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CONVERGENCE ANALYSIS OF SOME MULTIVARIATE MARKOV
CHAINS USING STOCHASTIC MONOTONICITY

BY KSHITIJ KHARE AND NABANITA MUKHERJEE

University of Florida and Center for Outcome Research

We provide a nonasymptotic analysis of convergence to stationarity for
a collection of Markov chains on multivariate state spaces, from arbitrary
starting points, thereby generalizing results in [Khare and Zhou Ann. Appl.
Probab. 19 (2009) 737–777]. Our examples include the multi-allele Moran
model in population genetics and its variants in community ecology, a gener-
alized Ehrenfest urn model and variants of the Pólya urn model. It is shown
that all these Markov chains are stochastically monotone with respect to
an appropriate partial ordering. Then, using a generalization of the results
in [Diaconis, Khare and Saloff-Coste Sankhya 72 (2010) 45–76] and [Wil-
son Ann. Appl. Probab. 14 (2004) 274–325] (for univariate totally ordered
spaces) to multivariate partially ordered spaces, we obtain explicit nonasymp-
totic bounds for the distance to stationarity from arbitrary starting points. In
previous literature, bounds, if any, were available only from special starting
points. The analysis also works for nonreversible Markov chains, and allows
us to analyze cases of the multi-allele Moran model not considered in [Khare
and Zhou Ann. Appl. Probab. 19 (2009) 737–777].

1. Introduction. The theory of Markov chains plays a prominent role in the
fields of statistics and applied probability. Markov chains have a wide range of ap-
plications in numerous areas from particle transport through finite state machines
to the theory of gene expression. Some important applications include modeling
scientific phenomena in population genetics, statistical physics and image process-
ing. Another important use is simulating from an intractable probability distribu-
tion. It is a well-known fact that, under mild conditions discussed in [1], a Markov
chain converges to its stationary distribution. In the applications mentioned above,
often it is useful to know exactly how long to run the Markov chain until it reaches
sufficiently close to the stationary distribution. Answering this question as accu-
rately as possible, is what obtaining a “nonasymptotic convergence analysis” of
Markov chains is all about. The applied probability community has made signifi-
cant strides in this area in the past three decades. Despite this progress, answering
this question still remains a challenging task for various standard Markov chains
arising in applied probability and statistics. There are various examples where cur-
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rently available state of the art techniques can give upper bounds that are substan-
tially larger than the correct answer, often by orders of magnitude.

In the current paper, we provide a nonasymptotic analysis of convergence to sta-
tionarity for a collection of Markov chains in population genetics. The analysis is
based on a generalization of the monotone coupling argument to multivariate state
spaces. These Markov chains appear as standard models in population genetics and
ecology and include the multi-allele Moran process in population genetics and its
variants in community ecology, a generalized Ehrenfest urn model and the Pólya
urn process. These Markov chains were analyzed in [9], and the authors provide an
exact convergence analysis in terms of the “chi-square distance” by using spectral
techniques. But their analysis is somewhat incomplete because it works only for
some natural selected starting points. Stochastic monotonicity of a Markov chain,
along with the knowledge of a monotone eigenfunction (see [3] and [17]), can
be used to obtain a nonasymptotic convergence analysis from an arbitrary start-
ing point. Existing results in [3] and [17] require total ordering of the state space,
which generally works in the case of univariate state spaces. In multivariate state
spaces, however, there often exists a natural partial ordering. We prove that the
Markov chains being considered in this paper are stochastically monotone with re-
spect to an appropriate partial ordering; see Theorems 3.1, 3.2, 3.3. But stochastic
monotonicity of a Markov chain with respect to the partial ordering, even with the
knowledge of a monotone eigenfunction, is not enough to get desired convergence
bounds. However, an additional condition, satisfied by all the Markov chains un-
der consideration in this paper, enables us to obtain useful convergence bounds; see
Theorem 2.1. Another limitation of the spectral techniques used in [9] is that they
require reversibility of the Markov chain under consideration. The coupling argu-
ment presented in this paper also works for nonreversible Markov chains. Using
this, for example, we are able to obtain explicit convergence bounds for general-
izations of the standard multi-allele Moran model which are nonreversible.

Another important issue to understand is that out of the three classes of ex-
amples considered in this paper, the stationary distribution and the second largest
eigenvalue of the Markov chains corresponding to the generalized Ehrenfest urn
models and the Pólya urn models are known (the stationary distribution is un-
known for the general multi-allele Moran model). Hence, for these two models,
from a general starting point x, one could potentially consider the crude upper
bound λn

2
√

π(x)
for the total variation distance from stationarity after n steps. Here

π(x) denotes the mass put by the stationary distribution at x, and λ denotes the
second largest eigenvalue. However, the upper bounds derived in this paper mostly
provide a significant improvement over the crude upper bound. See the remarks in
Section 3.2.1 and Section 3.3.1.

Here is an example of our results. The Unified Neutral Theory of Biodiversity
and Biogeography (UNTB) is an important theory proposed by ecologist Stephen
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Hubbell in his monograph [7] which is used in the study of diversity and species
abundances in ecological communities. There are two levels in Hubbell’s theory,
a metacommunity and a local community.

We concentrate here on the evolution of the local community. The local com-
munity has constant population size N with d different species. At each step, one
individual is randomly chosen to die and is replaced by a new individual. With
probability m, the new individual is chosen randomly from the metacommunity,
which has proportion pi of species i (i = 1,2, . . . , d). With probability 1 − m,
the new individual is randomly chosen from the remaining N − 1 individuals in
the local community. This process is a variant of the so-called multi-allele Moran
model in population genetics [5]. The metacommunity evolves at a much larger
time scale and is assumed to be fixed during the evolution of the local community.

A very important issue of both practical and theoretical interests is to determine
how soon a local community reaches equilibrium (see McGill [11]). Let K(·, ·)
be the transition density of our local community Markov chain with state space X
and stationary density π . Let x ∈ X be the initial state of the Markov chain. We
are interested in answering the following question. For arbitrary ε > 0, how many
steps, n, are needed so that the total variation distance between the density of the
Markov chain after n steps and the stationary density is less than ε? More precisely,
we want to find n such that

‖Kn
x − π‖TV = 1

2

∑
X

|Kn(x,x′) − π(x′)| ≤ ε,

where Kn
x denotes the density of the chain started at state x after n steps.1

Khare and Zhou [9] provide an exact answer to this question in terms of the
“chi-square distance” by using spectral techniques, when all individuals belong
to the same species to begin with. So providing any nonasymptotic convergence
bounds from an arbitrary starting point was still unresolved. Convergence bounds
for the general local community Markov chain are provided in Section 3.1, with
an arbitrary starting point. Note that the upper and lower bounds obtained are not
exactly matching, but they are within a reasonable range of each other. Considering
the fact that no useful analysis was available from an arbitrary starting point, the
bounds provided are definitely a significant step forward.

As an illustration, note that under suitable parametrization (see [9]), the lo-
cal community process by Hubbell is the same as the Pólya down–up model;
see Section 3.2. Suppose that the local community has population size N = 100
with d = 5 species. With probability m = 0.9, the new individual is chosen
randomly from the meta-community with uniform species frequencies p =

1For ease of exposition, if f and g are densities with respect to the counting measure on a finite
state space X , ‖f − g‖TV will denote the total variation distance between the probability measures
corresponding to f and g.
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(0.2,0.2,0.2,0.2,0.2). Let X = (X1, . . . ,Xd) be any (random) count vector of
the local community, where Xi is the count of individuals of species i. From Sec-
tion 3.2, for a starting state x = (0,10,0,10,80), the bounds on the total variation
distance are obtained as

0.375
(

1 − 1

111

)n

≤ ‖Kn
x − π‖TV ≤ 100

(
1 − 1

111

)n

.(1.1)

For ε = 0.01, (1.1) tells us that at least 401 steps are necessary and at most 1018
steps are sufficient for the total variation distance to be less then 0.01. The crude
upper bound for total variation distance is (2.2186 × 1019)(1 − 1/111)n which
gives 5432 steps are sufficient for the total variation distance to be less then 0.01.

The paper is organized in the following way. In Section 2, we provide the nec-
essary background for stochastic monotonicity, and then proceed to prove The-
orem 2.1, which generalizes the results in [3] and [17] to multivariate partially
ordered finite state spaces to obtain convergence bounds, under appropriate mono-
tonicity assumptions. In Section 3, three classes of Markov chains: multi-allele
Moran model, generalized Ehrenfest urn model and generalized Pólya urn model
are considered. Each of these Markov chains is shown to be stochastically mono-
tone with respect to an appropriate partial ordering, and also shown to satisfy the
other assumptions in Theorem 2.1. All these are combined to provide nonasymp-
totic convergence bounds for these classes of Markov chains from arbitrary starting
points. We conclude the paper with a short discussion in Section 4.

2. Monotone Markov chains.

2.1. Background. Let X be a finite state space with total ordering ≤. Let
K(·, ·) be a Markov kernel on X . We say K is stochastically monotone if for
all x ∈ X and x′ ∈ X with x ≤ x′,∑

y≤y′
K(x,y) ≥ ∑

y≤y′
K(x′, y) for all y′ ∈ X .

Monotone Markov chains have been thoroughly studied and applied. See Lund
and Tweedie [10], Stoyan [15] and the references therein. They are currently pop-
ular because of “coupling from the past.” See David Wilson’s website on perfect
sampling, http://research.microsoft.com/en-us/um/people/dbwilson/exact, for ex-
tensive references on this subject.

Alternatively, if the state space X of a Markov chain is totally ordered (e.g.,
a subset of Z and R), then the Markov chain with corresponding transition oper-
ator K is stochastically monotone if for every monotone function f : X → R, the
function Kf is also monotone. There is a standard coupling technique available for
monotone Markov chains on totally ordered spaces. Wilson [17] uses this coupling
technique in the presence of an explicit eigenfunction to provide general conver-
gence bounds for stochastically monotone Markov chains on totally ordered finite

http://research.microsoft.com/en-us/um/people/dbwilson/exact
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state spaces. Diaconis, Khare and Saloff-Coste [3] provide extensions for general
state spaces and use these results to analyze certain two-component Gibbs sam-
plers.

However, for multivariate state spaces, there is often no natural total order-
ing, but there exists a natural partial ordering. For example, if X consists of d-
dimensional vectors, then entry-wise domination gives rise to a standard partial
ordering. A Markov chain with corresponding transition operator K is monotone
with respect to a partial ordering, if whenever f : X → R is monotone with re-
spect to the partial ordering, Kf is monotone with respect to the partial ordering.
See Fill and Machida [6], Beskos and Roberts [2], Roberts and Rosenthal [14] and
the references therein for varied applications. The literature on perfect sampling
mainly consists of various techniques for simulating from specific distributions on
partially ordered spaces with a unique minimal and maximal element; see Propp
and Wilson [13]. Note that, unlike perfect sampling, our focus is to analyze given
Markov chains corresponding to specific models, and not to devise Markov chains
to simulate from a specified distribution.

The theorem listed below generalizes earlier results in Wilson [17] and Diaco-
nis, Khare and Saloff-Coste [3] (for univariate totally ordered spaces) to multivari-
ate partially ordered spaces in order to obtain nonasymptotic convergence results.

2.2. Convergence of monotone Markov chains: General result.

THEOREM 2.1. Let K be the transition density of a Markov chain on a finite
state space X equipped with a partial ordering, 	. Suppose that K has a station-
ary distribution with density π , and the following conditions are satisfied:

(a) K is monotone with respect to the partial ordering, 	.
(b) (Pair-wise dominance property) For an arbitrary x and y in X , there exists

z(x,y) (depends possibly on x and y) such that z either dominates x and y or is
dominated by both x and y with respect to 	.

(c) λ ∈ (0,1) is an eigenvalue of K with strictly monotone eigenfunction f

such that

c1 = inf
x∗	y∗,x∗ �=y∗{f (y∗) − f (x∗)|x∗,y∗ ∈ X } > 0, c2 = sup

x∈X
|f (x)| > 0.

Then for any starting state x,

λn

2c2
|f (x)| ≤ ‖Kn

x − π‖TV ≤ λn

c1
E|f (Y) + f (x) − 2f (z(x,Y))|,

where Y ∼ π .

PROOF. Let x∗ ∈ X and y∗ ∈ X satisfy x∗ 	 y∗. It is well known that if a
probability distribution μ on X is stochastically dominated by another probability
distribution ν on X , that is,

∫
f dμ ≤ ∫

f dν for every monotone function f , then
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we can construct random variables X and Y such that X ∼ μ,Y ∼ ν and X 	 Y;
see for example [8]. Since K is monotone with respect to the partial ordering,
	, by repeated application of this result, we can construct two coupled Markov
chains, {Xn}n≥0 and {Yn}n≥0 such that X0 = x∗,Y0 = y∗ and Xn 	 Yn for every
n ≥ 1. Further, if Xn0 = Yn0 , then Xn = Yn for all n ≥ n0.

It follows that for any n ≥ 1,

‖Kn
x∗ − Kn

y∗‖TV ≤ P(Xn �= Yn|X0 = x∗,Y0 = y∗)

≤ E
{
f (Yn) − f (Xn)

c1

∣∣∣X0 = x∗,Y0 = y∗
}
.

The previous inequality uses Xn 	 Yn, the strict monotonicity of f and the hy-
pothesis that f (y) − f (x) ≥ c1 if x 	 y,x �= y.

Next, since f is an eigenfunction of K , it follows that

E{f (Yk) − f (Xk)|Xk−1,Yk−1} = λ{f (Yk−1) − f (Xk−1)},
for every k ≥ 1. Therefore,

‖Kn
x∗ − Kn

y∗‖TV ≤ E
[
E

{
f (Yn) − f (Xn)

c1

∣∣∣Xn−1,Yn−1

}∣∣∣X0 = x∗,Y0 = y∗
]

= λ

c1
E{f (Yn−1) − f (Xn−1)|X0 = x∗,Y0 = y∗}

= λn

c1
{f (y∗) − f (x∗)}.

Note that the argument above holds for any x∗ 	 y∗.
Note that for any x �= y, by the pair-wise dominance assumption, there exists

z(x,y) (depends possibly on x and y) such that z dominates both x and y or is
dominated by both x and y. Hence,

‖Kn
x − Kn

y ‖TV ≤ ‖Kn
x − Kn

z ‖TV + ‖Kn
y − Kn

z ‖TV

≤ λn

c1
|f (x) − f (z)| + λn

c1
|f (y) − f (z)|

= λn

c1
|f (x) + f (y) − 2f (z)|.

The previous equality follows from the fact that z either dominates or is dominated
by both x and y, and f is monotone with respect to 	, which implies that f (x) −
f (z) and f (y) − f (z) are either both positive or both negative. Convexity now
yields

‖Kn
x − π‖TV ≤ ∑

y∈X
π(y)‖Kn

x − Kn
y ‖TV ≤ λn

c1
Eπ |f (x) + f (Y) − 2f (z(x,Y))|.
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To get the lower bound, note that

‖Kn
x − π‖TV ≥ 1

2c2
|EKn

x
(f (Y)) − Eπ(f (Y))| ≥ λn

2c2
|f (x)|.

Hence the theorem is proved. �

REMARK. (1) It is to be noted that Theorem 2.1 works for any arbitrary start-
ing point without requiring the assumption of reversibility. In Section 3.1, we show
that the bounds on the total variation distance can be obtained without explicit
knowledge of the stationary distribution.

(2) In all our examples, there will be a unique minimal element (and no maxi-
mal element), which is clearly sufficient to satisfy the pair-wise dominance condi-
tion.

We now apply this general result for a variety of Markov chains in population
genetics.

3. Applications.

3.1. The Moran process in population genetics. The classical Moran process
in population genetics models the evolution of a population of constant size by
random replacement followed by mutation. Suppose there are d species in a pop-
ulation of size N . At each step, one individual is chosen uniformly to die and
independently another is chosen uniformly to reproduce. They may be the same
individual. If the latter is of species i, the offspring has probability mij ,1 ≤ j ≤ d ,
to mutate to type j . Let Xn = (Xn1, . . . ,Xnd) be the vector of counts of species
1,2, . . . , d at the nth step. Let N0 := N∪{0}. Then {Xn}n≥0 forms a Markov chain
on X d

N , where

X d
N =

{
x = (x1, . . . , xd) ∈ N

d
0 :

d∑
i=1

xi = N

}
.

Let K denote the transition density of this Markov chain. Note that the size of
the state space is |X d

N | = (N+d−1
N

)
. The one-step transition probabilities are

K(x,x + ei − ej ) = xj

N

(
d∑

k=1

xk

N
mki

)
, 1 ≤ i �= j ≤ d;

K(x,x) = 1 − ∑
i �=j

K(x,x + ei − ej );(3.1)

K(x,y) = 0 otherwise,

where ei is the unit vector with ith entry equal to 1. The mutation matrix M is
assumed to be irreducible. This ensures the irreducibility and aperiodicity of the
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transition function K ; see proof in the Appendix. Hence, the stationary distribution
of K exists. Let π denote the density of the stationary distribution with respect to
the counting measure.

This model (d = 2) is due to Moran [12]. Background and references can be
found in the text by Ewens [5]. When d = 2, in the continuous-time setting, Don-
nelly and Rodrigues [4] obtain an upper bound in terms of the separation and total
variation distances, when all the individuals belong to the same generation initially.
Watkins [16] analyzes the infinite allele Moran model in the discrete-time setting.
However, unlike the multi-allele case, the (infinite) vector of species counts does
not form a Markov chain. Instead, the N -dimensional vector whose ith entry is the
number of species with i individuals at the current stage, forms a Markov chain.
It is this fundamentally different Markov chain that is analyzed in Watkins [16]
using strong stationary times.

In the multi-allele case, which we analyze, a standard choice of the mutation
matrix M = {mij }1≤i,j≤d is

M = (1 − m)I + mP,(3.2)

where 0 < m ≤ 1 is the mutation probability of the offspring, and P is a stochas-
tic matrix with each row (p1, . . . , pd), a probability vector with positive entries.
If mutation happens, the offspring will change to species i with probability pi .
It is known from the literature that for this standard choice of the mutation ma-
trix M, the corresponding Markov chain is reversible. Khare and Zhou [9] ana-
lyze this Markov chain and provide nonasymptotic convergence bounds in terms
of the “chi-square distance” for some natural selected starting points. In this pa-
per, we generalize this analysis in two directions. First, instead of considering the
choice M = (1 − m)I + mP, we consider a general subclass of mutation matri-
ces described in (3.3)–(3.5) which includes this choice as a special case. Second,
we provide nonasymptotic convergence bounds from an arbitrary starting point.
Consider the class of mutation matrices M satisfying one of the monotonicity con-
ditions specified below:

mdj < min
1≤k≤d−1

mkj for every 1 ≤ j ≤ d − 1(3.3)

or,

mdj ≤ min
1≤k≤d−1

mkj for every 1 ≤ j ≤ d − 1(3.4)

and M∗ = {m∗
ij }1≤i,j≤d−1 is irreducible, where m∗

ij = mij − mdj or,

mdj ≤ min
1≤k≤d−1

mkj for every 1 ≤ j ≤ d − 1(3.5)

and M∗ has an eigenvector which has all strictly positive entries.
Each of these conditions essentially says that there is a species, which we call

species d without loss of generality, such that the mutation probability from this
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species to any species is smaller than the mutation probability from every other
species to this species.

It is to be noted that for a general M satisfying any one of these three condi-
tions, the Markov kernel K is nonreversible, and in this case, often the stationary
distribution of K is not known. Note that condition (3.5) is satisfied by the stan-
dard choice of M = (1 −m)I +mP, and hence the analysis of this standard choice
will come out as a special case. An example where conditions (3.3) and (3.4) are
satisfied would be the following: Suppose md1 = δ and mdd = 1−δ, that is, the off-
spring born to species d can possibly mutate only to species 1 with a small proba-
bility δ. Suppose m1d > 0, that is, species 1 can also mutate to species d with a pos-
itive probability. If all the mutation probabilities among species 1,2, . . . , d − 1 are
larger than δ, that is, mij > δ for 1 ≤ i, j ≤ d − 1, then conditions (3.3) and (3.4)
are satisfied.

Let us introduce a partial ordering on X d
N . We define x,y ∈ X d

N to be partially
ordered, that is, x 	 y if xi ≤ yi, i = 1,2, . . . , d − 1. This automatically implies
xd ≥ yd . To get bounds on the total variation distance, according to Theorem 2.1,
we need an eigenfunction f which is strictly monotone in 	, that is, if x,y ∈ X d

N

with x 	 y, then f (x) ≤ f (y).

PROPOSITION 3.1. Let K denote the Moran process specified by (3.1), and
suppose the mutation matrix M satisfies any one of conditions (3.3)–(3.5). Then K

has a linear and strictly monotone eigenfunction f .

PROOF. Note that

EK(x,·)[X] = ∑
1≤i �=j≤d

(x + ei − ej )
xj

N

(
d∑

k=1

xk

N
mki

)

+ x

(
1 − ∑

1≤i �=j≤d

xj

N

d∑
k=1

xk

N
mki

)

= x + ∑
1≤i �=j≤d

(ei − ej )
xj

N

(
d∑

k=1

xk

N
mki

)

= x + ∑
1≤i,j≤d

(ei − ej )
xj

N

(
d∑

k=1

xk

N
mki

)

= x + ∑
1≤i≤d

ei

(
d∑

k=1

xk

N
mki

)
− ∑

1≤i,j≤d

ej

xj

N

(
d∑

k=1

xk

N
mki

)

=
{(

1 − 1

N

)
Id + 1

N
MT

}
x.
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Let ã = (ãi)1≤i≤d be any eigenvector corresponding to an eigenvalue λ̃ of M.
Then we have

EK(x,·)[ãT X] =
{(

1 − 1

N

)
ãT + 1

N
(Mã)T

}
x =

{(
1 − 1

N

)
+ 1

N
λ̃

}
ãT x.

Hence, f (x) = ∑d
i=1 ãixi is an eigenfunction of K corresponding to the eigenvalue

(1 − 1
N

) + λ̃
N

.
We now show that M has an eigenvector a such that ai > ad for every 1 ≤

i ≤ d − 1. It follows from condition (3.3) that m∗
ij > 0, and from condition (3.4)

that m∗
ij ≥ 0, and M∗ is irreducible. Hence, under condition (3.3) or (3.4), by the

Perron–Frobenius theorem, the largest eigenvalue λ∗ of M∗ is positive with mul-
tiplicity 1, and there exists an eigenvector a∗ = (a∗

j )1≤j≤d−1 corresponding to λ∗,
such that a∗ has all positive entries. Also, in condition (3.5), we have directly as-
sumed a∗ has all positive entries. Note that

λ∗ ≤ max
1≤i≤d−1

d−1∑
j=1

m∗
ij

= max
1≤i≤d−1

d−1∑
j=1

(mij − mdj )

= max
1≤i≤d−1

(mdd − mid)

≤ mdd

< 1,

since the mutation matrix M is assumed to be irreducible.
Let c be defined by

c =
∑d−1

j=1 mdja
∗
j

λ∗ − 1
,

and a be defined by

ai =
{

a∗
i + c, if 1 ≤ i ≤ d − 1,

c, if i = d.

Note that, by the definition of c,

d∑
j=1

mdjaj =
d−1∑
j=1

mdja
∗
j + c = (λ∗ − 1)c + c = λ∗c.(3.6)

We have

M∗a∗ = λ∗a∗ �⇒
d−1∑
j=1

(mij − mdj )(aj − c) = λ∗(ai − c) ∀1 ≤ i ≤ d − 1.
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Note that
∑d−1

j=1(mij − mdj ) = mdd − mid and ad = c. It follows that

d∑
j=1

(mij − mdj )aj = λ∗(ai − c).(3.7)

Adding (3.6) and (3.7), we get Ma = λ∗a. This shows a is an eigenvector of M
corresponding to eigenvalue λ∗.

Thus, f (x) = ∑d
i=1 aixi = ∑d−1

i=1 (ai −ad)xi +Nad , which is strictly monotone
with respect to 	, is an eigenfunction of K corresponding to the eigenvalue λ =
(1 − 1

N
) + λ∗

N
. Since λ < 1, it follows that Eπ [f (X)] = 0. �

We now show that for the Moran process, K is monotone with respect to the
partial ordering, 	.

THEOREM 3.1. Let K denote the Moran process specified by (3.1), where the
mutation matrix M satisfies one of the conditions specified in (3.3)–(3.5). Then K

is monotone with respect to the partial ordering, 	.

PROOF. Consider any x ∈ X d
N and y ∈ X d

N with x 	 y. We construct two ran-
dom vectors X and Y such that X 	 Y with X ∼ K(x, ·) and Y ∼ K(y, ·). This will
immediately imply that Kf (x) ≤ Kf (y) for any monotone function f and any x,y
with x 	 y.

Let x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd). Then by assumption xi ≤ yi

for every 1 ≤ i ≤ d − 1. We now describe the procedure for obtaining X and Y.
In order to specify the coupling argument, consider two populations with N

individuals each. Population 1 has xi individuals of species i, and population 2
has yi individuals of species i, for every 1 ≤ i ≤ d . We label the individuals in
the two populations as follows. The individuals of the ith species of population 1
are labeled from (

∑i
j=1 xj−1 + 1) to

∑i
j=1 xj , i = 1,2, . . . , d , taking x0 = 0. The

labeling of the individuals of population 2 is done in the following way:

• Note that xi ≤ yi for i = 1,2, . . . , d − 1. For the ith species of population 2,
where i = 1,2, . . . , d − 1, we give xi of the individuals the exact same labels as
those in species i of population 1. This leaves yi − xi “extra individuals” to be
labeled later.

• Note that xd ≥ yd . For the dth species of population 2, the yd individuals of the
dth species get exactly same labels as the first yd individuals of the dth species
of population 1.

• Finally, all the xd − yd “extra individuals” left over in the first d − 1 species
of population 2 get the xd − yd labels in the dth species of population 1 which
were not assigned in the previous step.

The following example illustrates the labeling technique of the N individuals in
population 1 and population 2. Consider N = 17 individuals who belong to d = 4
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TABLE 1
Labeling of individuals of population 1 and population 2

Species 1st 2nd 3rd 4th

x / ///// /////// ////

labels 1 2,3,4,5,6 7,8,9,10,11,12,13 14,15,16,17
y // ///// //////// //

labels 1,16 2,3,4,5,6 7,8,9,10,11,12,13,17 14,15

different species type. Also consider x = {1,5,7,4} and y = {2,5,8,2}. The table
below illustrates the labeling technique.

In Table 1, we label the individuals of population 1 from 1 to 17 based on x.
For the 1st species of population 2, there are 2 individuals, the first individual
gets the label 1, same as the label of the first individual of population 1, and the
second individual is an “extra individual,” to be labeled later. Now, for the 2nd
species, there are the same number of individuals for both the populations, so these
individuals get the same labels. For the 3rd species, there is one “extra individual,”
to be labeled later; other individuals get the same labels. The 4th species has 2
individuals in population 2, who get the same labels as the first 2 individuals of
the 4th species in population 1. Last, 2 extra labels 16 and 17 are assigned to the
“extra individuals” of species 1 and 3 of population 2, respectively.

Let us return to the general proof, and define k1 := ∑d−1
i=1 xi to be the total

number of individuals in the first d − 1 species of population 1 and k2 := yd to
be the number of individuals in species d of population 2. We now change the
species configuration of population 1 and population 2 in four sub-steps which are
described below:

(I) Choose a label uniformly between 1 to N . Call it i1.
(II) Independently choose another label uniformly between 1 to N . Call it i2.

(III) Let s1,i2 and s2,i2 denote the species of the individual labeled i2 in pop-
ulation 1 and population 2, respectively. Add one individual of species s1,i2 to
population 1 and one individual of species s2,i2 to population 2.

Note that if 1 ≤ i2 ≤ k1 + k2, then s1,i2 = s2,i2 := si2 . In this case the newly
added individual in both the populations mutates in the following way: Generate
U ∼ Uniform[0,1]. If 0 ≤ U < msi2 1, the added individual mutates to species 1. If
msi2 1 ≤ U < msi2 1 + msi2 2, the added individual mutates to species 2, and so on.
Finally, if msi2 1 + msi2 2 + · · · + msi2 (d−1) ≤ U ≤ 1, the added individual mutates
to species d . Hence, after the mutation, both populations have an individual of the
same species added, which therefore preserves the partial ordering between their
species configurations.

Next, suppose k1 + k2 + 1 ≤ i2 ≤ N , then s1,i2 = d and s2,i2 is one of the
first d − 1 species. Note that ms2,i2j ≥ mdj for every j = 1,2, . . . , d − 1. The
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newly added individual in population 1 mutates in the following way: Generate
U ∼ Uniform[0,1]. If 0 ≤ U < md1, the added individual mutates to species 1.
If md1 ≤ U < md1 + md2, the added individual mutates to species 2, and so
on. Finally, if md1 + md2 + · · · + md(d−1) ≤ U ≤ 1, the added individual mu-
tates to species d . Now, in population 2, the newly added individual mutates in
the following way: Choose the same U as for population 1. If 0 ≤ U < md1 or
md1 + md2 + · · · + md(d−1) ≤ U < ms2,i2 1 + md2 + · · · + md(d−1), the individual
mutates to species 1. If md1 ≤ U < md1 +md2 or ms2,i2 1 +md2 + · · ·+md(d−1) ≤
U < ms2,i2 1 + ms2,i2 2 + md3 + · · · + md(d−1), the individual mutates to species 2,
and so on. Finally, if ms2,i2 1 + ms2,i2 2 + · · · + ms2,i2 (d−1) ≤ U ≤ 1, the individual
mutates to species d . Hence, when 0 ≤ U ≤ md1 + md2 + · · · + md(d−1) or when
ms2,i2 1 +ms2,i2 2 +· · ·+ms2,i2 (d−1) ≤ U ≤ 1, the newly added individual in both the
populations mutate to the same species, which preserves the partial ordering be-
tween their species configurations. Alternatively, if md1 + md2 + · · · + md(d−1) ≤
U ≤ ms2,i2 1 + ms2,i2 2 + · · · + ms2,i2 (d−1), then after mutation the newly added in-
dividual in the population 1 is in species d , but the newly added individual in
the population 2 is in any of the first d − 1 species. This again preserves the
partial ordering between the species configurations in population 1 and popula-
tion 2.

(IV) Finally, the individual corresponding to the label i1 dies for both the pop-
ulations. If 1 ≤ i1 ≤ k1 + k2, then the individual belongs to the same species for
both the populations. If k1 + k2 + 1 ≤ i1 ≤ N , then the individual corresponding
to the label i1 belongs to species d for population 1 and is an “extra individual”
in the first d − 1 species of population 2. In either case, the partial ordering is
preserved.

Let X and Y be the resulting species configurations of population 1 and popula-
tion 2, respectively. Note that marginally the movement from both x to X and y to
Y follows the transition mechanism of K , and X 	 Y. This completes the proof.

�

3.1.1. Bounds on total variation distance. For the partial ordering, 	, dis-
cussed above, applying Theorem 2.1 in the case of the Moran model, provides
us with bounds on the total variation distance. We have shown that for the Moran
process, K is monotone with respect to the partial ordering, 	; see Theorem 3.1.
It is easily seen that 0 (with first d − 1 entries equal to zero, and the dth entry
equal to N ) is dominated by x for every x ∈ X d

N . Hence, the pair-wise dominance
property is satisfied. Recall that by Proposition 3.1, there exists an eigenfunction
f (x) = ∑d

i=1 aixi = ∑d−1
i=1 (ai − ad)xi + Nad of K corresponding to the eigen-

value λ = 1 − 1
N

+ λ∗
N

, such that f is strictly monotone with respect to the partial
ordering, 	. Hence, the conditions of Theorem 2.1 are satisfied, and the bounds on
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the total variation distance are obtained as

λn

2c2
|f (x)| ≤ ‖Kn

x − π‖TV ≤ λn

c1
Eπ {f (Y) + f (x) − 2f (0)}

�⇒ λn

2c2
|f (x)| ≤ ‖Kn

x − π‖TV ≤ λn

c1
{f (x) − 2f (0)}

�⇒ λn

2c2

∣∣∣∣∣
d−1∑
i=1

a∗
i xi + Nad

∣∣∣∣∣ ≤ ‖Kn
x − π‖TV ≤ λn

c1

{
d−1∑
i=1

a∗
i xi − Nad

}
,

where a∗
i = ai − ad > 0 for every 1 ≤ i ≤ d − 1 (by the monotonicity of f ),

c1 = min1≤i≤d−1 a∗
i > 0 and c2 = max{−Nad,N(max1≤i≤d−1 a∗

i + ad)}. Note
that ad < 0. Note again that the stationary distribution π in not known in gen-
eral, but the analysis above leads to upper and lower bounds which do not depend
on the stationary distribution, and are reasonably close to each other.

3.1.2. Bounds on total variation distance in the special case. We now provide
a nonasymptotic convergence analysis for the special choice of M = (1 − m)I +
mP. It has been proved earlier in Khare and Zhou [9] that the Markov chain K cor-
responding to the multi-allele Moran model with M = (1 − m)I + mP has second
largest eigenvalue λ = 1 − |α|

N(N+|α|) , where |α| := ∑d
i=1 αi , α = (α1, α2, . . . , αd),

where αi = Nmpi

1−m
, with the eigenspace given by the space of centered linear func-

tions of x1, x2, . . . , xd−1. After simplification, we obtain λ = 1 − m
N

. It is known
that the stationary distribution in this case is the Dirichlet-multinomial distribution
with parameters N and α. The Dirichlet-multinomial distribution with parame-
ters N > 0 and α = (α1, α2, . . . , αd), αi > 0, has probability mass function given
by

D M(x|N,α) =
∏d

i=1
(xi+αi−1

xi

)
(N+|α|−1

N

) , x ∈ X d
N .

Since M = (1 −m)I +mP, it follows that M∗ = (1 −m)Id−1. Hence, any (d − 1)-
dimensional vector with positive entries is an eigenvector of M∗. Suppose we
choose the eigenvector a∗ of M∗ such that a∗

i = 1 for i < d . Then, for the Markov
chain K , we get the eigenfunction f (x) = ∑d−1

i=1 xi − N(1 − pd) corresponding
to the eigenvalue λ = 1 − m

N
. Note that f is strictly monotone with respect to the

partial ordering, 	. As in the case of the general multi-allele Moran model, here
also it is easily seen that 0 is dominated by x for every x ∈ X d

N . We have c1 = 1 and
c2 = max{Npd,N(1 − pd)}. Thus, bounds on total variation distance are obtained
as

‖Kn
x − π‖TV ≥ (1 − m/N)n

2 max{Npd,N(1 − pd)}
∣∣∣∣∣
d−1∑
i=1

xi − N(1 − pd)

∣∣∣∣∣,(3.8)
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‖Kn
x − π‖TV ≤

(
1 − m

N

)n
(

d−1∑
i=1

xi + N(1 − pd)

)
.(3.9)

EXAMPLE 3.1.1. Consider the multi-allele Moran model in the special case
when the mutation matrix M = (1 − m)I + mP. Suppose the population size
N = 100, with d = 5 species and mutation probability m = 0.7. When mutation
occurs, the individual mutates to the ith species with probability pi = 1/5. Us-
ing (3.8) and (3.8), for a starting state x = (0,10,0,10,80), the bounds on the
total variation distance are obtained as

0.375
(

1 − 7

1000

)n

≤ ‖Kn
x − π‖TV ≤ 100

(
1 − 7

1000

)n

.(3.10)

For ε = 0.01, (3.10) tells us that 516 steps are necessary and 1312 steps are suf-
ficient for the total variation distance to be less then 0.01. The crude upper bound
for the total variation distance is (2.1665 × 1015)(1 − 7

1000)n, which gives 5683
steps are sufficient for the total variation distance to be less then 0.01.

3.2. Sequential Pólya urn models. Choose d urns with N balls distributed in
them. Suppose the inherent weight of urn i is αi , i = 1,2, . . . , d , and let α =
(α1, α2, . . . , αd) denote the vector of urn weights and |α| = ∑d

i=1 αi denote the
total inherent weight of d urns. Suppose that each ball has unit weight.

(1) Pólya level model [9]: Consider the Markov chain whose one-step move-
ment consists of the following sub-steps:

(i) Randomly choose s balls out of N balls and mark them.
(ii) Draw an urn with probability proportional to its weight (inherent weight +

weight of balls) and add a ball (of unit weight) to the chosen urn. Repeat
this s times.

(iii) Remove the s marked balls from the respective urns.

(2) Pólya up–down model [9]: These are variations of Pólya level models,
where the three steps are performed in the following order (ii), (i) (with N + s

total balls) and (iii).
(3) Pólya down–up model [9]: These are variations of Pólya level models,

where the three steps are performed in the following order (i), (iii) and (ii).

We first analyze the Markov chain corresponding to the Pólya level model.
Let Xni denote the number of balls in the ith urn at the nth step of the Pólya
level model. Then {Xn = (Xn1,Xn2, . . . ,Xnd), n = 0,1,2, . . .} forms a multivari-
ate Markov chain on X d

N . Let K denote the transition density of this Markov chain.
Let 	 be the partial ordering on X d

N as in the multi-allele Moran model.

THEOREM 3.2. K is monotone with respect to the partial ordering, 	.
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PROOF. Consider any x ∈ X d
N and y ∈ X d

N with x 	 y. We construct two ran-
dom vectors X and Y such that X 	 Y with X ∼ K(x, ·) and Y ∼ K(y, ·). This will
immediately imply that Kf (x) ≤ Kf (y) for any monotone function f and any x,y
with x 	 y.

In order to specify the coupling argument, we consider two populations of N

balls each, with N balls distributed in d urns based on x and y, respectively. We use
the same labeling technique for both the populations as discussed in Theorem 3.1
(regarding species as urns and individuals as balls).

We now change the urn configuration of population 1 and population 2 in three
sub-steps which are described below:

(I) Choose s labels without replacement from 1 to N .
(II) This sub-step will consist of s sequential urn draws, and after each draw,

an extra ball will be added to the chosen urn for both the populations as described
below. Repeat the following for j = 1,2, . . . , s.

Generate Uj ∼ Uniform[0,1]. Now, at the beginning of the j th draw in this sub-
step, there are, in total, N + j − 1 balls each in both the populations. Hence the
total weight of the urns (with balls) in both the populations is |α| +N + j − 1. Let
Xj−1 := (x

j−1
1 , x

j−1
2 , . . . , x

j−1
d ) be the configuration of the balls in the d urns of

population 1 at the beginning of the j th draw, and Yj−1 := (y
j−1
1 , y

j−1
2 , . . . , y

j−1
d )

be the configuration of the balls in the d urns of population 2 at the beginning of
the j th draw. Let us denote the normalized probability vector of the urn weights for
population 1 by pj−1 = (p

j−1
1 ,p

j−1
2 , . . . , p

j−1
d ), and the normalized probability

vector of urn weights for population 2 by qj−1 = (q
j−1
1 , q

j−1
2 , . . . , q

j−1
d ), where

p
j−1
i = αi+x

j−1
i|α|+N+j−1 and q

j−1
i = αi+y

j−1
i|α|+N+j−1 .

Procedure to choose an urn for population 1 at the j th draw:
If 0 ≤ Uj < p

j−1
1 , choose urn 1. If p

j−1
1 ≤ Uj < p

j−1
1 + p

j−1
2 , choose urn 2

and so on. Finally, if p
j−1
1 + p

j−1
2 + · · · + p

j−1
(d−1) ≤ Uj ≤ 1, choose urn d . Add a

ball to the chosen urn.
The following is the procedure to choose urn for population 2 at the j th draw:
If 0 ≤ Uj < p

j−1
1 or, p

j−1
1 + p

j−1
2 + · · · + p

j−1
(d−1) ≤ Uj < q

j−1
1 + p

j−1
2 +

· · ·+p
j−1
(d−1), choose urn 1. If p

j−1
1 ≤ Uj < p

j−1
1 +p

j−1
2 or, q

j−1
1 +p

j−1
2 +· · ·+

p
j−1
(d−1) ≤ Uj < q

j−1
1 + q

j−1
2 + · · · + p

j−1
(d−1), choose urn 2 and so on. Finally,

if q
j−1
1 + q

j−1
2 + · · · + q

j−1
(d−1) ≤ Uj ≤ 1, choose urn d . Add a ball to the chosen

urn.
(III) Remove the balls corresponding to the s labels in sub-step (I) from both

the populations.

It is to be noted that in sub-step (II), assuming Xj−1 	 Yj−1 (and hence pj−1 	
qj−1), the mechanism for drawing urns is such that either the same urn is chosen
for both the populations or when the dth urn is chosen for population 1, then any
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of the first d − 1 urns is chosen for population 2. Hence, Xj 	 Yj (and hence
pj 	 qj ). Since X0 = x and Y0 = y, it follows by induction (on j ) that Xj 	 Yj

for j = 1,2, . . . , s. In sub-step (III), the balls with the same s labels are removed
from both the populations. Based on the labeling procedure, either balls with the
same label lie in the same urn for both the populations, or the ball lies in the dth
urn for population 1 and is an “extra ball” in the first d − 1 urns for population 2.
In either case, removing balls with the same label from both the populations does
not change the partial ordering of the urn configurations.

Let X and Y be the resulting urn configurations of population 1 and popula-
tion 2, respectively. It follows from the discussion above that X 	 Y. Note that
marginally the movement from both x to X and y to Y follows the transition mech-
anism of K . To see this, note that the probability of choosing the ith urn at the j th
draw in sub-step (II) for population 1 is P(

∑i−1
�=1 p

j
� ≤ Uj ≤ ∑i

�=1 p
j
� ) = p

j
i ; and

the corresponding probability for population 2 is P(
∑i−1

�=1 p
j
� ≤ Uj ≤ ∑i

�=1 p
j
� ) +

P(
∑i−1

�=1 q
j
� + ∑d−1

�=i p
j
� ≤ Uj ≤ ∑i

�=1 q
j
� + ∑d−1

�=i+1 p
j
� ) = q

j
i . This completes the

proof. �

We can similarly argue that the Markov chain corresponding to the Pólya up–
down model and the Pólya down–up model are stochastically monotone with re-
spect to the partial ordering, 	 in X d

N .

3.2.1. Bounds on total variation distance. In case of the Pólya level model,
the second largest eigenvalue λ = 1 − s|α|

N(N+|α|) . We know that the stationary dis-
tribution of the Pólya level model is the Dirichlet-multinomial distribution with pa-
rameters N and α. The eigenfunction f (x) = ∑d−1

i=1 xi −N(1− αd|α|) corresponding
to λ is strictly monotone in 	. Let 0 be a d-dimensional vector such that the first
d − 1 entires are zero, and the dth entry is N . It is easily seen that 0 is dominated
by x for every x ∈ X d

N . Hence, the conditions of Theorem 2.1 are satisfied, with
c1 = 1 and c2 = max{N αd|α| ,N(1 − αd|α|)}. Let pi = αi|α| , i = 1,2, . . . , d . Thus, the
bounds on the total variation distance are obtained as

‖Kn
x − π‖TV ≥ λn

2 max{Npd,N(1 − pd)}
∣∣∣∣∣
d−1∑
i=1

xi − N(1 − pd)

∣∣∣∣∣,(3.11)

‖Kn
x − π‖TV ≤ λn

(
d−1∑
i=1

xi + N(1 − pd)

)
.(3.12)

Similarly, in the case of Pólya down–up models, the second largest eigenvalue is
given by λ = (1 − s

N
)(1 − s

N+|α|)
−1 and in the case of Pólya up–down models,

the second largest eigenvalue is given by λ = (1 + s
N

)−1(1 + s
N+|α|). These can be

substituted in (3.11) and (3.12) to get the corresponding total variation bounds for
these models.
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REMARK. Note that the coefficient of λn in the upper bound derived in (3.12)
is at most 2N . Let us try and compare it to the coefficient of λn in the crude upper
bound, which is given by

1

2
√

π(x)
= 1

2

√√√√√
(N+|α|−1

N

)
∏d

i=1
(xi+αi−1

xi

) .
At one possible extreme, when all entries of x except the ith one are zero, the
coefficient is essentially a polynomial in N of degree |α|−αi

2 . At the other possible
extreme, when all the entries of x are equal to N

d
(assuming N

d
is an integer), the

coefficient is essentially a polynomial in N of degree d−1
2 . The main fact is that

the coefficient of λn in the upper bound derived in (3.12) is linear in N , whereas the
coefficient of λn in the crude upper bound almost always behaves like a polynomial
of a higher degree in N .

EXAMPLE 3.2.1. Consider the Pólya level model where N = 100 balls are
distributed in d = 5 urns. Suppose s = 2 balls are chosen and each urn has inherent
weight αi = 180 for every 1 ≤ i ≤ 5. Using (3.11) and (3.12), for a starting state
x = (0,20,0,20,60), the bounds on the total variation distance are obtained as

0.25
(

1 − 9

500

)n

≤ ‖Kn
x − π‖TV ≤ 120

(
1 − 9

500

)n

.(3.13)

For ε = 0.01, (3.13) tells us that 178 steps are necessary and 518 steps are suffi-
cient for the total variation distance to be less than 0.01. The crude upper bound
for total variation distance is (6.1094×1013)(1− 9

500)n which would have implied
2002 steps are sufficient for the total variation distance to be less then 0.01.

3.3. A generalized Ehrenfest urn model. There are N indistinguishable balls
to be distributed to d urns. At each step, s balls are chosen at random from the
total of N balls, and each of them is redistributed independently according to the
same probability p = (p1,p2, . . . , pd). Let Xni be the number of balls in the ith
urn at the nth step of the Markov chain. Then {Xn = (Xn1,Xn2, . . . ,Xnd), n =
0,1,2, . . .} forms a multivariate Markov chain on X d

N . Let K denote the transition
density of this Markov chain.

Consider the same partial ordering, 	, as defined in the case of the Moran pro-
cess. We now show that K is a monotone Markov chain with respect to the partial
ordering, 	.

THEOREM 3.3. K is monotone with respect to the partial ordering, 	.

PROOF. Consider any x ∈ X d
N and y ∈ X d

N with x 	 y. We construct two ran-
dom vectors X and Y such that X 	 Y with X ∼ K(x, ·) and Y ∼ K(y, ·). This will
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immediately imply that Kf (x) ≤ Kf (y) for any monotone function f and any x,y
with x 	 y.

In order to specify the coupling argument, we consider two populations of N

balls each, with N balls distributed in d urns based on x and y, respectively. We use
the same labeling technique for both the populations as discussed in Theorem 3.1
(regarding species as urns and individuals as balls).

We now change the urn configuration of population 1 and population 2 in five
sub-steps which are described below:

(I) Choose s labels without replacement from 1 to N .
(II) Remove the balls with the chosen labels from both x and y.

(III) Choose an urn, such that urn i is chosen with probability pi for every
i = 1,2, . . . , d .

(IV) Add a ball to the chosen urn for both the current X and Y configurations.
(V) Repeat steps (III) and (IV) s times independently.

Let k1 := ∑d−1
i=1 xi be the total number of balls in the first d − 1 urns of popula-

tion 1, and k2 := yd be the number of balls in the dth urn of population 2. Consider
sub-steps (I) and (II). Without loss of generality, let us assume out of s labels cho-
sen, r labels are between 1 and k1 + k2 and s − r labels are between k1 + k2 + 1
and N .

• Each of the r balls corresponding to labels 1 to k1 + k2 lies in exactly the same
urn for both the populations. Removing these does not change the partial order-
ing between the urn configurations.

• Each of the s − r balls corresponding to labels k1 + k2 + 1 to N lie in urn d for
population 1, and are “extra balls” lying in the first d − 1 urns for population 2.
Hence, removing them does not change the partial ordering between the urn
configurations of population 1 and population 2.

Consider sub-steps (III), (IV) and (V). Since the balls are put in the same urn
for both the populations, adding the new balls does not change the partial ordering
between the urn configurations.

Let X and Y be the resulting urn configurations of population 1 and popula-
tion 2, respectively. Note that marginally the movement from both x to X and y to
Y follows the transition mechanism of K , and X 	 Y. This completes the proof.

�

The following example illustrates the one-step movement of the above construc-
tion in population 1 and population 2 for Theorem 3.3.

EXAMPLE 3.3.1. Consider the same x and y as in Table 1. Suppose the 4 balls
chosen in sub-step (I) are with labels 6, 8, 14 and 16. It is evident that the removal
of the balls with the chosen labels in sub-step (II) does not alter the partial ordering
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between the urn configurations of the two populations. Since the urn chosen in sub-
step (III) is same for both the populations, adding a ball to the urn in sub-step (IV)
does not change the partial ordering between the urn configurations of the two
populations.

3.3.1. Bounds on total variation distance. For the partial ordering, 	, dis-
cussed above, applying Theorem 2.1 in the case of the generalized Ehrenfest urn
model, provides us with bounds on the total variation distance.

It has been proved earlier in Khare and Zhou [9] that the generalized Ehrenfest
urn model has second largest eigenvalue λ = 1 − s

N
, with the eigenspace given

by the space of linear functions of x1, x2, . . . , xd−1. It is known that the stationary
distribution is the multinomial distribution with parameters N and p. The eigen-
function f (x) = pd

∑d−1
i=1 xi − (1 −pd)xd = ∑d−1

i=1 xi −N(1 −pd) corresponding
to the eigenvalue λ is strictly monotone in 	. Again, it is easily seen that 0 is
dominated by x, for every x ∈ X d

N . Hence, the conditions of Theorem 2.1 are sat-
isfied. We have c1 = 1 and c2 = max{Npd,N(1 − pd)}. Thus, the bounds on total
variation distance are

‖Kn
x − π‖TV ≥ (1 − s/N)n

2 max{Npd,N(1 − pd)}
∣∣∣∣∣
d−1∑
i=1

xi − N(1 − pd)

∣∣∣∣∣,(3.14)

‖Kn
x − π‖TV ≤

(
1 − s

N

)n(d−1∑
i=1

xi + N(1 − pd)

)
.(3.15)

REMARK. Note that the coefficient of (1 − s
N

)n in the upper bound derived
in (3.15) is at most 2N . We compare it to the coefficient of (1 − s

N
)n in the crude

upper bound, which is given by

1

2
√

π(x)
= 1

2
√(N

x

)
d∏

i=1

(
1√
pi

)xi

.

At one possible extreme, when all entries of x except the ith one are zero, the
coefficient is 1

2( 1√
pi

)N . At the other possible extreme, when all the entries of x are

equal to N
d

(assuming N
d

is an integer), using Stirling’s approximation for large N ,2

the coefficient is

(2πN)(d−1)/4

2dd/4

(
1√

d(
∏d

i=1 pi)1/d

)N

.

Since
∑d

i=1 pi = 1, it follows by the AM-GM inequality that d(
∏d

i=1 pi)
1/d < 1,

unless all the entries of p are equal. Hence, if all the entries of x are the same and

2Note that N is the notation for the total number of balls in the urns, not the number of steps.
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all entries of pi are not the same, the coefficient of (1 − s
N

)n in the crude upper
bound is exponential in N . If all the pi are same, the coefficient is of the order
N(d−1)/4.

The main fact is that the coefficient of (1 − s
N

)n in the upper bound derived
in (3.15) is linear in N , whereas the coefficient of (1 − s

N
)n in the crude upper

bound is almost always exponential in N .

EXAMPLE 3.3.2. Consider the generalized Ehrenfest urn model where N =
100 balls are distributed in d = 5 urns. Suppose s = 1 ball is chosen and each urn
is chosen with probability pi = 1/5, i = 1,2, . . . ,5. Using (3.14) and (3.15), for a
starting state x = (0,20,0,20,60), the bounds on the total variation distance are
obtained as

0.25
(

1 − 1

100

)n

≤ ‖Kn
x − π‖TV ≤ 120

(
1 − 1

100

)n

.(3.16)

For ε = 0.01, (3.16) tells us that 321 steps are necessary and 935 steps are suffi-
cient for the total variation distance to be less then 0.01. The crude upper bound for
total variation distance 1

2
√

π(x)
(1 − 1/100)n = (1.02 × 1015)(1 − 1/100)n would

have implied that 3897 steps are sufficient for the total variation distance to be less
then 0.01.

4. Discussion. We use a probabilistic technique based on a monotone cou-
pling argument for analyzing all the examples in this paper. We obtain reasonable
upper and lower bounds for the total variation distance for any arbitrary start-
ing point of the Markov chain, significantly broadening previous results in [9].
This analysis is very simple to implement, requiring the knowledge of a single
eigenfunction and its corresponding eigenvalue. In addition, the analysis does not
require the assumption of reversibility. As an illustration, we provide the nonre-
versible Moran model in Section 3.1. The next goal is to sharpen the bounds to
obtain matching upper and lower bounds, and to generalize the techniques devel-
oped in this paper for continuous state spaces.

APPENDIX

LEMMA 1. If the mutation matrix M is irreducible, then the transition den-
sity K in (3.1) is irreducible and aperiodic.

PROOF. We first show irreducibility. Let x ∈ X d
N be arbitrarily chosen. Let

i �= j be such that 1 ≤ i, j ≤ d and xi > 0. By the irreducibility of M, there exists
n ∈ N such that (Mn)ij > 0. As a result, there exist i = k0, k1, k2, . . . , kn−1, kn = j

such that
∏n−1

l=0 mklkl+1 > 0. Let x0 = x, and xl = xl−1 + ekl
− ekl−1 for 1 ≤ l ≤ n.
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Note that by construction, xl
kl

> 0, which implies xl ∈ X d
N for every 1 ≤ l ≤ n.

Hence,

Kn(x,x + ej − ei ) = Kn(x0,xn)

≥
n−1∏
l=0

K(xl ,xl+1)

≥
n−1∏
l=0

xl
kl

N

xl
kl

N
mklkl+1

> 0.

We have thus shown that if x and y are neighbors in X d
N , that is, if y can be ob-

tained from x by removing an individual in one species and adding an individual
in another, then there exists n ∈ N such that Kn(x,y) > 0. Since any two elements
of X d

N are connected by a path such that successive elements in the path are neigh-
bors, it follows that K is irreducible.

We now show aperiodicity. Since M is irreducible, there exist i, j such that
1 ≤ i �= j ≤ d and mij > 0. If x ∈ X d

N is such that xi, xj > 0, then

K(x,x) ≥ xj

N

xi

N
mij > 0.

Since K is irreducible, and there exists at least one x ∈ X d
N such that K(x,x) > 0,

it follows that K is aperiodic. �
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