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Flexible Paleoclimate Age-Depth Models Using
an Autoregressive Gamma Process

Maarten Blaauw∗and J. Andrés Christen†

Abstract. Radiocarbon dating is routinely used in paleoecology to build chronolo-
gies of lake and peat sediments, aiming at inferring a model that would relate the
sediment depth with its age. We present a new approach for chronology building
(called “Bacon”) that has received enthusiastic attention by paleoecologists. Our
methodology is based on controlling core accumulation rates using a gamma au-
toregressive semiparametric model with an arbitrary number of subdivisions along
the sediment. Using prior knowledge about accumulation rates is crucial and in-
formative priors are routinely used. Since many sediment cores are currently ana-
lyzed, using different data sets and prior distributions, a robust (adaptive) MCMC
is very useful. We use the t-walk (Christen and Fox, 2010), a self adjusting, robust
MCMC sampling algorithm, that works acceptably well in many situations. Out-
liers are also addressed using a recent approach that considers a Student-t model
for radiocarbon data. Two examples are presented here, that of a peat core and a
core from a lake, and our results are compared with other approaches.
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Past climates and environments can be reconstructed from deposits such as ocean or
lake sediments, ice sheets and peat bogs. Within a vertical sediment profile (core), mea-
surements of microfossils, macrofossils, isotopes and other variables at a range of depths
serve as proxy estimates or “proxies” of climate and environmental conditions when the
sediment of those depths was deposited. It is crucial to establish reliable relationships
between these depths and their ages. Age-depth relationships are used to study the
evolution of climate/environmental proxies along sediment depth and therefore through
time (e.g., Lowe and Walker 1997).

Age-depth models are constructed in various ways. For sediment depths containing
organic matter, and for ages younger than c. 50,000 years, radiocarbon dating is often
used to create an age-depth model. Cores are divided into slices and some of these are
radiocarbon dated. A curve is fitted to the radiocarbon data and interpolated to obtain
an age estimate for every depth of the core. The first restriction to be considered is
that age should be increasing monotonically with depth, because sediment can never
have accumulated backwards in time (extraordinary events leading to mixed or reversed
sediments are, most of the time, noticeable in the stratigraphy and therefore such cores
are ruled out from further analyses). Moreover, cores may have missing sections, leading
to flat parts in the age depth models.
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For peat cores the problem was studied in Blaauw and Christen (2005) using a piece-
wise linear approach with few sections and considering constraints on accumulation
rates. This approach has been successfully applied in many examples (e.g., Wohlfarth
et al. 2006; Blaauw et al. 2007a; Chambers et al. 2007; Sillasoo et al. 2007; Blaauw et al.
2007b, 2010; Charman et al. 2009; Plunkett et al. 2009). This approach seems useful if
high resolution dating is available (many core slices are dated) and the core is not very
long (1 or 2 m). Otherwise the piece-wise linear model appears too restrictive and many
sections are needed to be used to render the methodology more useful (Wohlfarth et al.
2008; Blaauw et al. 2010). Also, in piece-wise linear models with relatively long sections,
the variability decreases in between section vertices (Yeloff et al. 2006; Blockley et al.
2007) (an axes or turning point effect, see Blaauw and Christen 2005, fig. 1(c)).

Haslett and Parnell (2008) address the age-depth chronology building in a new per-
spective. Based on a bivariate monotone Markov process (with gamma increments)
they construct an increasing model with increments determined at random points pro-
vided by a renewal process. A linear interpolation is considered in between renewal
points, therefore leading to a random number of sections. The process is also proven
to be mean-square continuous, thus signifying a palatable and flexible model for age-
depth relationships. Haslett and Parnell (2008) represent a workout improvement on
the piece-wise linear approach of Blaauw and Christen (2005). However, in our perspec-
tive, Haslett and Parnell (2008) concentrate on the sound stochastic properties of their
model and consider “minimal assumptions on smoothness” as a basic building block.

Inspired by the ideas of Haslett and Parnell (2008), we concentrate on modeling
the accumulation process using a simple autoregressive time series in which smoothness
is part of the controlling features, since we believe exactly the opposite: Prior input
on the evolution and shape of accumulation rates (smoothness) is crucial in building
realistic age-depth models. Because radiocarbon dates are costly (ca. 500USD per
determination) and not every depth contains sufficient dateable carbon, not every depth
of a core may be dated. Interpolating is the key issue here, and given the non-monotonic
nature of the radiocarbon calibration curve (Reimer et al. 2009), it is common to find
entire sections of a core where dates increasing in depth have overlapping calibrated
distributions over several centimeters. A multitude of non-decreasing models may be
imputed. However, available prior information on accumulation rates render many
highly unlikely options from an ecological perspective, therefore leading to reduced
uncertainty and more realistic modeling. See Section 2 for more details and discussion.

Other general purpose approaches to monotone regression could be attempted here,
such as isotonic regression (e.g. Lavine and Mokus 1995; Cai and Dunsun 2007; Holmes
and Heard 2003). However, radiocarbon dates are modeled in a non–standard fashion
(a calibration is required, with added non-gaussian noise on the calendar scale) and it
would be very important to have a means of entering the prior information available
regarding the accumulation process just mentioned. It is not clear how an off-the-
shelf monotonic regression approach can handle these issues and therefore tailor suited
methodologies have been attempted, here and elsewhere (Christen et al. 1995; Blaauw
et al. 2003; Blaauw and Christen 2005; Haslett and Parnell 2008; Bronk Ramsey 2008).
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Here we concentrate on modeling accumulation rates to establish a coherent evo-
lution of deposition along the core depth, and possibly including some sections where
discontinuities are suspected (hiatuses). This is done via a gamma autoregressive pro-
cess, where the corresponding integrated process represents the age-depth model. The
resulting methodology can be used in high-density dated cores, where in some cases
the piece-wise linear model with few sections of Blaauw and Christen (2005) is visually
reproduced, although the age-depth model variance along the core is better estimated.
Our methodology also produces reasonable interpolations in low-density dated cores,
and since accumulation rates are inferred taking into account ecological prior informa-
tion, only sensible alternatives are relevant, leading to better suited inferences. We show
our methodology to work in cores from peat as well as from lake deposits (see Section 2).
Our methodology uses MCMC (as well as Blaauw and Christen 2005; Haslett and Par-
nell 2008), but we use a self adjusting algorithm (Christen and Fox 2010) that could
potentially enable its use by non-experts. Moreover, we use a parsimonious and novel
approach to outliers in radiocarbon dating that has been shown to provide excellent
results (Christen and Pérez 2009).

1 The model

We have a series of radiocarbon determinations yj ± σj ; j = 1, 2, . . . , m taken along a
(peat, lake, etc.) core at depths dj . A semiparametric model is proposed to establish a
relationship between the (unknown) age of peat and depth, d,

G(d, θ, x) = θ +
i∑

j=1

xj∆c + xi+1(d− ci);

where ci ≤ d < ci+1, i < K, and c0 < c1 < · · · < cK are depths uniformly spaced along
the peat core with difference ∆c and x = (x1, x2, . . . , xK). That is, in our model the
core is divided into K equally spaced sections and xj is the accumulation rate of section
j. (The actual physical slicing of the core may or may not differ from the one presented
here for our age-depth modeling purposes.)

Radiocarbon dating is an analytic technique for dating organic matter younger than
c. 50,000 years. The radioactive carbon isotope 14C is produced in the upper atmo-
sphere and 14CO2 becomes part of the biosphere. When organisms die, their organic
matter is subtracted from the biosphere and its 14C content decreases gradually owing
to radioactive decay. By measuring and comparing the 14C content of such organic
matter with a modern standard, an approximate date is obtained in the form of a mean
“radiocarbon age” and a standard measuring error, y ± σ. However, the atmosphere’s
14C content has not remained constant through time and calibration curves µ(·) have
been constructed to translate calendar (true) years into radiocarbon years (Reimer et al.
2009). We assume that E[yj | dj , x] = µ(G(dj , θ, x)). The specific model for the radio-
carbon determinations yj will be explained below.

A non-Gaussian autoregressive model is proposed for the sediment accumulation
rates xj = wxj+1+(1−w)αj , where w ∈ [0, 1] and αj ∼ Gamma(aα, bα) iid, with aα and
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bα known, representing the a priori information available on accumulation rates. That
is, the accumulation rate at depth cj is a weighted average of the accumulation rate of
the previous (below) depth cj+1 and an independent noise αj . The value of w provides
the “memory” or coherence in accumulation rates along the core, from independent
w = 0 to fixed w = 1. This in turn provides a degree of smoothness, avoiding a priori
extreme variations or extremely low or high accumulation rates. Since xj > 0, the
resulting age-depth model is increasing. A prior distribution for the intercept θ, f(θ),
is also assumed.

Note that the xj process may be written as xj = wxj+1 + zj , where
zj ∼ Gamma(aα, bα/(1 − w)) are iid “innovations”. It may be seen that this process
(given w, aα and bα) is stationary and that the stationary distribution corresponds to
a self-decomposable (SD) random variable X, with the property X =d wX + Z, with
Z ∼ Gamma(aα, bα/(1 − w))(Mena and Walker 2005). It is also known that such sta-
tionary distribution is infinitely divisible and unimodal (Mena and Walker 2004). This
process can also be seen as a discrete approximation of the continuous time Ornstein–
Uhlenbeck process with gamma innovations or OU-Γ. Barndorff-Nielsen and Shephard
(2003) study these types of processes and properties of the corresponding integrated
process that would represent here the actual age-depth model. Much of the literature of
non-Gaussian autoregressive processes has concentrated on controlling the resulting sta-
tionary distribution and thus finding the required distribution for the innovations (e.g.
Mena and Walker 2005). We model the actual core accumulation process itself, and
therefore the distribution for zj is fixed (to be elicited as part of the prior information)
and, as we will explain (see Section 2), this proves to be crucial in establishing age-depth
models. This constitutes our key modeling feature, since it forms a better basis for elic-
iting informed priors, as opposed to having purely instrumental modeling parameters
with no clear physical meaning to control the behaviour of possible age-depth models.

Barndorff-Nielsen and Shephard (2003) calculate the Laplace transform of the sta-
tionary distribution of the OU-Γ process, however, we have not been able to find an
analytic version of the corresponding stationary distribution (given w, aα and bα) for
our model. Barndorff-Nielsen and Shephard (2001) explain that a square integrable sta-
tionary OU process has an autocorrelation function that decreases exponentially with
the lag. By first principles one can calculate E(xnxn−k) and noting that (by the SD
property) E(xn)(1− w) = E(Z) one obtains the autocorrelation between xn and xn−k

ρ(k) = wk,

which is independent of the distribution for zj . Regarding the prior distribution for
w, note that this depends on ∆c, that is, how separated in depth xj and xj+1 are.
In order to have a standardized prior distribution for the “memory” in our model,
independent of the particular ∆c chosen, we note that c(d) = ρ(d/∆c) = w

d
∆c represents

the autocorrelation at a lag corresponding to a depth of d. Let ds be a fixed depth and
let R = c(ds)(∈ [0, 1]) be the correlation of accumulation rates of any two sections of
the core separated by ds cm. What remains is to elicit the prior distribution of R, and
we assume it to be Beta(aw, bw). It is clear that the corresponding a priori density for
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w is

f(w) =
dsw

ds
∆c−1

∆c
fR(w

ds
∆c ),

where fR(·) is the beta prior density of R with parameters (aw, bw). We let ds = 1 cm
in the following. This will be the prior distribution of w to be used in our model.

It is common in paleoecology to find stratigraphical indications for abrupt changes,
such as a shift from lake to bog deposits, or a discontinuity in accumulated deposits.
Since different types of deposits could have accumulated with unique accumulation rates
or “memory”, in our model specific prior settings can be applied to distinct sections of
a core. Similarly, in peat bogs fires may destroy part of the accumulated peat, after
which the bog continues to accumulate. Similar processes happen also in lakes (i.e.,
lowstands) and other deposits. This possibly creates a missing section, or a hiatus in
the core, and would be seen as a jump in the age-depth model. At depths where a
suspected hiatus occurred, a hiatus location may be introduced in our model as follows.

Let h1 > h2 > . . . > hH be depths at which hiatuses are suspected to have occurred.
The approach here is that the autoregressive accumulation rates process loses memory
after passing a hiatus, that is if ck−1 ≤ hl < ck then xk ∼ Gamma(aH , bH∆c), where
Gamma(aH , bH) is the prior information provided on the jump length for a hiatus (as
in Blaauw and Christen 2005, fig. 3(b)). Afterwards, xk−1 = wxk + (1 − w)αk−1 as
before.

1.1 Outliers and the radiocarbon data model

Our model for the radiocarbon determinations yj is based on Christen and Pérez (2009).
While the traditional Normal model may be used for comparison purposes, that is,
yj | dj , x ∼ N{µ(G(dj , θ, x)), σ2

j + σ2(G(dj , θ, x)} (where σ2(·) is the variance in the
calibration curve, readily available in for example the IntCal09 calibration curve), we
use the generalized robust Student-t model of Christen and Pérez (2009), where deter-
mination j has the likelihood

[
b +

{yj − µ(θj)}2
2ω2

j (θj)

]−(a+ 1
2 )

,

where θj = G(dj , θ, x) and ω2
j (θ) = σ2

j +σ2(θ). We follow the recommendation of Chris-
ten and Pérez (2009) setting a = 3 and b = 4. This model has as limiting distribution
(for b = a + 1 and a large) the traditional Normal model and, more importantly, is
robust to the presence of outliers.

Blaauw and Christen (2005) use the approach of Christen (1994) of “shift outliers”
to identify outliers in radiocarbon data and consequently build robust age-depth mod-
els. A shift δj is introduced in the Normal model to detect outliers N(µ(G(dj , θ, x) −
φjδj), σ2

j +σ2(θ)) where φj is a Bernoulli (indicator) variable. Using MCMC, the prob-
ability P (φj = 1|Data) is calculated and represents the posterior probability that de-
termination j is an outlier (that is, requires a shift on the radiocarbon scale in order
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to be properly explained with the rest of the data, given the model at hand). Recently
this approach has been extended to consider other types of shifts (e.g., on the calendar
scale, etc. Bronk Ramsey 2009b). However, Christen and Pérez (2009) explain that
most likely the Normal model itself is wrong, since assuming the reported error σj to be
known is simply not true (indeed, σj is part of the radiocarbon measurement process as
much as the mean radiocarbon age yj is). By not assuming σj as known, the Student-t
model is obtained. This model is robust to the presence of outliers and is capable of
explaining the otherwise long standing “unexplained scatter” (FiriGroup 2003) in the
most controlled and recent radiocarbon interlaboratory studies. We have obtained ex-
cellent results using this model (see Section 2), with the added feature that it is far
more parsimonious than the former model of Christen (1994), which requires two extra
parameters per determination. Moreover, besides robustness, this more parsimonious
model contributes to greater speed and ease of convergence in our MCMC.

1.2 A self-adjusting MCMC

A good deal of techniques are available nowadays for numerically evaluating the pos-
terior calculations needed in a Bayesian analysis. In particular, simulating from the
posterior distribution using MCMC is, theoretically, straightforward even in high di-
mensional settings, typically via the Metropolis-Hastings (M-H) algorithm (see for ex-
ample Gamerman and Lopes 2006). However, tuning the resulting MCMC is not a
trivial task, is commonly only achieved partially and requires a lot of input from an ex-
perienced statistician on a case-by-case basis. If the statistical methodology is expected
to be used by non-statisticians, this part is critical and numerical methods are needed
that are robust to different prior distributions and data inputs. Substantial current
research on MCMC runs in this direction, developing adaptive algorithms that learn
about the problem at hand to automatically tune the MCMC simulation (see Andrieu
and Thoms 2008, for a review). However, many additional regularity conditions are
required and commonly some additional input is needed (e.g. the expected number of
modes in the posterior, etc.). Christen and Fox (2010) present a self-adjusting MCMC
algorithm (dubbed “the t-walk”) that requires no tuning and has been shown to pro-
vide good results in many cases of up to 400 dimensions. In some cases it even rivals
ideally tuned MCMCs (reaching theoretical optimality). The t-walk is not adaptive and
therefore does not require new restricting conditions since it is a M-H algorithm (that
runs in the product space of the original parameter space). The only needed input is
the -log of the posterior and two initial points.

A program (in C++) is used to calculate − log f(θ, x, w|y1, y2, . . . , ym). The other
input required by the t-walk are two initial points. We simulate w0 and w′0 from the
prior distribution of w, and given w0 and w′0 we simulate the autoregressive series to
obtain x0 and x′0. θ0 and θ′0 are provided by the user. This creates the two initial “city
park” values (θ0, x0, w0) and (θ′0, x

′
0, w

′
0).

The “energy” function U(θ, x, w|y) = − log f(θ, x, w|y) (that is -log of the posterior
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Figure 1: Prior (green) and posterior (grey) distributions of accumulation rate (a) and
memory R (b) for core MSB2K. For interpretation of the references to color in this
figure and other figures, the reader is referred to the web version of this article.

distribution, besides perhaps a normalizing adding constant, Liu 2001, p. 80) is

U(θ, w, x|y) =
m∑

j=1

(
a +

1
2

)
log

(
b +

{yj − µ(θj)}2
2ω2

j (θj)

)
+

− log f(θ) +
ds

∆c
(1− aw) log(w) + (1− bw) log

(
1− w

ds
∆c

)
+

K∑

k=1

Uα(k, x),

where as above θj = G(dj , θ, x) and ω2
j (θj) = σ2

j + σ2(θj) and Uα(k, x) is − log of the
prior for αk, that is

Uα(k, x) =

{
(1− aH) log(αk) + bHαk, αk = xk, where ck−1 ≤ hl < ck

(1− aα) log(αk) + bααk, αk = xk−wxk+1
1−w , otherwise.

One added feature of the t-walk is that for many examples it maintains the Integrated
Autocorrelation Time (IAT, Geyer 1992) bounded around 30n, where n is the dimension
of the posterior; in this case n = K + 2. This means that to obtain a semi-independent
sample one would need to resample (“thin”) the MCMC output every 30n iterations;
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to be on the safe side we subsample every 100n iterations, assuming that IAT/n ≤ 100.
The burn-in is established by checking the time series plot of −U(θ(t), x(t), w(t)|y) (log-
posterior), and commonly takes fewer than 20,000n iterations. Therefore to obtain a
final sample size of T (after burn-in and thinning) we require a sample size of 20,000n+
100nT . These guidelines facilitate convergence checking and have proven to be accurate
and useful for several age models we have analyzed. These figures might seem extreme
resulting in many millions of iterations needed, but the performance of the t-walk has
been shown to be consistent for more than 90 cores analyzed and results are linear
on the dimension n = K + 2. This is a remarkable and very useful property of this
MCMC, and would potentially enable its use by non-experts. Fortunately, our optimized
C++ implementation may run 107 iterations in c 1 minute, making these types of runs
perfectly feasible, as will be shown by some particular examples in the next Section.
In our implementation, to save disk space, we save only accepted iterations. As an
estimate, only one in every 20n iterations is accepted, resulting in the final numbers
for the burn-in and thinning being typically slightly larger than 20,000n and 100n,
respectively.

2 Examples

2.1 The MSB2K peat core

MSB2K consists of a 100 cm thick vertical section from the raised bog peat deposit
Meerstalblok in Eastern Netherlands (Blaauw et al. 2003). The core contains 40 14C
dates of selected above-ground plant remains, and was analyzed every cm for about 60
different fossil proxies (e.g., pollen, leaves and seeds of fossilized plant remains) that
can inform us about past local to regional environmental conditions during the mid
Holocene (Blaauw et al. 2003). From previous research we expected that peat from this
region has accumulated at c. 5–50 year per cm (mean c. 20) (Blaauw et al. 2003; Blaauw
and Christen 2005). Therefore we set our prior for the accumulation rate as a gamma
distribution with shape 2 and mean 20 (that is aα = 2 and bα = 1/10, see Figure 1a).
We did not expect that environmental conditions would have changed drastically during
the period of interest and therefore the prior for the variability of accumulation rate
was set at relatively low levels (“high memory”; steps every ∆c = 5 cm, aw = 7 and
bw = 3, that is R has a mean correlation of 0.7; see Figure 1b). In c. 3 minutes on a
dual 3.16 GHz processor running Linux, 23.46 million iterations were run, sub-sampling
every 2,300 iterations with a burn-in of 20,000 iterations for a selected final sample size
of 10,000. The final log-posterior time series plot was stable (not shown here; see the
Supporting Material1). As explained in Section 1.2, we only save accepted iterations
to save disk space, and the final numbers for a particular run vary slightly from those
given here.

Posterior distributions were obtained for the accumulation rates and memory (Fig-
ure 1), as well as for the age-depth relationship (Figure 2). The posterior for the memory

1http://www.cimat.mx/~jac/BaconSupportingMaterial.pdf

http://www.cimat.mx/~jac/BaconSupportingMaterial.pdf�
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Figure 2: Posterior age–depth model of core MSB2K (grey), overlaying the calibrated
distributions of the individual dates (blue). Grey dots indicate the model’s 95% proba-
bility intervals.

(1 cm correlation, R = w
ds
∆c ; ds = 1 cm) indicates that our prior belief of a high correla-

tion between peat accumulation at a distance of 1 cm (approximately equivalent to 20
years) seems not very accurate. The substantially lower correlation (compare the prior
and posterior in Figure 1(b)) possibly suggests a higher than expected, sub-centennial,
climate variability. On the other hand, the average distribution of all accumulation
rates xj ’s is quite similar to the (prior) distribution used for the innovations (αj ’s).
This means that the prior is sufficiently strong and the likelihood (data) does not pro-
vide further information on accumulation rates.

The radiocarbon data do not provide sufficient information on accumulation rates,
especially within sparsely dated parts of the core and/or for flat parts of the radiocarbon
calibration curve. Note for example the chronology between 0 and 20 cm core depth in
Figure 2. Resulting from a flat part of the calibration curve, the data is simply flat in
that part of the core. Any sort of non-decreasing age depth model could be fitted to this
part of the core and, indeed, reasonable models are considered by the use of a properly
elicited prior, bounding physically possible accumulation rates (for peat, a different
prior is used for the lake core presented in the next Section). Other current approaches
to age-depth modeling, to be discussed in the next Section, do not control accumulation
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rates explicitly and may in fact overestimate or underestimate the age-depth variability
without the proper weight of a prior; see Figure 5.

Alternative age-depth models for core MSB2K have previously been obtained by
Blaauw et al. (2003) and Blaauw and Christen (2005). The latter paper used an ap-
proach comparable to the one presented in this paper, albeit with much fewer sections,
applying a hiatus and using outlier analysis. The age–depth model by (Blaauw and
Christen 2005) was based on two piece-wise linear sections and as such appears much
more constrained and rigid than the age–depth model with 21 sections presented here.
The model of (Blaauw and Christen 2005) was quite constrained in the middle of both
linear sections, which is probably an artefact of the model (Blockley et al. 2007). Our
present model seems to capture well the increased uncertainties at sections which are
dated at lower density (e.g., between 100 and 80 cm depth).

The importance of taking into account constraints on accumulation rate is obvious
from looking at the model behaviour between c. 20 and 0 cm depth (Figure 2). In
this section, a plateau in the calibration curve causes nearly constant ages, and many
different age-depth curves could be drawn. However, it can be seen that only some
age-depth models are likely given the priors of accumulation rate and its variability.

Blaauw and Christen (2005) inferred a hiatus between c. 5500 and 5000 cal BP for
core MSB2K, and provided some ecological reasons as to why such a hiatus could have
occurred (e.g., a so-called “bog burst” where floods eroded part of the peat deposit).
In our present age-depth model for the site however, a gradual change in accumulation
rate is inferred during the afore-mentioned period. If a hiatus is forced at 22 cm depth
(choosing as prior for the hiatus length a gamma distribution with shape 1 and mean
200), no discernible hiatus is produced (data not shown), indicating that a hiatus–free
model would be the most parsimonous choice for this core.

2.2 The RLGH3 lake core

The relatively high precision chronology for core MSB2K is partly due to its unusually
high dating resolution. For cores with a lower ratio of radiocarbon dates per centimeter,
greater chronological variability is to be expected. In order to investigate this, we
assessed a core from lake sediment that was dated at lower resolution. Generally, lake
bottoms gradually accumulate organic and inorganic matter derived from within and
outside the lake system. Core RLGH3 consists of Holocene lake sediments from the
Round Loch of Glenhead, Scotland (Jones et al. 1989; Stevenson et al. 1990; Harkness
et al. 1997). The age–depth models shown here are based on 20 radiocarbon dates and
we included the prior of θ0 as a N(−35, 10), cal BP, for the surface sediment (the core
was sampled around AD 1985). The sediment being from a lake, we expected lower
accumulation rates with less “memory” than for peat core MSB2K. Therefore, we set
the priors for accumulation rate as a gamma distribution with shape 2 and mean 50
(yr/cm) and for the accumulation variability a beta distribution with “strength” 20 and
mean 0.1 (that is aα = 2, bα = 1/25, aw = 2, bw = 18), and ∆c = 5 cm.

Our age–depth model for core RLGH3 reconstructs a generally smooth accumulation
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Figure 3: Posterior age–depth model of core RLGH3 (grey), overlaying the calibrated
distributions of the individual dates (blue). Grey dots indicate the model’s 95% proba-
bility intervals.

history, with some fluctuations in accumulation rate at sub-millennial scale (Figure 3).
The posteriors for accumulation rate and its variability are comparable to their priors,
although the posterior indicates more memory than assumed a priori. As in the previous
example of the peat core, the prior used for accumulation rates is sufficiently strong and
data cannot provide further information. Little more can be learned from radiocarbon
data than what we already know about sediment accumulation in this lake core. What
constitutes a reasonable (non-decreasing) age-depth model between 0 and 50 cm, for
example? This information is not contained within the radiocarbon data and must be
an external input, indeed formally provided by our prior for accumulation rates.

There is a clear disagreement between the dates c. 130 to 40 cm depth, which can be
attributed to erosion of older organic material from the catchment (Jones et al. 1989).
Our model seems unbothered by the discording dates and effectively bypasses them.
As detailed in Section 1.1, our method uses a Student-t model to calibrate the dates,
instead of the usual normal model. The wider tails of our calibration model reduce the
need for detecting and removing outliers.

For comparison purposes, we ran the RLGH3 data through BChron (Parnell et al.
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Figure 4: Prior (green) and posterior (grey) distributions of accumulation rate (a) and
memory R (b) for core RLGH3.

2008) and the P Sequence of OxCal (Bronk Ramsey 2008) (Figure 5). The P Sequence
models sediment accumulation through sampling from Poisson distributions (here with
parameter k set at 2 and interpolation at every 5 cm). As discussed in Section ??,
BChron models the sediment accumulation through a monotonic model with increments
determined at random points provided by a renewal process. BChron nor OxCal’s P
sequence take into account prior information on accumulation rates, and while the
variation in accumulation rates can be set in the P sequence, this cannot be done
within BChron. In both cases, the final variability in the age-depth models is in fact a
result of some parameter settings but owing to a lack of a workable interpretation of the
corresponding priors in terms of the accumulation rates (or other physical properties
of the core) there is little room to justify the actual variance depicted in the resulting
models.

BChron exhibits wider intervals than ours while P sequence narrower (using “k = 2”
in the OxCal settings), as may be seen from Figures 3 and 5. However using our ap-
proach, a prior for accumulation rates is required and becomes crucial in explaining
the age-depth model variability, as explained above. Indeed, wider or narrower con-
fidence intervals may indeed be obtained by varying the prior for accumulation rates,
αj ’s (see the Supporting Material2 for further discussion regarding the sensitivity of the
prior selection for the αj ’s). A well elicited informative prior will therefore enable us to
downweight unreasonable models, which will lead to our variance estimates along the
age-depth model. As opposed, for BChron and the P sequence, what is a ”reasonable”

2http://www.cimat.mx/~jac/BaconSupportingMaterial.pdf
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model depends simply on instrumental priors, which leads to unjustifiable (low or high)
variance estimates.

Moreover, both models show only the 95% confidence intervals, while our method
provides the entire posterior distribution as grey–scales (Figure 3). Owing to the spread
of dates between c. 130 and 40 cm depth, both BChron and OxCal were only able
to produce age–depth models when including many additional parameters for outlier
analysis. Priors for outliers were a Student-t distribution with 5 degrees of freedom for
OxCal, while for BChron prior outlier probabilities for “standard” outliers were 5%, and
0.1% for “extreme” outliers. BChron took c. 17 min to run. OxCal’s P sequence ran at
speeds comparable to that of our method (2 min.), however it took much trial-and-error
to find parameter distributions that resulted in successful, converged P sequence runs.
From the cores that we have tested, our routine seems to be more robust, producing
stable age-depth models for a wide range of sites.

BChron as well as Oxcal use conventional Metropolis Hastings MCMC with shift
outlier analysis, producing hugely parametrized models. Moreover, conventional MCMC
may become extremely inefficient when the same setting is applied to different posterior
distributions (Christen and Fox 2010). OxCal has been developed over nearly 20 years
and many tailor–made features in its MCMC have been added (see Bronk Ramsey 2009a,
and analysis details online3) such as multiple variable moves and ‘a small adaptive ele-
ment BChron in that the range of possible update positions is narrowed once reasonable
convergence has been achieved’ (C. Bronk Ramsey, personal communication).

3 Discussion

The main goal for age–depth models is to produce age estimates for all depths in a
core, and most classic approaches do just that by fitting a curve through the dated
points (Blaauw 2010). Instead, the method presented here aims to produce more en-
vironmentally realistic age–depth models by reconstructing the underlying processes,
i.e. the accumulation/sedimentation process itself. We think of our model as a likely
simulation of the deposition process of lakes, bogs or other types of sediment, in which
the accumulation process is influenced by environmental conditions. Gradual – or at
times abrupt – environmental changes will force responses in the deposition processes,
causing accumulation rates to change somewhat from previous rates.

It seems that the P sequence in OxCal (Bronk Ramsey 2008) was constructed with
comparable ideas in mind, in that sedimentation is seen as grains settling in a column
over time (modelled using a Poisson distribution). BChron (Parnell et al. 2008) produces
a random number of sections which accumulate with random positive increments, and
as such is perhaps somewhat further away from an “environmentally inspired” model
(e.g., varibility in accumulation rate cannot be controlled, leading to perhaps overly
inflated confidence intervals). Bpeat assumes piece–wise linear accumulation of peat
deposits, based on environmental data that suggest rather constant peat accumulation

3http://c14.arch.ox.ac.uk/oxcalhelp/hlp_analysis_detail.html
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Figure 5: Output from alternative age-modelling routines BChron (a, Parnell et al.
2008) and OxCal (b, Bronk Ramsey 2008). Dark grey areas show the 95% confidence
intervals of the models. For BChron, red distributions show rejected (outlying) dates,
blue distributions show accepted dates. For OxCal, red distributions show individually
calibrated dates without taking the other dates or accumulation model into account,
while blue distributions show posterior distributions after age–depth modelling and
outlier analysis.

over limited time intervals (Belyea and Clymo 2001; Blaauw and Christen 2005). How-
ever, linear accumulation might be an overly optimistic assumption, resulting in too
constrained confidence intervals especially for longer sections or cores dated at lower
resolution (Yeloff et al. 2006; Blockley et al. 2007). On the other hand, BChron tends
to overestimate variability in–between dated depths, since it considers unreasonably
large or low accumulation rates. Both BChron and the P sequence of OxCal tend to
follow isolated radiocarbon dates (see the date at the bottom of the core at c. 225 cm
in Figure 5). Indeed, the crucial use of well elicited prior information on accumulation
rates leads to more reasonable and consistent models, in the examples presented here
and several others already analyzed.

Our methodology is programmed in C++ with a user interface in R and is available
in Linux, Mac and Windows platforms (currently in beta test, available for download4).
The software is called “Bacon” (a name partly inspired by how specific prior information
will produce smooth “floppy” or “crispy” Bayesian accumulation models). Bacon has
already been tested in more than 90 (lake and peat) cores in a handful of research
projects (Charman et al. 2011; de Vleeschouwer et al. 2010). Certainly, we believe it

4http://chrono.qub.ac.uk/blaauw/bacon.html
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provides a useful alternative to building age–depth models in paleoecology.
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