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Gaussian Graphical Models (GGMs) have been used to construct genetic
regulatory networks where regularization techniques are widely used since
the network inference usually falls into a high–dimension–low–sample–size
scenario. Yet, finding the right amount of regularization can be challenging,
especially in an unsupervised setting where traditional methods such as BIC
or cross-validation often do not work well. In this paper, we propose a new
method—Bootstrap Inference for Network COnstruction (BINCO)—to infer
networks by directly controlling the false discovery rates (FDRs) of the se-
lected edges. This method fits a mixture model for the distribution of edge
selection frequencies to estimate the FDRs, where the selection frequencies
are calculated via model aggregation. This method is applicable to a wide
range of applications beyond network construction. When we applied our
proposed method to building a gene regulatory network with microarray ex-
pression breast cancer data, we were able to identify high-confidence edges
and well-connected hub genes that could potentially play important roles in
understanding the underlying biological processes of breast cancer.

1. Introduction. The emergence of high-throughput technologies has made it
feasible to measure molecular signatures of thousands of genes/proteins simultane-
ously. This provides scientists an opportunity to study the global genetic regulatory
networks, shedding light on the functional interconnections among the regulatory
genes, and leading to a better understanding of underlying biological processes. In
this paper, we propose a network building procedure for learning genetic regula-
tory networks. Our work is motivated by an expression study of breast cancer (BC)
that aims to infer the network structure based on 414 BC tumor samples [Loi et
al. (2007)]. The proposed method enables us to detect high-confidence edges and
well-connected hub genes that include both those previously implicated in BC and
novel ones that may warrant further follow-up.
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In practice, dependency structures of molecular activities such as correlation
matrix and partial correlation matrix have been used to infer regulatory networks
[Pollack et al. (2002), Kim et al. (2006), Varambally et al. (2005), Nie, Wu and
Zhang (2006)]. Such dependency structures are often represented by graphical
models in which nodes of a graph represent biological components such as genes
or proteins, and the edges represent their interactions. These interactions may be
indirect (e.g., two genes are co-regulated by a third gene) or direct (e.g., one gene
is regulated by another gene). For the latter case, Gaussian Graphical Models
(GGMs), which represent dependencies between pairs of nodes conditioning on
the remaining of nodes, are often used.

For the data obtained from high-throughput technologies, the number of nodes
is typically much larger than the number of samples, which is where the classical
GGM theory [Whittaker (1990)] generally fails [Friedman (1989), Schaäfer and
Strimmer (2005)]. This large-p-small-n scenario is usually addressed by assum-
ing that the conditional dependency structure is sparse [Dobra et al. (2004), Li and
Gui (2006), Meinshausen and Buühlmann (2006), Yuan and Lin (2007), Fried-
man, Hastie and Tibshirani (2008), Rothman et al. (2008), Peng et al. (2009)].
However, like many high-dimensional regularization problems, finding the appro-
priate level of sparsity remains a challenge. This is particularly true for network
structure learning, since the problem is unsupervised in nature. Traditional meth-
ods, such as Bayes information criteria [Schwarz (1978)] and cross-validation, aim
to find a model that minimizes prediction error or maximizes a targeted likelihood
function. They tend to include many irrelevant features [e.g., Efron (2004b), Efron
et al. (2004), Meinshausen and Bühlmann (2006) and Peng et al. (2010)], and thus
are not appropriate for learning the interaction structures.

Choosing the amount of regularization by directly controlling the false posi-
tive level would be ideal for structure learning. Recently, a few model aggregation
methods have been proposed, and some of them provide certain control of false
positives. For example, Bach (2008) proposed Bolasso, which chooses variables
that are selected by all the lasso models [Tibshirani (1996)] built on bootstrapped
data sets. In the context of network reconstruction, Peng et al. (2010) proposed
choosing edges that are consistently selected across at least half of the cross-
validation folds. More recently, Meinshausen and Bühlmann (2010) proposed the
stability selection procedure to choose variables with selection frequencies ex-
ceeding a threshold. Under suitable conditions, they derived an upper bound for
the expected number of false positives. In the same paper they also proposed the
randomized lasso penalty, which aggregates models from perturbing the regular-
ization parameters. Combined with stability selection, randomized lasso achieves
model selection consistency without requiring the irrepresentable condition [Zhao
and Yu (2006)] that is necessary for lasso to achieve model selection consistency.
In another work, Wang et al. (2011) proposed a modified lasso regression—random
lasso—by aggregating models based on bootstrap samples and random subsets of
variables. All these works have greatly advanced research in model selection in the
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high-dimensional regime. However, none of these methods provide direct estima-
tion and control of the false discovery rate (FDR).

In this paper, we address the problem of finding the right amount of regular-
ization in the context of high-dimension GGMs learning. In a spirit similar to the
aforementioned methods, we first obtain selection frequencies from a collection
of models built by perturbing both the data and the regularization parameters. We
then model these selection frequencies by a mixture distribution to yield an esti-
mate of FDR on the selected edges, which is then used to determine the cut-off
threshold for the selection frequencies. This framework is rather general, as it only
depends on the empirical distribution of the selection frequencies. Thus, it can be
applied to a wide range of problems beyond GGMs.

The rest of this paper is organized as follows. In Section 2 we describe in de-
tail the proposed method. In Section 3 an extensive simulation study is conducted
to compare the method with the stability selection procedure and then evaluate
its performance under different settings. In Section 4 the method is illustrated by
building a genetic interaction network based on microarray expression data from a
BC study. The paper is concluded with some discussion in Section 5.

2. Method.

2.1. Gaussian graphical models. In a Gaussian Graphical Model (GGM) net-
work construction is defined by the conditional dependence relationships among
the random variables. Let Y = (Y1, . . . , Yp) denote a p-dimension random vector
following a multivariate normal distribution N(0,�), where � is a p × p posi-
tive definite matrix. The conditional dependence structure among Y is represented
by an undirected graph G = (U,E) with vertices U = {1,2, . . . , p} representing
Y1, . . . , Yp and the edge set E defined as

E = {
(i, j) :Yi and Yj are dependent given Y−{i,j},1 ≤ i, j ≤ p

}
,

where Y−{i,j} ≡ {Yk :k �= i, j,1 ≤ k ≤ p}. The goal of network construction is to
identify the edge set E. Under the normality assumption, the conditional indepen-
dence between Yi and Yj is equivalent to the partial correlation ρij between Yi and
Yj given Y−{i,j} being zero. It is also equivalent to the (i, j) entry of the concen-
tration matrix (�−1) being zero, that is, σij ≡ (�−1)ij = 0 [Dempster (1972), Cox
and Wermuth (1996)], since ρij = − σij√

σiiσjj
.

There are two main types of approaches to fitting a GGM. One is the maximum-
likelihood-based approach, which estimates the concentration matrix directly. The
other is the regression-based approach, which fits the GGM through identifying
nonzero regression coefficients of the following regression:

Yi = ∑
j �=i

βijYj + εi, 1 ≤ i ≤ p,
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where εi is uncorrelated with Y−i = {Yk, k �= i,1 ≤ k ≤ p}. The nonzero βij ’s in
the above regression setting correspond to nonzero entries in the concentration ma-
trix since it can be shown that βij = −σij /σii = ρij

√
σjj /σii . In both approaches,

there are O(p2) parameters to estimate, which requires proper regularization on
the model if p is larger than the sample size n. This can be achieved by making
a sparsity assumption on the network structure, that is, assuming that most pairs
of variables are conditionally independent given all other variables. Such an as-
sumption is reasonable for many real life networks, including genetic regulatory
networks [Gardner et al. (2003), Jeong et al. (2011), Tegner et al. (2003)]. Meth-
ods have been developed along these lines by using L1 regularization. For exam-
ple, Yuan and Lin (2007) proposed a sparse estimator of the concentration matrix
via maximizing the L1 penalized log-likelihood. Efficient algorithms were subse-
quently developed to fit this model with high-dimensional data [Friedman, Hastie
and Tibshirani (2008), Rothman et al. (2008)]. For regression-based approaches,
Meinshausen and Bühlmann (2006) considered the neighborhood selection esti-
mator by minimizing p individual loss functions

L(i)(β,Y ) = 1

2

∥∥∥∥Yi − ∑
j :j �=i

βijYj

∥∥∥∥2

+ λ
∑

j :j �=i

|βij |, i = 1, . . . , p,(2.1)

while Peng et al. (2009) proposed the space algorithm by minimizing the joint loss

L(Y, θ) = 1

2

{ p∑
i=1

∥∥∥∥Yi − ∑
j :j �=i

√
σjj

σii

ρijYj

∥∥∥∥2
}

+ λ
∑

1≤i<j≤p

|ρij |.(2.2)

From objective functions (2.1) and (2.2), it is clear that the selected edge set de-
pends on the regularization parameter λ. Since the goal here is to recover the true
edge set, ideally λ should be determined based on considerations such as FDR and
power with respect to edge selection. Moreover, when the sample size is limited,
a model-aggregation-based strategy can improve the selection result compared to
simply tuning the regularization parameter. Thus, in the following section, we in-
troduce a new model-aggregation-based procedure that selects edges based on di-
rectly controlling the FDRs.

Throughout the rest of this paper, we refer to the set of all pairs of variables as
the candidate edge set (denoted by 	), the subset of those edges in the true model
as the true edge set (denoted by E) and the rest as the null edge set (denoted
by Ec). We denote the size of a set of edges by | · |. Note that 	 = E ∪ Ec and the
total number of edges in 	 is N	 = |	| = p(p − 1)/2.

2.2. Model aggregation. Consider a good network construction procedure,
where good is in the sense that the true edges are stochastically more likely to
be selected than the null edges. Then it would be reasonable to choose edges with
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high selection probabilities. In practice, these selection probabilities can be esti-
mated by the selection frequencies over networks constructed based on perturbed
data sets. In the following, we formalize this idea.

Let A(λ) be an edge selection procedure with a regularization parameter λ and
Sλ(Y ) ≡ Sλ(A(λ),Y ) be the set of selected edges by applying A(λ) to data Y . The
selection probability of edge (i, j) is defined as

pij = E
(
I
{
(i, j) ∈ Sλ(Y )

})
,

where I {·} is the indicator function. Let R(Y ) be the space of resamples from
Y (e.g., through bootstrapping or subsampling). For a random resample Y ′ from
R(Y ), we define

p̃ij = E
(
I
{
(i, j) ∈ Sλ(

Y ′)}) = E
(
E

(
I
{
(i, j) ∈ Sλ(

Y ′)} | Y ))
.

In many cases (see Section C in the supplemental article [Li et al. (2013)]), pij ’s
and p̃ij ’s are close. For these cases, we can estimate pij by the selection frequency
Xij , which is the proportion of B resamples in which the edge (i, j) is selected:

Xλ
ij ≡ Xij

(
A(λ);Y 1, . . . , YB ∈ R(Y )

)
(2.3)

= 1

B

B∑
k=1

I
{
(i, j) ∈ Sλ(

Y k)}, 1 ≤ i < j ≤ p.

The aggregation-based procedures for choosing edges of large selection fre-
quencies can be represented as

Sλ
c = {

(i, j) :Xλ
ij ≥ c

}
for c ∈ (0,1].

Sλ
c is reasonable as long as most true edges have selection frequencies greater than

or equal to c and most null edges have selection frequencies less than c. Ideally,
we want to find a threshold c satisfying

Pr
({ ⋂

(i,j)∈E

{
Xλ

ij ≥ c
}} ∩

{ ⋂
(i,j)∈Ec

{
Xλ

ij < c
}})

→ 1 as n → ∞,(2.4)

so that the corresponding procedure Sλ
c is consistent, that is, Pr(Sλ

c = E) → 1. In
fact, if A(λ) is selection consistent and pij − p̃ij → 0, then

Pr
({ ⋂

(i,j)∈E

{
Xλ

ij = 1
}} ∩

{ ⋂
(i,j)∈Ec

{
Xλ

ij = 0
}})

→ 1 as n → ∞,(2.5)

and thus any c ∈ (0,1] satisfies (2.4). Note that (2.4) is in general a much weaker
condition than (2.5), which suggests that we might find a consistent Sλ

c even when
A(λ) is not consistent.

For the finite data case, an aggregation-based procedure could also perform bet-
ter than the original procedure, as illustrated by the following simulation example
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(a) (b)

FIG. 1. The distributions of selection frequencies based on a simulated data set. (a) The distribution
of selection frequencies of all edges. (b) Distributions of selection frequencies of null and true edges,
respectively (note that these are not observable in practice). Simulation is based on a power-law
network with p = 500, n = 200, and the number of true edges is 495. The space algorithm with
λ = 135 is used as the original nonaggregation procedure A(λ). For illustrating the tail behavior of
these distributions more effectively, we only show them on the selection frequency range [0.06, 1], as
there are too many edges with selection frequency less than 0.06.

(the simulation setup is provided in Section 3). Figure 1(a) shows the empirical
distribution of selection frequencies based on a simulated data set and Figure 1(b)
shows the empirical distributions of true edges (green triangles) and null edges
(red crosses). Note that most null edges have low selection frequencies < 0.4,
while most true edges have large selection frequencies > 0.6. This suggests that
with a properly chosen c (say, c ∈ [0.4,0.6]), Sλ

c will select mostly true edges and
only a small number of null edges. In fact, by simply choosing the cutoff c = 0.5,
Sλ

c outperforms A(λ) in both FDR and power (Figure 2).

2.3. Modeling selection frequency. Now we introduce a mixture model, sim-
ilar in spirit to Efron (2004a), for estimating the FDR of an aggregation-based
procedure Sλ

c . We will use this estimate to choose the optimal c and λ by con-
trolling FDR while maximizing power. Assume that the selection frequencies
{Xλ

ij , (i, j) ∈ 	}, generated from B resamples, fall into two categories, “true” or
“null,” depending on whether (i, j) is a true edge or a null edge. Let π be the pro-
portion of the true edges. We also assume that Xλ

ij has density f λ
1 (x) or f λ

0 (x) if it

belongs to the “true” or the “null” categories, respectively. Note that both f λ
1 and

f λ
0 depend on the sample size n, but such dependence is not explicitly expressed

in order to keep the notation simple. The mixture density for Xλ
ij can be written as

f λ(x) = (1 − π)f λ
0 (x) + πf λ

1 (x), x ∈ {0,1/B,2/B, . . . ,1}.(2.6)
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FIG. 2. Power and FDR of the aggregation-based procedure Sλ
c with cutoff c = 0.5 and the original

procedure A(λ) for λ = 96,114,135,160, with the rest of settings the same as in Figure 1.

Based on this mixture model, the (positive) FDR [Storey (2003)] of the
aggregation-based procedure Sλ

c is

FDR
(
Sλ

c

) = Pr
(
(i, j) ∈ Ec|(i, j) ∈ Sλ

c

) =
∑

x≥c(1 − π)f λ
0 (x)∑

x≥c f λ(x)
.(2.7)

Given an estimate F̂DR(Sλ
c ) (which will be discussed below) from (2.7), the num-

ber of true edges in Sλ
c can be estimated by

N̂E

(
Sλ

c

) = ∣∣Sλ
c

∣∣(1 − F̂DR
(
Sλ

c

))
,(2.8)

which can be used to compare the power of Sλ
c across various choices of c and λ,

as the total number of true edges is a constant. Consequently, for a given targeted
FDR level α, we first seek for the optimal threshold c for each λ ∈ �,

c∗(λ) = min
{
c : F̂DR

(
Sλ

c

) ≤ α
}
,(2.9)

and then we find the optimal regularization parameter

λ∗ = argmax
λ∈�

N̂E

(
Sλ

c∗(λ)

)
,(2.10)

such that the corresponding procedure Sλ∗
c∗(λ∗) achieves the largest power among

all competitors with estimated FDR not exceeding α.
The above procedure depends on a good FDR estimate, which in turn requires

good estimates of the mixture density f λ and its null-edge contribution (1−π)f λ
0 .

A natural estimator of f λ is simply the empirical selection frequencies, that is,

f̂ λ

(
k

B

)
= nλ

k

N	

, k = 0,1, . . . ,B,
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where N	 = p(p − 1)/2 is the total number of candidate edges and nλ
k =

|{(i, j) :Xλ
ij = k/B}| is the number of edges with selection frequencies equal to

k/B .
Before describing an approach to estimating π and f λ

0 , we note two observa-
tions from Figure 1(b). First, the contribution from the true edges to the mixture
density f λ is small in the range where the selection frequencies are small. Sec-
ond, the empirical distribution of f λ

0 is monotonically decreasing. These can be
formally summarized as the following condition.

PROPER CONDITION. There exist V1 and V2, 0 < V1 < V2 < 1, such that as
n → ∞:

(C1) f λ
1 → 0 on (V1,V2];

(C2) f λ
0 is monotonically decreasing on (V1,1].

This proper condition is satisfied by a class of procedures as described in the
lemma below (the proof is provided in the Appendix).

LEMMA 1. A selection procedure satisfies the proper condition if, as the sam-
ple size increases, p̃ij tends to one uniformly for all true edges and has a limit
superior strictly less than one for all null edges.

REMARK 1. It is easy to verify that all consistent procedures applied to sub-
sampling resamples satisfy the condition in Lemma 1. Other examples are proce-
dures that use randomized lasso penalties [Meinshausen and Bühlmann (2010)].
See Section 2.5 for more details.

The proper condition motivates us to estimate π and f λ
0 by fitting a parametric

model gθ for f λ in the region (V1,V2] and then extrapolating the fit to the region
(V2,1]. This is because if C1 is satisfied, then (1−π)f λ

0 can be well approximated
based on the empirical mixture density from the region (V1,V2]. If C2 is also
satisfied, the extrapolation of gθ will be a good approximation to (1 − π)f λ

0 on
(V2,1] for a reasonably chosen family of gθ .

We choose the parametric family as follows. Given p̃ij , it is natural to model
the selection frequency by a (rescaled) binomial distribution, denoted by b1(·|p̃ij ),
due to the independent and identical nature of resampling conditional on the orig-
inal data. Moreover, we use a powered beta distribution [i.e., the distribution of
Qγ where Q ∼ beta(a, b), a, b, r > 0] as the prior for p̃ij ’s, denoted by b2(·|θ)

with θ = (a, b, r). This is motivated by the fact that the beta family is a commonly
used conjugate prior for the binomial family, and the additional power parame-
ter γ simply provides more flexibility in fitting. Thus, the distribution of selection
frequencies of null edges is modeled as

hθ(x) =
∫ 1

0
b1(x|τ)b2(τ |θ) dτ.
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The null-edge contribution (1 − π)f λ
0 can be estimated by fitting hθ to the empir-

ical mixture density f̂ λ in the fitting range (V1,V2], which, in practice, is deter-
mined based on the shape of f̂ λ (details are given in Section 2.4). Specifically, we
estimate π and f λ

0 by π̂ and h
θ̂
, via

(π̂, θ̂ ) = argmin
π,θ

L
(
f̂ λ(·), (1 − π)hθ (·)),(2.11)

where L(f,g) ≡ −∑
x∈(V1,V2][f (x) logg(x)], which amounts to the Kullback–

Leibler distance.

2.4. Proper regularization range. Following what we propose in Section 2.3,
we can evaluate the aggregation-based procedure Sλ

c for different choices of (λ, c)

with regard to model–selection–based criteria: the FDR and the number of selected
true edges. For the range of λ, we consider those that yield “U-shaped” empirical
distributions of selection frequencies, that is, f̂ λ decreases in the small-selection-
frequency range and then increases in the large-selection-frequency range [see Fig-
ure 1(a) and Figure 3 for examples of “U-shaped” distribution]. The decreasing
trend is needed for the proper condition to hold, while the increasing trend helps
to control the FDR, since an Sλ

c with FDR ≤ α implies, by (2.7), that

∑
x≥c

f λ(x) ≥ (1 − π)
∑

x≥c f λ
0 (x)

α
.(2.12)

FIG. 3. An illustration for the proposed U-shape identification procedure. The empirical distri-
bution (f̂ λ) is the same as the one in Figure 1. The smooth curve (f̃ λ) is fitted by the R-function
smooth.spline with df = 4. Locations of v1, v2, μ1 and μ2 are found by following steps in the
U-shape detection procedure.
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U-shape detection procedure

1. INPUT f̂ λ, the empirical density of selection frequencies. Set U = 1 (the U-
shape indicator).

2. Check U-shape.
2.1. Check valley point.

2.1.1. Calculate v2 = argminx f̃ λ(x), the valley point position,
where f̃ λ is a smooth curve fitted based on f̂ λ. (We use
the R-function smooth.spline(), where the degree of
freedom parameter is determined such that the derivative
of f̃ λ has only one sign change.)

2.1.2. IF v2 > 0.8
Set U = 0, GOTO Step 3.

END IF
2.2. Calculate v1 = argmaxx<v2

f̂ λ(x), the peak before v2.
2.3. Check if f̂ λ is “roughly” decreasing on (v1, v2].

2.3.1. Calculate μ1 = (v1 + v2)/2, s1 = ∑
x∈[v1,μ1] f̂

λ(x) and
s2 = ∑

x∈[μ1,v2] f̂
λ(x).

2.3.2. IF s1 < s2
Set U = 0, GOTO Step 3.

END IF
2.4. Check if f̂ λ is “roughly” increasing on (v2,1].

2.4.1. Calculate μ2 = (v2 + 1)/2, s3 = ∑
x∈[v2,μ2] f̂

λ(x) and
s4 = ∑

x∈[μ2,1] f̂ λ(x).
2.4.2. IF s3 > s4

Set U = 0, GOTO Step 3.
END IF

3. RETURN v1, v2,U .

Therefore, if f̂ λ is not sufficiently large at the tail, FDR ≤ α may not be
achieved for a small value of α. The increasing trend also helps to obtain de-
cent power since it guarantees a substantial size of Sλ

c . Based on our experience,
the λ values chosen based on (2.9) and (2.10) indeed always corresponds to a “U-
shaped” empirical selection frequency distribution.

Thus, we propose the following simple procedure for identifying “U-shaped”
f̂ λ’s to determine the proper regularization range in practice. An illustration for
this procedure is given in Figure 3.

REMARK 2. Step 2.1 is based on our extensive simulation where we find that
a large value of v2 often corresponds to a too-small λ, yielding too many null edges
with high selection frequencies, which makes (2.12) difficult to hold for reasonably
small FDR levels α (see Section D1 in the supplemental article [Li et al. (2013)]).
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BINCO procedure

1. INPUT � = (λ1, . . . , λk) the initial range of regularization parameter val-
ues; Yn×p the dataset; and α the desired FDR level.

2. FOR i = 1 TO k

2.1. λ = λi

2.2. Generate f̂ λ the empirical density of selection frequencies.
2.3. Check whether f̂ λ is U-shaped based on the output (v1, v2,U) from

the “U-Shape Detection Procedure.”
2.4. IF f̂ λ is U-shaped (i.e., U = 1)

2.4.1. Obtain the null density estimate f̂ λ
0 by (2.11).

2.4.2. Find the optimal threshold c∗(λ) by (2.9), where the FDR
is estimated based on (2.7) with f λ and f λ

0 replaced by f̂ λ

and f̂ λ
0 ,respectively.

2.4.3. Obtain Sλ
c∗(λ) and calculate N̂E(Sλ

c∗(λ)), the estimated
number of true edges being selected, based on (2.8).

END IF
ELSE N̂E(Sλ

c∗(λ)) = 0, Sλ
c∗(λ) = ∅.

2.5. OUTPUT N̂E(Sλ
c∗(λ)) and Sλ

c∗(λ).
NEXT i

3. Determine the optimal regularization λ∗ through (2.10). The optimal selec-
tion is Sλ∗

c∗(λ∗).

If f̂ λ is not recognized as “U-shaped” for a large range of λ’s, we would consider
the data as lack of signals where a powerful Sλ

c is not attainable. One example is
the empty network (see Section 3.2 and Figure S-1 in the supplemental article [Li
et al. (2013)]).

Sections 2.2–2.4 provide a procedure for network inference based on directly
estimating FDR. We name the procedure as BINCO—Bootstrap Inference for Net-
work COnstruction, as we suggest to use bootstrap resamples. The main steps are
summarized below.

2.5. Randomized lasso. For an L1 regularized procedure A(λ), the proper
condition (Section 2.3) is satisfied if A(λ) is selection consistent, which usually
requires strong conditions, for instance, the well-known irrepresentable condition
under the lasso regression setting [Zhao and Yu (2006), Zou (2006), Yuan and Lin
(2007), Wainwright (2009)] or the so-called neighborhood stability condition un-
der the GGM setting [Meinshausen and Bühlmann (2006), Peng et al. (2009)]. Re-
cently, Meinshausen and Bühlmann (2010) proposed the randomized lasso, which
is a procedure based on randomly sampled regularization parameters. For example,
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the randomized lasso version of space would be

L(Y, θ,W) = 1

2

{ p∑
i=1

∥∥∥∥Yi − ∑
j :j �=i

√
σjj

σii

ρijYj

∥∥∥∥2
}

+ λ
∑

1≤i<j≤p

|ρij |/wij ,(2.13)

where wij ’s are randomly sampled from a probability distribution p(w) sup-
ported on (l,1] for some l ∈ (0,1] (note that l = 1 corresponds to the ordinary
L1 penalty). The advantage of this randomized lasso procedure is that, by per-
turbing the regularization parameters, the irrelevant features may be decorrelated
from the true features in some configurations of randomly sampled weights such
that the irrepresentable condition is satisfied. Therefore, it selects all true features
with probability tending to 1 and any irrelevant feature with a limiting probability
strictly less than 1. As a result, a consistent aggregation-based procedure can be
achieved under conditions “typically much weaker than the standard assumption of
the irrepresentable condition” [Meinshausen and Bühlmann (2010), Theorem 2].
For this case, based on Lemma 1, the proper condition is also satisfied.

If (2.13) is used as the original (nonaggregated) procedure, an additional param-
eter l, which controls the amount of perturbation of the regularization parameter,
needs to be chosen. A small l guards better against false positives but damages
power, while a large l may result in a liberal procedure. Here we provide a two-
step data-driven procedure for choosing an appropriate l in BINCO. We first fix
l = 1, that is, the ordinary L1 penalty, to find a proper range �∗ for λ that corre-
sponds to the “U-shaped” empirical mixtures. Then for each λ ∈ �∗, we consider
a set of pairs �2 = {(λi, li), i = 1, . . . ,m} such that

∫ 1
li

λi

w
p(w)dw = λ, that is,

keeping the average amount of regularization unchanged. For example, in the sim-
ulation study, we use li = i/10, i = 1, . . . ,9. We then pick the pair (λ∗, l∗) ∈ �2
such that l∗ is the smallest among those l’s that yield U-shaped empirical mixture
distributions. Our simulation shows that such a choice of (λ∗, l∗) ensures good
power for BINCO while controlling FDR in a slightly conservative fashion.

3. Simulation. In this section we first compare the performance of BINCO
with stability selection [Meinshausen and Bühlmann (2010)], and then investigate
the performance of BINCO with respect to various factors, including the network
structure, dimensionality, signal strength and sample size.

We use space [Peng et al. (2009)] coupled with randomized lasso (2.13) as the
original nonaggregate procedure, where the random weights 1

wij
’s are generated

from the uniform distribution U [1,1/l] for l ∈ (0,1]. The selection frequencies
are obtained based on B = 100 resamples. Since subsampling of size [n/2] is pro-
posed for stability selection, we use subsampling to generate resamples when com-
paring BINCO and stability selection. For investigating BINCO’s performance,
we use bootstrap resamples because it yields slightly better performance (see Re-
mark 4).
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The performance of both methods are evaluated by true FDRs and power, since
for simulations we know whether an edge is true or null. In addition, we de-
fine ideal power, which is the best power one can achieve for Sλ

c given the true
FDR ≤ α (in simulation we consider α = 0.05 and α = 0.1). Based on ideal power,
we can evaluate the efficiency of the methods under different settings. For each
simulation setting, results are based on 20 independent simulation runs.

3.1. Comparison between BINCO and stability selection. Stability selection
procedure selects S�

stable(t) ≡ {(i, j) : maxλ∈�(Xλ
ij ) ≥ t}, a set of edges with the

maximum selection frequency over a prespecified regularization set � exceeding
a threshold t . Assuming an exchangeability condition upon the irrelevant variables
(here the null edges), Meinshausen and Bühlmann [(2010), Theorem 1] derived an
upper bound for the expected number of falsely selected variables for each choice
of t > 0.5. Specifically, under suitable conditions, the expected number of null
edges selected by the set S�

stable(t), denoted by E(V ), satisfies

E(V ) ≤ q2
�

(2t − 1)N	

,(3.1)

where N	 = p(p − 1)/2 is the total number of candidate edges and q� is the
expected number of edges selected under at least one λ ∈ �. In practice, q� can be
estimated by 1

B

∑B
i=1 |⋃λ∈� Sλ(Y i)|. Dividing both sides of (3.1) by |S�

stable(t)|,
we obtain

E(V )

|S�
stable(t)|

≤ q2
�

(2t − 1)N	 · |S�
stable(t)|

.(3.2)

Although stability selection is intended to control E(V ), for an easier comparison
with BINCO, we use E(V )

|S�
stable(t)|

to approximate FDR and obtain the optimal S�
stable(t)

by finding the smallest threshold t such that the upper bound on the right-hand side
of (3.2) is less than or equal to α.

For data generation, we first consider a power-law network with p = 500 nodes
whose degree (i.e., the number of connected edges for each node) distribution fol-
lows P(k) ∼ k−γ . The scaling exponent γ is set to be 2.3, which is consistent with
the findings in the literature for biological networks [Newman (2003)]. There are
in total 495 true edges in this network and its topology is illustrated in Figure 5(a).
The sample size is n = 200. Two settings with different signal strengths are consid-
ered: (1) strong signal, the mean and standard deviation (SD) of nonzero |ρij |’s are
0.34 and 0.13, respectively; (2) weak signal, the mean and SD of nonzero |ρij |’s
are 0.25 and 0.09, respectively. Note both positive and negative correlations are
allowed in this network.

We compare the performance of BINCO and stability selection at a targeted
FDR level of 0.05. For BINCO, we consider �0 = {40,50, . . . ,100} as the initial
range for λ and then obtain the optimal final selection following the steps at the



404 LI, HSU, PENG AND WANG

end of Section 2.4. For stability selection, since no specific guidance was provided
for choosing � and l (the randomized lasso regularization perturbation parameter),
we consider three different values for l ∈ {0.5,0.8,1} and a collection of intervals
� = (λmin, λmax) with λmin varying from 40 to 100 and λmax = 100. This choice
of � is due to the fact that the upper bound in (3.2) cannot be controlled at 0.05 for
any t for λmin < 40, and the performance of stability selection is largely invariant
for λmax.

When the signals are strong, BINCO gives a conservative FDR = 0.026 but
still maintains good power = 0.801 [Figures 4(a) and 4(c)]. The performance of

(a) (b)

(c) (d)

FIG. 4. The FDR (top panels) and power (bottom panels) for BINCO and stability selection (Stab.
Sel.). (a) and (c) are for the strong signal setting; (b) and (d) are for the weak signal setting.
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TABLE 1
Power comparison between BINCO and stability selection under strong and weak signals

Stability selection

Ideal1 BINCO l = 1 l = 0.8 l = 0.5

Strong signal Power 0.853 0.801 0.8183 0.7853 0.706

MPE2 1 0.939 0.9593 0.9203 0.828

Weak signal Power 0.616 0.569 0.434 0.407 0.170

MPE2 1 0.924 0.705 0.661 0.276

1“Ideal” refers to the ideal power that can be achieved when the true distribution of null edges is
known.
2Method Power Efficiency (MPE) = method power/ideal power.
3FDR control failed.

stability selection varies for different choices of λmin and l. The FDRs are larger
than the targeted level 0.05 for some λmin’s when l = 0.8 and for all λmin’s when
l = 1. For other cases (some λmin’s when l = 0.8 and all λmin’s when l = 0.5),
the FDR control is very conservative and the corresponding power is consistently
lower than BINCO. When the signals are weak, stability selection is much more
conservative than BINCO and results in much lower power [Figures 4(b) and 4(d)].
In Table 1 we report the ideal power, the power for BINCO and the best power for
stability selection (among different choices of λmin) under l = 0.5, 0.8 and 1. We
also calculate the power efficiency as the ratio of the power for the method over
the ideal power, for BINCO and stability selection, respectively. It can be seen
that the power of BINCO is close to the ideal power for both levels of signal
strength, while stability selection is too conservative when the signal strength is
weak. For more detailed results, see Section A1 in the supplemental article [Li et
al. (2013)].

REMARK 3. In some cases we find that stability selection fails to control FDR.
We suspect this may be due to the violation of the exchangeability assumption in
Theorem 1 of Meinshausen and Bühlmann (2010). We examine the impact of the
exchangeability assumption by simulation and find that when it is violated, the
theoretical upper bound in (3.1) for E(V ) may not hold (see Section D2 in the
supplemental article [Li et al. (2013)] for further details).

3.2. Further investigation of BINCO. Now we investigate the effects of the
network structure, dimensionality, signal strength and sample size on the perfor-
mance of BINCO.
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(a) (b) (c)

FIG. 5. Different network topologies: (a) Power-law network, number of true edges = 495; (b) Em-
pirical network, number of true edges = 633; (c) Hub network, number of true edges = 587. All three
networks have p = 500 nodes.

Network structure.
We consider four different network topologies: empty network, power-law net-

work, empirical network and hub network. In each network there are five discon-
nected components with 100 nodes each. Below is a brief description of the net-
work topologies:

(1) Empty network: there is no edge connecting any pair of nodes.
(2) Power-law network: the degree follows a power-law distribution with pa-

rameter γ = 2.3 as described in Section 3.1 [Figure 5(a)].
(3) Empirical network: the topology is simulated according to an empirical de-

gree distribution of one genetic regulatory network [Schadt et al. (2005)] [Fig-
ure 5(b)].

(4) Hub network: three nodes per component have a large number of connecting
edges (>15) and all other nodes have a small number of connecting edges (<5)
[Figure 5(c)].

We set the sample size n = 200. The signal strength for all networks except for
the empty network is fixed at the strong level as in Section 3.1.

For the empty network, the empirical mixture distributions of selection frequen-
cies monotonically decrease on a wide range of λ (Figure S-1) and are not recog-
nized by BINCO as “U-shaped.” Thus, we reach the correct conclusion that there is
no signal in this case. In contrast, data sets from the other three networks produce
the desired “U-shaped” mixture distributions for some λ (Figure S-2).

We compare BINCO results across networks 2-4 with FDR targeted at level
α = 0.05 and 0.1. BINCO gives slightly conservative control on FDR and achieves
reasonable power for all three networks (Table 2). The comparison to the ideal
power shows that the network topologies investigated here have only a small effect
on BINCO’s efficiency (Table 3).
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TABLE 2
Investigation of the impact of different networks on BINCO performance

Targeted FDR = 0.05 Targeted FDR = 0.10

FDR Power FDR Power

Network topology Mean SD Mean SD Mean SD Mean SD

Power-law 0.046 0.009 0.810 0.013 0.096 0.013 0.845 0.013
Empirical 0.032 0.019 0.523 0.040 0.068 0.034 0.565 0.040
Hub 0.023 0.009 0.644 0.021 0.052 0.012 0.692 0.017

Dimensionality. We investigate the impact of dimensionality on the perfor-
mance of BINCO. We consider the power-law network and let the number of nodes
p vary from 500, 800 to 1000. To keep the complexity of each component the same
across different choices of p, we set the component size constant, being 100, and
the number of components C = p/100. Again the sample size n = 200 is used for
all three cases and the signal strength is fixed at the strong level as in Section 3.1.

For all three choices of p, BINCO performs similarly (Table 4), with slightly
conservative FDR and power around 0.8. The dimensionality does not demonstrate
a significant impact on BINCO. BINCO’s result is also largely invariant when
we compare networks of differing numbers of components with p fixed (such
that component size varies, see Section A3 in the supplemental article [Li et al.
(2013)]).

Signal strength. We consider three levels of signal strength: strong, weak and
very weak. The corresponding means and SDs of nonzero |ρij |’s are (0.34,0.13),
(0.25,0.09) and (0.21,0.07), respectively. The network is the power-law network
with p = 500 and sample size is n = 200 for all settings.

BINCO provides good control on FDR, however, the power decreases from 0.8
to 0.3 as the signal weakens (Table 5). Comparing the power of BINCO with the

TABLE 3
Comparison of BINCO power and ideal power under different networks

Targeted FDR = 0.05 Targeted FDR = 0.10

Topology Power-law Empirical Hub Power-law Empirical Hub

BINCO power 0.810 0.523 0.644 0.845 0.565 0.692
Ideal power 0.856 0.595 0.736 0.881 0.631 0.776

MPE1 0.946 0.879 0.875 0.959 0.895 0.892

1Method Power Efficiency (MPE) = method power/ideal power.
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TABLE 4
Investigation of the impact of different dimensionality on BINCO performance

Targeted FDR = 0.05 Targeted FDR = 0.10

FDR Power FDR Power

Dimension p Mean SD Mean SD Mean SD Mean SD

500 0.046 0.009 0.810 0.013 0.096 0.013 0.845 0.013
800 0.030 0.007 0.769 0.010 0.083 0.010 0.811 0.012

1000 0.043 0.007 0.784 0.008 0.096 0.011 0.821 0.007

TABLE 5
Investigation of the impact of different signal strength on BINCO performance

Targeted FDR = 0.05 Targeted FDR = 0.10

FDR Power FDR Power

Signal strength Mean SD Mean SD Mean SD Mean SD

Strong 0.046 0.009 0.810 0.013 0.096 0.013 0.845 0.013
Weak 0.032 0.010 0.579 0.024 0.063 0.014 0.617 0.018
Very weak 0.035 0.026 0.252 0.040 0.065 0.037 0.310 0.039

ideal power (Table 6), we see that BINCO remains efficient and the loss in power
is largely due to reduction of signal strength.

Sample size. Now we consider the impact of sample size n by varying it from
200, 500 and 1000, while keeping the signal strength at the “very weak” level as
in the previous simulation. The network structure is again the power-law network
with p = 500.

TABLE 6
Power comparison of BINCO power and ideal power when the signal strength is strong, weak and

very weak

Targeted FDR = 0.05 Targeted FDR = 0.10

Signal strength Strong Weak Very weak Strong Weak Very weak

BINCO power 0.810 0.579 0.252 0.845 0.617 0.310
Ideal power 0.856 0.615 0.279 0.881 0.651 0.345

MPE1 0.946 0.941 0.903 0.959 0.948 0.899

1Method Power Efficiency (MPE) = method power/ideal power.
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TABLE 7
Investigation of the impact of different sample size on BINCO performance

Targeted FDR = 0.05 Targeted FDR = 0.10

FDR Power FDR Power

Sample size Mean SD Mean SD Mean SD Mean SD

200 0.035 0.026 0.252 0.040 0.065 0.037 0.310 0.039
500 0.024 0.010 0.684 0.012 0.049 0.011 0.714 0.014

1000 0.045 0.010 0.869 0.013 0.090 0.015 0.891 0.012

With an increased sample size, the power of BINCO is significantly improved
from 0.3 to nearly 0.9 while the FDRs are well controlled (Table 7).

In summary, BINCO has good control for FDR under a wide range of scenarios.
Its performance is shown to be robust for networks with different topologies and
dimensionalities, and its efficiency is not influenced much even when the signal
strength is weak. As the sample size increases, the power of BINCO is improved
significantly.

REMARK 4. We propose to use bootstrap over subsampling, as the former
appears to give slightly better power. Intuitively, bootstrap contains more distinct
samples [0.632n, Pathak (1962)] than [n/2] subsampling (0.5n). However, the dif-
ference we have observed is rather small. For example, we compare the power
over 20 independent samples between bootstrap and [n/2] subsampling under the
power-law network setting. For FDR = 0.05, the power is 0.810 for bootstrap and
0.801 for subsampling (compare Tables 3 and 1); while for FDR = 0.1, the power
is 0.845 for bootstrap and 0.835 for subsampling [compare Tables 3 and S-7 from
Li et al. (2013)]. This observation is in agreement with the conclusions of several
others [Menshausen and Bühlmann (2010), Freedman (1977), Bühlmann and Yu
(2002)].

4. A real data application. We apply the BINCO method to a microarray ex-
pression data set of breast cancer (BC) [Loi et al. (2007)] to build a gene expression
network related to the disease. The data (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE6532) contains measurements of expression levels of 44,928
probes in tumor tissue samples from 414 BC patients based on the Affymetrix
Human Genome U133A, U133B and U133 plus 2.0 Microarray platforms.

We preprocess the data as follows. First, a global normalization is applied by
centering the median of each array to zero and scaling the Median Absolute Devia-
tion (MAD) to one. Probes with standard deviation (SD) greater than the 25%-
trimmed mean of all SDs are selected. We further focus on a subset of 1257
probes for genes from cell cycle and DNA-repair related pathways (http://peiwang.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532
http://peiwang.fhcrc.org/internal/papers/DNArepair_CellCircle_related.csv/view
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532


410 LI, HSU, PENG AND WANG

FIG. 6. The empirical selection frequency distribution of all edges (dots) and the estimated selec-
tion frequency distribution of null edges (solid line). The three vertical lines are drawn at the cutoffs
C1 = 0.98, C2 = 0.93 and C3 = 0.85 for FDR at 0.05, 0.1 and 0.2, respectively.

fhcrc.org/internal/papers/DNArepair_CellCircle_related.csv/view), as these path-
ways have been shown to play significant roles in BC tumor initiation and de-
velopment. Clinical information including age, tumor size, ER-status (positive or
negative) and treatment status (tamoxifen treated or not) is incorporated in the
analysis as “fake genes” since we are also interested in investigating whether gene
expressions are associated with these clinical characteristics. Finally, we standard-
ize each expression level to have mean zero and SD one. The resulting data set
has p = 1261 genes/probes (including four clinical variables) and n = 414 tumor
samples.

We generate selection frequencies by applying the space algorithm with ran-
domized lasso regularization to B = 100 bootstrap resamples. The initial range of
the tuning parameter λ is set to be � = (100,120, . . . ,580). We then apply the
BINCO procedure and find that the optimal values for the regularization parame-
ters are λ = 340 and l = 0.9. The empirical distribution of selection frequencies
of all edges and the null density estimation are given in Figure 6. When the esti-
mated FDR is controlled at 0.05, 0.1 and 0.2, BINCO identifies 125, 222 and 338
edges, respectively. The estimated network for FDR = 0.2 is shown in Figure 7.
In this figure, two components of a large connectivity structure are observed. They
contain most of the genes that are connected by a large number of high-selection-
frequency edges. This constructed network can help to generate a useful biological
hypothesis and to design follow-up experiments to better understand the underly-
ing mechanism in BC. For example, BINCO suggests with high confidence for
the association between MAP3K4 and STAT3. MAP3K4 plays a role in the signal
transduction pathways of BC cell proliferation, survival and apoptosis [Bild and

http://peiwang.fhcrc.org/internal/papers/DNArepair_CellCircle_related.csv/view
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FIG. 7. Inferred networks at FDR = 0.2 from the BC expression data. A total of 338 edges (se-
lection frequencies ≥ 0.85) are identified. Among these 338 edges, those with selection frequencies
≥ 0.98 (corresponding to the set with FDR = 0.05) are colored in red, while other edges are colored
in green. Genes with degree >3 are labeled by their symbols; genes with degree >4 are indicated by
red nodes. In addition, the top ten genes with consistently high connection across perturbed data sets
are labeled in blue symbols.

Johnson (2001)], and the constitutive activation of STAT3 is also frequently de-
tected in BC tissues and cell lines [Hsieh, Cheng and Lin (2005)]. Interestingly,
both MAP3K4 and STAT3 play roles in the regulation of c-Jun, a novel candidate
oncogene whose aberrant expression contributes to the progression of breast and
other human cancers [Tront, Hoffman and Liebermann (2006); Shackleford et al.
(2011)]. The association between MAP3K4 and STAT3 detected by BINCO sug-
gests their potential cooperative roles in BC. It is also worth noting that for the
four clinical variables, the only edge with high selection frequency is the one be-
tween age and ER-status (selection frequency = 0.96). All edges between clinical
variables and the genes/probes are insignificant (selection frequencies < 0.12).

Networks built on perturbed data sets can also be used to detect hub genes (i.e.,
highly connected genes), which are often of great interest due to the central role
these genes may play in genetic regulatory networks. The idea is to look for genes
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that show consistent high connection in estimated networks across perturbed data
sets. Here, we propose to detect hub genes by the ranks of their degrees based on
the estimated networks using λ = 340 and l = 0.9. The ten genes with the largest
means and the smallest SDs of the degree rank across 100 bootstrap resamples
(see Figure S-3, in black dots) are MBD4, TARDBP, DDB2, MAP3K4, ORC3L,
CDKN1B, REL, ATR, LGMN and CDKN3. Nine out of these ten genes have been
reported relevant to BC, while the remaining one (TARDBP) is newly discovered
to be related to cancer [Postel-Vinay et al. (2012)], although its role in BC is not
clear at present. The neighborhood topologies of these hub genes in the network
estimated by BINCO are illustrated in Figure 7. More details of these hub genes
are given in the supplemental article [Li et al. (2013)], Section B.

5. Discussion. In this paper we propose the BINCO procedure to conduct
high-dimensional network inference. BINCO employs model aggregation strate-
gies and selects edges by directly controlling the FDR. This is achieved by mod-
eling the selection frequencies of edges with a two-component mixture model,
where a flexible parametric distribution is used to model the density for the null
edges. By doing this, BINCO is able to provide a good estimate of FDR and hence
properly controls the FDR. To ensure BINCO works, we propose a set of screen-
ing rules to identify the U-shape characteristic of empirical selection frequency
distributions. Based on our experience, a U-shape corresponds to a proper amount
of regularization such that the FDR is well controlled and the power is reasonable.
Extensive simulation results show that BINCO performs well under a wide range
of scenarios, indicating that it can be used as a practical tool for network inference.
Although we focus on the GGM construction problem in this paper, BINCO is ap-
plicable to a wide range of problems where model selection is needed because it
provides a general approach to modeling the selection frequencies.

We use a mixture distribution with two components, one corresponding to true
edges and the other corresponding to null edges, to model the selection frequency
distribution. This two-component mixture model is adequate as long as the dis-
tribution of the null component is identifiable and can be reasonably estimated,
as formalized in the proper condition. Note that the proper condition holds for a
wide range of commonly used (nonaggregation) selection procedures (Lemma 1,
Remark 1). To further ensure the FDR can be controlled at a reasonable level, we
propose a U-shape detection procedure and only apply BINCO if the empirical
distribution of selection frequencies passes the detection. These rules for U-shape
detection are empirical but appear to work very well based on our extensive simu-
lations.

BINCO works well despite the presence of correlations between edges (see Sec-
tion D1 in the supplemental article [Li et al. (2013)]), because we use the inde-
pendence of edges only as a working assumption . It is well known that if the
marginal distribution is correctly specified, the parameter estimates are consistent
even in the presence of correlation. This is similar to the generalized estimating
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equations, where if the mean function is correctly specified, the parameters will
be consistently estimated [Liang and Zeger (1986)]. Toward this end, we use the
three-parameter power beta distribution to allow for adequate flexibility in model-
ing the marginal distribution of selection frequencies.

BINCO is computationally feasible for high-dimensional data. The major com-
putational cost lies in generating the selection frequencies via resampling. For each
resample, the computational cost is determined by that of the nonaggregated pro-
cedure BINCO coupled with. In terms of space, it is O(np2). The processing time
for a data set with n = 200, p = 500, under a given λ and 100 bootstrap sam-
ples to generate selection frequencies is about 20 minutes on a PC with Pentium
dual-core CPU at 2.8 GHz and 1 G ram. These selection frequencies can be si-
multaneously generated through parallel computing for different λ’s and weights.
Fitting the mixture model takes much less time, which is about 2 minutes for the
above example on the same computer.

Although we use GGM as our motivating example, BINCO works well even
if the multivariate normality assumption does not hold. Note that the multivariate
normality assumption only concerns the interpretation of the edges. Under GGM,
the presence of an edge means conditional dependency of the corresponding nodes
given all other nodes. Without the normality assumption, one can only conclude
nonzero partial correlation between the two nodes given the rest of the nodes.
The space method used in this paper is to estimate the concentration network
(where an edge is drawn between two nodes if the corresponding partial corre-
lation is nonzero) and has been shown to work well under nonnormal cases such
as multivariate-t distributions [Peng et al. (2009)]. We also generate data from
nonnormal distributions and found that BINCO works well in this situation (see
Section D4 in the supplemental article [Li et al. (2013)]).

BINCO is an aggregation-based procedure. In principle, it can be coupled with
any selection procedure. In this sense, it has a wide range of applications as long as
the features are defined (e.g., edges as in this paper, variables or canonical correla-
tions as in the example below) and the selection procedure is reasonably good, for
example, producing probabilities that satisfy the condition in Lemma 1. One ap-
plication beyond GGM could be on the multi-attribute network construction where
the links/edges are defined based on canonical correlations [Waaijenborg, Verse-
lewel de Witt Hamer and Zwinderman (2008), Katenka and Kolaczyk (2012), Wit-
ten, Tibshirani and Hastie (2009)]. Another interesting extension may be on the
time-varying network construction [Kolar et al. (2010)] where appropriate incor-
poration of the time-domain structure across aggregated models will be important.
These are beyond the scope of this paper and will be pursued in future research.

The R package BINCO is available through CRAN.



414 LI, HSU, PENG AND WANG

APPENDIX: PROOF OF LEMMA 1

PROOF. Suppose as the sample size n increases, an edge selection procedure
A(λ) gives selection probabilities {p̃(n)

ij } (with respect to resample space) which
uniformly satisfy

p̃
(n)
ij → 1 if (i, j) ∈ E(A.1)

and

lim sup p̃
(n)
ij ≤ M < 1 if (i, j) ∈ Ec.(A.2)

Suppose B is large such that B+1
B

M < 1. Let X be a random sample from the
set of selection frequencies {Xλ

ij } generated by applying A(λ) on B resamples, that

is, Pr(X = Xλ
ij ) = 1/N	, (i, j) ∈ 	. Also suppose X has density f λ

ij if X = Xλ
ij .

Then the mixture model (2.6) becomes

f λ(x) = (1 − π)f λ
0 (x) + πf λ

1 (x)
(A.3)

= ∑
(i,j)∈Ec

1

N	

f λ
ij (x) + ∑

(i,j)∈E

1

N	

f λ
ij (x)

with (1 − π)f λ
0 (x) = ∑

(i,j)∈Ec
1

N	
f λ

ij (x) and πf λ
1 (x) = ∑

(i,j)∈E
1

N	
f λ

ij (x).

Because of the i.i.d. nature of resamples given the data, f λ
ij is a binomial

density with p̃
(n)
ij as the probability of success, that is, f λ

ij (x) = (B
k

)
(p̃

(n)
ij )k(1 −

p̃
(n)
ij )B−k for x = k/B, k = 0,1, . . . ,B . This binomial density is monotone de-

creasing for x greater than its mode μij = [(B+1)p̃
(n)
ij ]

B
or

[(B+1)p̃
(n)
ij ]−1

B
. By (A.2),

given V1 = B+1
B

M < 1 and ε > 0 such that V1 + ε < 1, ∃N such that for
all n > N max(i,j)∈Ec(μij ) < V1 + ε and hence for any null edge (i, j) ∈ Ec,
f λ

ij (x) is monotone decreasing on [V1 + ε,1], which implies C2 since f λ
0 (x) =

1
(1−π)N	

∑
(i,j)∈Ec f λ

ij (x). Also, (A.1) implies, for (i, j) ∈ E, f λ
ij (x) → 0 uni-

formly for x < 1, which implies C1 for any V2 < 1. Taking V2 such that V1 <

V2 < 1 satisfies the proper condition and completes the proof. �
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