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Abstract: The statistical analysis of data belonging to Riemannian man-
ifolds is becoming increasingly important in many applications. The aim of
this work is to introduce models for spatial dependence among Riemannian
data, with a special focus on the case of positive definite symmetric ma-
trices. First, the Riemannian semivariogram of a field of positive definite
symmetric matrices is defined. Then, we propose an estimator for the mean
which considers both the non Euclidean nature of the data and their spa-
tial correlation. Simulated data are used to evaluate the performance of the
proposed estimator: taking into account spatial dependence leads to better
estimates when observations are irregularly spaced in the region of interest.
Finally, we address a meteorological problem, namely, the estimation of the
covariance matrix between temperature and precipitation for the province
of Quebec in Canada.
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1. Introduction

In recent years, attention to the statistical analysis of non Euclidean data has
been growing. The conceptual framework is that of Object Oriented Data Anal-
ysis, as defined in Wang and Marron (2007). Indeed, non Euclidean data are
mathematical objects more complex than numbers or vectors and they do not
belong to a linear space. Thus, even the most simple statistical operations, such
as finding a centerpoint for the data distribution or evaluating variability about
this center, represent a challenge. Statistical analysis needs to carefully consider
the mathematical properties of the data at hand and consequently to reformu-
late traditional methods in this new setting.

Data belonging to a Riemannian manifold are particularly interesting both
from a mathematical and from a practical point of view. Studies in this field
have been motivated by many applications: for example Shape Analysis (see,
e.g, Jung et al., 2011), Diffusion Tensor Imaging (see Dryden et al., 2009, and
references therein) and estimation of covariance structures. The general aim
of these studies is the extension to Riemannian data of traditional statistical
methods developed for Euclidean data, such as point estimation of mean and
variance (Pennec et al., 2006; Dryden et al., 2009), exploratory data analysis,
dimensional reduction (Fletcher et al., 2004), testing hypothesis among different
populations (Schwartzman et al., 2010) and smoothing (Yuan et al., 2012).

This work is focused on the development of spatial statistical methods for Non
Euclidean data. Little attention has been paid to this problem, while in many
applications data are spatially distributed. In the general context of complex
data, this issue has recently received much attention within the field of func-
tional data analysis (see Delicado et al., 2010; Gromenko et al., 2012; Menafoglio
et al., 2012) but the extension to non Euclidean data is even a greater challenge
because they do not belong to a vector space.

Our final goal is the development of a complete spatial statistics theory for
data belonging to a Riemannian manifold. We move here the first steps in this
direction by proposing a tool for the description of spatial dependence and by
addressing the problem of estimation of the mean in the presence of spatial
dependence. The methods here introduced rely only on the definition of a dis-
tance among data and on the locally Euclidean structure of the manifold. Thus,
applications to any Riemannian manifold is possible, once the appropriate dis-
tance to compare two elements of the manifold has been chosen. However, in
the present work we focus on the notable case of positive definite symmetric
matrices (PD data), whose Riemannian distance and properties are illustrated
in Section 2. A semivariogram for PD data is proposed in Section 3 and its
properties are discussed. In Section 4, we describe an estimator for the mean
from a sample of spatially correlated PD data. A model for generating samples
from a random field of spatially correlated positive definite matrices is proposed
in Section 5. Simulated data are used to evaluate the performance of the pro-
posed estimator of the mean. If observations are spatially located on an irregular
grid, this method provides better estimates than those obtained ignoring spa-
tial dependence. Finally, in Section 6 we address the problem of estimation of
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the covariance matrix between temperature and precipitation in the province of

Quebec, Canada.

2. Statistical analysis of positive definite symmetric matrices

Positive definite symmetric matrices are an important instance of data belonging
to a Riemannian manifold. In this section, we introduce notation and a few
metrics, together with their properties, that we deem useful when dealing with
data that are positive definite symmetric matrices. A broad introduction to the
statistical analysis of this kind of data can be found, e.g., in Pennec et al. (2006)
or Dryden et al. (2009).

Let PD(p) indicate the Riemannian manifold of positive definite symmetric
matrices of dimension p. It is a convex subset of RP(P+1)/2 hut it is not a linear
space: in general, a linear combination of elements of PD(p) does not belong to
PD(p). Moreover, the Euclidean distance in RP(P+1)/2 is not suitable to compare
positive definite symmetric matrices (see Moakher, 2005, for details). Thus,
more appropriate metrics need to be used for statistical analysis. A good choice
could be the Riemannian distance: the shortest path between two points on the
manifold. A description of the properties of Riemannian manifolds in general,
and of PD(p) in particular, can be found in Moakher and Zérai (2011) and
references therein. For the scopes of the present work, it is enough to recall that
the Riemannian distance between elements Py, P, € PD(p) is

dr(Py, Py) = ||log(P; 2 PPy )| =

where the o; are the eigenvalues of the matrix P; ' Py and ||.|| ¢ is the Froebenius
norm for matrices, defined as

[|A||F = \/trace(AT A).

This distance is also called trace metric, for instance in Yuan et al. (2012).

Once a metric has been introduced in PD(p), we can address the problem of
estimating the mean given a sample of positive definite symmetric matrices. In
recent years, many authors (Fletcher et al., 2004; Pennec et al., 2006; Dryden
et al., 2009) proposed to use the Fréchet mean for a more coherent approach in
dealing with data belonging to a Riemannian manifold. The Fréchet mean of a
random element S, with probability distribution p on a Riemannian manifold,
is defined as Y = arginfp [ dgr(S, P)?1(dS) and it can be estimated with the
sample Fréchet mean

Sk = arginprdR(SiaP)Q,

=1

where S;, i = 1,...,n is a sample from p. For the PD(p) case, both the Fréchet
mean and the sample Fréchet mean exist and are unique (see, e.g, Moakher and
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Zéral, 2011). By means of extensive comparisons, Dryden et al. (2009) show
that using estimators based on the Riemannian distance, or its approximation,
gives better results than the estimator based on Euclidean metric.

Analogously, the variance of S can be defined as 0% = Var(S) = E[dg(S, ¥r)?]
and estimated with the sample variance

o 1 S
02 = EZldR(S“ER)2

In practical applications, using the Riemannian distance could be compu-
tationally expensive. For this reason, other distances have been proposed to
compare two positive definite symmetric matrices. For example, we may con-
sider the Cholesky decomposition of the positive definite symmetric matrix P,
i.e. the lower triangular matrix with positive entries L = chol(P) such that
P = LLT. Then, Wang et al. (2004) defined a Cholesky distance between two
positive definite symmetric matrices as

dc(Pl,PQ) = ||Ch01(P1) — ChOl(PQ)HF

Using the Cholesky distance, the sample Fréchet mean for a sample S;, i =
1,...,n, is easily computed:

~ PO ~ 1 &
Yo =AcAf here Ac = =) chol(9;).
c cAg,  where Ac n;CO()
Another possibility is to resort to the square root distance (Dryden et al.,
2009):
1 1
ds(P1, Py) = ||P? — P7||r,
where P? is the matrix square root of P. Also for this case a simple formula

exists for the sample Fréchet mean which minimizes square root distances from
a sample S1,...,5, of positive definite symmetric matrices:

NG

o o~ ar ~ 1L
U5 =AsAf,  where Ag = ;S :
It is worth noticing that the square root distance is also defined for non negative
definite matrices. Thus, it is to be preferred in applications where matrix data
may have zero eigenvalues, or very small eigenvalues which lead to instability in
the computation of the Riemannian distance or the Cholesky decomposition.

In the following, we propose methods that are based on a general distance
d(.,.) on the manifold. In practice, the appropriate distance has to be chosen
by looking at the problem at hand while weighing computational efficiency.

3. Semivariogram for positive definite symmetric matrices

Let us consider the random field

{S(s) € PD(p) :s € D} (1)
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where D is a subset of R?, E[S(s)] = ¥ € PD(p) for every s € D. Since our
aim is to perform the statistical analysis from a single incomplete realization
of the random field, we ask the spatial dependence between S(s1) and S(s2) to
be a function only of h = s; — s9, for s1,82 € D,. This can be formally stated
using the notion of joint probability measure on the manifold (see Pennec, 2006,
for more details about probability measures on manifolds). For s1,...,s, € D,
consider the finite-dimensional measure

Hs,..., sn(Fl,...,Fn):P(S(Sl)Grl,...,S(Sl)GFn),

for all possible T'y,...,T,, in the Borelian o-field of PD(p). We require the
random field to be strictly stationary, i.e. for every finite set s1,...,s, € D,

Hsq,..., Sn(rlv"'vrn) = Hsi+h,..., anrh(Fl;-'-aFn)

for all possible T'y,...,T, in the Borelian o-field of PD(p) and for all h € R?
such that sy +h,...,s, +h e D.

In general, the definition of a covariance between two random elements on
a Riemannian manifold is not straightforward, but in this particular setting a
natural extension of the variogram seems to be available. Indeed, in the one
dimensional Euclidean setting the variogram is defined as

29p(h) = Var(z(s + h) — x(s)) = El(z(s + h) — 2(s))*] — Elz(s + h) — 2(s)]?
= El(x(s +h) — a(s))’] = (E[z(s + h)] - Elz(s)))*

i.e, the expected value of the squared Euclidean distance between the random
variables minus the square Euclidean distance between their expected values.
Hence, we may generalize the notion of variogram by substituting the Euclidean
distance with a more appropriate distance, based on the geometry of the Rie-
mannian manifold. By analogy with its definition in spatial statistics for Eu-
clidean data (see, e.g, Cressie, 1993), we define the variogram for a positive
definite matrix field as

27(h) = E[d(S(s + h), 5(s))*] — d(E[S(s + h)], E[S(s)])? (2)
and consequently,

Var(S(s)) = H}llilrlrioﬁ(h), Cov(S(s),S(s + h)) = Var(S(s)) —7(h) (3)

when the limit exists. Since we assume E[S(s)] = ¥ for every s € D, the
Riemannian semivariogram simply becomes

- 1
3(h) = SELA(S(s + ), 5(s)7)
In practice, we require that spatial correlation depends only on the length

of the distance between two points s; and so, thus restricting to the case of
an isotropic semivariogram, where J(h) = ~(||h||). This assumption is useful
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for estimation, but it can be removed in applications when information about
the anisotropic structure of the field generating the data is available. Thus, in
the presence of a sample (S(s1),...,5(s,)) generated by the random field (1),
the isotropic semivariogram - can be estimated from the empirical Riemannian
distances, for instance by means of the classical estimator illustrated in Cressie
(1993):

S(h) = — Si s;))?
W(h) - 2|N(h) (S“SJ)ZGN(h)d(S( 1)75( ])) ’

where N(h) = {(si;s;) € D :h—A <||s; —sj|| < h+ A4, =1,...,n},
A is a positive (small) quantity acting as a smoothing parameter, h = [|h||
and |N(h)| is the number of couples (s;, s;) belonging to N(h). Finally, a model
semivariogram can be fitted to the empirical semivariogram, via least squares. As
it happens in the Euclidean setting, an accurate estimation of the semivariogram
is crucial for subsequent analysis. All the guidelines and methods developed for
vector data can also be easily applied to the estimation of 7.

3.1. Stochastic dependence in non FEuclidean spaces

The development of statistical methods for the analysis of samples generated
by random fields of positive definite matrices asks for a definition of stochas-
tic dependence between two random elements taking values on a Riemannian
manifold. In Euclidean spaces, the covariance is a measure of linear dependence
between two random variables. However, in a non Euclidean framework linear
dependence cannot be properly captured. The definition proposed in the pre-
vious section is based on the difference between the common variance of the
random elements and half the expected value of their square distance. In this
section, we explore properties and limits of this definition to fully understand
the peculiarity of a non linear space for what concerns stochastic dependence.

Let (A, B) be a random vector whose components are positive definite ma-
trices. The spatial model proposed in the previous section leads to a covariance
between the random matrices A and B defined as

Cov(4, B) := %{Ui +op — (Eld(A, B)’] - d(E[A],E[B])*)} (4)

where, for S = A, B, we set E[S] = arginfy,E[d(S,¥)?] and 0% = Var(S) =
E[d(S,E[S])?].

In the Euclidean setting, covariance is a measure of how close to a linear
subspace observations are expected to lie, e.g. a straight line in R?. No linear
subspaces exist on a Riemannian manifold, unless locally. In this framework the
covariance measures how “near” observations are expected to be, with respect
to their variability (i.e., the variance of the individual random elements A and
B). A negative covariance indicates that A and B are expected to be farther
apart than what it is to be expected by looking only at their marginal means
and variances.
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To better understand (4), we may focus on the special case E[A] = E[B] = X
and Var[A] = Var[B] = 02, which is of interest in spatial models. Then

Cov(A, B) < o2,

since E[d(A, B)?] > 0. The maximum value is taken for A = B and Cov(A, A) =
o2. Therefore the covariance defined in (4) has an upper limit that is reached
when the random elements are the same.

4. Estimation of the mean from a spatially correlated sample on a
Riemannian manifold

This section addresses the problem of estimating the mean given a sample of
spatially correlated positive definite symmetric matrices. The influence of spa-
tial correlation on estimation and prediction is well known in the traditional Eu-
clidean setting (see, e.g., Cressie, 1993) and it has been recently highlighted also
for the case of functional data (Gromenko and Kokoszka, 2011). In particular, in
the presence of strong spatial correlation, the sample mean can be inefficient as
estimator for the mean of the population, having larger variance than estimators
that take into account spatial dependence, see Cressie (1993, Section 1.3) for a
proof in the case of real valued random variables and Gromenko and Kokoszka
(2011), for extensive simulation studies on functional data. Indeed, in the pres-
ence of highly irregular spatial designs, the sample may contain a great amount
of data coming from close by locations, together with a few isolated and distant
observations. If spatial correlation is strong, data from close by locations are
expected to provide similar information; their influence on the estimate should
be mitigated, with respect to the few data coming from distant locations.

We propose an estimator for the mean ¥ of a random field S € PD(p) which
generalizes the estimator proposed by Gromenko and Kokoszka (2011) for a
linear space. It is defined as a weighted sample Fréchet mean:

W = arginfp Y \id(S(s:), P)?, (5)

=1

where S(s;) is the observation of the random field S at location s; € D. Weights
A; have to be chosen taking into account the spatial dependence among obser-
vations. Analogously to Section 2, we add a subscript to indicate the distance
that has been used in the estimation procedure: Wg is the weighted sample
Fréchet mean using the Riemannian distance and Wy is the weighted sample
Fréchet mean using the square root distance. Minimization of the weighted sum
of square distance to estimate Fréchet mean on the manifold has been first pro-
posed in Dryden et al. (2009) in the context of smoothing for Diffusion Tensor
Imaging fields. Their aim is to estimate the diffusion tensor for each point of
the domain, starting from noisy and discrete observations. Thus, weights are
chosen as function of the distance of each observations from the point where the
estimate is needed. This approach has been recently developed in Yuan et al.
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(2012), where a local polynomial regression estimator for the conditional mean
E[S(s)|s = so] is introduced.

Differently from these previous works, we here want to estimate the uncondi-
tional mean of the random field (1), starting from a spatially correlated sample
of data belonging to the manifold. This leads to a different choice of weights \;,
that should now take into account the dependence among the random elements
the data are realizations of. Following the analogy with the Euclidean setting,
we ask the weights \; to solve the quadratic constrained minimization problem:

min Y Y " \iX;Cov(S(s:),S(s;), > Ai=1A>0fori=1,...,n. (6)
1=1

i=1 j=1

In the Euclidean case, (6) is equivalent to the minimization of the mean square
error, but this need not be true for a general Riemannian manifold. However,
choosing the weights A; as the solution of problem (6) meets the qualitative re-
quest to attribute less influence to subsets of data which are strongly correlated.
We also ask the weights to be non negative to avoid instability in the mini-
mization on the manifold, since, in any case, the solution of the minimization
problem would not result in a linear combination of the data. Many numerical
methods exist to solve the quadratic programming problem set in (6). We re-
sort to that proposed in Goldfarb and Idnani (1983). The covariance structure
Cou(S(s;), S(s;)) is obtained from the model semivariogram estimated with the
procedure illustrated in the previous section.

5. Simulation studies

In this section we present a simulation study to test the performance of the pro-
posed mean estimator. To do this, we introduce a simple method for simulating
a random field of positive definite matrices with spatial correlation. Then, we
use the simulated field to compare the weighted sample Fréchet mean W with
the usual sample Fréchet mean Xg, for different experimental designs. Here, we
choose the square root distance to compare two positive definite matrices for
computational savings and to avoid problems with nearly singular matrices.

5.1. Simulation of a random field in PD(2)

We want to simulate a positive definite symmetric matrix field S(s) € PD(2)
with mean ¥ and a spatial correlation structure. This is obtained through the
sample covariance matrices of the realizations of a gaussian random vector
field v.

Let s € D C R? indicate the spatial coordinates of two independent gaussian
random field z(s), y(s), with 0 mean and spatial covariance

exp(—qlls; — s:|? s; —s;||? > 0;
Cov(a(s).a(sy)) = Cortus).plss)) = { P =1 ool =0

for s;,85 € D.
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F1c 1. Simulation of the positive definite random fields, for different values of ¢ and N. Each
statistical unit S(s;j) (a 2 X 2 positive definite symmetric matriz) is represented as an ellipse
that is centered in s; and has axis \/oje;, where S(s;)e; = oje; for j =1,2.

Given a 2 x 2 matrix A, say A = (1,1;0, 1), the random vector field v(s) =
A(z(s),y(s))T has covariance matrix ¥ = AAT = (2,1;1,1). We generate N
realizations of the random vector field v(s) and compute the sample covariance
matrix

N
S(s) = ﬁ S (va(s) = ¥(5))(vi(s) — ¥(5))T ~ Wishart (S, N — 1).
k=1

The positive definite symmetric matrix field S(s) has thus mean ¥ and it
has a spatial dependence structure inherited by the spatial correlation of the
underlying vector field v(s). The law of the random field S(s) depends on the
parameters ¢ and N, which determine respectively the spatial dependence and
the variability. In Fig. 1 some realizations of the matrix random field are reported
for different values of ¢ and N, using ellipses to represent 2 x 2 positive definite
symmetric matrices. It can be seen that larger values of ¢ correspond to lower
spatial dependence and larger values of N to lower variability. By inspecting the
realizations of the field, we can guess that for ¢ and N both small, taking into
account spatial dependence improves the estimate of the unconditional mean .
Indeed, for large values of N the variability of the field is so small that every
single observation is a good representative of the mean and so every estimation
techniques is adequate. Of course, when ¢ is large, no spatial dependence is
present, observations are independent and thus the sample Frechét mean is the
proper estimator. Hereafter we focus on the case when ¢ and N are small.
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Fic 2. First row: three datasets obtained in the first simulation for the three experimental
designs: regular grid (left), irregular (middle) and clustered (right). Second row: weights \;
assigned to each location, rounded down to the third decimal digit, for the first simulated field
and the three experimental designs. Third row: empirical semivariograms obtained from the
three experimental designs in the first simulation. A fitted gaussian model is superimposed to
the empirical semivariogram (solid line).

5.2. Estimation of the mean ¥ of the simulated field

We now compare the proposed estimator with the sample Fréchet mean for three
different experimental designs. We simulate 20 realizations of the random field
S(s) on a rectangular grid, setting ¢ = 0.01 and N = 4, which is a case of high
variability and high spatial dependence. We then subsample each realization in
different points s;, obtaining different sets of observations for each experimental
design. Fig. 2 shows the datasets for the first simulation: each statistical unit
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Fic¢ 3. Bozplot of dg(Ss,%) (left) and dg(Ws,X) (right) for the three experimental designs:
regular pattern (left), irreqular (center) and clustered (right).

S(si) (a 2 x 2 positive definite symmetric matrix) is represented as an ellipse
that is centered in s; and has axis \/7;e;, where S(s;)e; = o,e; for j = 1,2.
The first experimental design corresponds to a regular grid, the second to an
irregular grid, while the third grid presents a cluster of spatial locations. The
same picture shows the empirical semivariogram obtained for each dataset with
a superimposed gaussian semivariogram fitted via least squares. For each real-
ization of the random field S, we estimated the mean for the three experimental
designs both with the sample Fréchet mean >g and the weighted Fréchet mean
Wys. Fig. 3 shows the boxplots of the distances dg(Xg, ) and dg(Wg, X) for the
three experimental designs. The weighted estimator behaves better, especially
in the case of clustered data, where it is able to disregard some of the redundant
information coming from points in the cluster. Fig. 2 shows also the weights \;
obtained in the first simulation for the three experimental designs.

6. Applications to the estimation of mean covariance structure for
meteorological variables

The simulation studies of the previous section support the tenet that the es-
timate of the mean covariance could be improved by taking into account data
spatial dependence. As an illustrative application, we consider the problem of
estimation of the mean covariance between different meteorological variables,
say temperature and precipitation. Temperature and precipitation are two very
important climatic variables. Their co-variability is also of interest: a better
understanding of their relationship can provide insights on the precipitation-
forming process or improve weather forecasting methods. Moreover, relative
behavior of temperature and precipitation affects agricultural production (see
Lobell and Burke, 2008). For a broader introduction to the importance of the
temperature- precipitation relationship and its estimate see, e.g., Trenberth and
Shea (2005) and references therein.
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Fic 4. Left: Map of Quebec. Blue stars indicate positions of meteorological stations. Right:
For each meteorological station an ellipse is plotted, representing 2 X 2 covariance matrix
between temperature and precipitations in January.

We focus on the Quebec province, Canada. Data from Canadian meteorologi-
cal stations are made available by Environment Canada on the website http://
climate.weatheroffice.gc.ca. Indeed different measurement stations provide
meteorological data along time and a first idea could be to bundle all data to-
gether in order to estimate the covariance between meteorological variables. This
procedure is questionable since it does not take into proper account the spatial
distribution of the measurement stations, which can be far from a regular grid
on the region of interest. Analyzing similar data, coming from Canadian mete-
orological stations, Gromenko and Kokoszka (2011) point out the relevance of
spatial dependence between measurement stations when estimating the monthly
mean temperature function.

Fig. 4 shows the map of Quebec and the meteorological stations for which
monthly data for temperature and precipitation are available, from 1983 to
1992. We assume that the monthly variation of the mean covariance between
temperature and precipitation stays unchanged along the years of this short time
period. The goal is to estimate the mean covariance between temperature and
precipitation for each month of the year. Thus, for each meteorological station,
we use the 10-year measures of temperature and precipitation to estimate a 2 x 2
sample covariance matrix for every month from January to December. Fig. 4
shows the ellipse representation of these covariance matrices for January.

Locations of the meteorological stations form an irregular pattern within
Quebec. Thus, we expect that taking into account spatial dependence leads
to a more accurate estimate of the mean covariance between temperature and
precipitation in Quebec. We also assume that spatial dependence is constant
along time. This allows to have more data for variogram estimation, which
is a crucial point in the analysis. Fig. 5 shows the empirical semivariogram
estimated with the method proposed in Section 3, with a superimposed fitted
gaussian variogram, and the weights for each station obtained by solving (6). It is
interesting to notice that three stations are associated with almost zero weights:
this means that they are bringing redundant information for the estimation of
the mean covariance structure.
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Fic 5. Left: Empirical semivariogram for the covariance matriz between temperature and
precipitation (black points) and least squares fitting of a gaussian semivariogram. Right:
Weights given to every station for the estimation of the average covariance matriz. Weights
are rounded down to the third decimal digit.

Ellipses representing covariance matrices
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F1G 6. Ellipses representing the estimated covariance matriz between temperature and precip-
itations in Quebec, for the twelve months of the year. First Row: Sample Fréchet mean Xg.
Second row: Wetighted Fréchet mean Wg.

__ An ellipse representation of the estimates obtained with sample Fréchet mean
Y5 and weighted sample Fréchet mean Wy for the 12 months of the year appears
in Fig. 6. The two estimators provide similar estimates for the winter period,
from October to February, where a positive correlation exists between temper-
ature and precipitation in the coldest months of the year. This is in agreement
with Isaac and Stuart (1991), where correlation between daily temperature and
precipitation is considered for the whole Canada by looking at the temperature
precipitation index, i.e. the percentage of precipitation occurring at tempera-
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tures colder than the median daily temperature. They found that in January
more precipitation is observed in relatively warm days.

The weighted sample Fréchet mean Wy provides a quite different estimate
for the beginning of spring (March and April), where no correlation seems to be
present, while the sample Fréchet mean is would suggest a positive correlation.
For April, Isaac and Stuart (1991) found great variability of the temperature
precipitation index in the different Canadian provinces. For Quebec, however,
it is around 50%, thus suggesting no correlation. The two estimates agree again
for May and June (negative correlation), while for summer months estimates
provided by the weighted sample Fréchet mean Wy suggest a different total
variation for these covariance matrices (lower in July and September, greater in
August) but both of them indicate that there is no correlation between temper-
ature and precipitation, thus agreeing with Isaac and Stuart (1991) who report
a temperature precipitation index around 50% for Quebec and Ontario in July,
contrary to the trend of all the other Canadian provinces.

In conclusion, estimates provided by the proposed estimator Wg are in full
agreement with previous analysis of Canadian climate, while ignoring spatial
dependence among measurement stations leads to anomalous results for March
and April. Moreover, dealing with the covariance matrix, rather than with the
temperature precipitation index, supplies also information about temperature
and precipitation variability. Differences between the estimates of total variabil-
ity provided by Wg and g are concentrated in summer months. In August,
our method estimates a greater total variability, while in July and September a
lower one.

6.1. Choice of a different design for meteorological stations

As shown in Section 6, the spatial correlation among the meteorological stations
of Quebec implies that three of them bring no significant information for the
estimation of the mean covariance between temperature and precipitation. We
now imagine to have the possibility to add a new meteorological station. We
assume that the spatial dependence between data generated by the meteorolog-
ical stations is described by the gaussian semivariogram represented in Fig. 5,
estimated via least square from the empirical semivariogram. We aim at find-
ing a site for the new station that makes the weights \;, given to the stations
for mean covariance estimation, as close as possible to 1/n, being n the total
number of meteorological stations, the new one included. This would provide
an estimator (5) with a smaller variance.

Let us superimpose a fine grid of points on the region of interest and indicate
with « and y the latitude and the longitude of a point on the grid. For each grid
point (z,y), we solve problem (6) pretending that the new station is located in
(x,y). We thus obtain a new weight \;(z,y) for each of the n meteorological
stations. The utility of positioning the new station in (z,y) is defined as

- 1
Ulw,y) =1—Y (\i(w,y) — =)

: n
=1
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Fi1G 7. Left: Utility function U(x,y) evaluated on the Quebec province. Locations of the already
existing station are indicated by red circles, while the blue star corresponds to the maximum
of the utility on the Quebec province. Right: Weights assigned to the new set of measurements
stations.

We now look for the site (z,y) where the utility U(z,y) is maximized. Fig. 7
shows the utility function on the Quebec province and the site for the new station
maximizing it. Of course, the exercise considers only the problem of estimation
of the mean covariance between temperature and precipitation, disregarding
other quantities of interest for meteorological analyses.

7. Conclusions and further development

This work is in the framework of statistical analysis for non Euclidean data.
In particular, we introduced spatial statistics methods which take into account
the specific nature of the non Euclidean data at hand. We introduced a semi-
variogram whose definition consistently relies only on the notion of distance
between two elements of the space to which data belong. This allows to tackle
the problem of estimation of the mean from a spatially correlated sample of
non Euclidean data. Possible developments include the generalization to the
case where a drift is also present and therefore to solve more advanced spatial
problems - e.g. ordinary or universal kriging - allowing for the consideration of
spatial dependance in smoothing procedures, such as those proposed in Dryden
et al. (2009) or Yuan et al. (2012).

The proposed methods rely only on the notion of distance between non Eu-
clidean data and therefore they can be applied to any Riemannian manifold.
Here we have focused on the notable case of positive definite matrices to show
the effectiveness of our approach, both with simulations and with a significant
real data application. However, our work can be easily adapted to other kinds
of non Euclidean data. For example, Aston et al. (2010) focus on the covariance
functions as objects of interest for linguistic and phonetic analysis; taking into
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account spatial dependence could generate interesting analysis for these kinds
of problems. The proposed approach can be easily generalized to the infinite
dimensional case once a proper definition of distance between covariance func-
tions has been chosen. Some proposals in this direction can be found in Pigoli
et al. (2012).

In Section 6 we apply our method to a meteorological problem, the estimation
of the covariance matrix between temperature and precipitation in the province
of Quebec (Canada). We show that taking into account spatial dependence
provides estimates that are in a better agreement with known meteorological
information.
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