in eq. (13), both start and end
with identical derivatives, but are distinct in-between. Before providing the
main result, we establish the following characterizations of ψ∗.

Proposition 1. The following hold for t ∈ [0, 1]:

(i) In contrast to eq. (16), a non-integral representation is obtained in

terms of the rate function,

ψ∗(t) =
I (Ξ(λ∗(1− t)))

λ∗
− Ξ(λ∗(1− t))(1 − t).(19)

(ii) In terms of the sCGF,

ψ∗(t) = − 1

λ∗
Λ(λ∗(1− t)).(20)
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and hence,

d
dtψ

∗(t) = ∇Λ(λ∗(1− t))

Proof. The identity ∇Λ(θ) = Ξ(θ) can be established for θ ∈ [0, λ∗]
based on convex duality (e.g, [25, Proposition 11.3]). The representation in
eq. (20) then follows by integration using ψ∗(0) = 0. The characterization in
eq. (19) can be obtained from eq. (20) noting that Λ(θ) = θ Ξ(θ)− I(Ξ(θ))
for θ ∈ [0, λ∗].

A simpler expression for λ∗ is obtained when Λ is symmetric. This sym-
metry can be interpreted as asymptotic reversibility of the underlying walk.

Proposition 2. Recall that λ∗ > 0 is a zero of Λ, −δ < 0 is a zero of I,
and x∗ > 0 is the slope given in Theorem 1. Under the symmetry condition,

Λ(θ) = Λ(λ∗ − θ) for all θ ∈ [0, λ∗],(21)

then these parameters are related as follows,

x∗ = δ and λ∗ = ∇I(δ) = I(δ)/δ = 2∇I(0).(22)

Moreover, if eq. (21) holds for all θ ∈ R, then

λ∗ =
I(x)− I(−x)

x
for all x 6= 0 such that I(x) <∞.(23)

Proof. If Λ(θ) = Λ(λ∗ − θ) for θ ∈ [0, λ∗], the path ψ∗(t) is symmetric
with ψ∗(t) = ψ∗(1−t). Thus d

dtψ
∗(t) = − d

dtψ
∗(1−t). In particular, evaluating

this at t = 0 and using eq. (18) gives x∗ = d
dtψ

∗(0) = − d
dtψ

∗(1) = δ. Hence
by eq. (11), λ∗ = ∇I(δ) = I(δ)/δ. Equating the derivatives at t = 1/2 gives
2Ξ(λ∗/2) = 0 so that λ∗ = 2∇I(0).

If eq. (21) holds for all θ, then

I(−x) = sup
θ∈R

(θ(−x)− Λ(λ∗ − θ)) = sup
θ∈R

((λ∗ − θ)(−x)− Λ(θ))

= I(x)− λ∗x for all x.

This gives eq. (23) for all x ∈ R such that I(x) <∞.

For example, eq. (21) is satisfied if X is i.i.d., E(exp(θX1)) is finite in
a neighborhood of the origin and P (X1 = x)/P (X1 = −x) = exp(−λ∗x)
for all x, as holds for X1 Gaussian or Bernoulli-{−C,+C}. This condition,
however, extends beyond i.i.d. increments processes and in Sec. 5 we present
an example where eq. (21) is satisfied for a Markov chain X.
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Armed with these assumptions, definitions and characterizations of the
path ψ∗, we now prove the main result.

Theorem 2. Under the above assumptions, for any b > 0,

lim
n→∞

1

n
log P (B ≥ n2b) = −K

√
b.

where K is given in eq. (5). Moreover,

(i) The most likely asymptotic value of τ/n leading to {B ≥ n2b} is

a =:
2λ∗

K

√
b.

(ii) The rescaled, most likely asymptotic path of Sn(·) is

ψ∗
b (t) = aψ∗(t/a) = −2

√
b

K
Λ

(

λ∗ − t

2

K√
b

)

,(24)

which is strictly concave on [0, a].

Proof. The method of proof is to construct a collection of open sets,
{Bǫ}, and a closed set F in Y−δ such that for all ǫ > 0 sufficiently small

{Sn(·) ∈ Bǫ} ⊂ {B ≥ bn2} ⊂ {Sn(·) ∈ F}

and

lim
ǫ→0

lim inf
n→∞

1

n
logP (Sn(·) ∈ Bǫ) = lim sup

n→∞

1

n
logP (Sn(·) ∈ F ).

Define

F :=

{

φ ∈ Y−δ :

∫ ∞

0
max(φ(t), 0)dt ≥ b

}

.

If B ≥ bn2, then Sn(·) ∈ F as

∫ ∞

0
max(Sn(t), 0)dt ≥

∫ nτ

0
Sn(t)dt ≥

1

n2

τ
∑

i=1

Si =
1

n2
B ≥ b.

The set F is closed as φ 7→ max(φ, 0) is Lipschitz continuous from Y−δ →
Y0 and, as for any φ ∈ Y−δ we have φ(t) < 0 for all t sufficiently large,
integration is also continuous (e.g. [27, Theorem 11.5.1]). Thus we can use
the LDP upper bound to obtain

lim sup
n→∞

1

n
logP (B ≥ bn2) ≤ lim sup

n→∞

1

n
log P (Sn(·) ∈ F )
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= − inf{I∞(φ) : φ ∈ F}

= − inf
t>0

inf

{

I∞(φ) :

∫ t

0
max(φ(s), 0) ds ≥ b

}

.

As limt→∞ φ(t)/(1 + t) = −δ < 0 for all φ ∈ Y−δ, this infimum over t is
attained at some finite t. Consider this inner functional infimum for fixed t:

minimize I∞(φ)
(25)

subject to φ ∈ L+[0, t] and

∫ t

0
max(φ(t), 0) ≥ b.

This functional optimization problem is closely related to [12, equation (6)],
where one can identify b with z. Mild alterations to Proposition 7 therein
shows that with b = a2

∫ 1
0 ψ

∗(t)dt for some a > 0, with ψ∗(t) defined in
eq. (16), this infimum occurs at any t ≥ a for which it transpires that ψ∗

b ,
defined in eq. (24), is the optimizer. This essentially occurs as

ψ∗
b = arg inf

{
∫ a

0
I(φ̇(t))dt :

∫ a

0
φ(t) = a2

∫ 1

0
ψ∗(t)dt

}

The quantity λ∗ in the definition of ψ∗ arises as a scalar Lagrange multi-
plier [12]. Note that ψ∗

b (a) = 0, and thus the most likely path to sweep a

rescaled area b satisfies τ/n ≈ a =
√

b/
∫ 1
0 ψ

∗(t)dt. Using Proposition 1 we
have that

∫ 1

0
ψ∗(t) dt = − 1

λ∗

∫ 1

0
Λ(λ∗(1− t)) dt = − 1

(λ∗)2

∫ λ∗

0
Λ(θ) dθ

and thus the expression for a in the statement follows.
What remains to be shown is that there is a coincident lower bound. Let

ψ∗ be the unique solution of eq. (16) and define ψ∗
b using eq. (24). The path

ψ∗
b (t) starts at 0 ends at a, and is the optimal path that sweeps an area of
∫ a
0 ψ

∗
b (t)dt = a2

∫ 1
0 ψ

∗(t)dt = b. Let

Bǫ = B1
ǫ ∩B2

ǫ

where, with e(t) = ǫ(1 + t),

B1
ǫ =

{

φ : inf
t∈[0,ǫ]

(φ(t)− tǫ) > 0

}

and B2
ǫ = {φ : ‖φ− (ψ∗

b + e)‖ < ǫ}

Both B1
ǫ and B2

ǫ are open by construction and, for ǫ sufficiently small, their
intersection is non-empty. As defined, Sn(·) /∈ B1

ǫ as Sn(0) = 0, but this
is not significant as we can use an exponentially equivalent representation
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with Sn(0) := 1/n. Thus if Sn(·) ∈ Bǫ with Sn(0) := 1/n, then {B > bn2}.
As Bǫ is open for all ǫ, we can use the LDP lower bound

lim inf
n→∞

1

n
log P (B ≥ bn2) ≥ lim

ǫ→0
lim inf
n→∞

1

n
log P (Sn(·) ∈ Bǫ)

≥ lim
ǫ→0

lim inf
n→∞

1

n
log P (Sn(·) ∈ Bǫ)

= − lim
ǫ→0

inf{I∞(φ) : φ ∈ Bǫ} = −I∞(ψ∗
b ).

To evaluate K, note that

lim
n→∞

1

n
log P (B ≥ bn2) = −I∞(ψ∗

b ) = −
∫ 1
0 I(

d
dtψ

∗(t))dt
√

∫ 1
0 ψ

∗(t)dt

√
b.(26)

Using Λ(θ) = θ Ξ(θ) − I(Ξ(θ)) for θ ∈ [0, λ∗], integration by parts and the
fact that ∇Λ(λ∗) = 0, we have that

∫ 1

0
I(ψ̇∗(t)) dt = − 2

λ∗

∫ λ∗

0
Λ(θ) dθ.

Inserting this into eq. (26) in conjunction with the expression for
∫ 1
0 ψ

∗(t) dt
given above obtains the expression for K in eq. (5).

5. Examples. Theorem 2 provides a mechanism for calculating the
most likely path to a large busy period B as well as the exponent K. We
shall perform this calculation for illustrative examples: with i.i.d Gaussian
increments where λ∗, ψ∗ and K can all be determined in closed form; with
Bernoulli{−1,+C} increments, which includes M/M/1 queue lengths, where
explicit expressions of λ∗ are not always possible, but ψ∗ can be written in
terms of it and K must always be calculated numerically; and, finally, for in-
crements with Markovian dependencies where λ∗ and ψ∗ can be determined
in closed form, but K must be identified numerically.

For each of the examples ten billion paths were simulated. As well as
recording the logarithm of the frequency with which B exceeded b as a
function of b, the largest swept area and highest paths were logged for com-
parison with the theoretically predicted most likely paths. For comparison
with observations, Theorem 2 says that given we observe B = n2b, on the
scale of large deviations the most likely time taken to generate the area is

τ ≈ na = n2
√
b/K = τ∗n where τ∗n =: 1

2K/B
−1/2

and the most likely path is then

Si =: nSn (i/n) ≈ ψ∗
B/n2 (i/n) = naψ∗ (i/(na)) .
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Thus, since τ∗n = an, for large swept area we have the approximation

Si ≈ τ∗nψ
∗(i/τ∗n).(27)

This most likely path is solely parameterized from the observations by the
value B. In particular, note that given B the time τ is determined, so in the
comparisons for the simulation results that follow, the length of the most
likely path is not explicitly fit to data.

Similarly, eq. (3) leads to the approximation

log P (B ≥ b) ≈ −K
√
b, for large b.(28)

When comparing this approximation with data, the data ultimately becomes
sparse for large values of b and discrepancies appear. The value of b where
this occurs moves right with as a function of the number of simulated paths.

For contrast, we also record the path that reaches the highest height and
use Theorem 1 for comparison. Given a path Sn that reaches a height H,
Sn(·) reaches H/n and therefore

Si = nSn(i/n) ≈ nϕ∗(i/n) =

{

x∗i if i < H/x∗,

H + (i−H/x∗)(−δ) if i ≥ H/x∗.
(29)

Again, given H, the time at which this most likely path returns to zero is
completely determined.

5.1. Gaussian increments. Let X be i.i.d. Gaussian, with X0 having
mean −δ < 0 and variance σ2. As X is i.i.d., we have that

Λ(θ) =
σ2

2
θ2 − δθ.

Using Theorem 2 we obtain the following explicit expressions

λ∗ = sup{θ : Λ(θ) ≤ 0} =
2δ

σ2
, ψ∗(t) = − 1

λ∗
Λ(λ∗(1− t)) = δt(1 − t)

and K = 2

√

−
∫ λ∗

0
Λ(θ) dθ =

δ3/2

σ2

√

8

3
.

The most likely path to {B ≥ bn2} for large n can also be determined to be

ψ∗
b (t) = δt

(

1− t

√

δ

6b

)

.
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A demonstration of these results appears in Fig. 2. The highest and largest
swept area paths are compared with the most likely conditioned on these
quantities using the approximations in eq. (27) and eq. (29). The distinct
nature of two paths to these two unlikely events is evident. The empirical
likelihood of a large deviation is shown along with that from the approx-
imation above, which gives remarkably good agreement up to a constant
prefactor.

5.2. Bernoulli {−1,+C} increments. LetX be a Bernoulli sequence tak-
ing values −1 and C with α = 1− µ = P{X0 = C} < P{X0 = −1} = µ, so
that −δ = αC − µ, and define the load ρ = αC/µ. For this process

Λ(θ) = log
(

µe−θ + αeCθ
)

and, by eq. (11), λ∗ is the unique positive solution of

αeλ
∗C + µeλ

∗ − 1 = 0.

Closed form expressions for λ∗ do not exist apart from in a few special cases.
If C = 1, Λ satisfies the conditions of Proposition 2, the most likely path is
symmetric and this equation has the explicit solution λ∗ = − log(ρ), which
could also have been determined by 2∇I(0) or I(δ)/δ. Given the reversibility
of the M/M/1 queue, the symmetry of ψ∗ established in Proposition 2 is not
surprising.

If C ≥ 2, then the corresponding reflected random walk is not reversible,
and moreover the increments do not satisfy the symmetry assumptions of
Proposition 2. For C = 2 we obtain the expression,

λ∗ = log

(

√

−3µ2 + 2µ+ 1− α

2α

)

,

while if C = 3

λ∗ = log

(

7z

9
− 1

3

)

,

where z =
3

√

√

√

√

√

(

µ

2(µ − 1)
− 7

54

)2

+
8

729
− µ

2(µ− 1)
+

7

54
.

Using eq. (20), for arbitrary C we conclude that the most likely path on
[0, 1] can be written in terms of λ∗ as

ψ∗(t) = − 1

λ∗
log
(

µe−λ∗(1−t) + αeCλ∗(1−t)
)

.
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Biggest area (theory)
Biggest area (observed)
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Fig 3. Bernoulli {−1,+1} increments with P (X1 = −1) = 0.6, P (X1 = +1) = 0.4.
Simulated results from ten billion paths. (Left panel) Four paths displayed. Simulated path
with largest swept area 15, 825 and, conditioned on that area, most likely path to give rise
to it predicted by Theorem 2, which is concave. For contrast, also shown is the simulated
path that reaches the greatest height, 53, and, conditioned on that height, the most likely
path to give rise to it as deduced from Theorem 1, which is piecewise linear. (Right panel)
Logarithm of the empirical probability that area under busy period exceeds a given level
compared with −K

√
b and, the linear shift −K

√
b + κ where κ is chosen to match the

offset of the empirical observation.

In order to calculateK in eq. (5), we need to evaluate the integral
∫ λ∗

0 Λ(θ) dθ.
This doesn’t result in a closed form for any C, but it is simple to evaluate
numerically.

In order to determine the most likely time and paths to a large busy period
and a great height on the scale of large deviations we use the approximations
eq. (27) and eq. (29). For the reversible Bernoulli {−1,+1} case correspond-
ing to M/M/1 queue-lengths, Fig. 3 compares the highest and biggest paths
with those from theory. The quality of the predictions is apparent. With a
numerical integration of Λ giving K ≈ 0.1485, the asymptotic approxima-
tion is compared with the empirical probability, showing great accuracy up
to a constant prefactor.

As an example of a non-reversible random walk, we consider the Bernoulli
{−1,+10} case where the most likely paths are now asymmetric (as seen in
Fig. 4). For this example, λ∗ ≈ 0.1439 and K ≈ 0.0978, both of which have
been determined numerically.

5.3. Markovian {−1,+1} increments. As an example beyond i.i.d. in-
crements, assume that the increments process X forms a two-state Markov
chain on the state space {−1,+1} with transition matrix

(

1− α α
β 1− β

)

where 0 < α < β < 1.
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Fig 4. Bernoulli {−1,+10} increments with P (X1 = −1) = 0.96, P (X1 = +10) = 0.04.
Simulated results from ten billion paths. (Left panel) Four paths displayed. Simulated path
with largest swept area 36, 971 and, conditioned on that area, most likely path to give rise
to it predicted by Theorem 2, which is concave. For contrast, also shown is the simulated
path that reaches the greatest height, 143, and, conditioned on that height, the most likely
path to give rise to it as deduced from Theorem 1, which is piecewise linear. (Right panel)
Logarithm of the empirical probability that area under busy period exceeds a given level
compared with −K

√
b and, the linear shift −K

√
b + κ where κ is chosen to match the

offset of the empirical observation.

The stationary distribution is (β/(α + β), α/(α + β)) so we require α < β
for stability. The sCGF Λ can be calculated using techniques described in
[6, Section 3.1]:

Λ(θ) = log

(

(1−α)e−θ +(1− β)eθ +
√

4αβ+((1−α)e−θ − (1− β)eθ)2)

2

)

,

which satisfies the conditions of Proposition 2 and so the most likely path
is symmetric. The rate function for the associated random walk can be
calculated using methods described in [7]. For example, from [10] we have
that

I(x) = −
(

1− x

2

)

log(1− α+ αχ(x))−
(

1 + x

2

)

log(1− β + β/χ(x))

where

χ(x) =
αβx+

√

α2β2x2 + αβ(1 + x)(1 − α)(1 − β)(1 − x)

α(1− β)(1 − x)
.

One can check directly that

x∗ = −ρ = δ =
β − α

α+ β
and
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Fig 5. Markov {−1,+1} increments with P (Xt+1 = +1|Xt = −1) = α = 2/10, P (Xt+1 =
−1|Xt = +1) = β = 3/10. Simulated results from ten billion paths. (Left panel) Four paths
displayed. Simulated path with largest swept area 143, 875 and, conditioned on that area,
most likely path to give rise to it predicted by Theorem 2, which is concave. For contrast,
also shown is the simulated path that reaches the greatest height, 139, and, conditioned on
that height, the most likely path to give rise to it as deduced from Theorem 1, which is
piecewise linear. (Right panel) Logarithm of the empirical probability that area under busy
period exceeds a given level compared with −K

√
b and, the linear shift −K

√
b + κ where

κ is chosen to match the offset of the empirical observation.

λ∗ = I(x∗)/x∗ = ∇I(x∗) = 2∇I(0) = sup{θ : Λ(θ) ≤ 0} = log

(

1− α

1− β

)

.

We have the following expression of the most likely path returning to 0 at
t = 1, which can be seen directly to possess the symmetry ψ∗(t) = ψ∗(1− t)
for t ∈ [0, 1],

ψ∗(t) = − 1

log(1−α
1−β )

(

log
(

(1− α)t(1− β)1−t + (1− α)1−t(1− β)t

+
√

4αβ + ((1− α)t(1− β)1−t − (1− α)1−t(1− β)t)2)
)

− log(2)
)

.

The integral
∫ λ∗

0 Λ(θ) dθ does not evaluate in closed form, so again numerics
must be used to determine K. For example, if α = 2/10 and β = 3/10, then
δ = 2/10, x∗ = 2/10, λ∗ = log(8/7) and K ≈ 0.0489. A simulation-based
illustration of these results appears in Fig. 5.

6. Conclusions and discussion on estimation. As well as identify-
ing the most likely path to a large swept area, Theorem 2 shows that in
the absence of long range dependence and heavy tailed increments, in broad
generality we have the approximation in eq. (28):

log P (B ≥ b) ≈ −K
√
b, for large b,
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where K can be identified in terms of the sCGF Λ associated with the
increments X. An approximation such as this might be of value for practical
purposes, but unlessX is known in advance we would require a methodology
to estimate K from observations of the system.

Based on thermodynamic ideas, Duffield et al. [8] investigated an estima-
tion scheme for Λ based on observations of X. They demonstrated empiri-
cally that the scheme has desirable properties for a large class of of increment
processes. Indeed, if X consists of i.i.d. bounded random variables [10, The-
orem 1] or a finite state Markov chain [13, Theorem 3], from observations of
X one can construct consistent functional estimates, {Λn}, of Λ that them-
selves satisfy a LDP in the space of R-valued convex functions on R. From
these, we can deduce an LDP for estimating K from observations of X as
follows. If X is i.i.d, define

Λn(θ) = log

(

1

n

n
∑

k=1

eθXk

)

.

If X forms a finite state Markov chain with an irreducible transition matrix
on {f(1), . . . , f(M)} where f(i) 6= f(j) for i 6= j, then with 0/0 defined to
be 0 we define an empirical transition matrix with entries,

(Pn)i,j :=

(

n
∑

k=1

1{(Xk−1,Xk)=(f(i),f(j))}

)

/

(

n
∑

k=1

1{Xk−1=f(i)}

)

,

and Dθ denote the matrix with diagonal entries exp(θf(1)), . . . , exp(θf(M))
and all off-diagonal entries equal to zero. Then our estimate of Λ given n
observations is

Λn(θ) = log ρ(PnDθ),

where where ρ is the spectral radius. In both cases we define the estimates

λ∗n = sup{θ : Λn(θ) ≤ 0} and Kn = 2

√

−
∫ λ∗

n

0
Λn(θ) dθ.

Regarding the λ∗ estimates, [10, Lemma 1] proves that the function g(c) =
sup{θ : c(θ) ≤ 0} is continuous on the space of convex functions equipped
with the topology of uniform convergence on compact subsets at all c such
that c(0) = 0 and there does not exist a κ > 0 so that c(θ) = 0 for θ ∈
[0, κ]. Thus from the LDP for the estimators {Λn}, if the support of Xk

excludes a finite ball around the origin and if f(k) 6= 0 for any k in the
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Markovian case, we have an LDP for {λ∗n} by Puhalskii’s extension of the
contraction principle [23, Theorem 2.1]. As the convex functions of interest

are real-valued, the function c 7→
∫ g(c)
0 c(θ)dθ is also continuous so that

again Puhalskii’s extension of the contraction principle applies and we have
an LDP for {Kn}. Consistency of the Λ estimators ensures consistency of
the λ∗ and K estimators. Thus these Λ-estimators enable the estimation
of K directly from observations of X , offering the possibility of estimating
the probability of a system experiencing an exceedingly large busy period
in advance of one occurring.

Acknowledgment. We thank an anonymous reviewer for the sugges-
tion to include a heuristic argument related to the integrated random walk,
which motivated the discussion in Section 2.
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