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CONDITIONAL ERGODICITY IN INFINITE DIMENSION!

BY XIN THOMSON TONG AND RAMON VAN HANDEL
Courant Institute of Mathematical Sciences and Princeton University

The goal of this paper is to develop a general method to establish con-
ditional ergodicity of infinite-dimensional Markov chains. Given a Markov
chain in a product space, we aim to understand the ergodic properties of
its conditional distributions given one of the components. Such questions
play a fundamental role in the ergodic theory of nonlinear filters. In the
setting of Harris chains, conditional ergodicity has been established un-
der general nondegeneracy assumptions. Unfortunately, Markov chains in
infinite-dimensional state spaces are rarely amenable to the classical the-
ory of Harris chains due to the singularity of their transition probabilities,
while topological and functional methods that have been developed in the
ergodic theory of infinite-dimensional Markov chains are not well suited to
the investigation of conditional distributions. We must therefore develop new
measure-theoretic tools in the ergodic theory of Markov chains that enable
the investigation of conditional ergodicity for infinite dimensional or weak-*
ergodic processes. To this end, we first develop local counterparts of zero—
two laws that arise in the theory of Harris chains. These results give rise to
ergodic theorems for Markov chains that admit asymptotic couplings or that
are locally mixing in the sense of H. Follmer, and to a non-Markovian ergodic
theorem for stationary absolutely regular sequences. We proceed to show that
local ergodicity is inherited by conditioning on a nondegenerate observation
process. This is used to prove stability and unique ergodicity of the nonlinear
filter. Finally, we show that our abstract results can be applied to infinite-
dimensional Markov processes that arise in several settings, including dis-
sipative stochastic partial differential equations, stochastic spin systems and
stochastic differential delay equations.
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1. Introduction. The classical ergodic theory of Markov chains in general
state spaces has achieved a rather definitive form in the theory of Harris chains [32,
33, 37], which provides necessary and sufficient conditions for the convergence of
the transition probabilities in total variation to an invariant measure. While this
theory is formulated in principle for any measurable state space, it is well known
that its applicability extends in practice mainly to finite-dimensional situations.
In infinite dimension, the transition probabilities from different initial conditions
tend to be mutually singular even in the most trivial examples, so that total varia-
tion convergence is out of the question. For this reason, many infinite-dimensional
Markov processes, including stochastic partial differential equations, interacting
particle systems and stochastic equations with memory, lie outside the scope of
the classical theory. Instead, a variety of different approaches, including topolog-
ical [9, 17, 21], functional [19, 29] coupling and duality [26] methods, have been
employed to investigate the ergodicity of infinite-dimensional models.

The goal of this paper is to investigate questions of conditional ergodicity in
infinite dimension. Consider a Markov chain (X, Y}, ),>0 taking values in a prod-
uct space E x F (continuous time processes are considered analogously). The aim
of conditional ergodic theory is to understand the ergodic properties of one com-
ponent of the process (X,),>0 under the conditional distribution given the other
component (Y,),>0. Even when the process (X, ¥;;),>0 is ergodic, the inheritance
of ergodicity under conditioning is far from obvious and does not always hold.
The history of such problems dates back to an erroneous result of Kunita [23],
where the inheritance of ergodicity was taken for granted (see [46] and the refer-
ences therein). The long-standing problem of establishing conditional ergodicity
under general assumptions was largely resolved in [42, 43], where it is shown that
the inheritance of ergodicity holds under a mild nondegeneracy assumption when
(Xn, Yn)n>0 is a Harris chain. Numerous other results in this area, both of a qual-
itative and quantitative nature, are reviewed in [8]. All these results are, however,
essentially restricted to the setting of Harris chains, so that their applicability to
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infinite-dimensional models is severely limited. In this paper, we develop the first
results of this kind that are generally applicable beyond the Harris setting and, in
particular, that allow to establish conditional ergodicity in a wide range of infinite-
dimensional models.

To give a flavor of the type of problems that our theory will address, let us briefly
describe one example that will be given in Section 5 below. Consider the velocity
field u of a fluid that is modeled as a Navier—Stokes equation

du={vAu — (u-Vyu—Vpldt+dw, V-u=0

with white in time, spatially smooth random forcing dw. At regular time intervals
t, = nd, the velocity field is sampled at the spatial locations zy, ..., z, with some
additive Gaussian noise &,, which yields the observations

Yi=u(ty, z) + &, i=1,...,r

Such models arise naturally in data assimilation problems [41]. The process
(Xn, Yn)n>0 with X,, = u(#,, -) is an infinite-dimensional Markov chain. Classical
ergodicity questions include the existence and uniqueness of an invariant probabil-
ity A, and the convergence to equilibrium property

[E[f(X)] = 2()H]=30
for a sufficiently large class of functions f and initial conditions x. Such questions
are far from straightforward for Navier—Stokes equations and have formed a very
active area of research in recent years (see, e.g., [16, 22, 31]). In contrast, we are
interested in the question of conditional ergodicity

]|}’l—)OO

B[ (X)IFy 0] = BN F (X1 Fh o] =570

(where 951, 2 =0{Yy, ..., Y,}), or, more importantly, its causal counterpart

[EX[f (X)|FG,] — EMf (X)|F5,]] = 0,

which corresponds to stability of the nonlinear filter )’ = P*[X,, € -|&"({ o). In
contrast to convergence to equilibrium of the underlying model, conditional er-
godicity properties yield convergence to equilibrium of the estimation error of the
model given the observations [23] or the long-term stability of the conditional dis-
tributions to perturbations (such as those that arise in the investigation of numerical
filtering algorithms), cf. [45]. The interplay between ergodicity and conditioning
is of intrinsic interest in probability theory and in measurable dynamics, where it
is closely related to notions of relative mixing [38], and lies at the heart of stabil-
ity problems that arise in data assimilation and nonlinear filtering. The main re-
sults of this paper will allow us to establish conditional ergodicity in a wide range
of infinite-dimensional models, including dissipative stochastic partial differential
equations such as the above Navier—Stokes model, stochastic spin systems, and
stochastic differential delay equations (detailed examples are given in Section 5).
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One of the main difficulties in the investigation of conditional ergodicity is that
conditioning on an infinite observation sequence ffr({ ~ 18 a very singular opera-
tion. Under the conditional distribution, the unobserved process (X,),>0 remains
a Markov chain, albeit an inhomogeneous one with random transition probabili-
ties depending on the realized path of the observations (¥,),>0 (in the stationary
case this is a Markov chain in a random environment in the sense of Cogburn
and Orey [7, 34]). These conditional transition probabilities are defined abstractly
as regular conditional probabilities, but no explicit equations are available even
in the simplest examples. There is therefore little hope of analyzing the proper-
ties of the conditional chain “by hand,” and one must find a way to deduce the
requisite ergodic properties from their unconditional counterparts. On the other
hand, conditioning is an essentially measure-theoretic operation, and it is unlikely
that the most fruitful approaches to ergodic theory in infinite dimension, such as
topological properties or functional inequalities, are preserved by the conditional
distributions. To move beyond the setting of Harris chains, we therefore aim to find
a way to encode such weak ergodic properties in a measure-theoretic fashion that
can be shown to be preserved under conditioning.

A central insight of this paper is that certain basic elements of the classical
theory admit local formulations that do not rely on the Markov property. The
simplest of these is a local zero—two law (Section 2.1) that characterizes, for a
given E-valued Markov chain (X,),>0 and measurable map ¢: E — E’ to another
space E’, the following total variation ergodic property:

[P (X))o € 1= PY (X))o €]

If ¢ is injective, then this reduces to the ergodic property of a Harris chain. By
choosing different functions ¢, however, we will find that such results are appli-
cable far beyond the setting of Harris chains. Let us emphasize that when ¢ is not
injective the process (¢(X,)),>0 is generally not Markov, so that our local ergodic
theorems are fundamentally non-Markovian in nature.

In certain cases, this local notion of ergodicity can be applied directly to infinite-
dimensional Markov chains. When the entire chain does not converge to equilib-
rium in total variation, it may still be the case that each finite-dimensional projec-
tion of the chain converges in the above sense. To our knowledge, this local mixing
property was first proposed by Follmer [15] in the context of interacting particle
systems; a similar idea appears in [30] for stochastic Navier—Stokes equations with
sufficiently nondegenerate forcing. By choosing ¢ to be a finite-dimensional pro-
jection, we obtain a very useful characterization of the local mixing property (Sec-
tion 2.2). Our results can also be applied directly to non-Markovian processes, for
example, we will obtain a non-Markovian ergodic theorem that provides an appar-
ently new characterization of stationary absolutely regular sequences (Section 2.3).

While local mixing can be verified in various infinite-dimensional models, this
generally requires a fair amount of nondegeneracy. In truly degenerate situations,

n—oo
I'—

0 forall x,x’ € E.
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we introduce another idea that exploits topological properties of the model (Sec-
tion 2.4). In dissipative models and in many other Markov chains that converge
weakly to equilibrium, it is possible to construct a coupling of two copies X,,, X,
of the chain such that d(X,, X,) — 0 (cf. [17]). Of course, this need not imply
any form of total variation convergence. Consider, however, the perturbed process
f(Xy) + n, where f: E — R is a Lipschitz function and (n,,),>0 is an i.i.d. se-
quence of auxiliary Gaussian random variables. When the asymptotic coupling
converges sufficiently rapidly, the process (' (X,) + n,)n>0 Will be ergodic in the
above total variation sense by the Kakutani theorem. We have thus transformed
a topological property into a measure-theoretic one, which is amenable to our lo-
cal ergodic theorems by considering the augmented Markov chain (X, n,)n>0
with ¢(x, n) = f(x) + n. The added noise can ultimately be deconvolved, which
yields weak-* ergodic theorems for the original chain (X,,),>0 by purely measure-
theoretic means.

The local ergodic theorems developed in Section 2 are of independent interest.
However, the full benefit of our approach emerges in the development of the con-
ditional ergodic theory that is undertaken in Sections 3 and 4. First, we develop
in Section 3.1 a conditional counterpart to the local zero—two law that character-
izes the conditional absolute regularity property of a stationary (non-Markovian)
sequence. The remainder of Section 3 is devoted to the inheritance problem. In
short, we show that under a generalization of the nondegeneracy assumption on
the observations that was introduced in [42, 43], the local ergodicity property is
inherited when we condition on the observed component of the model. Together
with the ideas developed in Section 2, this allows us to obtain various filter sta-
bility results in Section 4. After introducing the relevant setting and notations in
Section 4.1, we first develop a general local filter stability theorem in Section 4.2.
In Section 4.3, we give concrete filter stability theorems for Markov chains that
are locally mixing or that admit asymptotic couplings. We also investigate unique
ergodicity of the filtering process in the spirit of [23]. Finally, in Section 4.4, we
extend our main results to Markov processes in continuous time. Our general ap-
proach in these sections is inspired by the ideas developed in [43] in the Harris
setting. However, as is explained in Section 3, the approach used in [42, 43] re-
lies crucially on the Markov property, and the same method can therefore not be
used in the local setting. Instead, we develop here a new (and in fact somewhat
more direct) method for establishing the inheritance property that does not rely on
Markov-specific arguments.

To illustrate the wide applicability of our results, we develop in Section 5 several
infinite-dimensional examples that were already mentioned above. Our aim is to
demonstrate that the assumptions of our main results can be verified in several
quite distinct settings. In order not to unduly lengthen the paper, we have restricted
attention to a number of examples whose ergodic properties are readily verified
using existing results in the literature.
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Let us conclude the Introduction by briefly highlighting two directions that are
not addressed in this paper. First, we emphasize that all the results in this pa-
per, which rely at their core on martingale convergence arguments, are qualitative
in nature. The development of quantitative filter stability results is an interesting
problem, and this remains challenging even in finite-dimensional models (cf. [8]
and the references therein). Second, let us note that while our theory allows the
unobserved process X, to be infinite-dimensional under mild conditions, the main
regularity assumptions of this paper (Assumptions 4.2 and 4.3 below) typically re-
quire in practice that the observations Y;, are “effectively” finite-dimensional, for
reasons that are discussed in Remark 5.20 below. As is illustrated by the examples
in Section 5, our general setting covers a wide range of models of practical interest.
Nonetheless, conditional ergodicity problems with degenerate infinite-dimensional
observations are of significant interest in their own right and require separate con-
sideration. In the latter setting, new probabilistic phenomena can arise; such issues
will be discussed elsewhere.

REMARK 1.1 (A note on terminology). Throughout this paper, we will use the
term ergodicity in a broad sense to denote the asympotic insensitivity of a (possi-
bly inhomogeneous or random) Markov process to its initial condition. This differs
from the use of the term in the theory of measurable dynamics, where ergodicity
strictly refers to triviality of the invariant o -field of a dynamical system [50]. Un-
fortunately, no consistent usage of these terms has emerged in the probabilistic
literature. In the theory of Markov chains, ergodicity is often used to denote either
convergence to an invariant probability [32, 33, 37], or insensitivity to the initial
condition [18], [20], Theorem 20.10. In the absence of a commonly accepted usage
and as many different forms of such properties will appear throughout this paper,
we have chosen not to introduce an overly precise terminology to distinguish be-
tween different notions of ergodicity: to avoid any confusion, the specific ergodic
properties pertaining to each result will always be specified explicitly.

2. Local ergodic theorems. The goal of this section is to develop a number
of simple but powerful measure-theoretic ergodic theorems that are applicable be-
yond the classical setting of Harris chains. Our main tools are the /local zero—two
laws developed in Section 2.1. In the following subsections, it is shown how these
results can be applied in various different settings. In Section 2.2, we consider a no-
tion of local mixing for Markov chains, due to Follmer [15], that provides a natural
measure-theoretic generalization of Harris chains [37] to the infinite-dimensional
setting. In Section 2.3, we obtain an ergodic theorem for non-Markov processes
that yields a new characterization of stationary absolutely regular sequences. Fi-
nally, in Section 2.4, we show how these results can be combined with the notion
of asymptotic coupling (see, e.g., [17]) to obtain ergodic theorems in the weak
convergence topology by purely measure-theoretic means.
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Throughout this section, we will work in the following canonical setup. Let
(E, €) be a measurable space, and let (Xj)rcz be the E-valued coordinate process
defined on the canonical path space (€2, F). That is, we define Q2 = EZ F=¢Z,
and X (w) = w(k). We define form < n

Xm,n = (Xk)mgkfnv f7t'm,n :U{Xm,n}s EF—i— :370,007 J_ :?—w,o-

We also define the canonical shift ®: Q2 — Q as O(w)(n) =w@n + 1).

We will denote by P(Z) the set of probability measures on a measurable space
(Z,2), and for p,v € P(Z) we denote by || — vz, the total variation of the
signed measure @ — v on the o-field Zy C Z, that is,

i = vllzg =2 sup |i(A) — v(A)|.
A€Zy
For simplicity, we will write || — v|| = || — v||z. Let us recall that if K, K’ are
finite kernels and if Z is countably generated, then x — || K (x,-) — K'(x,-)|| is
measurable (see, e.g., [43], Lemma 2.4). In this setting, we have

‘VM@J—FWMMM)

sﬂmuw—rwwwum

by Jensen’s inequality. Moreover, if Z,, | Zoo :=(),, Zn 1s a decreasing family of
o-fields, then a simple martingale argument (e.g., [11], page 117) yields

n—oo
I =viz, — lln = vilz,-

These facts will be used repeatedly throughout the paper.

2.1. Local zero—two laws. Let P:E x & — [0, 1] be a transition kernel on
(E, €), and denote by P* be the probability measure on F; such that (X )i>0 is
Markov with transition kernel P and initial law X ~ € P(E). If P is Harris and
aperiodic, the Markov chain is ergodic in the sense that

|uP" —vP"| =[P =PV, =570 forall u,ve P(E)
(cf. [37], Theorem 6.2.2). Unfortunately, this mode of convergence can be re-
strictive in complex models. For example, when the state space E is infinite-
dimensional, such strong convergence will rarely hold: it is often the case in this
setting that u P" L v P" for all n > 0 (cf. Section 2.2).

At the heart of this paper lies a simple idea. When total variation convergence
of the full chain fails, it may still be the case that total variation convergence holds
when the chain restricted to a smaller o-field £ C &: that is, we intend to estab-
lish convergence of ((Xy) where ¢: (E, &) — (E, &9) is the identity map. As will
become clear in the sequel, such local total variation convergence is frequently
sufficient to deduce convergence of the full chain in a weaker probability distance,
while at the same time admitting a powerful measure-theoretic ergodic theory that
will be crucial for the study of conditional ergodicity in complex models.
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The key results of this section are a pair of local zero—two laws that character-
ize the local total variation convergence of Markov processes. Let us fix €0 C &
throughout this section, and define the o -fields

Fon=\ x; (&Y, m<n.
m<k<n
A central role will be played by the local tail o-field
0
A= 71 .

n>0

Finally, for x € E we will denote for simplicity P* = P%x,

It is important to note that the local process ¢(Xj) is generally not Markov,
so that the marginal distribution at a fixed time does not determine the future of
this process. Thus, one cannot restrict attention to the marginal distance ||uP" —
v P" | co, but one must instead consider the entire infinite future ||P* —PY ”5'9.00' Of

course, when €0 = &, these notions coincide.

THEOREM 2.1 (Local zero—two law). The following are equivalent.

1. The Markov chain is locally ergodic:

n—oo

||P“—P”H3r2OC — 0  forevery u,v € P(E).
2. The local tail o -field is trivial:
P*(A) €{0, 1} for every A € A® and . € P(E).
3. The Markov chain is locally irreducible: there exists o > 0 such that

Vx,x' € E,3n > 0 such that HPX—PX/HZ_PO <2 —q.

Zero-two laws of this type appear naturally in the theory of Harris chains [11,
35, 37]. It is somewhat surprising that the Markov property proves to be inessential
in the proof, which enables the present local formulation.

PROOF OF THEOREM 2.1. Weprove2=1=3= 2.
(2 = 1). Assumption 2 implies that P*(A) =P"(A) forall A € AY [if not, then
P?(A) =1/2 for p = (i 4+ v) /2, a contradiction]. Therefore,

[P# =P[5 "=PE — P o =0.
(1 = 3). This is obvious.
(3 = 2). Assume that condition 2 does not hold. Then there exists A € A° and
u € P(E) such that 0 < P#(A) < 1. Define f =14 — 14¢, and note that

n—oo

EX[fo@ " =B [f|Fon] =5 f,  Phlas.



CONDITIONAL ERGODICITY IN INFINITE DIMENSION 2251

by the Markov property and the martingale convergence theorem. (Recall that for
any A%-measurable function f, the function f o ® " is unambiguously defined
and A%-measurable for every n € Z, cf. [37], pages 186-187.)

Define the probability measure Q on Q x Q as P* @ P*, and denote by
(Xn, X)))n>0 the coordinate process on Q x . Fix « > 0. Then

n—oo

Q[E*"[f 0 ®~"] ~EXi[f 0 ©7"]| > 2 — a] "3 2P (A)P* (A°) > 0.

Thus, there exist N > 0 and x, x’ € E such that |[E*[f o ® V] — Ex,[f 0® N >
2 —«. Butnote that | f| < 1 and f o © " is A%-measurable. Therefore,

X x/ ! X -N x' —-N
— > — > — —

[P* =P g0 =[P =P 0 = [EX[fo® "] -E*[fo®"][>2-a
for all n > 0. As o > 0 is arbitrary, condition 3 is contradicted. [

The characterization in Theorem 2.1 does not require the existence of an invari-
ant probability. However, when such a probability exists, we can obtain a useful
stationary variant of the local zero—two law that will be proved next. The advan-
tage of the stationary zero—two law is that it does not require uniform control in

condition 3. On the other hand, the resulting convergence only holds for almost
every initial condition.

THEOREM 2.2 (Local stationary zero—two law).  Suppose E° is countably gen-
erated. Given a P-invariant probability ), the following are equivalent:
1. The Markov chain is a.e. locally ergodic:

|p* —P* | 0 =0 forr-ae. x,

or, equivalently,
“PX—P’“,Hggoonj)OO for » ® r-ae. (x,x").
2. The local tail o -field is a.e. trivial:
P'(A) =P*(A)2=P"(A) VAcA’ A®rae. (x.X).

3. The Markov chain is a.e. locally irreducible:

for » ® r-a.e. (x,x"),3n > 0 such that |P* — P |y <2

n,oo

PROOF. The equivalence of the two statements of condition 1 follows from
[Pr =Py = [P =P (),

[P =By <[P Py + [P Py

n,oo
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The proofs of 2 = 1 = 3 are identical to the corresponding proofs in Theorem 2.1.
It therefore remains to prove 3 = 2. To this end, define

Bulw x) =[P =P . Bl = [P =P .

As &Y is countably generated, the maps 8, are measurable. Moreover, as 8, | f8
pointwise as n — 00, the map § is measurable also.

By the Markov property, we have E* (14 0 ®) = [ P(x, dz)P*(A) for every x
and A € 32_1. Thus we obtain by Jensen’s inequality

P =Py < [ Perd P P

so0 B, <(P® P)B,—1. Thus B 5,(P ® P)p l?y dominated convergence.
Define Q = P* @ P* and Q** =P* @ P* on Q x . Then

Thus, B(X,, X)) is a bounded and stationary submartingale under Q, and

k
Eq[|8(Xo. X() = B(Xu. X,)]1 = Eol|B(Xk. X}) = B(Xnsk. X)) [ =370
by stationarity and the martingale convergence theorem. It follows that B(Xo,
X6) = B(Xn, X,,) for all n > 0, Q-a.s. By disintegration, there is a measurable
set H' € Q x Q with (A ® A)(H') =1 such that

stx/['g(x, x') = B(Xn, X,,) foralln >0] =1 forall (x,x") € H'.

In the remainder of the proof, we assume that condition 3 holds, and we fix a
measurable set H € H’ with (A ® A)(H) =1 such that

V(x,x") € H,3n > 0 such that Bu(x,x") <2.

Suppose condition 2 does not hold. Then/ there exist A € A and (x, x") € H such
that either 0 < P*(A) < 1 or P*(A) #P* (A). Define f =14 — 14c and fix o > 0.
Proceeding as in the proof of Theorem 2.1, we find that

QN [|[EX[fo @ " —EXi[f0®7"]| >2—a]

n—oo

ZPY(A)PY (AC) 4+ PF(AC)P (A) > 0.

Note thatas | f| <1l and fo® " is AY-measurable, we have

EX'[f o @ "] —EX[f 0 ®7"]| < B(Xu, X)) =B(x,x),  Q"F-as.
It follows that B(x, x") > 2 — «, and we therefore have B(x, x") =2 as a > 0 was
arbitrary. But by construction there exists n > 0 such that B(x, x") < B, (x, x") <2,
and we have the desired contradiction. []

Theorems 2.1 and 2.2, while elementary, play a fundamental role in our theory.
In the following subsections, we will see that these results have a broad range of
applicability that goes far beyond the setting of Harris chains.
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2.2. Local mixing in infinite dimension. Markov chains in an infinite-
dimensional state space are rarely amenable to the classical theory of Harris chains.
The key obstacle is that total variation convergence requires nonsingularity of the
transition probabilities. This is not restrictive in finite dimension, but fails in infi-
nite dimension even in the most trivial examples.

EXAMPLE 2.3. Let (X¢)k>0 be the Markov chain in {—1, +1Y such that
each coordinate (X ,i) k>0 1s an independent Markov chain in {—1, 41} with transi-
tion probabilities 0 < p_j 41 = p4+1,—1 < 1/2. Clearly, each coordinate is a Harris
chain, and the law of X, converges weakly as n — ©o to its unique invariant mea-
sure A for any initial condition. Nonetheless, §;n P" and A are mutually singular
for all n > 0 (§;nP" and A possess i.i.d. coordinates with a different law), so X,
cannot converge in total variation.

As the classical measure-theoretic theory fails to yield satisfactory results, the
ergodic theory of infinite-dimensional Markov chains is frequently approached by
means of topological methods. A connection between topological methods and
local zero—two laws will be investigated in Section 2.4 below. On the other hand,
one may seek a purely measure-theoretic counterpart of the notion of a Harris
chain that is adapted to the infinite-dimensional setting. We now describe such a
notion due to Follmer [15].

Throughout this section, we adopt the same setting as in Section 2.1. To formal-
ize the notion of an infinite-dimensional Markov chain, we assume that the state
space (E, €) is contained in a countable product: that is, there exist a countable
set I and measurable spaces (E i & such that

(E,&) <[(E'. &).
iel
Each i € I plays the role of a single dimension of the model. We will write x =
(x")jeg for x € E, and for J C I we denote by x’7 = (x%);e; the natural projection
of x onto [[;c; E*. For m < n, we define the quantities X,{m and S’,{l’” in the
obvious manner. Moreover, we define the local tail o -fields

A= Fl o A=\ A

n>0 |J]<o0

That is, Ajoc is generated by the asymptotic events associated to all finite-
dimensional projections of the infinite-dimensional chain.

We now introduce Follmer’s notion of local mixing, which states that each
finite-dimensional projection of the model converges in total variation (the term
“local ergodicity” would be more in line with the terminology used in this paper,
but we will conform to the definition given in [15]). Let us emphasize, as in the
previous section, that the finite-dimensional projection of an infinite-dimensional
Markov chain is generally not Markov.
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DEFINITION 2.4 (Local mixing). A Markov.chain (Xk)k=>0 taking values in
the countable product space (E, £) C [[;c;(E*, €') is locally mixing if

n—oo

|P* =P’y — 0 forall u,veP(E)and J C I,|J]| < 00.

In the finite-dimensional case |I| < oo, this definition reduces to the er-
godic property of Harris chains. Moreover, in the infinite-dimensional setting,
Follmer [15] proves a characterization of local mixing in complete analogy with
the Blackwell-Orey equivalence in the theory of Harris chains [37], Chapter 6. It
therefore appears that local mixing is the natural measure-theoretic generalization
of the Harris theory to the infinite dimensional setting.

Unfortunately, the characterization given in [15] is of limited use for the purpose
of establishing the local mixing property of a given Markov chain: only a very
strong verifiable sufficient condition is given there (in the spirit of the Dobrushin
uniqueness condition for Gibbs measures). The missing ingredient is a zero—two
law, which we can now give as a simple corollary of the results in Section 2.1.
This completes the characterization of local mixing given in [15], and provides a
concrete tool to verify this property.

COROLLARY 2.5 (Local mixing theorem). The following are equivalent.

1. (Xi)k=o0 is locally mixing.
2. Aioc is PH-trivial for every u € P(E).
3. Forevery J C 1, |J| < o0, there exists a > 0 such that

Vx,x' € E,3n > 0 such that HPX_PX/HGJOOEZ_O"

PROOF. Note that Ay is P#-trivial if and only if A is PH-trivial for all | J| <
00. Thus the result follows immediately from Theorem 2.1. [

Condition 3 of Corollary 2.5 can be used directly to verify the local mixing
property in infinite-dimensional models that possess a sufficient degree of nonde-
generacy. For example, in the setting of stochastic Navier—Stokes equations with
additive noise (cf. Section 5.2), the approach developed in [13, 30] can be used
to show that condition 3 holds under the assumption that every Fourier mode is
forced by an independent Brownian motion (in this setting, each dimension i € 1
corresponds to a single Fourier mode of the system). However, in degenerate mod-
els (e.g., where some modes are unforced or when the noise is not additive), local
mixing may be difficult or impossible to establish. In Section 2.4 below, we will
introduce a technique that will significantly extend the applicability of our results.

REMARK 2.6. One can of course also obtain a stationary counterpart of
Corollary 2.5 by applying Theorem 2.2 rather than Theorem 2.1. As the result
is essentially identical, we do not state it explicitly.
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2.3. Ergodicity of non-Markov processes. As the local zero—two laws intro-
duced in Section 2.1 are essentially non-Markovian, they can be used to investigate
the ergodic theory of non-Markov processes. Let us illustrate this idea by develop-
ing a new (to the best of our knowledge) characterization of stationary absolutely
regular sequences.

In this section, we assume that (E, £) is a Polish space (the Polish assumption
is made to ensure the existence of regular conditional probabilities), and let P be a
stationary probability measure on (€2, J). Let us recall the well-known notion of
absolute regularity [48] (sometimes called S-mixing).

DEFINITION 2.7 (Absolute regularity). A stationary sequence (X )kez is said
to be absolutely regular if the following holds:

k
[PIX 0.0, Xk.o0 € ] = P[X 00,0 € 1® P[Xp,o0 € 1| == 0.
We obtain the following characterization.

COROLLARY 2.8. Let (Xy)rez be a stationary sequence. Choose any ver-
sion P*~>.9 of the regular conditional probability P[-|F_], and define the measure
P~ =P[X_x.0 € ‘I. The following are equivalent:

1. (Xi)rez is absolutely regular.

2. [P0 —Pllg, . “=3°0 for P~-a.e. x_oo .
3. For P™ @ P7-a.e. (Xx—x0,0,X-00,0), there exists k > 0 such that P*~=0 and
P*-2.0 gre not mutually singular on Ty o.

We remark that the notation here was chosen in direct analogy with the usual
notation for Markov chains, and should be thought of in this spirit: just as P*
denotes the law of a Markov chain started at the point x, P*->.0 denotes the law of
a non-Markovian process given the initial history x_c 0.

The proof of Corollary 2.8 requires a basic property of the total variation dis-
tance that we state here as a lemma for future reference.

LEMMA 2.9. Let Hy, H, be Polish spaces, and let X;(x1, x2) = x;. Let R, R’
be probabilities on Hy x Hy. IfR[X| € -] =R'[X] € -], then
IR — R| = Ex[|R[X: € -|X1] - R[X3 € | X11]]-

PROOF. By the definition of the total variation distance, we have
IR[X2 € -1X1] —R'[X2 € -1X1]| = 2{R[A|X1] — R[A|X,]}

for every measurable A € H; x H». Taking the expectation on both sides and using
R[X; € -]=R/[X; € -], we obtain the lower bound

[R— R’ =25up[R(4) — R ()} = BR[[RIX2 & 111 = RTX € 1X1]]]
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But by the existence of a measurable version of the Radon—Nikodym density be-
tween kernels [10], Theorem V.58, there exists a measurable B € H; x Hj such
that

IR[X2 € | X1] = R'[X2 € | X1]| = 2{R[B|X1] — R'[B|X1]}.

Proceeding as above yields the converse inequality. [

PROOF OF COROLLARY 2.8. Applying Lemma 2.9 above to the measures
PlX_00,0, Xk0o € -] and P[X_o 0 € -] ® P[ Xk o0 € -], it follows directly that the
process (Xi)xez is absolutely regular if and only if

E[|P[X; 00 € |F_] — P[Xt 00 € -1]]'=30.

But as [|P[ Xk 00 € -|T_] — P[Xk 0o € ]|l is pointwise decreasing in k, the equiva-
lence between conditions 1 and 2 follows immediately.

Now define the EZ--valued process Zy = X—oo k- Then (Zp)rez 1s clearly
a Markov chain with transition kernel Q(z, A) = P*[(z, X1) € A] and invariant
probability P~. We apply Theorem 2.2 to the Markov chain (Z)ez, where €0 in
Theorem 2.2 is the o-field generated by the first coordinate of EZ-. This yields
immediately the equivalence between conditions 2 and 3. [J

While conditions 1 and 2 of Corollary 2.8 are standard, condition 3 appears at
first sight to be substantially weaker: all that is needed is that, for almost every
pair of initial histories, we can couple the future evolutions with nonzero success
probability. This is reminiscent to the corresponding result for Harris chains, and
one could argue that absolutely regular sequences provide a natural generalization
of the Harris theory to non-Markov processes. In this spirit, Berbee [1] has shown
that absolutely regular sequences admit a decomposition into cyclic classes much
like in the Markov setting.

The elementary observation used in the proof of Corollary 2.8 is that any non-
Markov process Xj can be made Markov by considering the history process Zy =
X _0.k- However, the process Z; is highly degenerate: its transition probabilities
are mutually singular for any distinct pair of initial conditions. For this reason, the
classical Harris theory is of no use in investigating the ergodicity of non-Markov
processes; the local nature of the zero—two laws developed in Section 2.1 is the
key to obtaining nontrivial results.

REMARK 2.10. Along the same lines, one can also obtain a counterpart of
Theorem 2.1 for non-Markov processes. The latter is useful for the investigation
of delay equations with infinite memory. As no new ideas are involved, we leave
the formulation of such a result to the reader.
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2.4. Weak convergence and asymptotic coupling. In the previous sections, we
have employed the local zero-two laws directly to obtain ergodic properties in
the total variation distance. However, even local total variation convergence is still
too strong a requirement in many cases of interest. In this section, we introduce
a technique that allows us to deduce ergodic properties of weak convergence type
from the local zero—two laws. This significantly extends the range of applicability
of our techniques.

Throughout this section, we adopt the same setting as in Section 2.1. We will
assume in addition that the state space E is Polish and is endowed with its Borel
o-field € and a complete metric d. Denote by Up(E) the uniformly continuous
and bounded functions on E, and let Lip(E) be the class of functions f € Up(E)
such that || flleo <1 and |[f(x) — f(y)| <d(x,y) for all x,y € E. Let M(E)
be the space of signed finite measures on E, and define the bounded-Lipschitz
norm [|ol|BL = SUP sepip(k) 10| for o € MI(E). We recall for future reference that
x— |K(x,-) — K’(x,-)||gL is measurable when K, K’ are finite kernels; see, for
example, [44], Lemma A.1.

A coupling of two probability measures Py, P> on Q is a probability measure
Q on @ x 2 such that the first marginal of Q coincides with P; and the second
marginal coincides with P5. Let us denote the family of all couplings of Py, P, by
C(Py, Py). To set the stage for our result, let us recall the coupling characterization
of the total variation distance [27], page 19:

IP1 — P25, . =2min{Q[Xn,00 # X}, o] : Q € C(P1, Py)}.

Consider for simplicity the classical zero—two law (Theorem 2.1 for £0 = &). Its
basic condition reads: there exists « > 0 such that

Vx,x' € E,3n>0suchthat  |P* —P*

<) _
F oo <2—aq.

By the coupling characterization of the total variation distance, this condition can
be equivalently stated as follows: there exists & > 0 such that

o0
Vx,x € E,3Q € C(P*, Px/) such that Q[Z Ix,2x, < ooi| > q.

n=0
The message of the following theorem is that if one replaces the discrete distance
1x,2x; by the topological distance d(Xp, X)), one obtains an ergodic theorem
with respect to the bounded-Lipschitz (rather than total variation) distance. This
is a much weaker assumption: it is not necessary to construct an exact coupling
where X, X, eventually coincide with positive probability, but only an asymp-
totic coupling where X, X|, converge toward each other. The latter can often be
accomplished even in degenerate situations.

THEOREM 2.11 (Weak-* ergodicity). Suppose there exists a > 0 so that

o0
Vx,x' € E,3Q € C(P*, P) such that Q|:Z d(X,, X)) < ooi| > a.
n=0
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Then the Markov chain is weak-* ergodic in the sense that

n—oo

|wP" —vP"||gg — 0  forevery u,v e P(E).

It is interesting to compare Theorem 2.11 to the weak-* ergodic theorems ob-
tained in [17], Section 2.2, in terms of asymptotic coupling. In contrast to those
results, Theorem 2.11 requires no specific recurrence structure, Markovian cou-
plings, control on the coupling probability « as a function of x, x” or even the
existence of an invariant probability. On the other hand, Theorem 2.11 requires the
asymptotic coupling to converge sufficiently rapidly so that ) d(X,, X ;1)2 < 00
(this is not a serious issue in most applications), while the results in [17] are in
principle applicable to couplings with an arbitrarily slow convergence rate. These
results are therefore complementary.

However, it should be emphasized that the feature of Theorem 2.11 that is of
key importance for our purposes is that its proof reduces the problem to the local
zero—two law of Section 2.1. Using this technique, we can therefore extend the
applicability of purely measure-theoretic results that are based on zero—two laws
to a wide class of weak-* ergodic Markov chains. This idea will be crucial to
establishing conditional ergodicity in degenerate infinite-dimensional models (see
Section 5 for examples).

PROOF OF THEOREM 2.11. Let (E, &) = (E x R, & ® B(R)). Consider the
E-valued process (Z,),>0 (defined on its canonical probability space) such that
Z, = (Xn, &), where (&,),>0 is an i.i.d. sequence of standard Gaussian random
variables independent of the Markov chain (X,),>¢. Clearly (Z,),>0 is itself a
Markov chain. Given f € Lip(E), we will apply Theorem 2.1 to (Z,),>0 with the
local o-field 0 = o{g}, g(x, y) = f(x) + y.

We begin by noting a standard estimate.

LEMMA 2.12.  Let (&,)n>0 be an i.i.d. sequence of standard Gaussian random
variables, and let (an)n>0 and (by)n>0 be real-valued sequences. Then

o0

|P[(@n + &)nz0 € ] = P[(by + Enzo € ]|* < 3 by — an)*.
n=0

PROOF. Denote by H (i, v) = [ +/dudv the Kakutani-Hellinger affinity be-
tween probability measures u, v. We recall that [39], Section II1.9,

n
IIM®---®Mn—v1®---®vn||2§8[1—]_[H(Mk,wc)]
k=1

But a direct computation shows that H(N(a, 1), N(b, 1)) = exp(—(b — a)?/8).
The result now follows directly using 1 —e™ <x andn — co. U
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Fix x,x’ € E and f € Lip(E), and choose Q € C(P*, Px/) as in the statement of
the theorem. By assumption, we can choose n > 0 such that

oo} 2
Q[Z d(Xe. X})* < QZ] .3

k=n — 4

Let F,, = f(X,) + &5, and define for every real-valued sequence a = (a,),>0 the
measure (a = P[(a, +&,)u>0 € -]. Then we have for every A € B(R)Z+

P'[Fy.00 € Al — PV [Froo € Al = EQ[1(f(xi)an (A) — K (X)) ksn (A)].
Therefore, we obtain by Jensen’s inequality and Lemma 2.12

o0

1/2
[P [Fro0 €1 =P [Froo €| < EQ|:(Z{f(Xk) —f (XIL)}Z) A 2}

k=n

< EQ[(i d(Xz, X,Q)2> - A 2}

k=n

where we have used the Lipschitz property of f. Applying Theorem 2.1 as indi-
cated at the beginning of the proof, it follows that

n—oo

|PH[Fro0 € 1—P'[Fr0€-l|— 0 for all u, v € P(E).

In particular, if we denote by & € P(R) the standard Gaussian measure, then

n—oo

luP" f~ g —vPm x| =0 forall u,v € P(E)

(here * denotes convolution). We claim that this implies

|uP"f —vP"f|"=5°0  forall u,v e P(E) and f € Lip(E).
Indeed, if we assume the contrary, then there exists for some f € Lip(E) and
w,v € P(E) a subsequence m, 1 oo so that inf, |[u P f — vP™ f| > 0. As f
takes values in the compact interval [—1, 1], we can extract a further subsequence
ky 1 0o so that wP* f=1 — 11 and vP* =1 — v, in the weak convergence
topology for some (oo, Voo € P([—1, 1]), and clearly ps 7 vso by construction.
On the other hand, as ||MP”f*1 *& — \)P”f*1 *&|| — 0, we must have (oo x & =
Voo * &. This entails a contradiction, as the Fourier transform of & vanishes nowhere
[so convolution by £ is injective on P(R)].
We finally claim that in fact

n—oo

|uP" —vP"|g — O forall u,v € P(E).
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Indeed, we have shown above that the signed measure g, = uP" — vP" con-
verges to zero pointwise on Lip(E). As any function in Up(E) can be approxi-
mated uniformly by bounded Lipschitz functions, this implies that g,, — 0 in the
o (M(E), Up(E))-topology. A result of Pachl [36], Theorem 3.2, now implies that
llonllBL — 0O, which concludes the proof of the theorem. [

For simplicity, we have stated the assumption of Theorem 2.11 so that an asymp-
totic coupling of the entire state X of the Markov chain is required. The reader
may easily adapt the proof of Theorem 2.11 to require only asymptotic couplings
of finite-dimensional projections as in the local mixing setting (Corollary 2.5), or
to deduce a variant of this result in the setting of non-Markov processes. How-
ever, let us emphasize that even in the setting of Theorem 2.11, where the asymp-
totic coupling is at the level of the Markov process X, the “smoothed” process
Fr = f(Xx) + & that appears in the proof is non-Markovian. Therefore, the local
zero—two law is essential in order to obtain weak-* ergodicity results from the total
variation theory.

The stationary counterpart to Theorem 2.11 also follows along the same lines.
However, here a small modification is needed at the end of the proof.

THEOREM 2.13 (Stationary weak-* ergodicity). Let A be a P-invariant prob-
ability. Suppose that for . ® A-a.e. (x,x') € E x E,

3Q e ¢(pP, Px,) such that Q|:Z d(Xn, X;l)2 < oo:| > 0.
=0

Then the Markov chain is a.e. weak-* ergodic in the sense that

n—oo

|P"(x,) —4|g — O for A-a.e. x € E.

PROOF. Repeating the proof of Theorem 2.11 using Theorem 2.2 instead of
Theorem 2.1 yields the following: for every f € Lip(E), we have

|P"f(x) —af| =30 for A-a.e. x.
We would like to extend this to convergence in the bounded-Lipschitz norm. This
does not follow immediately, however, as the A-null set of x € E for which the
convergence fails may depend on f € Lip(E).
Fix ¢ > 0. Let K € E be a compact set such that A(K) > 1 — ¢, and define
xx)=01- e ld(x, K))4. Then we can estimate

[P"(x,) =2y = sup [P"(fx)(x) = A(f )]+ P"(1 = x)(x) +A(l = x)
JfeLip(E)

< sup |P"(fx)x) = A(f)]+[P"x(x) —rx]|+2e.
SeLip(E)
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By the Arzela—Ascoli theorem, we can find a finite number of functions fi,...,
fr € Lip(E) such that SUP feLip(E) min; | filg — flklleo < €. But note that
|f(x) —gx)| <2e+ || f1k — glklloo Whenever d(x, K) < e and f, g € Lip(E).
Therefore, SUP feLip(E) min; || fix — fxlloo <3¢, and we have

[P" e, ) = Allgy = max [P"(fix0(0) = A(fi0] + [ P" x () = Ax| + 8e.

As the quantity on the right-hand side depends only on a finite number of bounded

Lipschitz functions x, fix, ..., fix, we certainly have
limsup| P"(x,) — Al g <8¢  for r-ae. x.
n—oo

But ¢ > 0 was arbitrary, so the proof is complete. []

REMARK 2.14. The tightness argument used here is in fact more elementary
than the result of Pachl [36] used in the proof of Theorem 2.11. Note, however,
that Theorem 2.11 does not even require the existence of an invariant probability,
so that tightness is not guaranteed in that setting.

3. Conditional ergodicity. In the previous section, we have developed vari-
ous measure-theoretic ergodic theorems that are applicable in infinite-dimensional
or non-Markov settings. The goal of the present section is to develop a conditional
variant of these ideas: given a stationary process (Zg, Yx)kez, we aim to under-
stand when (Zy)ez is ergodic conditionally on (¥j)rez. The conditional ergodic
theory developed in this section will be used in Section 4 below to prove stability
and ergodicity of nonlinear filters.

In Section 3.1, we first develop a conditional variant of the zero—-two laws of
the previous section. In principle, this result completely characterizes the condi-
tional absolute regularity property of (Zy)rez given (Yi)iez. Unfortunately, the
equivalent conditions of the zero-two law are stated in terms of the conditional
distribution P[Z € -|Y]: this quantity is defined abstractly as a regular conditional
probability, but an explicit expression is almost never available. Therefore, in it-
self, the conditional zero—two law is very difficult to use. In contrast, the (uncon-
ditional) ergodic theory of (Zg, Yr)rez can typically be studied by direct analysis
of the underlying model.

The question that we aim to address is therefore that of inheritance: if the uncon-
ditional process (Z, Yr)rez is absolutely regular, does this imply that the process
is also conditionally absolutely regular? In general, this is not the case even when
the process is Markov (cf. [46]). However, under a suitable nondegeneracy require-
ment, we will be able to establish inheritance of the absolute regularity property
from the unconditional to the conditional process (Section 3.2). Using an addi-
tional argument (Section 3.3), we will also deduce conditional ergodicity given
the one-sided process (Yi)i>0 rather than the two-sided process (Yi)kez, as will
be needed in Section 4 below.
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The inheritance of the ergodicity property under conditioning was first estab-
lished in the Markov setting in [42, 43]. For a Markov process (Xi)i>0, the
condition of the zero—two law states that for a.e. initial conditions x, x’, there
exists n > 0 such that P"(x,-) and P"(x’,-) are not mutually singular, while
the conditional zero—-two law yields essentially the same condition where the
transition kernel P(x,-) = P*[X € -] is replaced by the conditional transition
kernel P(x,-) = P*[X; € -|Y]. The key idea in the proof of inheritance was
to show that the unconditional and conditional transition kernels are equivalent
P(x,)~ Is(x, -) a.e., which immediately yields equivalence of the conditions of
the unconditional and conditional zero—two laws. Unfortunately, such an approach
cannot work in the non-Markov setting, as here the corresponding argument would
require us to show the equivalence of laws of the infinite future P[Z; o € | Z_c0,0]
and P[Zy « € -|Y, Z_,0]- Such an equivalence on the infinite time interval can-
not hold except in trivial cases (even in the Markov setting). We must therefore
develop a new method to establish inheritance of the conditions of the uncondi-
tional and conditional zero—two laws that avoids the Markov-specific arguments
in [42, 43].

Throughout this section, we adopt the same setting and notations as in Section 2.
Here, we will assume that £ = G x F where G, F are Polish spaces, and we fix
a stationary probability P on (2, F). We denote the components of the coordi-
nate process as X, = (Z,, Y,,). Thus (Z,, Y;),ez is a stationary process in G X F
defined on the canonical probability space (€2, &, P). Let

FE o =0{Zmnl, Fr o =0{Ymnl, 52 =972

—00,00"

sothat &, , = CT",%’" \ CT",{Z’". We also define the tail o -field

AP = F

n>0

For simplicity, we will write Z = Z_ » and ¥ = Y_ 0. We introduce the con-
vention that for a sequence z = (z,),ez, We Write 2— = (2)n<0-

REMARK 3.1. In the remainder of the paper, all random variables that we
encounter will take values in Polish spaces. This ensures the existence of regular
conditional probabilities and the validity of the disintegration theorem [20], Chap-
ter 6, which will be exploited repeatedly in our proofs.

3.1. A conditional zero—two law. In this section, we establish a conditional
counterpart to Corollary 2.8 that characterizes the absolute regularity property of
(Z)nez conditionally on (Y,),cz. While it is difficult to apply directly, this condi-
tional zero—two law plays a fundamental role in the study of conditional ergodicity
to be undertaken in the following sections.
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In the following, we define the probability measure Y and fix versions of the
regular conditional probabilities P, P§_ as follows:

Y=PYel,  Py=P[F"], Py =P[LIF" vIZ_,]

That is, Y denotes the law of the observed process, Py, is the conditional law of the
model given a fixed observation sequence y, and P is the conditional law of the
model given a fixed observation sequence y and initial history z_.

We now define the probability Q on GZ x G% x FZ as

/IA(Z, Z,y)Q(dz,d7', dy) = f 14(z, 2/, y)Py(Z € d2)Py(Z € dZ )Y (dy).

Denote the coordinate process on GZ x GZ x FZ as (Z,,, Z!, Yu)nez. Evidently Q
is the coupling of two copies of P such that the observations Y coincide and Z, Z’
are conditionally independent given Y.

The following is the main result of this section.

THEOREM 3.2 (Conditional 0-2 law). The following are equivalent:

1. For Q-a.e. (z,7,y), we have

[P — Py |y =0,

n,00

2. For Q-a.e. (z,7,y), we have
Po(A) =P (A2 =P (A)  forall AcA”.

!/
3. For Q-a.e. (z,7/, ), there exists n > 0 such that P;f and P;f are not mutually
singular on FF ..

REMARK 3.3. Informally, the first condition of Theorem 3.2 states that con-
ditionally on the observation sequence Y = y, the future of the unobserved process
Z after time n becomes independent of its initial history as n — oo. Using Lem-
mas 2.9 and 3.4 below, one can show that this condition is also equivalent to the
conditional absolute regularity property

k
IPZ—c6.0, Zk.oo € 1Y1 = P[Z_co0 € -[Y1®P[Zk oo € -|Y]| =50,  P-as.
exactly as in Corollary 2.8. For our purposes, however, the condition as stated in

Theorem 3.2 will be most convenient in the sequel.

The proof of Theorem 3.2 is similar in spirit to that of Theorem 2.2. However,
care is needed in the handling of regular conditional probabilities. We begin by
establishing some basic facts.

An elementary but important idea that will be used several times in the se-
quel is the principle of repeated conditioning. This idea is trivial in the setting



2264 X. T. TONG AND R. VAN HANDEL

of discrete random variables. Let X1, X», X3 be discrete random variables under
a probability R, and define the conditional probabilities Ry, = R[-|X| = x1] and
Rxl,xz = R[-|X1 =X1, X2 = XQ]. Then
R[X| =x1, X7 = x2, X3 = x3]
Rxl,xz[X3 =x3] =
R[X| =x1, X2 = x3]
_ R[Xo =x2, X3 =x3|X1 = x1]
R[X7 = x| X1 = x1]
=R, [X3 =x3|X2 =x2].

Thus conditioning on two variables can be achieved by conditioning first on one
variable, and then conditioning on the second variable under the conditional dis-
tribution. The following lemma, taken from [49], pages 95-96, extends this idea
to the general setting of regular conditional probabilities. As the proof is short but
insightful, we include it for completeness.

LEMMA 3.4. Let Hy, H>, H3 be Polish spaces, let R be a probability on Hy x
Hy x Hz, and let X;(x1,x2,x3) = xi, §i = 0{X;}. Choose any versions of the
regular conditional probabilities Rx, = R[:|G1] and Rx, x, =R[:|G1 V 921, and
let R' =R[X; € -]. Then for R'-a.e. x; € Hj,

R, x,(A) =Ry, [A|G2] R, -a.s. forall A€ Gy v Gy Vv Gs.

PROOF. For given A € §1 v 92 Vv G3 and B € §;, we have R-a.s.
Ry, [Rx, x,(A)15] = R[RIAIS1 v 52115(51] = R[A N B|G1] = Ry, [A N B].
By disintegration, we obtain
R, [Ry x,(A)13] =R, [ANB]  forR'-ae. xi.

But as G1, G7, 93 are countably generated, we can ensure that for R'-ae. xq, this
equality holds simultaneously for all sets A and B in a countable generating al-
gebra for 1 v G v Gz and Gy, respectively. By the monotone class theorem, it
follows that for R'-a.e. x| the equality holds forall A€ G1 v G, Vv Gz and Be §;
simultaneously, which yields the claim. [J

Commencing with the proof of Theorem 3.2, we begin by obtaining a con-
ditional counterpart of the Markov property PX1(A) = E[1,4 o ®"Fp.,] that is
adapted to the present setting. While the following lemma could be deduced from
Lemma 3.4, we give a direct proof along the same lines.

LEMMA 3.5. ForP-a.e. (z,y), we have

Pg);;gn (A) =Ej" [140 ®”|3"Eoo’n] Pl -a.s. for every A € g2,
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PROOF. Fix AeF%, Be F%

—oo,n?

and C e FY v S"EOO o- Then

E[E? [Pé;)i@n (A)IB]IC] = E[P@)ny (A)lBﬂC]

E[P}~ () {15nc 0 ©7")]
=E[14{1gnc 0 ©®7"}]
E[{14 00" }1pn¢]
— E[E/ [(140 0" }15]1c]

where we have used the stationarity of P and the definition of the regular condi-
tional probability PZ‘ As this holds for all C € F¥ v F7 we have

—00,0°
Z_o®"
Eéf [P®ny (A)1g]= E§* [{14 0 ©"}15] for P-a.e. (z, y).

We conclude by a monotone class argument as in the proof of Lemma 3.4. [

In the following, we will require some basic properties of the coupled mea-
sure Q. First, notice that as Y is stationary and as

Pyoo(A) =P[A|F] 0 ® =E[1400|F' ]| =Ey(14 0 9), P-as.,

it is easily seen that Q is a stationary measure. Moreover, defining

ZZ,

Q=P (Ze)®Py (Ze)®S,  onG”x G’ x F,

/

it follows directly that Q?"Z_ is a version of the regular conditional probability
QUIFY v IFZ_ (VT2 o). where 2 =0{Z], }.
To proceed, we define the maps

z 7
e el ) =[P B gz Ble ) = [ — B 4
As ’J’nz, o 18 countably generated, the maps B, are measurable. Moreover, as 8, | B

pointwise as n — 0o, the map f is measurable also.
The following lemma establishes the invariance of .

LEMMA 3.6. For Q-a.e. (z—,z7 ., y), we have
Qiﬂz*[ﬁ(z,,z/_, V)=B(Z-0®",Z_0®",0"y) foralln>0]=1.

PROOF. Define for simplicity G, = F¥ v ?Eoo’n \% fr"?oo’n. As Z, Z' are con-
ditionally independent given Y under Q, we have

P}Z,‘ (Ze)=Q[Ze-|Gy] and P?‘ (Ze)=Q[Z €-%]. Q-a.s.
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Using Jensen’s inequality and stationarity of Q yields
Bi(Z-,Z_,Y) =|Q[Z € 1S0] — Q[Z} o € “190]]
<EqQ[|QIZk.x € 1511 — Q[Z}. o € -151]]1S0]
=EqQ[|Q[Zi-1.00 € -|S0] — Q[Z}_1.o0 € :190]] © ©1G0]
=Eq[B-1(Z-,Z_,Y) 0 ©|G0].
Letting k — oo and using stationarity, we find that
B(Z_,Z ,Y)o®" <Eq[B(Z_,Z",Y)0®"|G,],

so M, =B(Z_,Z' ,Y) o ®" is a bounded submartingale under Q. In particular,
by stationarity and the martingale convergence theorem,

EQH,B(Z_, Z/_, Y) — ﬁ(Z_, Z/_’ Y) o ®n|]
—Eq[|B(Z-.Z_.Y) 0 © — B(Z_,Z_.Y) 0 @[] =0,
It follows that B(Z_, Z_,Y)=B(Z_,Z",Y) o ®" forall n > 0, Q-a.s., and the
result follows readily by disintegration. []

We are now ready to complete the proof of Theorem 3.2.

PROOF OF THEOREM 3.2. The proofs of 2 = 1 = 3 are identical to the cor-
responding proofs in Theorem 2.1. It remains to prove 3 = 2.

Let us assume that condition 3 holds. Then, using Lemmas 3.5 and 3.6, we can
find a measurable subset H C GZ x GZ x FZ of full probability Q(H) = 1 such
that the following hold for every (z, 7, y) € H:

(a) P§,_ and Pi_ are not mutually singular on 3",{ oo for some n > 0.

(b) Pé,f’@ (A)=Ej [1400"|FZ 1, Py -as. forall A€ 5, n > 0.
©) Pf),;’o (A)=E [1400"FZ_ 1, P -as. forall AeFZ, n>0.

(d) Qy [ﬂ(z_, ., Y)=B(Z_0@",Z' o®",®"y)foralln >0]=1.

Now suppose that condition 2 does not hold. Then we can choose a path (z, 7/, y) €
H and a tail event A € AZ such that

either 0 < P;* (A) <1 or P§* (A) # Pi_ (A).
Define f =14 — 14¢ and fix @ > 0. By the martingale convergence theorem,
( fo e

P (AP (A) + PE (AP (4) > 0.

Z_o®" ) Z' o®"

eSS Egi, (f0®™")[>2-q]

n—oo
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Note thatas |f|<land fo® " is A% -measurable, we have

S (fo® ) —Egu (fo®™")| <p(Z 00" 2 00", @"y)

=B(z—, 72, y), Qif’z’—a.s.
It follows that B(z_,z",y) > 2 — a, and we therefore have B(z_,7_ ,y) =
2 as o > 0 was arbitrary. But by construction there exists n > 0 such that
B(z_,7_,y) <B.(z_,7_,y) <2, which entails the desired contradiction. []

3.2. Nondegeneracy and inheritance. While Theorem 3.2 in principle charac-
terizes completely the conditional absolute regularity property, this result is diffi-
cult to apply directly as an explicit description of P§',_ (beyond its existence as a
regular conditional probability) is typically not available. On the other hand, many
methods are available to establish the absolute regularity property of the uncon-
ditional model (Z, Y). We will presently develop a technique that allows us to
deduce the conditional absolute regularity property from absolute regularity of the
unconditional model.

The essential assumption that will be needed for inheritance of the absolute
regularity property is nondegeneracy of the observations, Definition 3.7, which
states that the conditional distribution of any finite number of observations can
be made independent of the unobserved component by a change of measure. The
precise form of the following definition is adapted to what is needed in the proofs
in the present section, and its interpretation may not appear entirely obvious at first
sight. However, we will see in Section 4 that the nondegeneracy assumption takes
a very natural form in the Markov setting and is typically easy to verify from the
model description.

DEFINITION 3.7 (Nondegeneracy). The process (Zg, Yi)xez is said to be non-
degenerate if for every —oo < m <n < oo we have

P[Yin € 1Foom—1 ¥V Fntt,00] ~P[Yimn € 1F o1 VIni1 o). Pas.

‘We now state the main result of this section (recall that the definition of absolute
regularity was given as Definition 2.7 above).

THEOREM 3.8 (Inheritance of absolute regularity). Suppose that the station-
ary process (Zy, Yi)rez is absolutely regular and nondegenerate. Then any (hence
all) of the conditions of Theorem 3.2 hold true.

To gain some intuition for the role played by the nondegeneracy property, let us
briefly outline the idea behind the proof. We will use nondegeneracy to remove a
finite number of observations from our conditional distributions:

Z_
PY (Zn,oo € ) = P[Zn,oo € '|Y7 Z—oo,O] ~ P[Zn,oo € ‘|Yn,007 Y—OO,Ov Z—oo,0]~
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The right-hand side depends only on (Z_s.0, Y-50.0), (Zn,00, Yn,00) Which are
nearly independent for large n by the absolute regularity property (Definition 2.7).
Therefore, for large n, the right-hand side becomes nearly independent of the initial
history Z_ ¢ in total variation. The above equivalence of conditional distributions
then ensures the nonsingularity of P;‘ given two initial histories z_, which yields
the third condition of Theorem 3.2.

To implement this approach, we need three lemmas. First, in order to use the
nondegeneracy property in the manner outlined above, we must be able to ex-
change the roles of conditioning and conditioned variables. To this end, we use an
elementary property that is trivial in the discrete setting: if X1, X, X3 are discrete
random variables under a probability R, then

R[X|=x1[X2=x2, X3 =x3]  R[Xp=x2|X| =2, X3=1x3]
R[X1 =x1|X3 =x3] R[X7 = x2|X3 = x3]

whenever one side makes sense. Thus R[ X € | X7, X3] ~ R[X| € -|X3] if and
only if R[ X5 € -| X1, X3] ~ R[X> € -| X3]. The following lemma [43] extends this
idea to the general setting of regular conditional probabilities.

LEMMA 3.9. Let Hy, H>, H3 be Polish spaces, and let R be a probability on
H{ x Hy x H3. Define X;(x1,x2,x3) =x; and §; = o{X;}. Then

R[X; €192 Vv G3] ~R[X € -|G3], R-a.s.
if and only if
R[X> €191 Vv G3] ~R[X; € -|G3], R-a.s.

PROOF. This follows from [43], Lemma 3.6, and the existence of a measurable
version of the Radon—-Nikodym density between kernels [10], Theorem V.58. [J

The second lemma states that conditioning on less information preserves ex-
istence of a conditional density. This follows easily from the tower property of
conditional expectations, but we formulate it precisely for concreteness.

LEMMA 3.10. Let X1, X2, X3 be random variables taking values in Polish
spaces Hy, Hy, H3, respectively, and define the o -fields G; = o {X;}. Moreover, let
K : Hy x B(Hy) — [0, 1] be a transition kernel, and suppose that

P[X; €92V 53]~ K(X2,), P-a.s.
Then we also have

P[X: €-S]~K(X2,-), P-as.
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PROOF. Using existence of a measurable version of the Radon—Nikodym den-
sity between kernels [10], Theorem V.58, the assumption implies that there is a
measurable function 4 : H; x Hy x Hz — ]0, oo such that

P[X, € A|S> v Gs] :/IA(x)h(x, X2, X3)K (X2,dx),  P-as.
for every A € B(H1). By the tower property
P[X; € A|G,] =/1A(x)/h(x,Xz,x')sz(dx/)K(Xz,dx), P-as.,

where we fix a version of the conditional probability Py, = P[X3 € :|G2]. As
B(Hy) is countably generated, the P-exceptional set can be chosen independent
of A by a monotone class argument. This yields the claim. [J

The third lemma will enable us to bound the total variation distance between
conditional distributions in terms of the total variation distance between the under-
lying unconditional distributions.

LEMMA 3.11. Let Hy, Hy, H3 be Polish spaces, and let R be a probability on
H| x Hy x H3. Define X;(x1,x2,x3) =x; and §; = o {X;}. Then

ER[|R[X; €192 Vv G3] — R[X; € -|G3]]|]
<2ER[|R[X1, X3 € -|92]1 — R[X1, X3 € 1| ].

PROOF. Fix versions of the regular conditional probabilities Ry, x; =
R[X; €92 v G3], Rx, = R[X| € |G3], and R*2 = R[X3 € -|G,]. Then

ER[|R[X: €192 Vv 931 — R[X; € -|G3]]1S2] =f IRx,.v; — Ry, IR (dx3).
Define the kernels
R¥(dx1, dx3) = Ry, 1y (dx1)R™ (dx3),
R (dx1, dx3) = Ry (dx))R™ (dx3),
R(dx1, dx3) = Ry, (dx))R(X3 € dx3).
By Lemma 2.9, we have

[ IR~ R IR (xs) = R — R =[R2 ~ R + RS~ R

But R =R[X|, X3 € -] and R¥2 = R[X{, X3 € -|G,] by disintegration, so
ER[|R[X; €S2 v G3] — R[X; €|53]]192]
< |RLX1. X3 € 1520 — RIX1. X3 € 1] + |RIX; € [92] — RIX5 € ]
<2|R[X1, X3 €-[92] = RIX1, X3 € ]|

’
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and the proof is completed by taking the expectation. [
We can now complete the proof of Theorem 3.8.

PROOF OF THEOREM 3.8. The nondegeneracy assumption states

P[Y11—1 € 1F 00,0V Fno0l ~P[Y1n—1 € -IS‘"ZOQO v ?,ioo], P-as.
Therefore, by Lemma 3.10, we obtain

P[Yin-1 €T 000V TL ] ~P[Yiuo1 €1 o vIT ], Paas.
It follows that

P[Y1 -1 €T 000V Fniol ~P[Y1n—1 €1F oV Iy ], Pas.,
which yields using Lemma 3.9

P[Zyoo € 1F VFZ L ] ~P[Znoo € 1Fo0VTFh o] Pas.
Therefore, if we choose any version of P)Z,’; =P[|T_0,0V ff,{ o], then
Py |52, ~ P§7n|§%w Vn > 1 for P-a.e. (z, y)

(note that we define P,
tion; by construction, Pifn depends on y_o0.0, ¥n,00, 2— Only). By condition 3 of
Theorem 3.2, to complete the proof it suffices to show that

as a function of the entire path y for simplicity of nota-

inf[ P, —Pyufgz <2 forQae. (z,2,y).

We now proceed to establish this property.
By the triangle inequality and as (Z, Y) and (Z’, Y) have the same law,

7 z.
EQ[HPY,n —Py, ||3fn%oo] < 2EQ[|P[:|F-c0.0 v ?f{,oo] - P['Ggﬁo] ”’fnz.oo]'
Therefore, by Lemma 3.11, we obtain
7 z.

Eq[|[Py,, =Py, lsz 1= 4EQ[[PLF o000l =Py, ]
As (Z,7Y) is absolutely regular, Corollary 2.8 gives

. _ z. .

Eo[igflPY., L, sz ] <4 ElIPLIT o) = Pl =0

Thus, the requisite property is established. [
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3.3. One-sided observations. Theorem 3.2 establishes conditional ergodicity
of Z given the entire observation o -field 7 . This allows us to control the behavior
of the conditional distributions P[Z,, o € -|TF Y1 as n — oo. In contrast, the ergodic
theory of nonlinear filters (Section 4) is concerned with the “causal” setting where
one considers the conditional distributions P[ X, ~ € -|3’g’ »] as n — oo. The latter
requires a one-sided version of our results where we only condition on F¥ = CT"g o
Unfortunately, two-sided conditioning was essential to obtain a conditional zero—
two law: if we had replaced 7 by 3']{ in Section 3.1, for example, then the coupled
measure Q would be nonstationary and the key Lemmas 3.5 and 3.6 would fail.

We must therefore develop an additional technique to deduce one-sided re-
sults from their two-sided counterparts. To this end, we prove the following result,
which will suffice for our purposes (recall that absolute regularity and nondegen-
eracy were defined in Definitions 2.7 and 3.7, resp.).

PROPOSITION 3.12 (One-sided conditioning). Suppose that the stationary
process (Zy, Yi)rez is absolutely regular and nondegenerate. Then

P[Z0.00 € 1TV ~P[Z0oo € 1FY],  P-as.

Before we prove this result, let us use it to establish the key o -field identity that
will be needed in the ergodic theory of nonlinear filters (Section 4).

COROLLARY 3.13. Suppose that the stationary process (Zy, Yi)re7, is abso-
lutely regular and nondegenerate. Then the following holds:
NFLvF. =L  modP.

n>0
PROOF. We begin by noting that for Y-a.e. y
/ PS-(A)Py(dz) =Py(A)  forall AeF7.

Indeed, as E[P[A|FY v &"ZOO’OHSFY] =P[A|F"], the equality holds Y-a.e. for all A
in a countable generating algebra for 77, and the claim follows by the monotone
class theorem. Using Jensen’s inequality, Theorems 3.8 and 3.2,
bl n—00
P~ Pyllsz < [IP5 =P [z Py (@2) "0

for P-a.e. (z, y). As ||P;’ - PY”?foo — ||P§’ — Pyl 4z as n — 00, applying again
Theorems 3.8 and 3.2 shows that AZ is P, -trivial for Y-a.e. y.

Fix a version of the regular conditional probability Py, =P[-|F i], where Y, =
(Yx)k=0- By Proposition 3.12, Py, and P, are equivalent on CTOZm for Y-a.e. y. It
follows that AZ is also P, -trivial for Y-a.e. y. In particular,

n—oo

P, [AIFE ] =P, [A], P, -as.for Y-ae.y
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holds for any A € JF by martingale convergence. By Lemma 3.4, this implies
n—oo

P[AIFY v F7 1= P[A|FY]. P-as. forevery A € F.

This evidently establishes the claim. [

We now turn to the proof of Proposition 3.12. The essential difficulty is that we
must show equivalence of two measures on an infinite time interval. The following
lemma provides a simple tool for this purpose. Recall that given two probability
measures « and v, the measure u A v is defined as

du N dv
diu+v) d(pu+v)

so that [|u — v|| =2(1 — [|u A v]]) [27], page 99. By a slight abuse of notation, we
write E, A0 [ f1= [ fd(u A v) despite that i A v is only a subprobability.

d(u/\V)z( )d(M+V),

LEMMA 3.14. Let H be a Polish space, and let (., v be probability measures
on HN. Denote by Xi:H N _s H the coordinate projections X;(x) = x;, and define
the o-fields Gy n = 0{Xm.n} for m <n. If we have

/'L[Xl,n—l € |9n,oo] < V[Xl,n—l € '|9n,oo]» /'L|9,,,oo N V|9n,oo'a-s-
for all n < 0o, and if in addition
I =vllg, . =0,

then @ <K v on 91, .

PROOF. Let uy, = plg, ., and v, = vlg, . Choose any A € 91,00 such that
V(A) = 0. Then v[A|G,, 0] =0, vy-a.s. and, therefore, u[A|G 00l =0, tn A Vp-
a.s. by the first assumption. But using the second assumption

11(A) = E iy v, [11A1Gn.001] + By — v [1IA1Gn.001] < 1= Il ptn A vl =30,

where we used || — vlg, .. =2(1 = [[n A vul)). Thus, u K von §j . U
We can now complete the proof of Proposition 3.12.

PROOF OF PROPOSITION 3.12. By Lemma 3.9, it suffices to show that
P[Y_co—1 € 1FX] ~P[Y o1 €-1T4], P-as.
Fix versions of the regular conditional probabilities
Py, =P[IFL].  Pyove, =PLFLVI ]
Px,.. =PL1F4],  Pxoove, =P[1FLvIF ]
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To complete the proof, we show that Py, [Y_oo —1 € -] ~ Py [Y—00,—1 € -] for
P-a.e. x = (z, y). To this end, we verify the conditions of Lemma 3.14.
First, we claim that

”PyO,oo - PX()oo ”?Y mj)oo for P-a.e. x = (Zv )’)

o0, —m

Indeed, note that by the triangle inequality and Jensen’s inequality
[PL1FY] = PLIF gy
< |PLIFLI=Plgr  +[PLIFH] =Pl
< |PLIFA-Ply  +E[[PLIT-P|y 15L].

By Corollary 2.8, it suffices to show that the time-reversed process (X _i)kez is
absolutely regular. But it is clear from Definition 2.7 that the absolute regularity
property of a stationary sequence is invariant under time reversal. As we assumed
absolute regularity of (Xg)xez, the claim follows.

Next, we claim that for P-a.e. x = (2, y)

Py [Yomit -1 €17 g ]~ Prg [Yomprr €15 .

PyO,oo|ffZ e APy o lgy -a.s.

oo,—m

Indeed, by Lemma 3.4, it suffices to show that

Pyo_,oo,Y_oo._m[Y—m—I—l,—l €]~ Pxoyoo,Y_oo,_m[Y—m-i-l —1 €],

Pyo.oo|$Z o APy o lgy -a.s.

oo,—m

To see that this is the case, note that the nondegeneracy assumption yields

P[Y—m+1,—1 € |.(fz V?Y] ’\'P[Y_m_H 1€ |95

—00,—m

v I, P-as.

as in the proof of Theorem 3.8. Thus there is a measurable set H C (G x F)N x FN
with P[(X0,00, Y—c0,—m) € H] =1 such that

PYO,oo,yfoc,fm [Yfm+l,71 € ] ~ Px(),omyfoo,fm[Y*m‘i’l,*l € ]

for all (x0,00, Y—00,—m) € H. But as P[(X0 00, Y—co,.—m) € H] = 1 implies
Py o [(x0,005 Y—00,—m) € H] =1 for P-a.e. x by disintegration, we obtain

Py o¥ooomYomt1,-1 € 1~Pxy o v oo _w[Y-m+1,-1 €], Py o-as.,

and thus a fortiori Py, |4 AP -a.s., for P-a.e. x.
—00, —, —m

0,00 |5
The two claims above Verlfy the assumptlons of Lemma 3.14, which yields

Py Yoo, -1 €1~ Py [Y-oo,—1 €] for P-a.e. x as was to be shown. [
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4. Ergodicity of the filter. Let (X, Y,),>0 be a Markov chain. We interpret
(Xn)n>0 as the unobserved component of the model, while (Y,),>¢ is the observ-
able process. In this setting, there are two distinct levels on which the conditional
ergodic theory of the model can be investigated.

In the previous section, we investigated directly the ergodic properties of the
unobserved process (X,),>0 conditionally on the observations (Y}),>0. This set-
ting is of interest if the entire observation sequence (Y},),>0 is available a priori. In
contrast, it is often of interest to consider the setting of causal conditioning, where
we wish to infer the current state X,, of the unobserved process given only the
history of observations to date fﬂ{ .- An object of central importance in this setting
is the nonlinear filter

n =P[X, € 15,]-

Evidently, the filtering process (i,),>0 is a measure-valued process that is adapted
to the observation filtration 3"({ ,- The goal of this section is to investigate the sta-
bility and ergodic properties of the filter (i), >0.

In Section 4.1, we will develop the basic setting and notation to be used through-
out this section. In Section 4.2, we develop a local stability result for the nonlinear
filter, which is in essence the filtering counterpart of the local zero-two laws of
Section 2.1. In Section 4.3, we apply the local stability result to develop a number
of general stability and ergodicity results for the nonlinear filter that are applicable
to infinite-dimensional models. Finally, in Section 4.4 we will extend our results
to the continuous time setting.

The filter stability and ergodicity results developed in this section provided the
main motivation for the theory developed in this paper; their broad applicability
will be illustrated in Section 5 below.

4.1. Setting and notation.

4.1.1. The canonical setup. Throughout this section, we will consider the bi-
variate stochastic process (X, ¥, )nez, Where X, takes values in the Polish space
E and Y, takes values in the Polish space F. We realize this process on the
canonical path space Q = Q¥ x Q¥ with QX = EZ and QY = FZ, such that
Xu(x,y) =x(n) and Y, (x, y) = y(n). Denote by J the Borel o-field of €2, and
define Xm,n = (Xk)mgkfns Ym,n = (Yk)mfkgiu and

Fnn =0 Xmnls  Fpp=0Wnnls  Fun=9, V5,

m,n

for m < n. For simplicity of notation, we define the o-fields

FX=gX F' =97 FY =For  FTh =T

—00,00? —00,00°
Fi=F000.

Finally, we denote by Y the F Z_yalued random variable (Yx) ez, and the canonical
shift ® : Q2 — Q is defined as O (x, y)(m) = (x(m + 1), y(m + 1)).
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For any Polish space Z, we denote by B(Z) its Borel o-field, and by P(Z)
the space of all probability measures on Z endowed with the weak convergence
topology [thus P(Z) is again Polish]. Let us recall that any probability kernel
p:Z x B(Z') — [0, 1] may be equivalently viewed as a P(Z’)-valued random
variable z — p(z, -) on (Z, B(Z)). For notational convenience, we will implicitly
identify probability kernels and random probability measures in the sequel. The
notation for total variation distance is as in Section 2.

4.1.2. The Markov model. The basic model of this section is defined by a
Markov transition kernel P: E x F x B(E x F) — [0, 1] on E x F. Denote by P#
the probability measure on J such that (X,, Y;,),>0 is a Markov chain with tran-
sition kernel P and initial law (Xg, Yo) ~ u € P(E x F). For any (x,y) € E x F,
we will denote for simplicity the law of the Markov chain started at the point mass
(Xo, Yo) = (x, y) as P¥Y = Pix®%y

We now impose the following standing assumption.

STANDING ASSUMPTION. The Markov transition kernel P admits an invari-
ant probability measure A € P(E x F), thatis, AP = \.

Let us emphasize that we do not rule out at this point the existence of more
than one invariant probability; we simply fix one invariant probability A in what
follows. Our results will be stated in terms of A.

Note that by construction, (X, ¥,),>0 is a stationary Markov chain under P
We can therefore naturally extend P* to F such that the two-sided process
(X, Yn)nez is the stationary Markov chain with invariant probability A under P*.
For simplicity, we will frequently write P = P*.

4.1.3. The nonlinear filter. The Markov chain (X, Y;,),>0 consists of two
components: (X,),>o represents the unobservable component of the model, while
(Yy)n>0 represents the observable component. As (X,),>0 is presumed to be un-
observable, we are interested at time » in the conditional distribution given the
observation history to date Yy, ..., Y,. To this end, we will introduce for every
w € P(E x F) the following random measures:

My =Peligg,],  mlt=PM[X, € |55 ,].

The P(E)-valued process (), )n>0 is called the nonlinear filter started at p. This is
ultimately our main object of interest. However, we will find it convenient to inves-
tigate the full conditional distributions IT),. When p = A is the invariant measure,
we will write IT,, = 1'[2 and , = 71,3.

REMARK 4.1. Note that I}, 7} are 3"({ ,-measurable kernels. That is,
mh 1 Q x B(E) — [0, 1] can be written as 7, (A) = ) [Yo.n; A] for A € B(E).
We will mostly suppress the dependence on Y ,, for notational convenience.
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4.2. A local stability result. The main tool that we will develop to investigate
the ergodic theory of nonlinear filters is a local stability result for the conditional
distributions IT/; . To this end, we fix in this subsection a countably generated local
o-field €Y C B(E) as in Section 2.1, and define

Fon=T0.v V x:'(€°. m<n.

m<k<n

Let us emphasize that the localization pertains only to the unobserved compo-
nent Xy: it is essential for our results that the full observation variable Y} is in-
cluded in the local filtration 32“1 In practice, this requirement and the nonde-
generacy assumption below are easily satisfied when the observations are finite-
dimensional, but place restrictions on the applicability of our theory when both
unobserved and observed processes are infinite-dimensional; cf. Section 5 for ex-
amples and Remark 5.20 for further discussion.

As in Section 3, we require two basic assumptions. The first assumption states
that the model (X, Y,),>0 is locally ergodic.

ASSUMPTION 4.2 (Local ergodicity). The following holds:

n—oo

[P =Py — 0  fori-ae. (x,y)€E xF.

The second assumption provides a notion of nondegeneracy that is adapted to
the present setting (cf. [42]): it states that the dynamics of the unobserved and
observed processes can be made independent on a finite time interval by an equiv-
alent change of measure. Roughly speaking, this requirement ensures that we can-
not infer with certainty the outcome of any unobserved event given a finite number
of observations; indeed, by the Bayes formula, Assumption 4.3 implies that the
conditional distribution given a finite number of observations is equivalent to the
unconditional distribution. Our results can certainly fail in the absence of such a
property, cf. [46] for examples.

ASSUMPTION 4.3 (Nondegeneracy). There exist Markov transition kernels

Py:E x B(E)—[0,1]and Q: F x B(F) — [0, 1] such that

P(x,y,dx',dy’)=g(x,y,x", y")Po(x,dx") Q(y, dy’)

for some strictly positive measurable function g: E X F X E x F — ]0, oo[.

Note that Assumption 4.2 is characterized by Theorem 2.2, which yields a gen-
eral tool to verify this assumption. Assumption 4.3 is easily verified in practice as
it is stated directly in terms of the underlying model.

The main result of this section is as follows.



CONDITIONAL ERGODICITY IN INFINITE DIMENSION 2277

THEOREM 4.4 (Local filter stability). Suppose that Assumptions 4.2 and 4.3
hold. Then for any initial probability u € P(E x F) such that

n—oo

R(E x ) KAME x-) and |1} —HoHrfo — 0, P“-a.s.,

we have

n—oo

|1 — 11, ||gg_r’ — 0, P*-a.s. for any r € N.

If W(E x -) ~A(E X -), the convergence holds also P-a.s.

REMARK 4.5. When interpreting this result, we must take care to ensure that
the relevant quantities are well defined. Recall that I}, as a regular conditional
probability, is defined uniquely up to a P#| 5y, -null set only. Thus in order that

1, is P*-a.s. is uniquely defined we must at least have P“|gy < P|5ty The

assumption u(E x -) < A(E x -) is therefore necessary even for the statement of
Theorem 4.4 to make sense. As part of the proof, we will in fact show that under
the stated assumptions P“|3rJyr < Plﬂ [resp., P“lﬂ ~ P|ﬂ when pw(E x ) ~

A(E x -)]. This ensures that IT, is P*-a.s. uniquely defined (resp. I}, is P-a.s.
uniquely defined) for every n > 0.

If we strengthen Assumption 4.2 as in Theorem 2.1, we obtain the following.

COROLLARY 4.6. Suppose that Assumption 4.3 holds and that
[P =Py =50 forall (x,y) € Ex F.
Then for any u € P(E x F) such that u(E x -) K M(E X -), we have
|1 — 11, ||32_r, =20, PH-a.s. for any r € N.

If W(E x -) ~A(E X -), the convergence holds also P-a.s.

PROOF. The assumption clearly implies Assumption 4.2. Moreover,

I = Mol = [P“L1Yol = Plyg _+ [PL1Yol — Plyy
< EM[[PToT0 — P [Yo] +E[[PYT0 — P50 |¥o].

Thus, ||1'Ig — 1'[0||3<n)m — 0, P#-a.s. It remains to apply Theorem 4.4. [

We now turn to the proof of Theorem 4.4. We begin with a trivial consequence
of the Bayes formula that we formulate for completeness.

LEMMA 4.7. Let u, v be probability measures on a Polish space H, and let
G C B(H) be a o-field. If ;L ~ v, then u[-|S] ~ v[-|G], u-a.s. and v-a.s.
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PROOF. Let A =du/dv. Then for any A € B(H), we have
A

9} and —— >

[AIS]) E,[A]S]

by the Bayes formula and using u ~ v. As B(H) is countably generated, the -
exceptional set can be chosen independent of A by a monotone class argument.
Thus, w[-|G9] ~ v[-|G], n-a.s., and also v-a.s.as u ~v. [

0, JL-a.S.

u[A|9]=Ev[

To proceed, we first prove a key measure-theoretic identity that arises from the
conditional ergodic theory developed in Section 3 above.

LEMMA 4.8. Suppose that Assumptions 4.2 and 4.3 hold. Then
ﬂfﬂ{\/?g’oo:f}‘i modP.

n>0

PROOF. Let (A;),en be a countable generating class for €0, and define
Z, = 1(X,) where t: E — {0, 1}N is given by ¢(x) = (14, (x))sen. Then 3:2”1 =
ff'“},’l’n \% 3’%” by construction. It now suffices to show that the stationary process
(Zy, Yn)nez satisfies the assumptions of Corollary 3.13.

First, note that by Assumption 4.3 and the Markov property

[PL1F0 o 0] — Pllgg _ <E[[PX% — Py 150, o]""F0,  P-as.

Thus, Corollary 2.8 yields absolute regularity of (Z,,, ¥;,)nez-
It remains to prove nondegeneracy (in the sense of Definition 3.7). To this end,
we begin by noting that by the Markov property of (X, Y,),ez

P[Yl,n € '|3~—oo,0 A% ?n+1,w] = P[Yl,n € '|X07 YO’ Xn—i—la Yn+1]-

Let R be the probability on I under which (X, Yx)x>0 is a Markov chain with
transition kernel Py ® Q and initial law A. Then Plg, ., ~ R|g, ., by Assump-
tion 4.3. Therefore, by Lemma 4.7,

PlY1 0 €T 00,0V Tnt1,00] ~ R[Y1n €1X0, Y0, Xnt1, Yoyl P-as.
But X ,+1 and Y7 ,41 are conditionally independent under R given Yy, so
R[Y1n € 1Xo0, Y0, Xn+1, Yat11 =R[Y1,5 € Yo, Ynt1], P-as.
Therefore, by Lemma 3.10,
PV e 1T oV Toii sl ~PYine 1T o VIial  Pas
As this holds for any n € N, and using stationarity of P, it follows readily that the

process (Z, Yi)rez is nondegenerate (Definition 3.7). [

Armed with this result, we prove first a dominated stability lemma.
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LEMMA 4.9.  Suppose that Assumptions 4.2 and 4.3 hold. Let P bea proba-
bility measure on I, and define X, = P[- |Cﬂ{n]. Suppose that

l~’|rf§v3r%<>o < Plﬁvg?n,oo for some m € N.

Then |2, — Tpllg0 ~ —0, P-a.s.asn — oo for any r € N,

PROOF. Fix any r and m as in the statement of the lemma, and letn > m +r.
By the Bayes formula, we obtain for any set A € F0_

BILEAIFY VT ool Tl 5 PPlatus
E[A|F] ] o dPlyr 50

I~)[A|f7rd(l)/,n] =

(we write E[X] = Ep[X] for simplicity). We therefore have for A € 5—”2_, o

E[AIFL VT, o]
E[A|F],]

En(A)—H,,(A)=/1 { — l}dl'ln, P-as.

As 3'"2_,1 ~ 18 countably generated, the f’—exceptional set can be chosen indepen-
dent of A using a monotone class argument. It follows that
/‘ [AIFY v T, E[A,|5],] -

v —1‘d "=y P-as.,
E[AT), T E[A[5),]

1%, — H””?f,),h

where we have defined
A= [E[AIT] v 39, ]~ E[AI), ]I
We now estimate
E[A41T0,0] = E[A7155,] + 2E[ALn-ulF, ]

where

= [E[Ala<ulTL v T, 0] — E[A LA <ul TG ]|
By Lemma 4.8 and Hunt’s lemma [10], Theorem V.45, we obtain E[A} |EF({n] — 0,
P-a.s. as n — o0o. Moreover, as E[Al&"Y] >0, I3—a.s., it follows that
linnl)solép IS0 = Mallgo % P-a.s.

Letting u — oo completes the proof. [l

To use the previous lemma, we will decompose P# on F¥ v 3’9,, o 1Nto an ab-
solutely continuous component with respect to P (to which Lemma 4.9 can be
applied) and a remainder that is negligible as m — oo. The following lemma en-
sures that this can be done under the assumptions of Theorem 4.4.
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LEMMA 4.10. Suppose Assumption 4.3 holds. If u € P(E x F) satisfies

n—oo

R(E X ) KAME x-) and | —ofq —> 0, P-a.s.,
then for every m € N, we can choose a set Cy, € fﬂY_ v F  such that PH[- N

m,o0
Cnl <PonFY v I  and P(CL) — 0as m — oo.

PROOF. By the Lebesgue decomposition theorem, we can choose for every
m e Naset Cp € o{Yp} V 921,00 such that the following holds:

PN Cul <P ona{¥o} VT . and P(Cy) = 1.

Now note that I1o(Cy,) = 0, P-a.s. and, therefore, also P#-a.s. as we have assumed
that u(E x -) K A(E x -). Thus, we obtain P*-a.s.
14 (C5) = T4 (C5) — To(C5) < 1115 — Mol g, _ = I — Mol

m,00

Taking the expectation with respect to P# and letting m — oo, it follows using
dominated convergence that P*(C;,) — 0 as m — oo.

It remains to show that P*[- N C;,;,] < P on the larger o-field 3:{ \Y, ?9,1’00. To
this end, we will establish below the following claim: P*[- N C,,]-a.s.

PU[Y 11 € [0 {Yo} V Ty o] ~ P[Y1m1 € lo (Yo} vV T o]

Let us first complete the proof assuming the claim. Let A € fﬂ{ \ 3’21 oo Such that
P(A) =0. Then P[A|o{Yy} VvV F0 1=0, P-a.s. and, therefore, also P*[- N C,,]-

m,o00
a.s. But then the claim implies that P#[A|o{Yp} V 3"21,00] =0, P*[- N Cy,]-as. by
disintegration, which yields P*(A N C,,) = 0 as required.

We now proceed to prove the claim. Let R}, be the probability on F; under
which (X, Yi)«>0 is an inhomogeneous Markov chain with initial law (Xg, Yp) ~
W, whose transition kernel is given by Py ® Q up to time m and by P after time
m. Assumption 4.3 evidently implies that R}, ~ P#, so

P/“L[YLm_l € ~|G{Y0} V C‘FO

I
.00 P"-as.

I~ R [Yim-1 €10 (Yo} v T o],
by Lemma 4.7. Now note that by the Markov property

RE[Y1m—1 €-|0{Y0} V Fnoo] =RE[Y1m—1 € |Y0, Xim, Yin],
while

ROIY1m—1 €-1Y0, X, Y] =RE[Y1 ju—1 € -|Y0, Y]

as Y1, and X, are conditionally independent given Y under R’,. Therefore, we
obtain using the tower property

RA[Y) 1 € -lo{Yo} v Fo (] =RE[Y) oy € [0, Yirl, PH-as.
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Proceeding in exactly the same manner for P, we obtain

PH[Y) 1 € -lo{Yo} v T

m, OO]

Y] ,m—1 € - |Y07 ]9 PM[ N Cm]_a's'v
P[Yl,m—l € '|G{YO} \% ff?n,oo] ~ Rm [Yl,m—l € '|Y0, Yul, P'u[ N Cpl-as.

It remains to note that Ry [Y1 —1 € -|Y0, Yiu] = R: (Y1 1 € -|Y0, Yiul, PA[- N
Cnl-as., as Yy, is (the initial segment of) a Markov chain with transition kernel
Q under both R}, and R’ . Thus, the proof is complete. [

The following corollary will be used a number of times.

COROLLARY 4.11. Suppose Assumption 4.3 holds. If | satisfies

n—oo

WE X ) KME %) and |y —Tofz0 "—0,  Plas.,

then P“Iﬂ < Plﬂ. Ifalso A(E x -) ~ w(E X -), then P“Iﬁ ~ P|ffi'

PROOF. Define the sets C,, as in Lemma 4.10, and choose any A € fr"fi with
P(A) =0. Then P#(A) =P*(ANC;,) <P*(Cy,) — 0as m — oo. This yields the
first claim. On the other hand, note that the proof of Lemma 4.10 does not use the
invariance of A. Thus, we may exchange the roles of x and A in Lemma 4.10 to
obtain also Plﬂ < PM'ﬂ when A(E x <)~ u(E x ). O

We can now complete the proof of Theorem 4.4.

PROOF OF THEOREM 4.4. Fix u as in the statement of the theorem, and define
the corresponding sets C,, as in Lemma 4.10. Let P}, = P*[.|C,,] and Pﬁ,ﬁL =
PH[-|C¢ 1. By the Bayes formula, we can write for any A € F+

PHAIFS ] = PLA[AITY  JPE[Cnl T, ] + P AT JPE[CSIFE ], Plaas.
In particular, if we define X" = P,’fl[-|ff"({ ,], we can write
[T (A) — T, (A)| < |2 (A) — T, (A)|TTH(C) + TTH(CS), P*-as.

As J is countably generated, the P#-exceptional set can be chosen independent
of A using a monotone class argument. We therefore obtain

E* [limsup“ o —ri, ”?2—;-.00] <E} [limsup” = —11, ||g2_rm] +PH(Cy).
n— oo ’ n— oo ’

But the first term on the right vanishes by Lemma 4.9. Therefore, using that
PA(CE) — 0 as m — oo, we find that || T} — IT, lgo = 0, P-as.

This completes the proof when A(E X -) < M(E x ) To conclude, note that
P-a.s. convergence follows by Corollary 4.11 when A(E x ) ~ u(E x -). U
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4.3. Filter stability and ergodicity. Using the local stability Theorem 4.4, we
can now proceed to obtain filter stability results that are applicable to infinite-
dimensional or weak-* ergodic models, in analogy with the ergodic results ob-
tained in Section 2. While many variations on these results are possible, we give
two representative results that suffice in all the examples that will be given in
Section 5 below. Beside stability, we will also consider following Kunita [23]
the ergodic properties of the filtering process (7,),>0 when it is considered as
a measure-valued Markov process.

4.3.1. Filter stability and local mixing. In this short subsection, we assume
that the state space E of the unobserved process is contained in a countable product
E CJ;c; E', where each E' is Polish. We are therefore in the local mixing setting
of Section 2.2. In the present section, we define

F) =X}, Yua} forJCSIm<n,

m,n>

that is, we include the observations in the local filtration. We also denote by &7 C
B(E) the cylinder o -field generated by the coordinates in J C 1.
The bivariate Markov chain (X,,, ¥;,),>0 is said to be locally mixing if

n—oo

[P* —P|y —>0 forall (x,y)e Ex Fand J C I, |J| < o0.

It is easily seen that this coincides with the notion introduced in Section 2.2. The
following filter stability result follows trivially from Corollary 4.6.

COROLLARY 4.12. Suppose that the Markov chain (X, Y,)n>0 is locally
mixing and that Assumption 4.3 holds. Then for any n € P(E x F) such that
U(E x ) K AME x-), and for any r € N, we have

T — T, | 0 "0, Pt-a.s. forall J C1,|J| < oo.

n—r,00
In particular, the filter is stable in the sense

|7t — 1] e =50, Ph-a.s.forall J C1,|J| < oo.

If W(E x -) ~A(E x -), the convergence holds also P-a.s.

4.3.2. Filter stability and asymptotic coupling. The goal of this section is to
develop a filter stability counterpart of the weak-* ergodic theorem in Section 2.4.
For sake of transparency, we will restrict attention to a special class of bivariate
Markov chains, known as hidden Markov models, that arise in many settings (cf.
Section 5). While our method is certainly also applicable in more general situ-
ations, the hidden Markov assumption will allow us to state concrete and easily
verifiable conditions for weak-* filter stability.
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A hidden Markov model is a bivariate Markov chain (X, Yx)r>0 (in the Polish
state space E x F') whose transition kernel P factorizes as

P(x.y.dx',dy) = Po(x,dx')(x', dy')

for transition kernels Py: E x B(E) — [0,1] and ®: E x B(F) — [0, 1]. The
special feature of such models is that the unobserved process (Xy)k>0 is a Markov
chain in its own right, and the observations (Yj)x>¢ are conditionally independent
given (X¢)i>0. This is a common scenario when (Yj)r>0 represent noisy obser-
vations of an underlying Markov chain (Xy)x>0. In this setting, it is natural to
consider just initial conditions for X, rather than for the pair (Xo, Yp). We there-
fore define P¥ = Px®®x.) for x € E and P* = [P*u(dx) for u € P(E), as well
as the corresponding filters ), 1'[“ We will assume that Py admits an invariant
probability = P(E), so that A = A ® @ is invariant for (Xn, Yn)n>o [this entails
no loss of generality if we assume, as we do, that (X}, ¥;;),>0 admits an invariant
probability].

A hidden Markov model is called nondegenerate if the observation kernel &
admits a positive density with respect to some reference measure ¢:

ASSUMPTION 4.13. A hidden Markov model is nondegenerate if
O(x,dy) =g(x, y)p(dy),  glx,y)>0forall (x,y) € E x F

for a o -finite reference measure ¢ on F.

As any o -finite measure is equivalent to a probability measure, nondegeneracy
of the hidden Markov model evidently corresponds to the validity of Assump-
tion 4.3 for the bivariate Markov chain (X, Y )i>o.

We can now state our weak-* stability result for the filter in the hidden Markov
model setting; compare with the weak-* ergodic Theorem 2.11. In the following,
we fix a complete metric d for the Polish space E. To allow for the case that the
observation law is discontinuous with respect to d (see Section 5 for examples),
we introduce an auxiliary quantity d that dominates the metric d. Let us note that
it is not necessary for d to be a metric.

THEOREM 4.14 (Weak-* filter stability). Let (X, Yi)k>0 be a hidden Markov
model that admits an invariant probability A and satisfies Assumption 4.13. Let
d(x,y)>d(x,y) forall x,y € E. Suppose the following hold:

(a) (Asymptotic coupling.) There exists o > 0 such that

Vx,x' € E,3Q € C(P*,PY) s.. [Z (Xn, X,,) <oo}2a
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(b) (Hellinger—Lipschitz observations.) There exists C < oo such that

/{\/g()h y) — \/g(X’, y)}ztp(dy) < Ccnld(x,x/)2 forallx,x' € E.

Then the filter is stable in the sense that

i (f) -t ()] =30, P’ -a.s. for all f € Lip(E), ju, v,y € P(E).
In particular, we obtain

n—oo

|t =, g — O in PY -probability for all i, v,y € P(E).
PROOF. The proof is similar to that of Theorem 2.11. Let (§,),>0 be an i.i.d.
sequence of standard Gaussian random variables independent of (X, ¥;,)n>0, SO
that we may consider in the following the extended Markov chain (X, &,, Y,,)n>o0.
Fix f € Lip(E), and define F, = f(X,) + &,. Conditionally on F%, the process

(Fy, Yu)n>0 1s an independent sequence with

PH[(Fy, Yo)n=k € AITY]

X 00— (ra—f(Xn))?/2
= R*koo(A) ::/IA(r,y) I

n=k

Ae B[R x F)®N

for all u € P(E). We can now estimate as in the proof of Lemma 2.12
o0
[R¥0s — R0~ |2 < S [2f £ (xa) — [ (x))} +8Cd (xn. x7)°]
n=0

oo
<BC+2)Y d(xm,x),
n=0
where we have used that 1 — [[,(1 — p,) <>, pn when 0 < p, <1 for all n.
Therefore, proceeding exactly as in the proof of Theorem 2.11, we find that for
every x, x' € E, there exists n > 1 such that we have

IP¥[F00s Ynoo € 1 = P¥ [Fpoos Yioo €1 <2 —a.

Now note that the law P*[F), o, Yy, 00 € -] does not change if we condition addi-
tionally on &, Yo (as &, Yy are independent of X1 o0, &1,00, Y1,00 under P*). We
can therefore apply Theorem 2.1 to conclude that

IPH[F.c0 Yn.o0 € 1= PV [Frcos Yaoo € 1| =50 forall u, v € P(E).
Moreover, note that P*[Yy € -] ~ ¢ for all u € P(E). Thus, we can apply Corol-
lary 4.6 to conclude [here & € P(R) is the standard Gaussian measure]

H”rlfffl w & — g, f7! *&| =20, P*-a.s. and P-a.s.
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Applying the argument in the proof of Theorem 2.11 pathwise, we obtain

n—o0o

|7l (f) — mn(f)| — 0, P#-as. and P-a.s.

Thus, by the triangle inequality, we have

[ () = ) (D] < [ () = mn (D] + ) () = (H=570. Peas.
Finally, note that the assumptions of Corollary 4.11 are satisfied for any initial
measure, so that P |3"X < P 2t for any y € P(E). Thus, the above P-a.s. conver-
gence also holds P” -a.s., which yields the first conclusion.

To obtain the second conclusion, we argue as in the proof of Theorem 2.13. Fix
e > 0. Let K C E be a compact set such that A(K) > 1 — ¢, and define x(x) =
(1 — &7 'd(x, K)). . Following the argument used in the proof of Theorem 2.13,
we can find functions fi, ..., fr € Lip(E) such that

.....

for all n > 0. Taking the expectation and letting n — oo, we obtain

limsup E[|| 7} — 7, g, ] < 8e.
n—o0

As ¢ > 0 is arbitrary, this implies that
T — ey =30 in P-probability.
n BL

But P?| gr K P|ﬂ’ so the convergence is also in P -probability. Applying the
triangle inequality and dominated convergence completes the proof. [J

REMARK 4.15. In Theorem 4.14, we obtain a.s. stability of the filter for indi-
vidual Lipschitz functions, but only stability in probability for the || - ||gL norm. It
is not clear whether the latter could be improved to a.s. convergence (except when
E is compact, in which case the compactness argument used in the proof above
directly yields a.s. convergence). The problem is that we do not know whether the
null set in the a.s. stability result can be made independent of the choice of Lip-
schitz function; if this were the case, the method used in Theorem 2.11 could be
used to obtain a.s. convergence.

4.3.3. Ergodicity of the filter. We developed above a number of filter sta-
bility results that ensure convergence of conditional expectations of the form
|E“[f(X,l)|Cﬂ{n] - E[f(X”)|3"({n]| — 0. This can evidently be viewed as a natu-
ral conditional counterpart to the classical ergodic theory of Markov chains, which
ensures that |EX[ f(X,,)] — E[ f(X,)]] = 0. In this section, following Kunita [23],
we develop a different ergodic property of the filter.
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It is well known—and a simple exercise using the Bayes formula—that the filter

7}’ can be computed in a recursive fashion. In particular, under the nondegeneracy

Assumption 4.3, we have nr’fﬂ =U(t,Y,, Y,41) with
J1a(x"g(x, y,x', y") Po(x, dx")v(dx)
J8(x,y,x,y") Po(x,dx")v(dx)

Let H:P(E) x F — R be a bounded measurable function. Then

U(U, y’y/)(A) =

EX[H () Yor)|90,] = EX[H(U (), Yo, Yasr), Yas1)I190,] = T H (), Vo),
where the kernel ' : P(E) x F x B(P(E) x F) — [0, 1] is given by

F(V,y,A)=/IA(U(V,y,y/),y/)P(x,y,dx/,dy/)v(dx).

Thus, we see that the process (T}, Y )nso is itself a (P(E) x F)-valued Markov
chain under P#* with transition kernel I". In the hidden Markov model setting of
Section 4.3.2, I'(v, y, A) does not depend on y, so that in this special case even
the filter (7))o itself is a P(E)-valued Markov chain.

In view of this Markov property of the filter, it is now natural to ask about the
ergodic properties of the filtering process itself. Generally speaking, we would
like to know whether the ergodic properties of the underlying Markov chain
(Xn, Yn)n>0 with transition kernel P are “lifted” to the measure-valued Markov
chain (7}, Y,)n>0 with transition kernel I'. Following the classical work of Ku-
nita [23], such questions have been considered by a number of authors [3, 5, 40, 42,
46]. We will focus here on the question of unique ergodicity, where the following
result (essentially due to Kunita) is known.

THEOREM 4.16. Suppose that Assumption 4.3 holds, and that the transition
kernel P admits a unique invariant measure A € P(E x F). Then the transition
kernel T admits a unique invariant measure A € P(P(E) x F) iff

NFrvF*, _,=F  modP.

n>0

We refer to [46] for a full proof in the hidden Markov model setting, which
is easily adapted to the more general setting considered here (sufficiency is also
shown in our setting in the proof of [42], Theorem 2.12).

To prove unique ergodicity of the filter, we must therefore establish the measure-
theoretic identity in Theorem 4.16. The goal of this section is to accomplish this
task under the same assumptions we have used for filter stability: local mixing or
asymptotic couplings. In fact, slightly weaker forms of the assumptions of Corol-
lary 4.12 or Theorem 4.14 will suffice. We refer to Sections 4.3.1 and 4.3.2 for the
notation used in the following results.
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THEOREM 4.17. Suppose (Xn, Yn)n>0 with E C [];¢; E! satisfies Assump-
tion 4.3, admits a unique invariant measure and is a.e. locally mixing:
n— oo

P —P||3r] —0 for -a.e. (x,y)and all J C I,|J]| < oo.

Then the filter transition kernel I admits a unique invariant measure.
THEOREM 4.18. Let (Xg, Yi)k>0 be a hidden Markov model that admits a

unique invariant probability X and that satisfies Assumption 4.13. Moreover, let
d(x,y)>d(x,y) forall x,y € E, and suppose that the following hold:

(a) (Asymptotic coupling.) For A @ A-a.e. (x,x') € E x E,
i e ~
3Q € C(P*, P¥) such that Q[Z d(X,, X)) < oo:| > 0.
n=1

(b) (Hellinger-Lipschitz observations.) There exists C < oo such that

/{\/g(x,y) —\/g(x/,y)}zw(dy) < Cc?(x,x/)2 forallx,x' € E.

Then the filter transition kernel I" admits a unique invariant measure.

The remainder of this section is devoted to the proof of these results. We must
begin by obtaining a local result in the setting of Section 4.2. To this end, we will
need the following structural result for the invariant measure A.

LEMMA 4.19. Suppose that Assumptions 4.2 and 4.3 hold. Then the invariant
measure ) satisfies A(dx,dy) ~ A(dx X F) @ A(E x dy).

PROOF. Assumption 4.2 and Jensen’s inequality yield P-a.s.
ELIPLY, € 1701 = A(E x )] < B[JPXT01y, € 1= A(E x ]]"=50,

The result follows by applying [42], Proposition 3.3, to the process (Y, X,)n>0.
g

We can now prove the following local result.

COROLLARY 4.20. Suppose that Assumptions 4.2 and 4.3 hold. Then

P[A‘ N F-v S’")_(OO’_n] =P[A|F"], P-a.s. for every A€ 70 .

n>0
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PROOF. By Lemma 4.19, we have A(dx,dy) = h(x, y)A(dx x F)A(E x dy)
for a strictly positive measurable function /. Define the kernel
JLaWh(x, AE x dy)

JhGx, AE x dy)

By the Bayes formula, Ax, = P[Y( € -|Xo]. Assumption 4.2, disintegration and
Jensen’s inequality yield a set H C E with A(H x F) =1 such that

Ax(A) =

n—oo n—oo

EXOR|PY0 — Pl 150 and  EXEM[|Mo — Pllgy 150

for all x € H. But note that ng®)»x = P*-Y0 holds P*®*x_a.s. Thus,

i ~AME X)) and I — Mol =50,  PH®has,
for every x € H by the definition of A, and the triangle inequality (we have used
that ||I'ng®k)‘ — H0||5;’(1>00 is pointwise decreasing to establish a.s. convergence).
Therefore, by Theorem 4.4, we obtain for every x € H
n—oo

”nixwx —1II, ||3r§l>7r'oo — 0, P%®*_a5. for any r € N.

X0

Sxn @A
Now note that IT, Bhxo (A) =P[Al|o Xy V Cﬂ{n] for all A € ., for example, by
Lemma 3.4. It follows that for any A € ?8’ 0+ We have the convergence

E[[E[1400" "o XoV T} ,] —E[l40©" |5},

=

— 0.

But the Markov property of (X;,, Yn)nez yields E[14 00" "o X VS"({”] =E[ls0

O FX v I

ool Therefore, using stationarity, we obtain

n—oo

E[[E[14007"|FY vIFX  _1-E[l4007"|FY, (]]]=>0.

The lemma now follows by the martingale convergence theorem for A € 9 00"
As r is arbitrary, a monotone class argument concludes the proof. [

The proof of Theorem 4.17 is now essentially trivial.
PROOF OF THEOREM 4.17. By Corollary 4.20, we have
P[A] N vaX } =P[A|FY],  P-as.forevery A e F/

—00,—n —00,00
n>0

whenever J C I, |J| < co. A monotone class argument yields the conclusion for
all A € ¥. Thus the o -field identity of Theorem 4.16 holds. [

We now turn to the proof of Theorem 4.18.



CONDITIONAL ERGODICITY IN INFINITE DIMENSION 2289

PROOF OF THEOREM 4.18.  Proceeding precisely as in the proof of Theo-
rem 4.14 (and adopting the same notation as is used there), we find that for A @ A-
a.e. (x,x’) € E x E, there exists n > 1 such that

P [Fp0 Yoo € -1 = PX [Fruoos Ynoo € 1| < 2.

From Theorem 2.2, it follows that

n—oo

IP* Y[ Fu.00s Yn.00 € 1 = PlFy.00, Yn.00 € 1| — 0, A-ae. (x,y) € E X F.
Applying Corollary 4.20, we find that

P[A‘ REAY EFXfo,n] =P[A|F"], P-a.s. for every A € 55

—00,00°
n>0

where 3",),2:5 =0{Xm.n&n.n} and 3":;:,{ =0{Fu.n, Y ). In particular, if

G=g(f(X—m)+g—mv---7f(Xm)+$m,Y—ma---,Ym)

for some bounded continuous function g: R>"*! x F2"+! s R, then

E[G‘ N " vsf’_‘oo,_n} —E[G|FY],  Pas.

n>0

as 0{&_c0,—n} is independent of FXvFY v o{é_u.m} for n > m. Now note that
nothing in the proof relied on the fact that & are Gaussian with unit variance; we
can replace & by & for any ¢ > 0 and attain the same conclusion. Letting ¢ — 0,
we find that for any f € Lip(E), m > 0, and bounded continuous g:R2er1 X
F?m+1 _ R, the above identity holds for

GC=g(f(X-m)seoos FXm), Yoy ooy Yi).

The remainder of the proof is a routine approximation argument. As E is Polish,
we can choose a countable dense subset £’ C E. Then the countable family of
open balls {B(x,d):x € E’, § € Q4} [where B(x, d) is the open ball with center x
and radius §] generate the Borel o-field B(E). Arrange these open balls arbitrarily
as a sequence (By)r>1, and define the functions

e8] r -1 c
l(x)ZZIB;EX)» Lf(x)zzg d(x3,kBk)/\l x € E).

k=1 k=1

Then Lf is bounded and Lipschitz for every r, §, and Lf —t1asd | 0,r 1 oco. Choos-
ing f = Lf and taking limits, we obtain the above identity for

G=g(tX-m)y s tXm) Yoy ooy Yin)

for any m > 0 and bounded continuous g:R>"*+! x F?"*l 5 R. A monotone
class argument shows that we may choose G to be any bounded o {t(X}), Yx:k €
Z}-measurable function. But B(E) = o {t}, so the proof is complete. [
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4.4. Continuous time. Up to this point, we have considered only discrete-time
processes and Markov chains. However, continuous time processes are of equal
interest in many applications: indeed, most of the examples that we will consider
in Section 5 will be in continuous time. The goal of this section is to extend our
main filter stability results to the continuous time setting.

In principle, we can view continuous time processes as a special case of the dis-
crete time setting. If (x;, y;);>0 is a continuous time Markov process with cadlag
paths, then we can define the associated discrete-time Markov chain (X, Y;),>0
with values in the Skorokhod space D([0, 1]; E x F) by setting X, = (X¢)re[n.n+1]
and Y, = (3t)re[n.n+1]- When we are dealing with the (unconditional) ergodic the-
ory of (x;, y/):>0, we can obtain continuous-time ergodic results directly from the
corresponding results for the discrete-time chain (X, ¥, ),>0. However, in the con-
ditional setting, two issues arise.

First, note that in the unconditional setting, the marginal law P[x; € -] for ¢ €
[7,n + 1] is a coordinate projection of P[X,, € -]. However, this is not true for
the filter: the projection of P[ X, € ~|fﬂ{n] gives P[x; € -|(s)se[0,n+17], not the
continuous time filter 7; = P[x; € -|(ys)sef0,r1]. We must therefore get rid of the
additional observation segment (ys)se[s,n+1] that appears in the projection. This is
precisely what will be done in this section.

Second, in continuous time, numerous subtleties arise in defining the filtering
process (77;);>0 as a stochastic process with sufficiently regular sample paths. Such
issues would have to be dealt with carefully if we wanted to obtain, for example,
almost sure filter stability results in the continuous time setting. The structure of
nonlinear filters in continuous time is a classical topic in stochastic analysis (see,
e.g., [24, 28, 51]) that provides the necessary tools to address such problems. How-
ever, in the present setting, such regularity issues are purely technical in nature and
do not introduce any new ideas in the ergodic theory of nonlinear filters. We there-
fore choose to circumvent these issues by considering only stability in probability
in the continuous time setting, in which case regularity issues can be avoided.

A final issue that arises in the continuous time setting is that, unlike in discrete
time, one must make a distinction between general bivariate Markov processes and
hidden Markov processes, as we will presently explain.

Recall that a discrete-time hidden Markov model is defined by the fact
that (X,)n>0 is itself Markov and (Y;,),>0 are conditionally independent given
(Xn)n>0- In continuous time, we cannot assign a (conditionally) independent ran-
dom variable to every time ¢ € R, . Instead, we consider an integrated form of
the observations where (x;);>0 is a Markov process and (y;);>0 has condition-
ally independent increments given (x;);>0. This is known as a Markov additive
process [6], and constitutes the natural continuous-time counterpart to a hidden
Markov model [51]. For example, the most common observation model in contin-
uous time is the “white noise” model [28]

t
yt=f0 h(xy)ds + W,
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where (W;);>¢ is a Brownian motion independent of (x;);>¢. Formally, dy;/dt
represents the observation of s(x;) corrupted by white noise, but the integrated
form is used to define a mathematically sensible model. In this example, the pair
(x¢, y1)r>0 1s evidently a Markov additive process.

In principle, a continuous-time hidden Markov process is a special case of a
bivariate Markov process as in the discrete time setting. Unfortunately, as y; is
an additive process, it cannot be positive recurrent except in trivial cases, so the
pair (x;, y:)r>0 does not admit an invariant probability. We must therefore take
care to utilize explicitly the fact that it is the increments of y;, and not y; itself,
that will be stationary under the invariant distribution. This does not introduce any
complications into our theory: both the bivariate Markov setting and the Markov
additive setting can be treated in exactly the same manner. However, two distinct
sets of notation are required for these two settings. In order to avoid notational
confusion, we will develop our continuous time results below in the hidden Markov
process setting only (all our examples in Section 5 will be of this form). The same
approach can however be adapted to the bivariate Markov setting with minimal
effort.

4.4.1. The continuous time setting. In the remainder of this section, we con-
sider a continuous-time process (x;, ys);>0 with cadlag paths, where x; takes val-
ues in a Polish space E and y; takes values in a Polish topological vector space F'.
We realize this process on the canonical path space 2 = D(Ry; E x F) endowed
with its Borel o-field &, such that x,(&, n) = &(¢) and y, (&€, n) = n(t). We define
for s <t the D([0,¢ — s]; E)-valued random variable x;; = (x,)r¢[s,r] and the
o-field 9’§7t = o {x,,}. Moreover, we define the D([0, ¢ — s]; F))-valued random
variable y; ; and corresponding o -fields

Vst = (yr — ys)re[s,t]a gjsy,z = U{ys,t}» Srs,t = 9:;[ \% Cﬂy,t-

The shift @' : Q — Q is defined as @' (€, n)(s) = (§(s +1), n(s +1) —n(z)). Let us
emphasize that the observation segment y; ; and the shift ® are defined differently
than in the discrete time setting: the present choice accounts for the additivity of
the observations, which we introduce next.

In the continuous time setting, we will assume that the canonical process is a
hidden Markov process or Markov additive process: that is, (x;, y;);>0 is a time-
homogeneous Markov process such that E[ f (x;, y» — y0)|x0, yo] does not depend
on yg for any bounded measurable function f. It is not difficult to verify that
this assumption corresponds to the following two properties: the process (x;);>0
is Markov in its own right, and the process (y;);>0 has conditionally independent
increments given (x;);>o (see, e.g., [6]).

In the following, we define the probability P* on J¢ ~ as the law of the Markov
additive process (x;, yy — yo)¢>0 started at xo = x € E, and let P* = [P*u(dx)
for u € P(E). We will assume the existence of an invariant probability A € P(FE)
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so that P* is invariant under the shift ® for all + > 0. We define P = P*, and
introduce the continuous-time nonlinear filters

ntu _ Pu[xl c ,|5L‘é”t], 7 :P[x; € |3r())t]

As we will consider convergence in probability only, we will not worry about the
regularity of 77/ as a function of ¢ (i.e., for each ¢ > 0, we may choose any version
of the above regular conditional probabilities).

The Markov additive process (x;, y;);>0 is said to be nondegenerate if for ev-
ery § € ]0, ool, there exists a o-finite reference measure ¢s on D([0, §]; F) and a
strictly positive function gs : D([0, §]; E x F) — ]0, ool such that

P[yiis € AT ] = / 14(Dgs Crass. Ms(dn),  Poas.

forallt >0, A € B(D([0,6]; F)) and z € E. This assumption is the direct coun-
terpart of nondegeneracy for discrete time hidden Markov models.

4.4.2. Local mixing in continuous time. The aim of this section is to obtain a
continuous-time version of Corollary 4.12 (in the setting of hidden Markov pro-
cesses). To this end, we assume that the state space E of the unobserved process
x; is contained in a countable product E C [];c; E', where each E' is Polish. Let
x; be the projection of x; on [];c, E' and

ﬁrs{t=a{x5{t,ys,,} forJCI,s <t.

Let &/ C B(E) be the cylinder o -field generated by the coordinates J C 1.

THEOREM 4.21 (Continuous local mixing filter stability). If the Markov ad-
ditive process (x;, ¥1);>0 is nondegenerate and locally mixing in the sense

”PX—PHS_}J 220 forallx e Eand J C 1,]J| < o0,
then the filter is stable in the sense that
|7t =) |es =30 in PY-probability for all J C 1, |J| < 0o

for every u,v,y € P(E).

We will reduce the proof to the discrete time case. The key to this reduction is
the following lemma, essentially due to Blackwell and Dubins [2].

LEMMA 4.22. Let R and R’ be probabilities on D(R ., F). Let r; the coordi-
nate process of D(Ry, F) and G; = o {ry:s € [0,1]}. F R K R/, then

11— 00

IR[-1G1—R[-|S: ]| — 0 in R-probability.
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PROOF. Let A =dR/dR’. Then the Bayes formula yields

A —Eg[A[S]
R[A —R'[A =E/[1 _——— ] R-as.
[419:] — RIAIS, ) = Br| Ly =5~ oe S0 as
As the Borel o-field of D(R, F) is countably generated, it follows that
Er[A]5/]
R[- —R'[- <— R-ass., A; = |A — Eg/[A .
” [-1G:] [|9t]||_ ER/[A|9t]’ a.s t | rR[ |9z]|

But note that Eg/[A|G;] — A and, therefore, A; — 0 in R’-probability by the mar-
tingale convergence theorem (a right-continuous modification of the martingale is
not needed for convergence in probability), while A > 0, R-a.s. The remaining
steps of the proof follow the proof of Lemma 4.9. [J

We now turn to the proof of Theorem 4.21.

PROOF OF THEOREM 4.21. Let E = D([0,1]; E), F = D([0, 1]; F), X, =
Xnn+1, and Y, = yp py1. Then (X, Yu)n>0 is a nondegenerate hidden Markov
model in E x F under P* for every i € P(E): in particular, (X,),>0 is a Markov
chain with initial measure i and transition kernel Py given by

f(dE) =Ph[xo) €dE]l,  Po(g,dg’) =P*V[xo € dE’],

while, by the nondegeneracy assumption, the observation kernel ® is

®(&,dn) = g1, Ne1(dn)

[so that, as in Section 4.3.2, (X,,, ¥y,)»>0 is the Markov chain with transition kernel
P(&,n,dE",dn') = Py(&,dE")D (&', dn’)]. Moreover, A = P[xo 1 € -] is an invari-
ant probability for the discrete-time model (X,,, ¥}),>0-

We can now apply Corollary 4.12 to the discrete-time model (X,,, ¥;;),>0. In-
deed, we can decompose EC [Tics E' with E' = D([0, 1]; EY), and our local
mixing assumption directly implies that the discrete model (X,,, ¥,),>0 is locally
mixing with respect to this decomposition. It follows that

PA[ g €15 1]~ Pt €190, ]1 250, Pas

forall J C 1, |J| <oo and u € P(E) by Corollary 4.12, while Corollary 4.11
yields the equivalence P* |3rg ~ Plgg . The latter implies that

t— 00

[P [0.00 € -|5L‘g"t] —P[yo.c € .|ffg7[]|| =0 in P-probability

by Lemma 4.22, which we now proceed to exploit.
Lett € [n,n + 1] for some n € N. Then we have

i =B P x €15y, 001, ) m =E[Px €155, 1%, ]
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We can therefore estimate
|7t =7t s < [P [y0.00 € 157, ] = P[y0.00 € 157, ]I
+E[|P*[x; €197 1] = Plxe €195 4110190, ]-

It follows that ||71t“ — mtlles — 0 as t — oo in P-probability. As @ was arbitrary,
the proof is easily completed using the triangle inequality and the equivalence of
all observation laws to P|&rg as established above. [l

REMARK 4.23. As we have seen above, deducing filter stability in continuous
time from our discrete time results requires some additional arguments (a slightly
longer argument will be used below in the setting of asymptotic coupling). Let
us therefore note, for sake of completeness, that the corresponding results on the
ergodicity of the filtering process (7;);>0 as in Section 4.3.3 follow immediately
from their discrete-time counterparts: in fact, uniqueness of the invariant measure
of any continuous-time Markov process (77;)>¢ is evidently implied by uniqueness
for the discretely sampled process (77, ), en- There is therefore no need to consider
this question separately.

4.4.3. Asymptotic coupling in continuous time. 'We now turn to the problem of
obtaining a continuous-time counterpart to our asymptotic coupling filter stability
Theorem 4.14. To this end we will assume, as we have done throughout this sec-
tion, that (x;, y;);>0 is a Markov additive process in the Polish state space E x F.
In addition, we will assume in this subsection that the unobserved process (x;);>0
has continuous sample paths. While this is not absolutely essential, the restriction
to continuous processes facilitates the treatment of asymptotic couplings in con-
tinuous time.

The following is the main result of this section. As in Theorem 4.14, we will fix
in the following a complete metric d for the Polish space E.

THEOREM 4.24 (Continuous weak-* filter stability). Let (x;, y;);>0 be a non-
degenerate Markov additive process that admits an invariant probability X\, and
assume that the unobserved process (x;);>0 has continuous sample paths. More-
over, let ci(x, y)>d(x,y) forall x,y € E, fix A > 0, and define the intervals
I, =[nA, (n+ 1)A]. Suppose that the following hold:

(a) There exists o > 0 such that

o0

Vx,x' € E,3Q € C(P*, P¥) s.1. Q[Z supd (x;, x!)% < ooi| >a.

n=1 tely

(b) There exists C < oo such that for all § < A and £, &’ € C([0, §]; E)

f{\/gs(é, n) —gs(&".n)ps(dn) < C s%pa]d(f(t),é/(t))z-
tel0,
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Then the filter is stable in the sense that

|7l =) | g =30 inP”-probability for all i1, v,y € P(E).

PROOF. We begin by noting that if assumption a holds for A, then this as-
sumption also holds if A is replaced by A /r for some r € N. Indeed, as

o r o0

Z sup 3(x,, )c[/)2 > — Z Z sup c?(x,, xt/)z,
n=11€ln I =1 n=g tel+ (k=D /M A (n+k/r) A

the claim follows. Fix r € N for the time being. Define E = C(]0, A/r]; E),
F = D(|0, A/r); F), Xn = X4,.4,,,» and Y, =y, 1.\, Where t, = nA/r. Then
it follows as in the proof of Theorem 4.21 that (X,, Y;,)»>0 is a nondegenerate
hidden Markov model in E x F that admits an invariant probability [note that
the definition of E takes into account that (x1)r>0 has continuous sample paths].
Moreover, if we endow E with the metric d(&, §') = Sup;eio,a,/r &), £'(1)),
then evidently the assumptions of Theorem 4.14 are satisfied. It follows that for
any f € Lip(E) and € P(E)

|Eu[f(xtnfl~tn)|gj())/,l‘n] - E[f(xtnflstn”gj(})},ln“

I:-a.s. To proceed, let us fix g € Lip(E), and define G(ép /) = g(§(0)) and
Go,n/r) = SUPse[0,A /r] |g(£(0)) — g(£(s))|. We can easily estimate

[E*[g(x)1Fp, ] — E[g )17, ]I
= |Eu[g(xtn—1)|3rg,tn] - E[g(xtn—l)lg(};,tn]|
+ |EM[G(.X;”71’[")|3%]’[”] - E[G('xtnfl?zn)lgg,tn“ + 2E[G(‘xtn71~tn)|3'())},ln]

n—oo

—0

forany t € [t,_1,1,]. As G and G are J—Lipschitz, we obtain
limsup sup E[|[E*[g(x)|Fp, ] —E[g(x)|Fp, ][]

n—>00 telty—1,t]

< 2E[ sup  |g(x0) — g(xs)|]-
s€[0,A/r]

On the other hand, we can estimate as in the proof of Theorem 4.21
E[|7"(8) = w1 ()] < E[[P*[y0.00 € 1T, ] = P[y0.00 € -|F, ][]
+E[[E*[g(en)1F5, ] — E[2 01T, 1]
for t € [ty—1, t,]. Applying Lemma 4.22 as in Theorem 4.21 yields

lim sup E[ |7/ (¢) — 7/(2)|] < 2] sup [g(x0) — g(x,)]].
t—00 s€l0,A/r]
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But note that this holds for any € N. Letting r — oo, we obtain
7/ (g) — m(9)| =30 in P-probability

using the continuity of paths. Finally, note that g € Lip(E) is arbitrary. We can
therefore strengthen the convergence for individual g to || - ||pL-convergence as in
the proof of Theorem 4.14. The proof is now easily completed using the triangle
inequality and the equivalence of all observation laws to P|5tg L as established in

the proof of Theorem 4.21. [

5. Examples. Infinite-dimensional Markov processes and filtering problems
arise in a diverse range of applications; see, for example, [9, 41]. The aim of
this section is to demonstrate that the abstract theory that we have developed in
the previous sections is directly applicable in several different settings. In Sec-
tion 5.1, we consider the simplest possible example of an infinite-dimensional sys-
tem: a stochastic heat equation with smooth forcing and point observations. While
this example is nearly trivial, it allows us to easily illustrate our results in the sim-
plest possible setting. In Section 5.2, we consider a highly degenerate stochastic
Navier—Stokes equation with Eulerian observations. In Section 5.3, we consider
stochastic spin systems. Finally, in Section 5.4 we consider filtering problems for
stochastic delay equations.

5.1. Stochastic heat equation. We investigate the following example from
[31]. Consider the stochastic heat equation on the unit interval x € [0, 1]:

du(t,z) = Au(t,z)dt + dw(t, z), u(@,0)=u(,1)=0.

Here, dw(t¢, z) is the white in time, smooth in space random forcing

o0
w(t,2) =Y ox/2sin(wkz) Wf,
k=1

(Wtk)zzo, k € N, are independent Brownian motions, Z,‘;il okz <oo,and o >0
for all k € N. We will assume that u(z, z) is observed at the points zy,...,2, €
[0, 1] and that the observations are corrupted by independent white noise: that is,
we introduce the R”-valued observation model

dyl =u(t,z;)dt +dB!, i=1,...,n,

where (Bf),zo, i =1,...,n, are independent Brownian motions that are indepen-
dent of (Wtk )r>0, k € N. As we are working with Dirichlet boundary conditions, we
view z > u(t, z) as taking values in the Hilbert subspace H C L?[0, 1] spanned
by the eigenfunctions (ex)kenN, €x(z) = \/isin(nkz).

LEMMA 5.1. Let x; = u(t,-). Then the pair (x;, y:)>0 defines a nondegen-
erate Markov additive process in H x R" with continuous paths. Moreover, the
unobserved process (x;);>0 admits a unique invariant probability A.
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PROOF. It is easily seen that for any u(0, -) € H, the equation for u(z, -) has
a unique mild solution in H that has continuous paths and satisfies the Markov
property (cf. [9]). If we expand x, = > 72, xtk ek, then evidently

dxk = k2 xk dt + o dWF.

By Itd’s formula, we obtain
t
E[lx %] +E[/O 22, ds] ol + o 1%t

where we defined the Sobolev norm |x; ||%{S = i (k) (x,k )2. Note that
lu(t, 2)] < V2322, 1xk| < 371/2||x,|| g1 by Cauchy—Schwarz. Thus, z > u(t, z)
is continuous for a.e. ¢, so the observation process y; is well defined and the pair
(x1, y1)1>0 defines a Markov additive process. Moreover,

t 2 2t
e [ .20 < bl 4ot
0

Therefore, by Girsanov’s theorem, the conditional law of y ; given xp; is equiv-
alent to the Wiener measure a.s. for any ¢+ < oo and xo € H [as (u(t,z;));>0 and
(B,i)tzo are independent, Novikov’s criterion can be applied conditionally]. This
establishes the nondegeneracy assumption. Finally, as each Fourier mode xzk is an
independent Ornstein—Uhlenbeck process, it is easily seen by explicit computa-
tion that the law of x; converges weakly as t — oo to a unique Gaussian product
measure A forany xo € H. [

It is evident from Lemma 5.1 that the ergodic theory of u(z, z) is quite trivial:
each of the Fourier modes is an independent ergodic one-dimensional Ornstein—
Uhlenbeck process (recall Example 2.3). Nonetheless, the reader may easily ver-
ify using the Kakutani theorem [39], page 531, that (x;);>0 is not Harris when the

forcing is sufficiently smooth (e.g., oy = e_kS). Moreover, the finite-dimensional
projections (xtl, ey xt" , ¥+) are not Markovian. Thus, stability of the correspond-
ing nonlinear filter does not follow from earlier results. While this example re-
mains essentially trivial, it is nonetheless instructive to illustrate our results in this
simplest possible setting.

5.1.1. Local mixing. To every x = Z,ﬁil xrer € H, we identify a vector of
Fourier coefficients (xz)reny € RY. In order to apply our local mixing results, we
can therefore view H as a subset of the product space RY. Note that H is certainly
not a topological subspace of RN (pointwise convergence of the Fourier coeffi-
cients does not imply convergence in H); however, H is a measurable subspace
of RN, which is all that is needed in the present setting.

For every k € N, define the local o-fields

k 1 k
ffsvt—U{xs’,,...,xs’t,ys’t}, s <t.

To apply Theorem 4.21, it suffices to establish the local mixing property.
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LEMMA 5.2.  The Markov additive process (x;, y:)i>0 is locally mixing:

t— 00

HPX_P”§§<00_>0 for every x € H, k € N.

PROOF. Let x,x’ € H, and define v € H such that {ey, v) = (e, x) for 1 <
¢ <k,and (es, v) = (e, x") for £ > k. It is easily seen that

|p* — P ||ff{ioo <|P*—P ||§§{OO + [P P oo

by the Markov additive property. As the Fourier modes are independent, we evi-
dently have ||Px/ —Plo) = ||Px, — P”||U{x[1 ..... s 0 as t — oo (e.g., by ex-
plicit computation of the law of the k-dimensional Ornstein—Uhlenbeck process).
It therefore remains to consider the first term.

Construct on a larger probability space (2, F, Q) the triple (x;, v;, yr)r>0 as
follows. The processes x; and v; are solutions to the stochastic heat equation driven
by the same Brownian motion realization, but with different initial conditions xg =
x and vy = v, while dy,i = x:(z;)dt + dBf as above. Now note that can show
precisely as in the proof of Lemma 5.1 that

o0 ) 1 [oo 5 lx —vl%
E 0 ‘Us(zi)_xs(Zi” ds| <E g 0 ||vs_xs||H1dS §T<OO

As (x¢, vr)s>0 is independent of (B;);>0, we can apply Novikov’s criterion condi-
tionally to establish that E[A;] = 1 for any ¢ > 0, where we define

_T o) — 1ol dBE— 2 o) — (o) P
At—gexp[/z {US(ZI) xS(Zl)}st 2 ), |Us(Zt) xs(Zz)| ds]-

Using Girsanov’s theorem, we obtain for any A € F¥

PX(A) = EQ[14 (v} ags - - U s Yeioo) At ] = EQLA (X! s -+ Xf oo Vri00) At ],

where we have used that x! = v’ for all > 0 when ¢ < k. Moreover, the law
of (x;, y1)r=0 under Q obviously coincides with P*. We therefore conclude that
|P¥ — PZ||3F;< <EgQ[|A; — 1|] = 0 as t — oo by Scheffé’s lemma. [J

Let & = o {P;}, where Py: H — H is the projection onto the first k Fourier
modes. Theorem 4.21 immediately yields the filter stability result

|7 =7’ =30 in P?-probability forall k € N, 1, v, y € P(H).

A simple tightness argument can be used to deduce also filter stability in the
bounded-Lipschitz norm from this statement. However, let us demonstrate instead
how the latter can be obtained directly from Theorem 4.24.
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5.1.2. Asymptotic coupling. It was shown in Lemma 5.1 that (x;, y;);>0 is
nondegenerate. It follows from the proof that we may choose the reference mea-
sure @s to be the Wiener measure on D([0, §]; R") and that

n ) ; 1 ) 2
gs(s,n)=gexp[f() §(s.20dn' () =5 | |&(s, z1)] ds]

for £ € C([0,68]; H) N LZ([O, 8], Hl) [for simplicity, let gs(&, n) = 1 otherwise].
We begin by establishing the Lipschitz property of the observations.

LEMMA 5.3. Forall§ <1land &, € C([0,68]; H)

[ Wesm = Jas& ) gstam = 15 sup 6 =50}
12 1¢10,5]

PROOF. The result is trivial unless &, &’ € Lz([O, é]; Hl), in which case
[as&m — oo’ m) st =2 — 20" i 08 0208

Now use 1 — e < x and |£(s, z;) — &(s, 2;)| <37V2|E(s) — &' ()| n. O

Thus, the second assumption of Theorem 4.24 is satisfied for d (x,y)=|x —
Yllz1 and A = 1. Itis clear that the observations cannot be continuous with respect
to || - ||g, which is the reason that we have introduced the pseudodistance d in
Theorem 4.24. To establish filter stability, it remains to produce an asymptotic
coupling in H!, which is trivial in this example.

LEMMA 5.4. Forall x,x' € H, there exists Q € C(P*, Px,) such that

o0

S sup =% <00, Qs
n—1€ln,n+1]

PROOF. Choose Q such that the processes x; and x, are solutions to the
stochastic heat equation driven by the same Brownian motion realization, but with
different initial conditions xo = x and x = x’. Then

01 = X; — X, d,o,k = %P pk dt
as in the proof of Lemma 5.1. As the difference p; is deterministic, the result

follows readily (e.g., || o]l 1 can be computed explicitly). [

As we have verified all the assumptions of Theorem 4.24, it follows that

t— 00

|7/ — 7|y —> 0  in P”-probability for all i, v, y € P(E),

that is, we have established filter stability in the bounded-Lipschitz norm.
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REMARK 5.5. Beside that it admits a trivial ergodic theory, the example con-
sidered this section is special in that it is a linear Gaussian model. In finite dimen-
sion, such filtering problems are amenable to explicit analysis as the filter reduces
to the well-known Kalman filter, which is a rather simple linear equation [28].
Some results in this direction for linear stochastic evolution equations were con-
sidered by Vinter [47]. However, the present example does not fit in the setting
of [47] as the observation operator C : H — R", Cu = (u(zy), ..., u(z,)) is un-
bounded, which significantly complicates even the definition of the Kalman filter-
ing equations in infinite dimension. It is therefore interesting to note the ease with
which we have obtained stability results from our general nonlinear theory even in
this trivial linear example.

5.2. Stochastic Navier—Stokes equation. We now turn to a much less trivial
example inspired by [41], Section 3.6: we will consider discrete time Eulerian
(point) observations of the velocity of a fluid that is modeled by a Navier—Stokes
equation with white in time, smooth in space random forcing.

We consider a velocity field u(¢, z) € R? on the two-dimensional torus z € T2 =
[—, 7]? such that Ju(t,z)dz=0and V - u(t, z) =0 for all + > 0. The dynamics
of u(t, z) are given by the stochastic Navier—Stokes equation

du(t,z) = {vAu(t, 7) — (u(l, 2)-Vu(t,z) — Vplt, Z)}dt +dw(t, z)

with periodic boundary conditions, where v > 0 is the fluid viscosity, w is a spatial
mean zero stochastic forcing to be specified later, and the pressure p is chosen to
enforce the divergence-free constraint V - u(z, z) = 0.

To define the observations, let us fix points zq,...,z, € T2 at which the fluid
velocity is measured. We assume that measurements are taken at the discrete time
instants t, = nd, n > 0, where we fix the sampling interval § > O throughout this
section. The observations are then given by?

Y =uty,z)+&,, i=1,....,r,n>0,

where (&,),>0 are i.1.d. R? -dimensional Gaussian random variables with nonde-
generate covariance that are independent of (u(z, -));>0.

Following [16], it will be convenient to eliminate the divergence-free constraint
from the stochastic Navier—Stokes equation by passing to an equivalent formu-
lation. Define the vorticity v(f,z) =V x u(t, z) = du'(t, 2)/9z%> — du’(t,z)/9z",
which is a scalar field on T?. As u is divergence-free and has spatial mean zero, we
can reconstruct the velocity field from the vorticity as u = Kv, where the integral

2The observation equation makes sense when u(t,-) € H 2 as this implies that z — u(z,z)
is continuous by the Sobolev embedding theorem. For concreteness, we can define Y,i =
u(ty, Zi)lu(tn,~)eH2 + 5,’; which makes sense for any velocity field. As we will always work un-
der assumptions that ensure sufficient smoothness of the solutions of the stochastic Navier—Stokes
equations for all # > 0, this minor point will not affect our results.



CONDITIONAL ERGODICITY IN INFINITE DIMENSION 2301

operator X is defined in the Fourier domain as (ex, Kv) = —i (k™ /1k|?)(ex, v) with
ex(z) = 2m)~'et*?, k € Z2\ {(0,0)}, and k- = (k?, —k'). In terms of vorticity,
the Navier—Stokes equation reads

dv(t,z) = {vAv(r, z) — Kv(r, z) - Vu(t, 2) } di + dw(t, 2),
where w(t, z) =V x w(t, z), and the observation equation becomes
Y,i:j{U(tn,Zi)'i‘s;i’ i=1,...,r,n>0.

From now on, we will work with the vorticity equation, which we consider as an
evolution equation in the Hilbert space H = {v € L*(T?): [ v(z) dz = 0}. This for-
mulation is equivalent to considering the original stochastic Navier—Stokes equa-
tion in {u € H':V -u =0, fu(z)dz = 0}. We also define the Sobolev norm
lvll3s = X 1k {ex, v)|* and HY = {v € H : o]l s < 00},

It remains to specify the structure of the forcing w(¢, z). As in [16], we let
Z§ =172 \{(0,0)} =Z3 UZ> with Z% = {k € Z*:k* > Oork? = 0,k' > 0} and
7% = —Zi, and we define the trigonometric basis fi(z) = sin(k - z) for k € Z%r
and fi(z) =cos(k - z) for k € 72 . The forcing is now given by

w(t,2)= Y ok fu(Wf,

keZ?

where (Wtk )i>0, k € Z%, are independent standard Brownian motions, and we will
assume that >, |k|2crk2 < 00 (so that the forcing is in HY.

LEMMA 5.6. Let X;, = v(ty, ). Then (X,, Y,)n=0 defines a nondegenerate
hidden Markov model in H x R that admits an invariant probability.

PROOF. It is well known that the stochastic Navier—Stokes equation defines
a stochastic flow; see [16, 22] and the references therein. Under our assump-
tions, this implies that the vorticity equation defines a Markov process in H.
Thus (X, Yn)n>0 1s evidently a hidden Markov model, and nondegeneracy fol-
lows as the observation kernel has a nondegenerate Gaussian density. Moreover,
as we assumed that >, |l<|2crk2 < 00, standard Sobolev estimates (e.g., [22], Propo-
sition 2.4.12) show that v(z,-) € H' for all ¢+ > 0 a.s. for any initial condition
v(0,-) € H. Thus, u(t, ) = Kv(t,-) € H? for all + > 0 a.s., and the observation
model is defined as intended. The existence of an invariant probability is standard
(e.g., [9,22]). O

Our aim is now to establish stability of the nonlinear filter for the hidden Markov
model (X, Y,)n>0. This is much more difficult than for the heat equation in the
previous section. First, in the present case the Fourier modes are coupled by the
nonlinear term in the equation, so that energy can move across scales. Second,
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unlike in the heat equation example, only sufficiently fine scales are contract-
ing. Nonetheless, in the case that all Fourier modes are forced (i.e., oy > 0 for
all k € Z%), it is possible to establish local mixing using the Girsanov method de-
veloped in [13, 30]. In fact, the approach taken in these papers is well suited to our
local zero—two laws (e.g., Lemmas 3.1 and 3.2 in [13] can be used directly in con-
junction with Corollary 2.8 to establish absolute regularity of a finite number of
Fourier modes, and some additional effort yields the assumptions of Corollary 2.5).
However, these methods do not extend to the degenerate setting.

We intend to illustrate that our results are applicable even in highly degenerate
situations. To this end, we adopt the following assumptions [16].

ASSUMPTION 5.7. LetZ={ke Z% 10y # 0} be the set of forced modes. We
assume that (a) Z is a finite set; (b) Z = —Z; (c) there exist k, k' € Z with |k| # |K'|;
(d) integer linear combinations of elements of 2 generate Z>.

It was shown by Hairer and Mattingly [16] that under these (essentially mini-
mal) assumptions the stochastic Navier—Stokes equation is uniquely ergodic. In the
remainder of this section, we will show that this assumption also ensures stability
of the filter in the bounded-Lipschitz norm. Let us emphasize that no new ergodic
theory is needed: we will simply verify the assumptions of Theorem 4.14 by a di-
rect application of the machinery developed in [16, 17], together with a standard
interpolation argument.

We will use the following tool to construct asymptotic couplings.

THEOREM 5.8. Let Q be a transition kernel on H, and consider a continuous
function W : H — [1, 0o[. Suppose that for every ¢ € C'(H)

1/2
IVOe)| ;< W(C1{ 21V} )} + Callgls)
(V denotes the Fréchet derivative). Assume moreover that for some p > 1
QW2 < CIW?P~2, 4C,C5 < 1.

Let QF be the law of the Markov chain (X,),>0 with transition kernel Q and
Xo = x. Then there exists a coupling Qx’x/ € C(Q*, Qx/) such that

Qx’x,[HXn - X,|y = C2_12_("+1)f0ralln >1]> %
whenever ||x — x'|g < (4C2R)™', WP(x) < R, WP(x") < R for some R > 1.

!
Moreover, the map (x, x") — Q** can be chosen to be measurable.

PROOF. We have simply rephrased the proofs of Propositions 5.5 and 4.12
in [17], making explicit choices for the constants involved. [J

Denote by Py(x,-) = P*[X; € -] the transition kernel of (X,),>0. To verify
the assumptions of Theorem 5.8, we require the following deep result. This is the
combined statement of Proposition 4.15 and Lemma A.1 in [16].
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THEOREM 5.9. For every n > 0 and Cy > 0, there exists C > 0 so that

|V Pog ()| < exp(nllxli%) (C1{Poll Vel (x)} '/

forall ¢ € C'(H) and x € H. Moreover, there exist constants ng > 0 and C3 > 0
such that for every 0 < n’' <no,x € H, and n > 1 we have

E*[exp(n | X1 115)] < C3exp(n'e "™ || x|1%).

+ C2ll¢lloo)

Finally, we require the following reachability lemma [12], Lemma 3.1.

LEMMA 5.10. Forany Ry, Ry > 0, there exist n > 1 and q > 0 such that

inf  P*[| X,z <R2]=q>0.

IxllH=<Ri
Using these results, we can now obtain the following asymptotic coupling.
COROLLARY 5.11.  There exists a > 0 such that

0
Vx,x' e H,3Q e G(Px,Px/) s.t. Q|:ZHX,, - X, ||?{1 < oo:| > .
n=1

PROOF. Let W(x) = exp(n||x||%{) with n = (1 — e %) /2, and define p =
(1— e*"‘g)*1 and C; = 1/8C3 (here ng and C3 are as in Theorem 5.9). Defining
C> as in Theorem 5.9, it is easily verified that the assumptions of Theorem 5.8
are satisfied for Q = Py. Therefore, for any u, u’ € H such that |u| g < R, and
lu' |z < Ra, there exists Q" € C(P*, P") such that

/ 1
QuH [sup2" 1Xn — X, | 5 < oo] > —,
n>1 2
where we defined the constant Ry, = /(21log2)/no A (16C2)~!. On the other hand,

define the constant Ry = /1 + (log2 + 21og C3)/no. Then by Lemma 5.10, there
exist ¢ > 0 and ny > 1 (depending on R and R; only) such that

inf P*[|Xy,|ln < R2]>q>0.

lxllz <Ry

From now on, let us fix x, x’ € H. Define ny = 2log(||lx|lg Vv ||1x"|g)/vS. Then
E“[exp(nol| Xn, ||%I)] < C32 exp(no) for u = x, x’ by Theorem 5.9. Using Cheby-
shev’s inequality, we obtain P“[|| X, |z < R1]1>1/2 foru =x, x'.

We now construct the coupling Q € C(P*, P* ) such that

’ _ px x’
Q[Xo,nl—H’lgy XO,nH—nz € ] =P |§(),n1+n2 ® P |5:0,111+n2’

X X!
Q[X”1+n2,00’ X;/'ll—l—nz,oo € '|5t’0,n1+n2] =Q mn Snytny
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Setting o = g2/8 (which does not depend on x, x’), it is now easily seen that

Q[supZ””Xn - X,|y < oo] >a>0.
n>1

It remains to strengthen the || - || z-norm to || - || 51 in this expression. To this end,
we employ an interpolation argument. Recall the interpolation inequality [|ul| g1 <
lu] Zz lu| }ﬁ (e.g., [22], Property 1.1.4). Therefore, in order to complete the proof,

it evidently suffices to show that

o

P“[Z 27 X ll g2 < oo} =1 forallueH.
n=1

But as we assume that only finitely many Fourier modes are forced, we have

E“[||Xn||12q2] < C 4+ E"[IX,—1l'y] for some constants m > 1 and C > 0 in-

dependent of n by a standard Sobolev estimate [22], Proposition 2.4.12. As

sup, E“[|| X, ||I'5] < oo by Theorem 5.9, the result follows readily. [

We can now verify the assumptions of Theorem 4.14. Note that for any u €
H?, we have [u]loo < |lull g2 by the Sobolev embedding theorem. In particular,
[Kvlloo < vl g1 forany ve H !, We can therefore easily compute

/{\/8()6, y) — \/g(x/, Y edy) <Clx - x/leql forall x,x € H

as in Lemma 5.3. In view of Corollary 5.11, we have verified the assumptions of
Theorem 4.14 for d(x, y) = ||x — y|| 1. We therefore conclude that

|l — ) || g =0 in P -probability for all , v, y € P(E),

that is, we have established filter stability in the bounded-Lipschitz norm.

5.3. Stochastic spin systems. We now turn to an example of an essentially
different nature: we consider a stochastic spin system with counting observations
(this could serve a stylized model, e.g., of photocount data from optical observa-
tions of a chain of ions in a linear trap). In this setting, the unobserved process
(x:)¢>0 describes the configuration of spins in one dimension; that is, x; takes val-
ues in the space E = {0, 1}%, where x; € {0, 1} denotes the state of spin i € Z at
time ¢ > 0. The observations (y;);>¢ are modeled by a counting process, so that y;
takes values in F =Z,..

To define the dynamics of (x;);>0, we introduce a function c; : E — ]0, oo[ for
every spin i € Z. We interpret c; (o) as the rate at which spin i flips when the
system is in the configuration o. We will make the following assumptions.

ASSUMPTION 5.12. We assume the flip rates are (a) uniformly bounded:
sup; ,, ¢i(0) < o0o; (b) finite range: ¢; (o) depends only on o, |[i — j| < R < o0;

(c) translation invariant: ¢; (o) = cj11(0") if 0} = aj’. 4 foralli, j.
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The interpretation of c; (o) is made precise by defining the pregenerator

Zf@)=)Y ci(@)|f(c')— f(o)} foroc€E, fe¥,
i€Z
where a]‘: =o; for j #i and ol.i =1—0; and ¥ is the space of cylinder functions
on E. Then the closure of .Z in C(E) is the generator of a Markov semigroup [26],
Chapter III, and we let (x;);>0 be the associated Markov process. To ensure good
ergodic properties of (x;);>0, we will assume the following.

ASSUMPTION 5.13. The spin system (x;);>0 is reversible with respect to
some probability A. Moreover, the flip rates are attractive: if o < o”, then we have
ci(o) <ci(o")ifo; =0/ =0and ¢;(0) > ¢;(¢") if o; = 0] = 1.

It is known that under our assumptions, A is necessarily a Gibbs measure [26],
Theorem IV.2.13 (so this is a stochastic Ising model). The attractive dynamics will
tend to make neighboring spins agree; in this setting, (x;);>0 admits A as its unique
invariant measure [26], Theorem IV.3.13.

To define the observations, we will fix a strictly positive continuous function
h:E — ]0,00[. The conditional law of (y;);>0 given (x;);>0 is modeled as an
inhomogeneous Poisson process with rate A, = h(x;).

LEMMA 5.14. The pair (x;, y;)r>0 defines a nondegenerate Markov additive
process in {0, 1}% x 7. that admits a unique invariant probability \.

PROOF. That (x;, y;);>0 defines a Markov additive process is evident, and the
existence of a unique invariant probability under the assumptions of this section
was stated above. To establish nondegeneracy, it suffices to note that as 4 is strictly
positive, the conditional law of yp s given xg_ s is equivalent to the law ¢;s of a unit-
rate Poisson process by [28], Theorem 19.4. [

We will require below the stronger assumption that the observation function %
is Lipschitz continuous with respect to a suitable metric. Note that for any choice
of scalars «; > 0 (for i € Z) such that ) _; o; < 0o, the quantity

d(o,0') = Zailm_#gi/, 0,0’ € E=1{0,1}%,
i€Z
metrizes the product topology of {0, 1}2. We will assume throughout this section
that £ is Lipschitz with respect to d for a suitable choice of (¢;);cz.

We now aim to establish stability of the filter. As we can naturally write £ =
[lie; Ef with I =Z and E' = {0, 1}, we are in the setting of Theorem 4.21. To
apply it, we must establish the local mixing property. To this end, we will use two
essential tools: a uniform ergodicity result due to Holley and Stroock [19], and the
well-known Wasserstein coupling [26], Section III.1.
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PROPOSITION 5.15.  (x;, ¥t)r>0 is locally mixing.

PROOF. Fix a point x € E and a finite subset J C Z, |J| < oo throughout the
proof, and let & ! = a{xs{ ¢ ¥s,t}. It evidently suffices to show that

t—00

[Pt —P° Hff,{oc — 0

where o € E is the zero configuration. Let Q € C(P?, P*) be the Wasserstein cou-
pling [26], Section III.1. As obviously o < x, we have [26], Theorem III.1.5

xr < x; for all t > 0, Q-a.s.
To proceed, we recall a result of Holley and Stroock [19], Theorem 0.4:

sup [P°[x0=1]—P ' [x°=1]|<Ce?"  foralls>0
o,0'eE
for some constants C, y > 0. By translation invariance, it follows that
sup sup [P°[x! =1]—P° [x/ =1]|<Ce™”"  forallt>0.
i€cZo,0'€E
Therefore, by monotonicity,
Q[x! # x| =Eq[x/' —x/]<Ce™?"  forallt>0,i € Z.

Using the Lipschitz property of #, it follows easily that

EQ|:/(; Vl(xt) - h(xl{)‘dt] < oo and EQ[./O lx,J;éx,J’dt:| < OQ.

We claim that the second inequality implies that xtj = xtJ " for all ¢ sufficiently
large Q-a.s.; we postpone the verification of this claim until the end of the proof.
Assuming the claim, we now complete the proof of local mixing.

Let us extend the Wasserstein coupling Q to the triple (x;, x;, y;);>0 by letting
(y1)r>0 be an inhomogeneous Poisson process with rate A; = h(x;) conditionally
on (x¢, x)¢>0. Define for any 7 > 0 the random variable

o

A, = exp[/tw{logh(x;_) —logh(xs—)}dys —/t {h(x;) — h(xs)}dsi|.

Applying [28], Lemma 19.6, conditionally yields E[A;] =1 for all # > 0. By the
change of measure theorem for Poisson processes [28], Theorem 19.4,

P/(A) = EQ[la(x/ 0. yroo)].  P¥(A) =Eq[la(x4. y1.00) Ar]
forany A € 3",{ - Thus, we can estimate

—>0o0

[P = P75 = Qoo # ;] + EollIl = A/l =0,

where the convergence follows by Scheffé’s lemma and the above claim.
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It remains to prove the claim. To this end, define the stopping times 7o = 0 and
v, =inf{t > 7,:x/ =x/'} and 7,41 = inf{t > 7 :x; # x/'} for n > 0. By right-
continuity 7, > 7, on {t, < oo} forall n > 1, and

© 00
EQ|:Z(T7/1 — ‘L'n)lr,1<oo:| = EQ|:/(; lxtj#xtj/ dtj| < 00.

n=0

Now denote by 7,/ = inf{t > 7,,: (x/, x]") # (xtjn , xfjn’ )}. As the Wasserstein cou-
pling is itself a particle system with uniformly bounded rates, it is a routine exercise

to verify that there exists a constant ¢ > 0 such that
EQ[T,; —Tn |3'~t,,]1t,,<oo = EQ[f,;/ - Tn|3'~r,,]1rn<oo > cly, <o0s Q-as.

It follows that t,, = oo eventually Q-a.s., which yields the claim. [

We have now verified all the assumptions of Theorem 4.21. Thus, we have
|7t =) |es =30 in P”-probability for all [J| < 00, i1, v,y € P(E),

where €’/ C B(E) be the cylinder o -field generated by the spins J.

REMARK 5.16. The proof just given works only in one spatial dimension
I = 7. In a higher-dimensional lattice / = Z¢, the (unconditional) ergodic theory
of the spin system becomes much more subtle as phase transitions typically ap-
pear. A Dobrushin-type sufficient condition for local mixing in any dimension is
given by Follmer [15] for a related discrete-time model. With some more work,
this approach can also be applied to continuous time spin systems in the high-
temperature regime (e.g., by showing that the requisite bounds hold for spatially
truncated and time-discretized models, uniformly in the truncation and discretiza-
tion parameters).

5.4. Stochastic differential delay equations. Our final example is concerned
with filtering in stochastic differential delay equations. Time delays arise naturally
in various engineering and biological applications, and the corresponding filtering
problem has been investigated by a number of authors [4, 25, 47]. In particular,
some results on filter stability for linear delay equations have been investigated in
[25, 47] by means of the associated Kalman equations. We tackle here the much
more difficult nonlinear case.

Fix throughout this section a delay r € Ry. Following [4], for example, we
introduce the following nonlinear filtering model with time delay. The unobserved
process is defined by the stochastic differential delay equation

dx(t) = f(x)dr +g(x;)dWy,
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where (W;);>0 is m-dimensional Brownian motion, x(¢) takes values in R”", and
we have introduced the notation x; = (x (¢ + 5))se[—r,0] € C([—r, 0]; R"). The RA-
valued observations are defined by the white noise model

dy; = h(x;)dr +dBy,

where (B;);>0 is d-dimensional Brownian motion independent of (x;);>0.

In the following, we will exploit heavily the ergodicity results for stochastic
delay equations established in [17]. To this end, we work under the following
assumptions. Here and in the sequel, we denote by |x|| = sup,¢[_, o) |x(?)| for

x € C([—r, 0]; R™), and by |M|2 = Tr[M M*] for any matrix M.

ASSUMPTION 5.17. Assume (a) there exists g_1 :C([—r,0]; R") — R™*"
with ||g_1||oo < 00 and g(x)g_l(x) = Id, for all x; (b) f is continuous and
bounded on bounded subsets of C([—r, 0]; R"); (c) for all x, y, we have 2(f (x) —
), x0) = yON* +lg(x) — g+ h(x) = h(MI> < Lllx = yII*.

Under this assumption, the equation for (x(#));>0 possesses a unique strong so-
lution for any initial condition (x(¢));c[—r,0] Such that (x;);>0 is a C([—r, 0]; R")-
valued strong Markov process [17]. Thus, the pair (x;, y;) is evidently a nondegen-
erate Markov additive process in C([—r, 0]; R") x R?.

The previous assumption does not ensure the existence of an invariant probabil-
ity. Rather than imposing explicit sufficient conditions (see, e.g., [9, 14]), it will
suffice simply to assume that such a probability exists.

ASSUMPTION 5.18.  (x;);>0 admits an invariant probability A.

To establish stability of the filter, we will apply Theorem 4.24. To construct an
asymptotic coupling, the key result that we will use is the following.

TgEOREM 5./19. For every x,x’ € C([—r, O];R”), there exists a coupling
Q%" € C(P*,P*) such that the map (x, x") — Q** is measurable and

inf Qx’x/[supe’ |x: — /| < oo] =Br>0  forevery R <oo.

2>

el X" II<R >0

We postpone the proof of this result to the end of this section. Let us now show
how the result can be used to verify the assumptions of Theorem 4.24.

We first construct the asymptotic coupling. Let us choose R > 0 such that
Alllx]l < R] > 1/2. By [17], Theorem 3.7 and the Portmanteau theorem, we
have P*[||x;|| < R] > 1/2 eventually as ¢+ — oo for every x € C([—r, 0]; R").
Let @ = Bg/4. Given any x, x" € C([—r, 0]; R"), we now construct a coupling
Q e ePr, Px/) as follows. First, choose s > 0 such that P*[||x,|| < R] > 1/2 and
Px/[||xs | < R] > 1/2. We then define the coupling Q such that

! ’
Q[XO?S’ x(/),s < ] = Px|3”o,s ® P |?0,5’ Q[xs,oo, x;,oo € ‘|3'~O,s] =Q% ",
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By construction, we have
Q[supe’ |x: — /| < oo] >a.
t>0

Thus, we have evidently verified the first assumption of Theorem 4.24 for
d(x,x’)=|x — x| and A =1 (e.g.). On the other hand, the second assumption
follows easily as in Lemma 5.3, as we have assumed the Lipschitz property of 4.
Thus, we have verified the assumptions of Theorem 4.24, so

|7t — ) |g =30 in P -probability for all u, v, y € P(C([—r,0]; R")),

that is, we have established filter stability in the bounded-Lipschitz norm.
It remains to prove Theorem 5.19. This is a direct extension of the proof of
Theorem 3.1 in [17]; we finish the section by sketching the necessary steps.

PROOF OF THEOREM 5.19. In the proof of [17], Theorem 3.1, a kernel
(x,x") > Q%" was constructed on Q x € with the following properties. First,
there exists a constant ¥ > 0 independent of x, x” such that

Q- [supe’ |x —x]| < oo] >y for all x, x" € C([—r,0]; R").
t>0

Second, there is a QX *'_Brownian motion (Wt) >0 and an adapted process (z;):>0
. ~ ’
that satisfies [;° lz|2dt < C|lx — x'||%, Q** -a.s. such that

Q" [x0.00 €AI=P*(A), Q" [1a(x) o) A] =P¥ (A)

for every measurable set A, where A is the Girsanov density

00 ~ 1 roo )
A=eXp|:/ szW[—_/ |Z[| dt:|
0 2 Jo

Let R% € C(Q**, P¥) be the coupling maximizing R)‘”‘/[x(’)’OO = xé”oo]. It is
classical that 2R [x) o # x{| o] = Q" [x) o, € 1—P¥'[| and that the maximal
coupling can be chosen to be measurable in x, x” (by the existence of a measurable
version of the Radon—-Nikodym density between kernels [10], Theorem V.58). As

fooo |z |2dt < C|lx — x|, Qx’x/—a.s., we can chose § > 0 sufficiently small that
R)")‘/[x(’)’OO # X0 oo] < ¥/2 whenever |lx — x'|| < 8. Then evidently

R* [sup ex —x/|| < oo] > Y whenever |x — x'|| <.
>0 2
Now define for any x, x’ € C([—r, 0]; R") the measure Qx’x/ such that

!/ !
Q" [x0.2r, x6,2r €]= Px|3"0,2r ® P |50,/

/ /
Q" [X2r,001 X3y 00 € “1F0,2r] = R [X0,00, X( o € *]-
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Then Qx’x/ e C(P*, Px/), (x, x") —~ Qx’x/ is measurable, and

2
. ! y . 6
in o sunel I — x| < oo >_( inf Px|:x <_i|)‘
e izr @ [,;5 i =i < 00] = 5( inf Pl < 5

It remains to note that the right-hand side is positive by [17], Lemma 3.8. [

REMARK 5.20 (On infinite-dimensional observations). All the examples that
we have discussed in this section are concerned with an infinite-dimensional un-
observed process and a finite-dimensional observed process. In this setting, it is
natural to work with observation densities, and the nondegeneracy assumptions of
our main results are easily verified. It is less evident in what situations the results
in this paper can be expected to be applicable when both unobserved and observed
processes are infinite-dimensional. We conclude Section 5 by briefly discussing
this issue.

In the case of unobserved models that possess a significant degree of spatial reg-
ularity, such as those in Sections 5.1 and 5.2, there are natural infinite-dimensional
observation models that are amenable to the theory developed in this paper. For
example, in the setting of Section 5.2, consider that we observe the entire fluid
velocity field corrupted by spatial white noise (rather than at a finite number of
spatial locations): that is, each Fourier mode of the field is observed in an indepen-
dent Gaussian noise E,’f ~N(Q,I),

(exs Yn) = (ex, Kv(ty, ) + EX

for k € Z? \ {(0,0)}. As the fluid velocity field is square-integrable, its Fourier
coefficients are square-summable, and thus the conditional law of the observation
Y, given the unobserved process X, has a positive density with respect to the
law of the noise (E,’f ) by the Kakutani theorem. The nondegeneracy and continuity
assumptions in our weak-* stability results are therefore easily verified. One could
argue, however, that this observation model is still “effectively” finite-dimensional:
due to the roughness of the noise, only a finite number of (large) Fourier modes
affect substantially the law of the observations, while the remaining (small) modes
are buried in the noise.

In the above example, the same argument applies when the observations are
corrupted by spatially regular noise, provided that the fluid velocity field is suffi-
ciently smooth as compared to the noise. However, if the noise is too smooth as
compared to the unobserved model, then nondegeneracy will fail for precisely the
same reason that the unobserved model may fail to be Harris. This example illus-
trates that nondegeneracy in the presence of infinite-dimensional observations can
be a delicate issue.

More broadly, we recall that at the heart of the difficulties encountered in infinite
dimension is that most measures are mutually singular (cf. Example 2.3). The the-
ory developed in this paper surmounts this problem by considering /ocal notions
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of ergodicity. Nonetheless, our main Assumptions 4.2 and 4.3 still rely on some
degree of nonsingularity: Assumption 4.2 allows us to localize the unobserved
component, but still the entire observation variable Y; must be included in the lo-
cal filtration; and Assumption 4.3 requires the coupling between the unobserved
and observed components to be nonsingular. In practice, this implies that while
the unobserved process X; may be infinite-dimensional, the observed process Yi
must typically be finite-dimensional or at least “effectively” finite-dimensional in
order to apply the general theory developed in this paper. As was illustrated in
this section, our general theory covers a wide range of models of practical interest;
however, models in which the observations are degenerate are excluded (e.g., this
would be the case if in the setting of Section 5.3 each spin x/ were observed in
independent noise). In the latter setting, new probabilistic phenomena arise, such
as conditional phase transitions, that are of significant interest in their own right;
such issues will be discussed elsewhere.
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