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Discussion of “Is Bayes Posterior just
Quick and Dirty Confidence?”
by D. A. S. Fraser
Tong Zhang

1. CONFIDENCE REGION ESTIMATION

The author has written an interesting article on the
relationship of confidence distribution and Bayesian
posterior distribution. Confidence distribution has its
origin from Fisher’s fiducial distribution, and in this
discussion we refer to it simply as the “confidence
distribution approach.” It allows frequentists to assign
confidence intervals (or, more generally, confidence re-
gions) to the outcome of estimation procedures.

The idea can be simply described as follows. Con-
sider a statistical model with a family of distributions
pθ(y), where y is the observation and θ is the model
parameter. We assume that the observed y is gener-
ated according to a true parameter θ∗ which is un-
known to the statistician. If we can find a real-valued
quantity U(y; θ) that depends on θ and y such that
for all θ , when y is generated from pθ(y), U(y; θ)

is uniformly distributed in (0,1), then we can esti-
mate the confidence interval of θ given an observation
y as the set Iα,β(y) = {θ :U(y; θ) ∈ (α,β)} for some
0 ≤ α ≤ β ≤ 1. An interpretation of this confidence re-
gion is that no matter what is the true underlying θ∗
that generates y, the region Iα,β(y) contains the true
parameter θ∗ with probability β − α (when y is gener-
ated according to θ∗).

Indeed, the above interpretation is a very natural def-
inition of confidence region in the frequentist setting.
It does not assume that θ∗ is generated according to
any prior, and the interpretation holds universally true
for all possible θ∗ in the model. This interpretation can
be compared to a confidence region from the Bayesian
posterior calculation that assumes that θ∗ is generated
according to a specific prior which has to be known
to the statistician. If the statistician chooses the wrong
prior, then the confidence region calculated from the
Bayesian approach will be incorrect in that it may not
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contain the true parameter θ∗ with the correct probabil-
ity.

The paper takes this interpretation of confidence re-
gion, and goes on to provide several examples show-
ing that the Bayesian approach does not lead to cor-
rect confidence estimates for all θ∗. The author then
argued that the confidence distribution approach is the
more “correct” method for obtaining confidence inter-
vals and the Bayesian approach is just a quick and dirty
approximation.

One question that needs to be addressed in the confi-
dence distribution approach is how to construct a statis-
tics U(y0; θ) with the desired property. The author con-
sidered the quantity U(y0; θ) = ∫

y≤y0
pθ(y) dy, which

is well-defined if the observation y is a real-valued
number. This corresponds to the proposal in Fisher’s
fiducial distribution. The idea of fiducial distribution
received a number of discussions throughout the years,
and is known to be adequate for unconstrained location
families (for which the fiducial confidence distribution
matches the Bayesian confidence distribution using a
flat prior). However, the general concept is controver-
sial, and largely regarded as a major blunder by Fisher.

In this discussion article we will explain why the
idea of confidence distribution with

U(y0; θ) =
∫
y≤y0

pθ(y) dy

has not received more attention for general statistical
estimation problems, although it does give confidence
region estimates that fit the frequentist intuition.

2. SUBOPTIMALITY

The purpose of confidence distribution is to provide
a confidence region that is consistent with the frequen-
tist definition. However, one flaw of this approach is
that the result it produces may not be optimal. While
this issue was pointed out in the article, it was not ex-
plicitly discussed. In my opinion, this is the main rea-
son why the idea of confidence distribution hasn’t be-
come more popular in statistics. Therefore, this section
provides a more detailed discussion on this issue.
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To understand this point, we shall first consider a
simple illustration. Let U(y, θ) be a uniform random
variable in (0,1) that is independent of y and θ . By def-
inition, given any θ∗, the confidence region Iα,β(y) =
{θ :U(y; θ) ∈ (α,β)} contains θ∗ with probability
β − α. Since this applies to the parameter that gen-
erates y, the confidence region obtained this way is
consistent with the frequentist intuition of what a con-
fidence region should mean. However, this estimate is
not useful statistically because the method just ran-
domly guesses either the entire domain of θ when
U ∈ (α,β) or the empty region otherwise; the decision
does not even depend on y.

While the above example is extreme, it does show
that a confidence region merely consistent with the fre-
quentist semantics is not necessarily a useful estimate.
Statistically, this is because the confidence region ob-
tained is suboptimal. In fact, this claim also applies to
the confidence distribution approach this article con-
siders. More specifically, for nonlinear problems that
this paper focused on, the method can produce confi-
dence regions that are quite suboptimal. By “optimal”
(or even “good”), we mean that the confidence region
a method produces should be small by some measure.
In particular, if another method provides confidence re-
gions that also fit in the frequentist semantics but is no
larger on average for all θ and smaller for some θ , then
it can be regarded as a better method. This corresponds
to the notion of admissibility in decision theory.

Consider the following simple nonlinear location es-
timation model: y is generated either from N(0, σ 2

0 )

when θ = 0, or from N(1, σ 2
1 ) when θ = 1. There are

only two possible positions θ = 0 or θ = 1 for the un-
known location parameter θ , and we assume that the
variance parameters σ 2

0 and σ 2
1 are known quantities

that are not necessarily equal. Note that the restriction
of θ to two positions is only for simplicity, which is not
critical for our illustration—we can extend the example
to allow all locations in R.

For this example, the confidence distribution ap-
proach gives the following U(y0, θ):

U(y0, θ) =
{

�(y0/σ0), θ = 0,

�
(
(y0 − 1)/σ1

)
, θ = 1,

where �(z) denotes the cdf of the standard Gaussian
N(0,1).

Let’s consider the confidence region Iδ,1−δ(y) for
some δ ∈ (0,0.25), which we simplify as I (y). By
definition, the estimated confidence region I (y) con-
tains the position θ = 0 if and only if y ∈ �0 with
�0 = (σ0�

−1(δ),−σ0�
−1(δ)), and I (y) contains the

position θ = 1 if and only if y ∈ �1 with �1 = (1 +
σ1�

−1(δ),1 − σ1�
−1(δ)). For convenience, we also

define

μ0 = P(y ∈ �1|θ = 0)

=
∫ 1−σ1�

−1(δ)

1+σ1�
−1(δ)

1√
2πσ0

exp
(
− y2

2σ 2
0

)
dy.

In order to show that the confidence distribution ap-
proach is suboptimal, we can, for simplicity, consider
the case σ0 � 1 and σ1 � 1, so that 1 − σ1�

−1(δ) <

−σ0�
−1(δ) and μ0 < 2δ. The first condition implies

that �1 ⊂ �0. Therefore, when the parameter θ = 1,
with probability 1 − P(y ∈ �1|θ = 1) = 1 − 2δ over
y ∼ N(1, σ 2

1 ), we have y ∈ �1 and, thus, |I (y)| = 2
[i.e., I (y) contains both θ = 0 and θ = 1]. Therefore,
we have (note that we have assumed that δ < 0.25)

Ey|θ=1|I (y)| > 2(1 − 2δ) > 1.(1)

Moreover, we have

Ey|θ=0|I (y)| = P(y ∈ �0|θ = 0) + P(y ∈ �1|θ = 0)

= 1 − 2δ + μ0.

Now we would like to construct a better confidence
region estimator by using the condition (which we
made earlier) that P(y ∈ �1|θ = 0) = μ0 < 2δ. There-
fore, we can pick �′

0 such that �′
0 ∩ �1 = ∅ and

P(y ∈ �′
0|θ = 0) = 1 − 2δ. This means that we can

choose the following confidence region estimate I ′(y):
I ′(y) contains the position θ = 0 if and only if y ∈ �′

0
and I ′(y) contains the position θ = 1 if and only if
y ∈ �1. This estimate obeys the frequentist definition
because P(θ ∈ I ′(y)|θ) = 1 − 2δ both when θ = 0 and
θ = 1. Moreover, we have

Ey|θ=0|I ′(y)| = 1 − 2δ + μ0, Ey|θ=1|I ′(y)| ≤ 1.

The second inequality is due to the fact that |I ′(y)| ≤ 1
for all y because �′

0 ∩ �1 = ∅. In comparison to (1),
we know that when θ = 1, the confidence distribution
approach gives a confidence region I (y) with a larger
average size. This means that for this simple problem,
the confidence distribution approach gives a subopti-
mal estimate of confidence region I (y) that is domi-
nated by a better method I ′(y). The difference can be
significant when δ ≈ 0.

3. CONCLUSION

The confidence distribution approach is a rather gen-
eral method to obtain confidence regions for parameter
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estimation problems consistent with the frequentist se-
mantics. The method can also be easily generalized to
the multivariate situation where y is a vector instead
of a real number. Nevertheless, the confidence region
it estimates can be rather suboptimal in the sense that
the region obtained by this method can be significantly
larger than what can be done with more sophisticated
methods. Although we have only illustrated this phe-
nomenon with a relatively simple example, the conclu-
sion holds more generally.

At the root of this suboptimality, we note that
whether a model parameter θ0 belongs to the confi-
dence region obtained by the confidence distribution
approach only depends on the distribution p(y|θ = θ0)

at the parameter θ0 itself, without considering the al-
ternative models at θ 
= θ0. This unnatural behavior
is what causes its suboptimality for general nonlinear
models. For example, in order to achieve good perfor-
mance for the simple two-position location estimation
example given in the previous section, the confidence
region estimate I ′(y) at θ = 0 has to be modified in

order to take advantage of the alternative model θ = 1
(so that �′

0 ∩ �1 = ∅). Such adaptation does not oc-
cur in the confidence distribution approach. As noted
by the author during the discussion of the bounded pa-
rameter example, the confidence distribution estimate
does not change when we restrict the model space, and
this phenomenon is rather odd. The author dismissed
this problem as a secondary issue because it does not
change the semantics of the confidence region in the
frequentist interpretation. However, if we are interested
in achieving (near) optimality for the estimated confi-
dence region, then this issue becomes a more serious
concern because it means that this simple method ig-
nores a significant amount of available information that
could have been used in more complicated algorithms.
In conclusion, while the confidence distribution ap-
proach is simple to apply, the simplicity is achieved
by ignoring some useful information. Therefore, we
have to keep the limitations of this method in mind
whenever it is applied to complex statistical models.
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