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CANONICAL CORRELATION ANALYSIS BETWEEN TIME SERIES
AND STATIC OUTCOMES, WITH APPLICATION TO THE

SPECTRAL ANALYSIS OF HEART RATE VARIABILITY

BY ROBERT T. KRAFTY1,2 AND MARTICA HALL2

University of Pittsburgh

Although many studies collect biomedical time series signals from mul-
tiple subjects, there is a dearth of models and methods for assessing the asso-
ciation between frequency domain properties of time series and other study
outcomes. This article introduces the random Cramér representation as a joint
model for collections of time series and static outcomes where power spec-
tra are random functions that are correlated with the outcomes. A canonical
correlation analysis between cepstral coefficients and static outcomes is de-
veloped to provide a flexible yet interpretable measure of association. Esti-
mates of the canonical correlations and weight functions are obtained from
a canonical correlation analysis between the static outcomes and maximum
Whittle likelihood estimates of truncated cepstral coefficients. The proposed
methodology is used to analyze the association between the spectrum of heart
rate variability and measures of sleep duration and fragmentation in a study
of older adults who serve as the primary caregiver for their ill spouse.

1. Introduction. Scientific and technological advances have led to an in-
crease in the number of studies that collect and analyze biological time series
signals from multiple subjects. In many instances, the frequency domain prop-
erties of the time series contain interpretable physiological information. Examples
of such time series include electroencephalographic signals [Buysse et al. (2008),
Qin and Wang (2008)], hormone concentration levels [Diggle and Al Wasel (1997),
Gronfier and Brandenberger (1998)], and heart rate variability [Hall et al. (2007),
Krafty, Hall and Guo (2011)]. The goal of many such studies is to quantify the
association between power spectra and collections of correlated outcomes.

This article is motivated by a study whose objective is to better understand the
association between stress and sleep in older adults who are the primary caregiver
for their spouse. In this study, heart rate variability and multiple measures of sleep
duration and fragmentation are collected from participants during a night of sleep.
Heart rate variability is the measure of variability in the elapsed time between
consecutive heart beats. Its power spectrum has been shown to be an indirect mea-
sure of autonomic nervous system activity and is used by researchers as a measure
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of stress [Task Force of the ESC/ASPE (1996), Hall et al. (2007)]. Measures of
sleep duration and fragmentation have been shown to be associated with health
and functioning when measured either subjectively through self-report sleep di-
aries or objectively through the collection of electrophysiological signals known
as polysomnography (PSG) [McCall et al. (1995), Hall et al. (2008), Nock et al.
(2009), Silva et al. (2007), Vgontzas et al. (2010)]. We desire an analysis of these
data that can illuminate the relationship between stress and sleep by quantifying
the association between the spectrum of heart rate variability and both self-reported
and PSG derived measures of sleep.

The majority of methods for the spectral analysis of time series from multiple
subjects where spectra depend on static covariates deal exclusively with covariates
that take the form of qualitative grouping variables [Shumway (1971), Diggle and
Al Wasel (1997), Brillinger (2001), Fokianos and Savvides (2008), Stoffer et al.
(2010)]. These methods are not applicable when the covariates are quantitative
variables such as measures of sleep duration and fragmentation. Krafty, Hall and
Guo (2011) introduced the mixed effects Cramér representation as a model for time
series data where subject-specific power spectra depend on covariates and can ac-
count for quantitative variables. The mixed effects Cramér representation has two
characteristics which limit its effectiveness for modeling and analyzing time se-
ries and correlated static outcomes. First, it assumes a semiparametric model for
log-spectra conditional on static outcomes. As is the case in our motivating study,
a semiparametric form is often unknown and a nonparametric model is required.
Second, it provides a measure of association between time series and a static out-
come conditional on the other outcomes through a regression coefficient. When
the outcomes are correlated, extracting scientifically meaningful information from
the conditional associations provided by the multiple regression coefficients can
be challenging. In our motivating study, clinically useful information concerning
the relationship between the spectrum of heart rate variability and the multiple
correlated measures of sleep duration and fragmentation requires parsimonious
measures of association.

To offer a nonparametric model and interpretable measures of association be-
tween time series and sets of correlated static outcomes, we introduce the ran-
dom Cramér representation and ensuing canonical correlation analysis (CCA). The
random Cramér representation considered in this article is a nonparametric joint
model for time series and sets of static outcomes where the transfer function of
the time series is random and the subject-specific log-spectra are correlated with
the static outcomes. Unlike the mixed effects Cramér representation of Krafty,
Hall and Guo (2011), no conditional semiparametric form for the log-spectrum is
assumed. The theoretical framework introduced by Eubank and Hsing (2008) is
used to define a CCA between the cepstral coefficients, or the Fourier coefficients
of the log-spectrum [Bogert, Healy and Tukey (1963)], and the static outcomes.
Estimates of canonical correlations and weight functions are obtained through a
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procedure which first estimates the cepstral coefficients via Whittle likelihood re-
gression, then performs a standard multivariate CCA between the estimated cep-
stral coefficients and static outcomes.

The rest of the article is organized as follows. Section 2 describes our motivating
study: the AgeWise Study. Section 3 introduces the random Cramér representation
and CCA. The estimation procedure is developed in Section 4. Section 5 presents
the results of a simulation study and the proposed method is applied to data from
the AgeWise Study in Section 6. A discussion is offered in Section 7.

2. The AgeWise study. The mental and emotional stress faced by older adults
who are the primary caregiver for their ill spouse places them at an increased risk
for the development of disturbed sleep which can effect their health and function-
ing [McCurry et al. (2007)]. A goal of the AgeWise Study conducted at the Uni-
versity of Pittsburgh is to gain a better understanding of the association between
stress and sleep in older adults who are the primary caregiver for their ill spouse in
order to inform the development of behavioral interventions to enhance their sleep.

The participants in this project are N = 46 men and women between 60–89
years of age. Each participant serves as the primary caregiver for their spouse
who is suffering from a progressive dementing illness such as Alzheimer’s or ad-
vanced Parkinson’s disease. Participants were studied during a night of in-home
sleep through ambulatory PSG. The recorded PSG signals were used to compute
objective measures of total sleep time (TST) as the number of minutes spent asleep
during the night, sleep latency (SL) as the number of minutes elapsed between at-
tempted sleep and sleep onset, and wakefulness after sleep onset (WASO) as the
number of minutes spent awake between sleep onset and the final morning awak-
ening. Upon awakening, the participants completed a self-report sleep diary which
was used to compute self-reported measures of TST, SL, and WASO.

The ambulatory PSG included a modified 2-lead electrode placement to col-
lect the electrocardiogram signal continuously throughout the night at a 512 Hz
sampling rate. The electrocardiogram signal was digitally stored for off-line pro-
cessing, cleaned of artifacts, and used to identify the R-waves as the location of the
upward deflection of the electrocardiogram signal associated with each heartbeat.
Interbeat intervals were then computed as the number of milliseconds between
each successive pair of R-waves to provide a measure of the elapsed time between
consecutive heart beats. Visually scored sleep staging was temporally aligned with
the interbeat intervals for each participant to allow for the isolation of the epochs of
interbeat intervals during the first three minutes of uninterrupted stage 2 sleep. To
ensure proper physiological interpretation in accordance with established guide-
lines for nonparametric spectral analysis, we analyze the heart rate variability se-
ries generated by sampling the cubic interpolation of the interbeat intervals versus
the R-waves at 2 Hz, resulting in time series of length T = 360 [Task Force of the
ESC/ASPE (1996)].
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FIG. 1. Heart rate variability, bias-adjusted log-periodograms, and estimated log-spectra for two
subjects during the first three minutes of stage 2 sleep. The sleep outcomes for these two subjects are
displayed in Table 1.

The data for two subjects in the form of heart rate variability time series and six
measures of sleep duration and fragmentation are displayed in the top panels of
Figure 1 and in Table 1, respectively. The primary objective of our analysis is to
illuminate the relationship between stress and sleep by obtaining low-dimensional
and interpretable measures of the association between the spectrum of heart rate
variability at the start of stage 2 sleep and self-reported and PSG derived measures
of sleep duration and fragmentation.

3. Measuring association between log-spectra and static outcomes.

3.1. Random Cramér representation. This article is concerned with quantify-
ing the association between the spectrum of a second order stationary time series
of length T , {Xj1, . . . ,XjT }, and a P -dimensional vector of correlated outcomes,
Zj , from j = 1, . . . ,N independent subjects. In our motivating sleep study, the
time series of length T = 360 are three minute epochs of heart rate variability from
N = 46 participants, while Zj are P = 6 dimensional vectors of TST, WASO, and
SL as measured by self-report sleep diary and by PSG.

The outcomes Zj are assumed to be independent and identically distributed with
μZ = E(Zj ) and nonsingular covariance kernel

�Z = E(Zj − μZ)(Zj − μZ)′.
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TABLE 1
Time spent asleep (TST), sleep latency (SL), and wakefulness after sleep

onset (WASO) as measured by polysomnography (PSG) and self-reported
sleep diary (D) for the two subjects whose heart rate variability are
displayed in Figure 1. All sleep outcomes are reported in minutes

Subj. 1 Subj. 2

PSG-TST 394 373
PSG-SL 11 10
PSG-WASO 95 78
D-TST 383 403
D-SL 20 2
D-WASO 45 15

The time series are modeled through a random Cramér representation with a ran-
dom mean uj and a random transfer function �j that is correlated with Zj . The
random transfer functions �j are independent and identically distributed complex-
valued random functions over R that are Hermitian, square-integrable over [0,1],
and have period 1. Formally, the random Cramér representation for Xjt is

Xjt = uj +
∫ 1

0
�j(ω)e2πiωt d�j (ω),

where �j are mutually independent identically distributed mean-zero orthogonal
increment processes over [0,1] such that E|d�j (ω)|2 = dω and �j is independent
of �j ′ , Zj ′ , and uj ′ for all j and j ′. The time series {Xjt : t ∈ Z} exists with
probability one and is second order stationary.

In many applications, such as our motivating study, scientific interest lies in
the ratio of power at different frequencies. This is equivalent to looking at linear
combinations of the log-spectrum. Consequently, we consider spectral properties
on the log-scale and define the subject-specific log-spectrum for the j th subject as
the random function

Fj (ω) = log
∣∣�j(ω)

∣∣2.
To assure that the first two moments of Fj exist and are bounded, it is assumed
that supω∈R E|�j(ω)|4 < ∞ and infω∈R E|�j(ω)|4 > 0. We focus on log-spectra
which possess square integrable first derivatives and define F as the space of even
functions with period 1 whose first derivatives are square integrable.

When Fj ∈ F with probability 1, the subject-specific log-spectra possess the
cosine expansion

Fj (ω) = fj0 +
∞∑

k=1

fjk

√
2 cos(2πωk),
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fj0 =
∫ 1

0
Fj (ω)dω,

fjk =
∫ 1

0
Fj (ω)

√
2 cos(2πωk)dω, k = 1,2, . . . ,

where fj = (fjk :k = 0,1, . . .) is the subject-specific cepstrum [Bogert, Healy and
Tukey (1963)]. Our analysis will explore spectral properties of times series via
the cepstral coefficients and will make use of the covariance and cross-covariance
kernels

�f

(
k, k′) = E

[
(fjk − μk)(fjk′ − μk′)

]
, k, k′ = 0,1, . . . ,

�f Z(k) = E
[
(fjk − μk)(Zj − μZ)′

]
, k = 0,1, . . . ,

where μk = E(fjk).

3.2. Canonical correlation analysis. To provide a parsimonious measure of
association between time series and static outcomes following a random Cramér
representation, we will utilize the definition of CCA between two sets of second
order random variables introduced by Eubank and Hsing (2008). We want to find
successive linear combinations of cepstral coefficients and static outcomes that are
maximally correlated. The first canonical correlation ρ1 is defined as

ρ2
1 = sup

αk,β
Cov2

( ∞∑
k=0

αkfjk,β
′Zj

)

over all αk ∈ R, k = 0,1, . . . , and β ∈ R
P such that the random variables∑∞

k=0 αkfjk and β ′Zj have unit variance. The series a1 = (a1k :k = 0,1, . . .) and
vector B1 where this maximum occurs are referred to as first canonical weights for
the cepstrum and static outcomes, while

∑∞
k=0 a1kfjk and B′

1Zj are first canonical
variables. For q = 2, . . . ,Q where Q is the minimum of P and the rank of �f , the
qth canonical correlation ρq is defined as

ρ2
q = sup

αk,β
Cov2

( ∞∑
k=0

αkfjk,β
′Zj

)

over all αk ∈ R, k = 0,1, . . . , and β ∈ R
P such that

∑∞
k=0 αkfjk and β ′Zj have

unit variance and are pairwise uncorrelated with
∑∞

k=0 aq ′kfjk and B′
q ′Zj for

q ′ < q . The series aq = (aqk :k = 0,1, . . .) and vector Bq where the maximum
is achieved are referred to as qth weight functions for the cepstrum and static
outcomes, while

∑∞
k=0 aqkfjk and B′

qZj are the qth canonical variables. We will

assume that �f Z�−1
Z is well defined and Hilbert–Schmidt as an operator from R

P

to the reproducing kernel Hilbert space with reproducing kernel �f . Under this
regularity condition, Theorems 1 and 2 of Eubank and Hsing (2008) assure the
existence of the canonical correlations, weight functions, and variables.
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When
∑∞

k=0 |aqk| < ∞, the qth canonical variable can be represented as a linear
function of the log-spectra Fj ,

∞∑
k=0

aqkfjk =
∫ 1

0
Aq(ω)Fj (ω)dω,

where

Aq(ω) = aq0 +
∞∑

k=1

aqk

√
2 cos(2πωk).

When it exists, we will refer to Aq as the qth weight function for the log-spectrum.
In our application, the goal is to estimate and analyze canonical correlations and
the canonical weight functions for the static outcomes and log-spectra. Although
the canonical variables for the cepstra do not always possess forms as integral func-
tion of log-spectra, in Section 3.3 it is shown that they can always be approximated
as such.

3.3. Finite approximation. The infinite-dimensional formulation of the CCA
given above is not conducive to real data applications. A finite-dimensional ap-
proximation can be obtained by noting that when Fj ∈ F, the cepstral coefficients
decay such that

∑∞
k=1 k2f 2

jk < ∞ with probability 1. The decay of the cepstral co-
efficients was utilized by Bloomfield (1973) to offer a finite-dimensional model
for the log-spectrum by truncating the cosine series at some K < T such that
Fj (ω) ≈ fj0 + ∑K−1

k=1 fjk

√
2 cos(2πωk). Under this approximation, the cepstrum

can be represented as the K-vector f̃j = (fj0, . . . , fjK−1)
′, which has K × K co-

variance matrix �̃f and K × P cross-covariance with the static outcomes �̃f Z .
The CCA between the truncated cepstrum and static outcomes is a standard

multivariate CCA problem [Johnson and Wichern (2002), Chapter 10.2]. To find
the canonical correlations ρ̃q and variables ã′

q̃fj , B̃′
qZj between f̃j and Zj , define

ηq to be the qth largest eigenvalue of �
−1/2
Z �̃

′
f Z�̃

−
f �̃f Z�

−1/2
Z with associated

eigenvector vq where �̃
−
f is the Moore–Penrose generalized inverse of �̃f . The

canonical correlations ρ̃q and weight functions ãq and B̃q can be computed as

ρ̃q = √
ηq,

ãq = ρ̃−1
q �̃

−
f �̃f Z�

−1/2
Z vq,(3.1)

B̃q = �
−1/2
Z vq .

These canonical correlations and weight functions are approximations of the
canonical correlations and weight functions defined in Section 3.2. A direct con-
sequence of Lemma 5 of Eubank and Hsing (2008) is that, as K → ∞, ρ̃q → ρq ,
(̃a′

q,0, . . .) → aq in L2(fj ), and B̃q → Bq .
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Although the log-spectral weight function Aq does not necessarily exist, the
log-spectral weight function from the finite approximation

Ãq(ω) = ãq0 +
K−1∑
k=1

ãqk

√
2 cos(2πωk)

is always well defined.

4. Estimation. Estimates of �̃f , �̃f Z , and �̃Z will be plugged into (3.1) to
obtain estimates of the canonical correlations and weight functions. The covari-
ance of Zj is estimated with the standard estimator �̂Z = (N − 1)−1 ∑N

j=1(Zj −
Z)(Zj − Z)′, where Z = N−1 ∑N

j=1 Zj .
To estimate �̃f and �̃f Z , we consider the periodograms

Yj
 = T −1

∣∣∣∣∣
T∑

t=1

Xjte
−2πi
t/T

∣∣∣∣∣
2

, j = 1, . . . ,N, 
 = 1, . . . ,

⌊
T − 1

2

⌋
,

which are approximately independent and distributed as eFj (
/T )χ2
2 /2 when T is

large [Krafty, Hall and Guo (2011), Theorem 1]. This large sample distribution of
the periodogram leads to a Whittle likelihood [Whittle (1953, 1954)] for truncated
cepstral coefficients. The negative log-Whittle likelihood for the truncated cepstral
coefficients of the j th subject is

LjK(f0, . . . , fK−1) =
�(T −1)/2	∑


=1

{
Yj
e

−[f0+∑K−1
k=1 fk

√
2 cos(2πk
/T )]

+ f0 +
K−1∑
k=1

fk

√
2 cos(2πk
/T )

}
.

We propose using Whittle likelihood regression to estimate �̃f and �̃f Z with

�̂f = (N − 1)−1
N∑

j=1

(f̂j − f)(f̂j − f)′,

�̂f Z = (N − 1)−1
N∑

j=1

(f̂j − f)(Zj − Z)′,

where f̂j = (f̂j0, . . . , f̂jK−1)
′ minimizes LjK and f = N−1 ∑N

j=1 f̂j . A Fisher’s

scoring algorithm for computing f̂j is given in the Appendix.
Estimates ρ̂q , âq , B̂q , and Âq of the qth canonical correlation and weight func-

tions for cepstra, static outcomes, and log-spectra are then defined for q = 1, . . . ,Q
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as

ρ̂q =
√

η̂q ,

âq = ρ̂−1
q �̂

−
f �̂f Z�̂

−1/2
Z v̂q,

B̂q = �̂
−1/2
Z v̂q,

Âq(ω) = âq0 +
K−1∑
k=1

âqk

√
2 cos(2πωk), ω ∈ R,

where η̂q is the qth largest eigenvalue of the P ×P matrix �̂
−1/2
Z �̂

′
f Z�̂

−
f �̂f Z�̂

−1/2
Z

with associated eigenvector v̂q . The estimated truncated cepstral coefficients
also provide estimates of the subject-specific log-spectra as F̂j (ω) = f̂j0 +∑K−1

k=1 f̂jk

√
2 cos(2πωk).

These estimates depend on the number of nonzero cepstral coefficients K . Sim-
ulation studies have demonstrated favorable empirical performance of the AIC as
a data driven procedure for selecting K by minimizing

C(k) =
N∑

j=1

Ljk(f̂j0, . . . , f̂jk−1) + 2Nk.

We provide Matlab code for implementing the proposed estimation procedure
in the supplemental file Krafty and Hall (2013b).

5. Simulation study.

5.1. Setting. A simulation study was conducted to explore the empirical prop-
erties of the proposed estimation procedure and compare it to two alternatives. For
each simulated data set, log-spectra

Fj (ω) = 5 + √
2 cos(2πω) + ξj0 +

3∑
k=1

ξjk

√
2 cos(2πkω)

were simulated where ξjk are independent mean zero normal random variables
with Var(ξjk) = 4. Static outcomes Zj of dimension P = 3 were drawn as mean
zero normal random vectors with covariance matrices diag(4,4,4) such that the
elements of Zj are uncorrelated with ξjk , k = 0, . . . ,3, except Corr(ξj2,Zj1) =
0.5 and Corr(ξj3,Zj2) = 0.25. Under this setting, the canonical correlations
are ρ1 = 0.5, ρ2 = 0.25, ρ3 = 0, the weight functions for the log-spectra are
A1(ω) = cos(4πω)/

√
2, A2(ω) = cos(6πω)/

√
2, and the weight functions for

the static outcomes are B1 = (0.5,0,0)′, B2 = (0,0.5,0)′. After a replicate-
specific log-spectrum was simulated, its square-root was calculated and used as
the replicate-specific transfer function to simulate the conditionally Gaussian time
series Xjt in accordance with Theorem 2 of Dai and Guo (2004). Five-hundred
random samples were drawn for each of the six combinations of N = 50,100 and
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T = 30,50,100. Results from additional settings under varying levels of signal
strength and smoothness are presented in the supplemental article Krafty and Hall
(2013a).

5.2. Estimation procedures. In addition to the proposed cepstral-based pro-
cedure, we also investigated two alternative estimation procedures adapted from
the functional CCA literature. The CCA between two functional valued variables
has been explored by many researches including Leurgans, Moyeed and Silverman
(1993), He, Müller and Wang (2003, 2004), and Eubank and Hsing (2008). These
methods can be adapted to our setting where one set of variables, Fj , is functional
and observed with noise over a discrete grid through the periodograms, and the
other, Zj , is multivariate.

The first alternative estimation procedure considered is an adaptation of the al-
gorithm for functional CCA presented in Section 6 of Eubank and Hsing (2008). In
this procedure, we used the penalized Whittle likelihood of Qin and Wang (2008)
to obtain smoothing spline estimators of the subject-specific log-spectra Fj with
smoothing parameters selected through direct generalized maximum likelihood.
These estimated log-spectra were discretized to form vectors of estimated log-
spectra at Fourier frequencies between 1 and �(T − 1)/2	; a canonical correlation
analysis was performed between these vectors and Zj . The rank of the covariance
kernel of the discretized log-spectra was selected through a cross-validation pro-
cedure which seeks to optimize the first canonical correlation by maximizing the
function CV1 discussed in Section 2.5 of He, Müller and Wang (2004).

The second alternative estimation procedure is an adaptation of the empirical
basis approach for functional CCA advocated by He, Müller and Wang (2004).
This procedure began by computing the singular value decomposition of the
sample covariance of the bias-adjusted log-periodograms, log(Yj
) + γ where
γ ≈ 0.577 is the Euler–Mascheroni constant. The eigenvectors were smoothed
to obtain a functional basis. The bias-adjusted log-periodograms were then pro-
jected onto a finite number of these basis functions and a multivariate CCA was
performed between the projections and the static outcomes. The number of basis
functions was selected through cross-validation by maximizing CV1 [He, Müller
and Wang (2004), Section 2.5].

5.3. Results. We assessed performance through the square error of estimates
of the canonical correlations, the square error of estimated weight functions for the
static outcomes in the standard Euclidian norm, and the square error of the vector
of estimated weight functions for the log-spectra evaluated at the Fourier frequen-
cies in the standard Euclidian norm. The mean and standard deviation of the square
errors are displayed in Table 2. The mean and variance of the errors of the pro-
posed cepstrum-based estimator were smaller than those of the two alternatives for
each parameter under every setting. The most drastic benefit in the cepstral-based
procedure was found in the estimation of the canonical weight functions for the
log-spectra. The modification of the function CCA algorithm of Eubank and Hs-
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TABLE 2
Simulation results: The mean (standard deviation) of the square error ×102 of the estimators of the

first two sets of weight functions and of the three canonical correlations. Three estimation
procedures are implemented: Cep, the proposed cepstral-based procedure; FDA, adaptation of the
functional CCA algorithm presented by Eubank and Hsing (2008); EB, adaptation of the empirical

basis approach to functional CCA presented by He, Müller and Wang (2004)

̂A1 ̂A2 ̂B1 ̂B2 ρ̂1 ρ̂2 ρ̂3

N = 100, T = 100
Cep 0.27 (0.75) 0.79 (2.47) 1.28 (2.19) 3.32 (3.67) 0.57 (0.66) 0.85 (1.07) 1.81 (1.62)
FDA 1.87 (3.48) 2.26 (4.37) 1.60 (2.37) 4.66 (4.18) 0.80 (0.94) 1.24 (1.58) 1.98 (2.57)
EB 1.17 (1.65) 2.17 (2.91) 1.73 (2.87) 4.64 (4.15) 1.09 (1.62) 1.79 (1.94) 2.87 (3.37)

N = 100, T = 50
Cep 0.57 (1.11) 1.67 (3.50) 1.30 (2.08) 3.45 (3.67) 0.58 (0.68) 0.84 (1.02) 1.93 (1.68)
FDA 2.03 (3.50) 3.03 (4.86) 1.66 (2.46) 4.63 (4.49) 0.80 (0.91) 1.16 (1.44) 1.97 (2.41)
EB 1.74 (2.43) 3.34 (4.24) 1.61 (2.56) 4.48 (4.24) 1.15 (2.03) 1.72 (1.94) 2.79 (2.96)

N = 100, T = 30
Cep 0.87 (0.83) 1.61 (2.38) 1.42 (2.21) 3.75 (4.03) 0.54 (0.64) 0.84 (1.09) 1.97 (1.67)
FDA 1.99 (3.18) 3.20 (4.52) 1.51 (2.06) 4.77 (4.65) 0.80 (1.00) 1.04 (1.19) 2.03 (2.75)
EB 1.65 (2.23) 3.27 (4.27) 1.62 (2.57) 4.44 (4.34) 1.19 (2.29) 1.44 (1.73) 2.54 (2.89)

N = 50, T = 100
Cep 0.65 (2.47) 0.98 (2.89) 2.54 (3.32) 5.64 (4.94) 1.46 (1.68) 1.85 (2.19) 3.02 (2.74)
FDA 4.26 (7.16) 4.33 (7.41) 3.77 (3.93) 7.20 (5.14) 2.36 (2.47) 2.77 (3.07) 3.94 (5.69)
EB 1.53 (2.22) 2.07 (2.83) 3.44 (4.31) 7.24 (4.88) 2.62 (3.12) 3.94 (3.52) 4.82 (6.52)

N = 50, T = 50
Cep 1.13 (2.48) 1.93 (3.71) 2.56 (3.38) 5.79 (4.92) 1.48 (1.70) 1.93 (2.18) 3.25 (2.89)
FDA 4.63 (7.05) 4.83 (6.75) 3.70 (4.14) 7.30 (5.17) 2.55 (2.57) 2.81 (3.20) 4.52 (5.63)
EB 2.64 (3.61) 3.32 (4.00) 3.60 (4.29) 6.86 (4.81) 2.63 (3.00) 3.79 (3.42) 4.95 (6.11)

N = 50, T = 30
Cep 1.39 (1.71) 1.84 (2.38) 2.67 (3.33) 5.85 (4.95) 1.40 (1.73) 1.99 (2.20) 3.26 (2.94)
FDA 4.52 (6.39) 5.10 (6.65) 3.77 (4.05) 6.88 (5.05) 2.55 (2.63) 2.83 (3.41) 4.52 (5.90)
EB 3.12 (4.31) 4.04 (5.05) 3.50 (4.21) 6.95 (4.92) 2.54 (2.92) 3.50 (3.30) 4.55 (5.80)

ing (2008) had smaller error in estimating the canonical correlations as compared
to the empirical basis approach, while the empirical basis approach demonstrated
better performance in estimating the weight functions of the log-spectra.

6. Analysis of data from the AgeWise study.

6.1. Data analysis. We analyzed the data from the project described in Sec-
tion 2 that consist of time series of heart rate variability during the first three min-
utes of stage 2 sleep and P = 6 measures of sleep duration and fragmentation from
N = 46 participants. The mean, standard deviation, and correlation matrix of the
sleep variables are displayed in Table 3. To aid in the interpretation of the weight
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TABLE 3
Correlation matrix, means, and standard deviations of the six sleep variables: time spent asleep

(TST), sleep latency (SL), and wakefulness after sleep onset (WASO) as measured by
polysomnography (PSG) and self-reported sleep diary (D)

PSG-TST PSG-SL PSG-WASO D-TST D-SL D-WASO

Mean (minutes) 377.4 18.3 81.8 383.2 21.1 36.9
Standard deviation

(minutes) 66.4 19.9 39.3 89.9 31.9 52.8
Correlation

PSG-TST 1.00 −0.12 −0.11 0.45 −0.08 0.17
PSG-SL −0.12 1.00 −0.31 0.06 −0.04 −0.22
PSG-WASO −0.11 −0.31 1.00 −0.19 0.13 0.38
D-TST 0.45 0.06 −0.19 1.00 −0.51 −0.51
D-SL −0.08 −0.04 0.13 −0.51 1.00 0.40
D-WASO 0.17 −0.22 0.38 −0.51 0.40 1.00

functions, we standardized the six-dimensional vector of sleep outcomes. The pro-
posed procedure estimated the first two canonical correlations as ρ̂1 = 0.52 and
ρ̂2 = 0.19; the remaining higher order correlations were estimated to be less than
3%. Figure 2 displays the estimated weight functions Â1, Â2 of the log-spectra,
while Table 4 displays the estimated weight functions B̂1, B̂2 of the standardized
sleep variables.

The estimated first canonical weight function for the standardized sleep out-
comes is negative for all sleep measures expect for PSG derived WASO, which
is close to zero. Note that the sum of SL, TST, and WASO measures the total

FIG. 2. Estimated canonical weight functions for the log-spectrum of heart rate variability.
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TABLE 4
Estimated canonical weight functions of the standardized sleep

variables: time spent asleep (TST), sleep latency (SL), and
wakefulness after sleep onset (WASO) as measured by

polysomnography (PSG) and self-reported sleep diary (D)

̂B1 ̂B2

PSG-TST −0.42 −0.01
PSG-SL −0.52 0.17
PSG-WASO 0.09 0.33
D-TST −0.41 −0.75
D-SL −0.55 0.42
D-WASO −0.51 0.30

time in bed so that large values for the first canonical variable for the standardized
sleep outcomes are associated with less time spent in bed. The weight function for
the first canonical variable for the log-spectrum of heart rate variability is positive
at all values. Consequently, the first canonical variable for the log-spectrum is a
measure of total power or total variance.

The estimated second canonical weight function for the standardized sleep vari-
ables is a contrast between the amount of time spent awake during the night, as
measured by both diary and PSG, and the amount of time asleep during the night,
as measured primarily by self-report diary. The estimated second canonical weight
function for the log-spectrum is positive for frequencies less than 0.17 Hz and
negative for frequencies greater than 0.17 Hz. Recall that our analysis is on the
log-scale so that the estimated second canonical variable is a ratio on the natu-
ral scale of power from low frequencies to power from high frequencies. The two
subjects whose data are displayed in Figure 1 and Table 1 exemplify this associa-
tion. Subject 1 displays a larger ratio of power between low and high frequencies as
compared to subject 2 with an estimated second canonical variable of 4.13 as com-
pared to −0.11. All sleep variables for subject 1 are larger than those for subject 2
aside from diary assessed TST. Consequently, the estimated second canonical vari-
able for subject 1, 0.38, is larger than that for subject 2, −0.14.

The adaptation of the functional CCA method of Eubank and Hsing (2008) that
was explored in the simulation study was also implemented. The subject-specific
log-spectra were estimated using the smoothing spline of Qin and Wang (2008),
while the rank of the log-spectral covariance matrix was selected through CV1 [He,
Müller and Wang (2004), Section 2.5.1]. This procedure estimated the first canon-
ical correlation as 46% and all higher order canonical correlations as zero. The
estimated first weight functions for both the log-spectra and sleep outcomes were
similar to the estimates obtained through the proposed cepstral-based procedure.
However, this procedure estimated the second canonical correlation as zero and
consequently did not produce estimates of the second canonical weight functions.
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6.2. Results. The autonomic nervous system is classically divided into two
dynamically balanced branches: the parasympathetic branch and the sympathetic
branch. The parasympathetic branch is responsible for the maintenance of the body
at rest, while the sympathetic branch is associated with the fight-or-flight response.
Increased modulation of the sympathetic nervous system is associated with in-
creased power in the spectrum of heart rate variability at low frequencies, while
increased modulation of the parasympathetic nervous system is associated with in-
creases in power at both low and high frequencies [Task Force of the ESC/ASPE
(1996)].

The estimated first canonical variables suggest that less time in bed is associated
with increased modulation of the parasympathetic nervous system. Excessive time
spent in bed has been shown to be associated with increased mortality and has led
to the advocacy of sleep restriction in older adults [Youngstedt and Kripke (2004)].
The causal pathway through which excessive time in bed is associated with mor-
tality is unknown and identifying possible confounders and causal intermediates of
this relationship to inform future studies is a topic of interest [Patel et al. (2006)].
Diminished parasympathetic nervous system activity while at rest has also been
linked to mortality [Ponikowski et al. (1997), Lanza et al. (1998)]. The estimated
first canonical correlation suggests that future studies might be able to illuminate
the pathway through which time in bed is connected to mortality by exploring the
role played by the modulation of the parasympathetic nervous system.

The estimated second canonical variable for sleep is a contrast between the time
spent initiating and maintaining sleep relative to the amount of perceived sleep and
may be viewed as a measure of nocturnal wake–sleep balance. Negative values
represent less wakefulness relative to perceived sleep; this profile is observed in
healthy individuals without clinical sleep disturbances [Walsleben et al. (2004)]. In
contrast, positive wake–sleep balance values represent more wakefulness relative
to perceived sleep, as often observed in individuals with sleep disturbances such
as insomnia [Carskadon et al. (1976)]. The estimated second canonical variable
for the log-spectrum is a measure of the sympathovagal balance. Increased sym-
pathovagal balance during sleep has been shown to be associated with symptoms
of depression and perceived stress [Hall et al. (2004), Hall et al. (2007)]. Con-
sequently, the second canonical correlation suggests this simple one-dimensional
measure of the wake–sleep cycle might be useful in informing studies to develop
and evaluate behavioral therapies for improving the sleep of older adults.

7. Discussion. This article considered an approach to analyzing the associ-
ation between the second-order spectrum of a time series and a set of static out-
comes. The random Cramér representation provided a formal model for these data,
while the cepstrum-based CCA provided an interpretable means of quantifying the
association. This approach was motivated by and used to analyze the association
between heart rate variability during sleep and measures of sleep duration and
fragmentation in a population of adults who are the primary caregiver for their
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ill spouse. The analysis suggested a connection between stress and sleep which
can serve as a guide for designing behavioral interventions to enhance the lives of
caregivers.

The work presented in this article represents one of the first approaches to ana-
lyzing a collection of time series whose power spectra depend on a set of correlated
outcomes and is by no means exhaustive. This article only considered time series
that are second order stationary. Many studies which collect heart rate variability
are interested in the time-dependent spectral properties of long-term epochs which
are nonstationary [Task Force of the ESC/ASPE (1996)]. A topic of future research
will be the extension of the random Cramér representation to the locally station-
ary setting through the use of a time-varying stochastic transfer function and the
development of a time dependent cepstral coefficient-based CCA.

The CCA considered in this paper was used as a tool for exploratory analysis.
One might also be interested in inference on the canonical correlations and weight
functions. Theorem 2 of Dai and Guo (2004) provides a method for simulating
a time series with a given smooth spectral density function. Another topic of fu-
ture research is the development of this sampling method to formulate a bootstrap
procedure for performing inference on the canonical correlations and weight func-
tions.

APPENDIX: FISHER SCORING ALGORITHM

The cepstral estimates f̂j that minimize LjK can be computed through Fisher
scoring. To formulate the algorithm, define the K-vectors

C
 = {
1,

√
2 cos(2π
/T ), . . . ,

√
2 cos

[
2π
(K − 1)/T

]}′
,

f = (f0, . . . , fK−1)
′

so that the negative log-Whittle likelihood for the j th subject can be written as

LjK(f) =
�(T −1)/2	∑


=1

(
Yj
e

−C′

f + C′


f
)
.

The algorithm is defined iteratively where the estimated cepstral coefficients for
the j th subject in the (m + 1)st iteration are

f̂m+1
j = f̂mj + H−1(

f̂mj
)
U

(
f̂mj

)
for score function

U
(
f̂mj

) = dLjK

df

∣∣∣
f=f̂mj

=
�(T −1)/2	∑


=1

(
1 − Yj
e

−C
 f̂mj
)
C


and Fisher information matrix

H
(
f̂mj

) = −E
(

d2LjK

dfdf′
∣∣∣
f̂mj

)
= −

�(T −1)/2	∑

=1

C
C′

.
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The algorithm continues until the change in the minimized negative log-Whittle
likelihood is below some preselected threshold. We initialize the algorithm with
the log-periodogram least squares estimators

f0
j = (

C′C
)−1C′Lj ,

where Lj = [log(Yj1) + γ, . . . , log(Yj�(T −1)/2	)+ γ ]′ and C is the �(T − 1)/2	 ×
K matrix with 
th row C′


.
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SUPPLEMENTARY MATERIAL

Supplement A: Additional simulation results (DOI: 10.1214/12-
AOAS601SUPPA; .pdf). The pdf file contains the results from a more compre-
hensive simulation study.

Supplement B: Matlab Code (DOI: 10.1214/12-AOAS601SUPPB; .zip). The
zip file contains Matlab code to run the proposed CCA and a file demonstrating its
use.
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