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GAUSSIAN PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION OF
FRACTIONAL TIME SERIES MODELS

BY JAVIER HUALDE1 AND PETER M. ROBINSON2

Universidad Pública de Navarra and London School of Economics

We consider the estimation of parametric fractional time series models
in which not only is the memory parameter unknown, but one may not know
whether it lies in the stationary/invertible region or the nonstationary or non-
invertible regions. In these circumstances, a proof of consistency (which is
a prerequisite for proving asymptotic normality) can be difficult owing to
nonuniform convergence of the objective function over a large admissible pa-
rameter space. In particular, this is the case for the conditional sum of squares
estimate, which can be expected to be asymptotically efficient under Gaus-
sianity. Without the latter assumption, we establish consistency and asymp-
totic normality for this estimate in case of a quite general univariate model.
For a multivariate model, we establish asymptotic normality of a one-step
estimate based on an initial

√
n-consistent estimate.

1. Introduction. Autoregressive moving average (ARMA) models have fea-
tured prominently in the analysis of time series. The versions initially stressed in
the theoretical literature (e.g., [11, 26]) are stationary and invertible. Following [6],
unit root nonstationarity has frequently been incorporated, while “overdifferenced”
noninvertible processes have also featured. Stationary ARMA processes automat-
ically have short memory with “memory parameter,” denoted δ0, taking the value
zero, implying a huge behavioral gap relative to unit root versions, where δ0 = 1.
This has been bridged by “fractionally-differenced,” or long memory, models,
a leading class being the fractional autoregressive integrated ARMA (FARIMA).
A FARIMA (p1, δ0,p2) process xt is given by

xt = �−δ0{ut1(t > 0)}, t = 0,±1, . . . ,(1.1)

α(L)ut = β(L)εt , t = 0,±1, . . . ,(1.2)
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where {xt } is the observable series; L is the lag operator; � = 1 − L;

(1 − L)−ζ =
∞∑

j=0

aj (ζ )Lj , aj (ζ ) = �(j + ζ )

�(ζ )�(j + 1)

with �(ζ ) = ∞ for ζ = 0,−1, . . . , and by convention �(0)/�(0) = 1; 1(·) is the
indicator function; α(L) and β(L) are real polynomials of degrees p1 and p2,
which share no common zeros, and all of their zeros are outside the unit circle in
the complex plane; and the εt are serially uncorrelated and homoscedastic with
zero mean. The reason (1.1) features the truncated process ut1(t > 0) rather than
simply ut is to simultaneously cover δ0 falling in both the stationary region (δ0 <
1
2) and the nonstationary region (δ0 ≥ 1

2 , where otherwise the process would “blow
up”). In the former case, the truncation implies that xt is only “asymptotically
stationary.” In recent years, fractional modeling has found many applications in
the sciences and social sciences; for example, with respect to environmental and
financial data.

Early work on asymptotic statistical theory for fractional models assumed
δ0 < 1

2 [and replaced ut1(t > 0) by ut in (1.1)]. Assuming δ0 ∈ (0, 1
2), [8–10]

and [12] showed consistency and asymptotic normality of Whittle estimates (of δ0
and other parameters, such as the coefficients of α and β), thereby achieving anal-
ogous results to those of [11, 26] for stationary ARMA processes [i.e., (1.2) with
ut = xt ] and other short memory models. More recently, [16] considered empiri-
cal maximum likelihood inference covering this setting. Note that [8–10] and [12],
and much other work, not only excluded δ0 ≥ 1

2 but also the short-memory case
δ0 = 0, as well as negatively dependent processes where δ0 < 0. To some degree,
other δ0 can be covered, for example, for δ0 ∈ (1,3/2) one can first-difference the
data, apply the methods and theory of [8–10] and [12], and then add 1 to the mem-
ory parameter estimate, but this still requires prior knowledge that δ0 lies in an
interval of length no more than 1

2 .
On the other hand, [3] argued that the same desirable properties should hold

without so restricting δ0, in case of a conditional-sum-of-squares estimate, and
this would be consistent with the classical asymptotic properties established by
[18] for score tests for a unit root and other hypotheses against fractional alterna-
tives, by comparison with the nonstandard behavior of unit root tests against sta-
tionary autoregressive alternatives. However, the proof of asymptotic normality in
[3] appears to assume that the estimate lies in a small neighborhood of δ0, without
first proving consistency (see also [24]). Due to a lack of uniform convergence,
consistency of this implicitly-defined estimate is especially difficult to establish
when the set of admissible values of δ is large. In particular, this is the case when
δ0 is known only to lie in an interval of length greater than 1

2 . In the present paper,
we establish consistency and asymptotic normality when the interval is arbitrarily
large, including (simultaneously) stationary, nonstationary, invertible and nonin-
vertible values of δ0. Thus, prior knowledge of which of these phenomena obtains
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is unnecessary, and this seems especially practically desirable given, for example,
that estimates near the δ0 = 1

2 or δ0 = 1 boundaries frequently occur in practice,
while empirical interest in autoregressive models with two unit roots suggests al-
lowance for values in the region of δ0 = 2 also, and (following [2]) antipersistence
and the possibility of overdifferencing imply the possibility that δ0 < 0.

We in fact consider a more general model than (1.1), (1.2), retaining (1.1) but
generalizing (1.2) to

ut = θ(L;ϕ0)εt , t = 0,±1, . . . ,(1.3)

where εt is a zero-mean unobservable white noise sequence, ϕ0 is an unknown
p×1 vector, θ(s;ϕ) =∑∞

j=0 θj (ϕ)sj , where for all ϕ, θ0(ϕ) = 1, θ(s;ϕ) : C×R
p

is continuous in s and |θ(s;ϕ)| �= 0, |s| ≤ 1. More detailed conditions will be im-
posed below. The role of θ in (1.3), like α and β in (1.2), is to permit parametric
short memory autocorrelation. We allow for the simplest case FARIMA(0, δ0,0)

by taking ϕ0 to be empty. Another model covered by (1.3) is the exponential-
spectrum one of [5] (which in conjunction with fractional differencing leads to a
relatively neat covariance matrix formula [18]). Semiparametric models (where
ut has nonparametric autocovariance structure; see, e.g., [19, 23]) afford still
greater flexibility than (1.3), but also require larger samples in order for compa-
rable precision to be achieved. In more moderate-sized samples, investment in
a parametric model can prove worthwhile, even the simple FARIMA(1, δ0, 0)
employed in the Monte Carlo simulations reported in the supplementary mate-
rial [14], while model choice procedures can be employed to choose p1 and p2 in
the FARIMA(p1, δ0,p2), as illustrated in the empirical examples included in the
supplementary material [14].

We wish to estimate τ 0 = (δ0,ϕ
′
0)

′ from observations xt , t = 1, . . . , n. For any
admissible τ = (δ,ϕ′)′, define

εt (τ ) = �δθ−1(L;ϕ)xt , t ≥ 1,(1.4)

noting that (1.1) implies xt = 0, t ≤ 0. For a given user-chosen optimizing set T ,
define as an estimate of τ 0

τ̂ = arg min
τ∈T

Rn(τ ),(1.5)

where

Rn(τ ) = 1

n

n∑
t=1

ε2
t (τ ),(1.6)

and T = I ×
 , where I = {δ :	1 ≤ δ ≤ 	2} for given 	1, 	2 such that 	1 < 	2,

 is a compact subset of R

p and τ 0 ∈ T .
The estimate τ̂ is sometimes termed “conditional sum of squares” (though

“truncated sum of squares” might be more suitable). It has the anticipated advan-
tage of having the same limit distribution as the maximum likelihood estimate of
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τ 0 under Gaussianity, in which case it is asymptotically efficient (though here we
do not assume Gaussianity). It was employed by [6] in estimation of nonfractional
ARMA models (when δ0 is a given integer), by [15, 21] in stationary FARIMA
models, where 0 < δ0 < 1/2, and by [3, 24] in nonstationary FARIMA models,
allowing δ0 ≥ 1/2.

The following section sets down detailed regularity conditions, a formal state-
ment of asymptotic properties and the main proof details. Section 3 provides
asymptotically normal estimates in a multivariate extension of (1.1), (1.3). Joint
modeling of related processes is important both for reasons of parsimony and inter-
pretation, and multivariate fractional processes are currently relatively untreated,
even in the stationary case. Further possible extensions are discussed in Section 4.
Useful lemmas are stated in Section 5. Due to space restrictions, the proofs of these
lemmas, along with an analysis of finite-sample performance of the procedure and
an empirical application, are included in the supplementary material [14].

2. Consistency and asymptotic normality.

2.1. Consistency of τ̂ . Our first two assumptions will suffice for consistency.

A1. (i)

|θ(s;ϕ)| �= |θ(s;ϕ0)|
for all ϕ �= ϕ0, ϕ ∈ 
 , on a set S ⊂ {s : |s| = 1} of positive Lebesgue
measure;

(ii) for all ϕ, θ(eiλ;ϕ) is differentiable in λ with derivative in Lip(ς), ς >

1/2;
(iii) for all λ, θ(eiλ;ϕ) is continuous in ϕ;
(iv) for all ϕ ∈ 
 , |θ(s;ϕ)| �= 0, |s| ≤ 1.

Condition (i) provides identification while (ii) and (iv) ensure that ut is an in-
vertible short-memory process (with spectrum that is bounded and bounded away
from zero at all frequencies). Further, by (ii) the derivative of θ(eiλ;ϕ) has Fourier
coefficients jθj (ϕ) = O(j−ς ) as j → ∞, for all ϕ, from page 46 of [27], so that,
by compactness of 
 and continuity of θj (ϕ) in ϕ for all j ,

sup
ϕ∈


|θj (ϕ)| = O
(
j−(1+ς)) as j → ∞.(2.1)

Also, writing θ−1(s;ϕ) = φ(s;ϕ) =∑∞
j=0 φj (ϕ)sj , we have φ0(ϕ) = 1 for all ϕ,

and (ii), (iii) and (iv) imply that

sup
ϕ∈


|φj (ϕ)| = O
(
j−(1+ς)) as j → ∞.(2.2)

Finally, (ii) also implies that

inf|s|=1
ϕ∈


|φ(s;ϕ)| > 0.(2.3)
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Assumption A1 is easily satisfied by standard parameterizations of stationary and
invertible ARMA processes (1.2) in which autoregressive and moving average or-
ders are not both over-specified. More generally, A1 is similar to conditions em-
ployed in asymptotic theory for the estimate τ̂ and other forms of Whittle estimate
that restrict to stationarity (see, e.g., [8–10, 12, 21]) and not only is it readily ver-
ifiable because θ is a known parametric function, but in practice θ satisfying A1
are invariably employed by practitioners.

A2. The εt in (1.3) are stationary and ergodic with finite fourth moment, and

E(εt |Ft−1) = 0, E(ε2
t |Ft−1) = σ 2

0(2.4)

almost surely, where Ft is the σ -field of events generated by εs , s ≤ t , and
conditional (on Ft−1) third and fourth moments of εt equal the corresponding
unconditional moments.

Assumption A2 avoids requiring independence or identity of distribution of εt ,
but rules out conditional heteroskedasticity. It has become fairly standard in the
time series asymptotics literature since [11].

THEOREM 2.1. Let (1.1), (1.3) and A1, A2 hold. Then as n → ∞
τ̂ →p τ 0.(2.5)

PROOF. We give the proof for the most general case where 	1 < δ0 − 1
2 , but

our proof trivially covers the 	1 ≥ δ0 − 1
2 situation, for which some of the steps

described below are superfluous. The proof begins standardly. For ε > 0, define
Nε = {τ :‖τ − τ 0‖ < ε}, Nε = {τ :τ /∈ Nε,τ ∈ T }. For small enough ε,

Pr(τ̂ ∈ Nε) ≤ Pr
(

inf
τ∈Nε

Sn(τ ) ≤ 0
)
,(2.6)

where Sn(τ ) = Rn(τ ) − Rn(τ 0). The remainder of the proof reflects the fact
that Rn(τ ), and thus Sn(τ ), converges in probability to a well-behaved function
when δ > δ0 − 1

2 , and diverges when δ < δ0 − 1
2 , while the need to establish

uniform convergence, especially in a neighborhood of δ = δ0 − 1
2 , requires ad-

ditional special treatment. Consequently, for arbitrarily small η > 0, such that
η < δ0 − 1

2 −	1, we define the nonintersecting sets I1 = {δ :	1 ≤ δ ≤ δ0 − 1
2 −η},

I2 = {δ : δ0 − 1
2 − η < δ < δ0 − 1

2}, I3 = {δ : δ0 − 1
2 ≤ δ ≤ δ0 − 1

2 + η}, I4 =
{δ : δ0 − 1

2 + η < δ ≤ 	2}. Correspondingly, define Ti = Ii × 
 , i = 1, . . . ,4, so
T =⋃4

i=1 Ti . Thus, from (2.6) it remains to prove

Pr
(

inf
τ∈Nε∩Ti

Sn(τ ) ≤ 0
)

→ 0 as n → ∞, i = 1, . . . ,4.(2.7)

Each of the four proofs differs, and we describe them in reverse order.
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Proof of (2.7) for i = 4. By a familiar argument, the result follows if for τ ∈ T4
there is a deterministic function U(τ ) (not depending on n), such that

Sn(τ ) = U(τ ) − Tn(τ ),

where

inf
Nε∩T4

U(τ ) > ε,(2.8)

ε throughout denoting a generic arbitrarily small positive constant, and

sup
T4

|Tn(τ )| = op(1).(2.9)

Since xt = 0, t ≤ 0, for τ ∈ T4 we set [cf. (1.4)], ζt (τ ) = �δ−δ0φ(L;ϕ)ut , U(τ ) =
Eζ 2

t (τ ) − σ 2
0 and Tn(τ ) = Rn(τ 0) − σ 2

0 − {Rn(τ ) − Eζ 2
t (τ )}. We may write

U(τ ) = σ 2
0

(
1

2π

∫ π

−π

g(λ)

g0(λ)
dλ − 1

)
,

where

g(λ) = |1 − eiλ|2(δ−δ0)|φ(eiλ;ϕ)|2, g0(λ) = g(λ)|τ=τ 0 .

For all τ (2π)−1 ∫ π
−π log(g(λ)/g0(λ)) dλ = 0, so by Jensen’s inequality

1

2π

∫ π

−π

g(λ)

g0(λ)
dλ ≥ 1.(2.10)

Under A1(i), we have strict inequality in (2.10) for all τ �= τ 0, so that by continuity
in τ of the left-hand side of (2.10), (2.8) holds. Next, write

εt (τ ) =
t−1∑
j=0

cj (τ )ut−j , ζt (τ ) =
∞∑

j=0

cj (τ )ut−j ,

where cj (τ ) =∑j
k=0 φk(ϕ)aj−k(δ0 − δ). Because, given A2, the ε2

t − σ 2
0 are sta-

tionary martingale differences,

Rn(τ 0) − σ 2
0 = 1

n

n∑
t=1

(ε2
t − σ 2

0 ) →p 0 as n → ∞.(2.11)

Then defining γk = E(utut−k), and henceforth writing cj = cj (τ ), (2.9) would
hold on showing that

sup
T4

∣∣∣∣∣1n
n∑

t=1

[(
t−1∑
j=0

cjut−j

)2

− E

(
t−1∑
j=0

cjut−j

)2]∣∣∣∣∣= op(1),(2.12)

sup
T4

∣∣∣∣∣1n
n∑

t=1

t−1∑
j=0

∞∑
k=t

cj ckγj−k

∣∣∣∣∣= op(1),(2.13)

sup
T4

∣∣∣∣∣1n
n∑

t=1

∞∑
j=t

∞∑
k=t

cj ckγj−k

∣∣∣∣∣= op(1).(2.14)
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We first deal with (2.12). The term whose modulus is taken is

1

n

n−1∑
j=0

c2
j

n−j∑
l=1

(u2
l − γ0)

+ 2

n

n−2∑
j=0

n−1∑
k=j+1

cj ck

n−j∑
l=k−j+1

{
ulul−(k−j) − γj−k

}
(2.15)

= (a) + (b).

First,

E sup
T4

|(a)| ≤ 1

n

n−1∑
j=0

sup
T4

c2
jE

∣∣∣∣∣
n−j∑
l=1

(u2
l − γ0)

∣∣∣∣∣.
It can be readily shown that, uniformly in j , Var(

∑n−j
l=1 u2

l ) = O(n), so

sup
T4

|(a)| = Op

(
n−1/2

∞∑
j=1

j−2η−1

)
= Op(n−1/2)

by Lemma 1. Next, by summation by parts, (b) is equal to

2cn−1

n

n−2∑
j=0

cj

n−1∑
k=j+1

n−j∑
l=k−j+1

{
ulul−(k−j) − γj−k

}

− 2

n

n−2∑
j=0

cj

n−2∑
k=j+1

(ck+1 − ck)

k∑
r=j+1

n−j∑
l=r−j+1

{
ulul−(r−j) − γj−r

}
= (b1) + (b2).

It can be easily shown that, uniformly in j ,

Var

(
n−1∑

k=j+1

n−j∑
l=k−j+1

ulul−(k−j)

)
= O(n2),

so we have

E sup
T4

|(b1)| ≤ Kn−η−3/2

×
n∑

j=1

j−η−1/2

{
Var

(
n−1∑

k=j+1

n−j∑
l=k−j+1

ulul−(k−j)

)}1/2

≤ Kn−2η
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by Lemma 1, where K throughout denotes a generic finite but arbitrarily large
positive constant. Similarly,

E sup
T4

|(b2)|

≤ Kn−1
n∑

j=1

j−η−1/2
n∑

k=j+1

kmax(−η−3/2,−(1+ς))

×
{

Var

(
k∑

r=j+1

n−j∑
l=r−j+1

ulul−(r−j)

)}1/2

by Lemma 1, where ς was introduced in A1(ii). It can be readily shown that

Var

(
k∑

r=j+1

n−j∑
l=r−j+1

ulul−(r−j)

)
≤ K(k − j)(n − j).

Take η such that η + 3
2 < 1 + ς . Then

E sup
T4

|(b2)| ≤ Kn−1/2
n∑

j=1

j−η−1/2
n∑

k=j+1

k−η−3/2(k − j)1/2

≤ Kn−1/2
n∑

j=1

j−η−1/2
n∑

k=1

(k + j)−η−3/2k1/2.

This is bounded by

Kn−1/2
n∑

j=1

j−3η−1/2
n∑

k=1

kη−1,(2.16)

because (k + j)−η−3/2 ≤ j−2ηkη−3/2. For small enough η, (2.16) is bounded by
Kn−2η, to complete the proof of (2.12). Next, the term whose modulus is taken in
(2.13) is

1

n

n∑
t=1

∫ π

−π
f (λ)

t−1∑
j=0

∞∑
k=t

cj cke
i(j−k)λ dλ,(2.17)

where f (λ) denotes the spectral density of ut . By boundedness of f (implied by
assumption A1) and the Cauchy inequality, (2.17) is bounded by

Kn−1
n∑

t=1

{∫ π

−π

∣∣∣∣∣
t−1∑
j=0

cj e
ijλ

∣∣∣∣∣
2

dλ

∫ π

−π

∣∣∣∣∣
∞∑
k=t

cke
−ikλ

∣∣∣∣∣
2

dλ

}1/2

≤ Kn−1
n∑

t=1

{
t−1∑
j=0

c2
j

∞∑
k=t

c2
k

}1/2

,
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so the left-hand side of (2.13) is bounded by

Kn−1
n∑

t=1

{
t∑

j=1

j−2η−1
∞∑
k=t

k−2η−1

}1/2

≤ Kn−1
n∑

t=1

t−η ≤ Kn−η = o(1)

by Lemma 1, to establish (2.13). Finally, by a similar reasoning, the term whose
modulus is taken in (2.14) is bounded by

Kn−1
n∑

t=1

{∫ π

−π

∣∣∣∣∣
∞∑
j=t

cj e
ijλ

∣∣∣∣∣
2

dλ

}1/2

≤ Kn−1
n∑

t=1

t−2η ≤ Kn−2η

to conclude the proof of (2.14), and thence of (2.9). Thus, (2.7) is proved for i = 4.
With respect to (2.7) for i = 1,2,3, note from Ti ∩ Nε ≡ Ti for such i, and (2.11),
that these results follow if

Pr
(
inf

Ti

Rn(τ ) ≤ K
)

→ 0 as n → ∞, i = 1,2,3.(2.18)

Proof of (2.7) for i = 3. Denote, for any sequence ζt , wζ (λ) = n−1/2∑n
t=1 ζt ×

eitλ, Iζ (λ) = |wζ (λ)|2, the discrete Fourier transform and periodogram, respec-
tively, and λj = 2πj/n. For Vn(τ ) satisfying Lemma 3, setting τ ∗ = (δ,ϕ′

0)
′,

Rn(τ ) = 1

n

n∑
j=1

Iε(τ )(λj ) = 1

n

n∑
j=1

|ξ(eiλj ;ϕ)|2Iε(τ∗)(λj ) + 1

n
Vn(τ ),

where ξ(s;ϕ) = θ(s;ϕ0)/θ(s;ϕ) =∑∞
j=0 ξj (ϕ)sj . Then

inf
T3

Rn(τ ) ≥ inf
λ∈[−π,π ]

ϕ∈


|ξ(eiλ;ϕ)|2 inf
δ∈I3

Rn(τ
∗) − sup

T3

1

n
|Vn(τ )|.(2.19)

Assumption A1 implies [see (2.3)]

inf
λ∈[−π,π ]

ϕ∈


|ξ(eiλ;ϕ)|2 > ε.

Thus,

inf
T3

Rn(τ ) ≥ ε inf
I3

1

n

n∑
t=1

(
t−1∑
j=0

aj εt−j

)2

(2.20)

− sup
T3

1

n
|Vn(τ )| − sup

I3

1

n
|Wn(δ)|,

where aj = aj (δ0 − δ), and by Lemma 2

Wn(δ) = ε

n∑
t=1

v2
t (δ) + 2ε

n∑
t=1

vt (δ)

t−1∑
j=0

aj εt−j .
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By Lemma 2 and (0.6) in the proof of Lemma 3 in the supplementary material [14]
(taking κ = 1/2 there in both cases)

sup
I3

1

n
|Wn(δ)| = Op

(
n−1 + logn

n1/2

)
= op(1),(2.21)

and also by Lemma 3 (with κ = 1/2 there)

sup
T3

1

n
|Vn(τ )| = Op

(
log2 n

n

)
= op(1).(2.22)

Next, note that for δ ∈ I3

∂a2
j

∂δ
= −2

(
ψ(j + δ0 − δ) − ψ(δ0 − δ)

)
a2
j < 0,(2.23)

where we introduce the digamma function ψ(x) = (d/dx)log�(x). From (2.23)
and the fact that ψ(x) is strictly increasing in x > 0,

inf
I3

n−1
n∑

t=1

(
t−1∑
j=0

aj εt−j

)2

≥ n−1
n∑

t=1

t−1∑
j=0

a2
j

(
1

2
− η

)
ε2
t−j

(2.24)

− sup
I3

∣∣∣∣∣1n
n∑

t=1

t−1∑∑
j �=k

ajakεt−j εt−k

∣∣∣∣∣.
By a very similar analysis to that of (b) in (2.15), the second term on the right-hand
side of (2.24) is bounded by

2

n
sup

I3

∣∣∣∣∣
n−2∑
j=0

n−1∑
k=j+1

ajak

n−j∑
l=k−j+1

εlεl−(k−j)

∣∣∣∣∣
≤ 2

n
sup

I3

∣∣∣∣∣
n−2∑
j=0

aj

n−1∑
k=j+1

n−j∑
l=k−j+1

εlεl−(k−j)

∣∣∣∣∣
+ 2

n
sup

I3

∣∣∣∣∣
n−2∑
j=0

aj

n−2∑
k=j+1

(ak+1 − ak)

k∑
r=j+1

n−j∑
l=r−j+1

εlεl−(k−j)

∣∣∣∣∣,
which has expectation bounded by

K

n1/2

n∑
j=1

j−1/2 + K

n1/2

n∑
j=1

j−1/2
n∑

k=1

(k + j)−3/2k1/2

(2.25)

≤ K

(
1 + 1

n1/2

n∑
j=1

j−1/2−a
n∑

k=1

k−1+a

)
≤ K
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for any 0 < a < 1/2. Therefore, there exists a large enough K such that

Pr

(
sup

I3

∣∣∣∣∣n−1
n∑

t=1

t−1∑∑
j �=k

ajakεt−j εt−k

∣∣∣∣∣> K

)
→ 0(2.26)

as n → ∞. Then, noting (2.20), (2.21), (2.22), (2.26), we deduce (2.18) for i = 3
if

Pr

(
1

n

n∑
t=1

t−1∑
j=0

a2
j

(
1

2
− η

)
ε2
t−j ≤ K

)
→ 0 as n → ∞.(2.27)

Now

1

n

n∑
t=1

t−1∑
j=0

a2
j

(
1

2
− η

)
ε2
t−j = σ 2

0
�(2η)

�2(1/2 + η)
+ 1

n

n∑
t=1

t−1∑
j=0

a2
j

(
1

2
− η

)
(ε2

t−j − σ 2
0 )

− σ 2
0

n

n∑
t=1

∞∑
j=t

a2
j

(
1

2
− η

)
.

The third term on the right is clearly O(n−2η), whereas, as in the treatment of (a)

in (2.15), the second is Op(n−1/2), so that (2.27) holds as �(2η)/�2(1
2 + η) can

be made arbitrarily large for small enough η. This proves (2.18), and thus (2.7),
for i = 3.

Proof of (2.7) for i = 2. Take η < 1/4 and note that I2 ⊂ [δ0 − κ, δ0 − 1
2 + η)

for κ = η + 1
2 . It follows from Lemma 2 and (0.6) in the proof of Lemma 3 (see

supplementary material [14]) that

sup
I2

1

n
|Wn(δ)| = Op

(
1

n

n∑
t=1

t2η−1 + 1

n

n∑
t=1

tη−1/2tη

)
(2.28)

= Op(n2η−1/2) = op(1).

It follows from Lemma 3 that

sup
T2

1

n
|Vn(τ )| = Op(n2η−1) = op(1).(2.29)

Denote fn(δ) = n−1∑n
t=1(

∑t−1
j=0 aj εt−j )

2. By (2.28), (2.29), it follows that (2.18)
for i = 2 holds if for arbitrarily large K

Pr
(
inf

I2
fn(δ) > K

)
→ 1(2.30)

as n → ∞. Clearly,

inf
I2

fn(δ) ≥ inf
I2

n2(δ0−δ)

n
inf

I2

1

n2(δ0−δ)

n∑
t=1

(
t−1∑
j=0

aj εt−j

)2

.(2.31)
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Defining bj,n(d) = aj (d)/nd−1, bj,n = bj,n(δ0 − δ), the right-hand side of (2.31)
is bounded below by

inf
I2

1

n2

n−1∑
j=0

b2
j,n

n−j∑
l=1

ε2
l − sup

I2

2

n2

∣∣∣∣∣
n−2∑
j=0

n−1∑
k=j+1

bj,nbk,n

n−j∑
l=k−j+1

εlεl−(k−j)

∣∣∣∣∣.(2.32)

For 1 ≤ j ≤ n,

inf
I2

bj,n ≥ inf
I2

ε

�(δ0 − δ)
inf

I2

(
j

n

)δ0−δ−1

≥ ε

�(1/2 + η)

(
j

n

)η−1/2

,

sup
I2

bj,n ≤ sup
I2

K

�(δ0 − δ)
sup

I2

(
j

n

)δ0−δ−1

≤ K√
π

(
j

n

)−1/2

.(2.33)

Then by (2.33), using summation by parts as in the analysis of (b) in (2.15), the
expectation of the second term in (2.32) is bounded by

K

n

n∑
j=1

(
j

n

)−1/2

+ K

n1/2

n∑
j=1

j−1/2
n∑

k=1

k1/2(k + j)−3/2,

which, noting (2.25), is O(1). Next, the first term in (2.32) is bounded below by

σ 2
0

n2

n−1∑
j=0

(n − j)b2
j,n(1/2 + η) − 1

n2

n−1∑
j=0

b2
j,n(1/2)

∣∣∣∣∣
n−j∑
l=1

(ε2
l − σ 2

0 )

∣∣∣∣∣.(2.34)

Using (2.33) it can be easily shown that the second term in (2.34) is Op(n−3/2 ×∑n
j=1

n
j
) = Op(n−1/2 logn), whereas the first term is bounded below by

ε

n

n∑
j=1

{(
j

n

)2η−1

−
(

j

n

)2η}

≥ ε

2

∫ 1

1/n
{x2η−1 − x2η}dx = ε

2

[
x2η

2η
− x2η+1

2η + 1

]1

1/n

(2.35)

= ε

4η(2η + 1)
− Op(n−2η).

Then (2.30) holds because the right-hand side of (2.35) can be made arbitrarily
large on setting η arbitrarily close to zero. This proves (2.18), and thus (2.7), for
i = 2.

Proof of (2.7) for i = 1. Noting that Rn(τ ) ≥ n−2(
∑n

t=1 εt (τ ))2,

Pr
(
inf

T1
Rn(τ ) > K

)
≥ Pr

(
n2η inf

T1

(
1

nδ0−δ+1/2

n∑
t=1

εt (τ )

)2

> K

)
,(2.36)
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because δ0 − δ ≥ 1
2 + η. Clearly

∑n
t=1 εt (τ ) =∑n−1

j=0 dj (τ )un−j , where

dj (τ ) =
j∑

k=0

ck(τ ) =
j∑

k=0

φk(ϕ)

j−k∑
l=0

al(δ0 − δ) =
j∑

k=0

φk(ϕ)aj−k(δ0 − δ + 1).

For arbitrarily small ε > 0, the right-hand side of (2.36) is bounded from below by

Pr

(
inf

T1

(
1

nδ0−δ+1/2

n∑
t=1

εt (τ )

)2

> ε

)
(2.37)

for n large enough, so it suffices to show (2.37) → 1 as n → ∞. First

1

nδ0−δ+1/2

n∑
t=1

εt (τ ) = φ(1;ϕ)θ(1;ϕ0)hn(δ) + rn(τ ),

where hn(δ) = n−1/2∑n−1
j=0 bj,n(δ0 − δ +1)εn−j , bj,n(·) was defined below (2.31),

and

rn(τ ) = − 1

n1/2

n−1∑
j=0

bj,n(δ0 − δ + 1)

∞∑
k=j+1

φk(ϕ)un−j

− 1

n1/2

n−1∑
j=1

sj,n(τ )un−j(2.38)

+ φ(1;ϕ)

n1/2

n−1∑
j=0

bj,n(δ0 − δ + 1)
(
un−j − θ(1;ϕ0)εn−j

)
for

sj,n(τ ) =
j−1∑
k=0

(
bk+1,n(δ0 − δ + 1) − bk,n(δ0 − δ + 1)

) k∑
l=0

φj−l(ϕ),

where (2.38) is routinely derived, noting that by summation by parts

dj (τ ) = aj (δ0 − δ + 1)

×
j∑

k=0

φk(ϕ) −
j−1∑
k=0

(
ak+1(δ0 − δ + 1) − ak(δ0 − δ + 1)

) k∑
l=0

φj−l(ϕ).

Now

inf
T1

(
1

nδ0−δ+1/2

n∑
t=1

εt (τ )

)2

≥ θ2(1;ϕ0) inf
�

φ2(1;ϕ) inf
I1

h2
n(δ)

− K sup
�

|φ(1;ϕ)| sup
I1

|hn(δ)| sup
T1

|rn(τ )|.
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Noting (2.3) and that under A1, sup� |φ(1;ϕ)| < ∞, the required result follows
on showing that

sup
T1

|rn(τ )| = op(1),(2.39)

sup
I1

|hn(δ)| = Op(1),(2.40)

Pr
(
inf

I1
h2

n(δ) > ε
)

→ 1(2.41)

as n → ∞.
The proof of (2.40) is omitted as it is similar to and much easier than the proof

of (2.39), which we now give. Let rn(τ ) =∑3
i=1 rin(τ ). By the Cauchy inequality

sup
T1

|r1n(τ )| ≤ 1

n1/2

(
n−1∑
j=0

sup
I1

b2
j,n(δ0 − δ + 1)

(
sup



∞∑
k=j+1

|φk(ϕ)|
)2 n∑

j=1

u2
j

)1/2

,

so that by (2.2), noting that E(
∑n

j=1 u2
j )

1/2 ≤ Kn1/2,

E sup
T1

|r1n(τ )| ≤ K

(
n∑

j=1

sup
I1

(
j

n

)2(δ0−δ)
( ∞∑

k=j+1

k−1−ς

)2)1/2

≤ K

(
n∑

j=1

(
j

n

)1+2η

j−2ς

)1/2

≤ Kn1/2−ς = o(1),

because ς > 1/2 by A1(ii). Next, by summation by parts

r2n(τ ) = −sn−1,n(τ )

n1/2

n−1∑
j=1

un−j + 1

n1/2

n−2∑
j=1

(
sj+1,n(τ ) − sj,n(τ )

) j∑
k=1

un−k,

so

sup
T1

|r2n(τ )| ≤ supT1
|sn−1,n(τ )|
n1/2

∣∣∣∣∣
n−1∑
j=1

un−j

∣∣∣∣∣
(2.42)

+ 1

n1/2

n−2∑
j=1

sup
T1

|sj+1,n(τ ) − sj,n(τ )|
∣∣∣∣∣

j∑
k=1

un−k

∣∣∣∣∣.
Given that ak+1(δ0 − δ + 1) − ak(δ0 − δ + 1) = ak+1(δ0 − δ),

sj,n(τ ) = 1

nδ0−δ

j−1∑
k=0

ak+1(δ0 − δ)

k∑
l=0

φj−l(ϕ),
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so as E|∑n−1
j=1 uj | ≤ Kn1/2, noting (2.2) and Stirling’s approximation, the expec-

tation of the first term on the right-hand side of (2.42) is bounded by

K

n∑
k=1

sup
I1

(
k

n

)δ0−δ

k−1
k∑

l=1

(n − l)−1−ς

≤ K

n1/2+η

n∑
k=1

k−1/2+η(n − k)−1/2

≤ K

n1/2

1

n

n∑
k=1

(
k

n

)−1/2+η(
1 − k

n

)−1/2

≤ Kn−1/2.

Next, noting that aj+1(δ0 − δ) − aj (δ0 − δ) = aj+1(δ0 − δ − 1), it can be shown
that

sj+1,n(τ ) − sj,n(τ ) = 1

nδ0−δ

j∑
k=1

φk(ϕ)

j+1∑
l=j−k+2

al(δ0 − δ − 1)

(2.43)

+ φj+1(ϕ)

nδ0−δ

j+1∑
l=1

al(δ0 − δ).

Thus, noting that, uniformly in j , n, E|∑j
k=1 un−k| ≤ Kj1/2, by previous argu-

ments the contribution of the last term on the right-hand side of (2.43) to the ex-
pectation of the second term on the right-hand side of (2.42) is bounded by

K

n1/2

n∑
j=1

j1/2j−1−ς sup
I1

(
j

n

)δ0−δ

≤ K

n1/2

n∑
j=1

j−1/2−ς

(
j

n

)1/2+η

≤ Kn−ς .

By identical arguments, the contribution of the first term on the right-hand side of
(2.43) to the expectation of the last term on the right-hand side of (2.42) is bounded
by

K

n1/2

n∑
j=1

j1/2
j−1∑
k=1

k−1−ς
j∑

l=j−k

sup
I1

(
l

n

)δ0−δ

l−2

(2.44)

≤ K

n1+η

n∑
j=1

j1/2
j−1∑
k=1

k−1−ς
j∑

l=j−k

l−3/2+η.
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Given that
∑j

l=j−k l−3/2+η ≤ K(j − k)−3/2+ηk, the right-hand side of (2.44) is
bounded by

K

n1+η

n∑
j=1

j1/2
j−1∑
k=1

k−ς (j − k)−3/2+η

≤ K

n1+η

n∑
j=1

j1/2
[j/2]∑
k=1

k−ς (j − k)−3/2+η(2.45)

+ K

n1+η

n∑
j=1

j1/2
j−1∑

k=[j/2]+1

k−ς (j − k)−3/2+η,

where [·] denotes integer part. Clearly, the right-hand side of (2.45) is bounded by

K

n1+η

n∑
j=1

j1/2

(
j−3/2+ηj1−ς + j−ς

∞∑
k=1

k−3/2+η

)
≤ K(n−ς + n1/2−ς−η),

so supT1
|r2n(τ )| = op(1) because ς > 1/2. Next, writing ut = θ(1;ϕ0)εt + ε̃t−1 −

ε̃t , for ε̃t =∑∞
j=0 θ̃j (ϕ0)εt−j , θ̃j (ϕ0) =∑∞

k=j+1 θk(ϕ0), where, by A1, A2, ε̃t is
well defined in the mean square sense, we have

r3n(τ ) = − φ(1;ϕ)

nδ0−δ+1/2

(
n−1∑
j=0

aj (δ0 − δ)̃εn−k − an−1(δ0 − δ + 1)̃ε0

)
.

In view of previous arguments, it is straightforward to show that supT1
|r3n(τ )| =

op(1), to conclude the proof of (2.39).
Finally, we prove (2.41). Considering hn(δ) as a process indexed by δ, we show

first that

hn(δ) ⇒
∫ 1

0

(1 − s)δ0−δ

�(δ0 − δ + 1)
dB(s),(2.46)

where B(s) is a scalar Brownian motion with variance σ 2
0 and ⇒ means weak

convergence in the space of continuous functions on I1. We give this space the
uniform topology. Convergence of the finite-dimensional distributions follows by
Theorem 1 of [13], noting that A2 implies conditions A(i), A(ii) and A(iii) in [13]
(in particular A2 implies that the fourth-order cumulant spectral density function
of εt is bounded). Next, by Theorem 12.3 of [4], if for all fixed δ ∈ I1 hn(δ) is a
tight sequence, and if for all δ1, δ2 ∈ I1 and for K not depending on δ1, δ2, n

E
(
hn(δ1) − hn(δ2)

)2 ≤ K(δ1 − δ2)
2,(2.47)

then the process hn(δ) is tight, and (2.46) would follow. First, for fixed δ, it is
straightforward to show that supn E(h2

n(δ)) < ∞, so hn(δ) is uniformly integrable



3168 J. HUALDE AND P. M. ROBINSON

and therefore tight. Next,

E
(
hn(δ1) − hn(δ2)

)2
= σ 2

0

n

n−1∑
j=0

(
bj,n(δ0 − δ1 + 1) − bj,n(δ0 − δ2 + 1)

)2

= σ 2
0 (δ1 − δ2)

2

n

n−1∑
j=0

(a′
j (δ0 − δ + 1) − aj (δ0 − δ + 1) logn)2

n2(δ0−δ)

by the mean value theorem, where δ = δn is an intermediate point between δ1
and δ2. As in Lemma D.1 of [22],

a′
j (δ0 − δ + 1) − aj (δ0 − δ + 1) logn

= (
ψ(j + δ0 − δ + 1) − ψ(δ0 − δ + 1) − logn

)
aj (δ0 − δ + 1).

Now (2.47) holds on showing that, for δ ∈ I1,

ψ2(δ0 − δ + 1)

n

n−1∑
j=0

b2
j,n(δ0 − δ + 1) ≤ K,(2.48)

1

n

n−1∑
j=0

(
ψ(j + δ0 − δ + 1) − logn

)2
b2
j,n(δ0 − δ + 1) ≤ K.(2.49)

By Stirling’s approximation, the left-hand side of (2.48) is bounded by

K
ψ2(δ0 − 	1 + 1)

n

n∑
j=1

sup
I1

(
j

n

)2(δ0−δ)

≤ K
ψ2(δ0 − 	1 + 1)

n

n∑
j=1

sup
I1

(
j

n

)1+2η

≤ K.

Regarding (2.49), it can be shown that uniformly in I1, ψ(j + δ0 − δ + 1) =
log j + O(j−1) (see, e.g., [1], page 259). Thus, apart from a remainder term of
smaller order, the left-hand side of (2.49) is bounded by

K
1

n

n∑
j=1

(
log

j

n

)2

b2
j,n(δ0 − δ + 1) ≤ K

1

n

n∑
j=1

(
log

j

n

)2(j

n

)1+2η

(2.50)

uniformly in I1, the right-hand side of (2.50) being bounded by K
∫ 1

0 (logx)2 dx =
2K , to conclude the proof of tightness. Then by the continuous mapping theorem

inf
I1

h2
n(δ) →d inf

I1

(∫ 1

0

(1 − s)δ0−δ

�(δ0 − δ + 1)
dB(s)

)2

.
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This is a.s. positive because the quantity whose infimum is taken is a χ2
1 random

variable times σ 2
0 /[{2(δ0 − δ) + 1}�(δ0 − δ + 1)2], which is bounded away from

zero on I1. Thus as n → ∞

Pr
(
inf

I1
h2

n(δ) > ε
)

→ Pr
(

inf
I1

(∫ 1

0

(1 − s)δ0−δ

�(δ0 − δ + 1)
dB(s)

)2

> ε

)
,

and (2.41) follows as ε is arbitrarily small. Then we conclude (2.18), and thus
(2.7), for i = 1. �

2.2. Asymptotic normality of τ̂ . This requires an additional regularity condi-
tion.
A3. (i)

τ 0 ∈ int T ;
(ii) for all λ, θ(eiλ;ϕ) is twice continuously differentiable in ϕ on a closed

neighborhood Nε(ϕ0) of radius 0 < ε < 1/2 about ϕ0;
(iii) the matrix

A =

⎛⎜⎜⎜⎜⎝
π2/6 −

∞∑
j=1

b′
j (ϕ0)/j

−
∞∑

j=1

bj (ϕ0)/j

∞∑
j=1

bj (ϕ0)b
′
j (ϕ0)

⎞⎟⎟⎟⎟⎠
is nonsingular, where bj (ϕ0) =∑j−1

k=0 θk(ϕ0)∂φj−k(ϕ0)/∂ϕ.

By compactness of Nε(ϕ0) and continuity of ∂φj (ϕ)/∂ϕi , ∂2φj (ϕ)/∂ϕi ∂ϕl ,
for all j , with i, l = 1, . . . , p, where ϕi is the ith element of ϕ, A1(ii), A1(iv) and
A3(ii) imply that, as j → ∞

sup
ϕ∈Nε(ϕ0)

∣∣∣∣∂φj (ϕ)

∂ϕi

∣∣∣∣= O
(
j−(1+ς)), sup

ϕ∈Nε(ϕ0)

∣∣∣∣∂2φj (ϕ)

∂ϕi ∂ϕl

∣∣∣∣= O
(
j−(1+ς)),

which again is satisfied in the ARMA case. As with A1, A3 is similar to conditions
employed under stationarity, and can readily be checked in general.

THEOREM 2.2. Let (1.1), (1.3) and A1–A3 hold. Then as n → ∞
n1/2(τ̂ − τ 0) →d N(0,A−1).(2.51)

PROOF. The proof standardly involves use of the mean value theorem, ap-
proximation of a score function by a martingale so as to apply a martingale con-
vergence theorem, and convergence in probability of a Hessian in a neighborhood
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of τ 0. From the mean value theorem, (2.51) follows if we prove that√
n

2

∂Rn(τ 0)

∂τ
→d N(0, σ 4

0 A),(2.52)

1

2

∂2Rn(τ )

∂τ∂τ ′ →p σ 2
0 A,(2.53)

where ‖τ − τ 0‖ ≤ ‖τ̂ − τ 0‖.
Proof of (2.52). It suffices to prove√

n

2

∂Rn(τ 0)

∂τ
− 1√

n

n∑
t=2

εt

∞∑
j=1

mj (ϕ0)εt−j = op(1)(2.54)

and

1√
n

n∑
t=2

εt

∞∑
j=1

mj (ϕ0)εt−j →d N(0, σ 4
0 A),(2.55)

where mj (ϕ0) = (−j−1,b′
j (ϕ0))

′. By Lemma 2, the left-hand side of (2.54) is the
(p + 1) × 1 vector (r1 + r2 + r3, (s1 + s2)

′)′, where

r1 = 1√
n

n∑
t=2

εt

∞∑
j=t

1

j
εt−j ,

r2 = 1√
n

n∑
t=2

εt

t−1∑
j=1

1

j

∞∑
k=t−j

φk(ϕ0)ut−j−k,

r3 = − 1√
n

n∑
t=2

vt (δ0)

t−1∑
j=1

1

j

t−j−1∑
k=0

φk(ϕ0)ut−j−k,

s1 = 1√
n

n∑
t=2

εt

∞∑
j=t

∂φj (ϕ0)

∂ϕ
ut−j ,

s2 = 1√
n

n∑
t=2

vt (δ0)

t−1∑
j=1

∂φj (ϕ0)

∂ϕ
ut−j .

Clearly, E(r1) = 0, and

Var(r1) = 1

n

n∑
t=2

∞∑
j=t

n∑
s=2

∞∑
k=s

1

jk
E(εtεsεt−j εs−k) = σ 4

0

n

n∑
t=2

∞∑
j=t

1

j2 = O

(
logn

n

)
,

noting that, by A2, the εt and ε2
t − σ 2

0 are martingale difference sequences. Thus,
r1 = Op(n−1/2 log1/2 n). Next, E(r2) = 0, and Var(r2) equals

1

n

n∑
t=2

t−1∑
j=1

∞∑
k=t−j

n∑
s=2

s−1∑
l=1

∞∑
m=s−l

φk(ϕ0)φm(ϕ0)

j l
E(εtεsut−j−kus−l−m).(2.56)
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From (1.3) and A2, the expectation is σ 2
0 γj+k−�−m for s = t , and zero otherwise.

By A1, ut has bounded spectral density. Thus, (2.56) is bounded by

K
1

n

n∑
t=2

∫ π

−π

∣∣∣∣∣
t−1∑
j=1

∞∑
k=t−j

φk(ϕ0)

j
ei(j+k)μ

∣∣∣∣∣
2

dμ

≤ K

n

n∑
t=2

t−1∑
j=1

∞∑
k=t−j

t−1∑
l=1

φk(ϕ0)φj+k−l(ϕ0)

j l

≤ K

n

n∑
t=2

t−1∑
j=1

∞∑
k=t−j

t−1∑
l=1

k−1−ς (j + k − l)−1−ς

j l

≤ K

n

n∑
t=2

t−1∑
l=1

(t − l)−1−ς

l

t−1∑
j=1

(t − j)−ς

j
.

Now

t−1∑
l=1

(t − l)−1−ς

l
=

[t/2]∑
l=1

(t − l)−1−ς

l
+

t−1∑
l=[t/2]+1

(t − l)−1−ς

l

≤ K(t−1−ς log t + t−1) ≤ K

t
.

Then Var(r2) = O(n−1∑n
t=2 t−1∑t−1

j=1 j−1) = O(n−1 log2 n), so

r2 = Op(n−1/2 logn).

Next, by Lemma 2

r3 = Op

(
n−1/2

n∑
t=2

t−1/2−ς log t

)
= Op(n−1/2).

Also, E(s1) = 0 and

Var(s1) = O

(∥∥∥∥∥1

n

n∑
t=2

∞∑
j=t

∞∑
k=t

∂φj (ϕ0)

∂ϕ

∂φk(ϕ0)

∂ϕ′ E(ut−jut−k)

∥∥∥∥∥
)

= O

(
1

n

n∑
t=2

∫ π

−π

∥∥∥∥∥
∞∑
j=t

∂φj (ϕ0)

∂ϕ
eijλ

∥∥∥∥∥
2

dλ

)

= O

(
1

n

n∑
t=2

∞∑
j=t

∥∥∥∥∂φj (ϕ0)

∂ϕ

∥∥∥∥2
)

= O

(
1

n

n∑
t=2

t−1−2ς

)
= O(n−1),
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since ς > 1
2 , ‖ · ‖ denoting Euclidean norm. Finally, by Lemmas 2 and 4

s2 = Op

(
n−1/2

n∑
t=1

t−1/2−ς

)
= Op(n−1/2),

to conclude the proof of (2.54).
Next, (2.55) holds by the Cramér–Wold device and, for example, Theorem 1 of

[7] on showing that

E

(
εt

∞∑
j=1

mj (ϕ0)εt−j

∣∣∣Ft−1

)
= 0 a.s.(2.57)

and

1

n

n∑
t=2

E

(
ε2
t

∞∑
j=1

∞∑
k=1

mj (ϕ0)m
′
k(ϕ0)εt−j εt−k

∣∣∣Ft−1

)
(2.58)

− 1

n

n∑
t=2

E

(
ε2
t

∞∑
j=1

∞∑
k=1

mj (ϕ0)m
′
k(ϕ0)εt−j εt−k

)
→p 0,

because E(ε2
t

∑∞
j=1

∑∞
k=1 mj (ϕ0)m

′
k(ϕ0)εt−j εt−k|Ft−1) has expectation σ 2

0 A,
noting that the Lindeberg condition is satisfied as εt

∑∞
j=1 mj (ϕ0)εt−j is station-

ary with finite variance. Now (2.57) follows as εt−j , j ≥ 1, is Ft−1-measurable,
whereas the left-hand side of (2.58) is

σ 2
0

n

n∑
t=2

∞∑
j=1

∞∑
k=1

mj (ϕ0)m
′
k(ϕ0)

(
εt−j εt−k − E(εt−j εt−k)

)→p 0,

because
∑∞

j=1
∑∞

k=1 mj (ϕ0)m
′
k(ϕ0)(εt−j εt−k − E(εt−j εt−k)) is stationary er-

godic with mean zero. This completes the proof of (2.55), and thus (2.52).
Proof of (2.53). Denote by Nε an open neighborhood of radius ε < 1/2 about

τ 0, and

An(τ ) = 1

n

n∑
t=2

t−1∑
j=0

t−1∑
k=1

(
cj

∂2ck

∂τ ∂τ ′ + ∂cj

∂τ

∂ck

∂τ ′
)
γk−j ,(2.59)

A(τ ) =
∞∑

j=0

∞∑
k=1

(
cj

∂2ck

∂τ ∂τ ′ + ∂cj

∂τ

∂ck

∂τ ′
)
γk−j .(2.60)

Trivially,

1

2

∂2Rn(τ )

∂τ ∂τ ′ = 1

2

∂2Rn(τ )

∂τ ∂τ ′ − An(τ ) + An(τ ) − A(τ ) + A(τ ) − A(τ 0) + A(τ 0).

Because cj (τ 0) = φj (τ 0), it follows that
∑∞

j=0 cj (τ 0)ut−j = εt , so the first term
in A(τ 0) is identically zero. Also, as in the proof of (2.55), the second term of



GAUSSIAN ESTIMATION OF FRACTIONAL TIME SERIES MODELS 3173

A(τ 0) is identically σ 2
0 A. Thus, given that by Slutzky’s theorem and continuity of

A(τ ) at τ 0, A(τ ) − A(τ 0) = op(1), (2.53) holds on showing

sup
τ∈Nε

∥∥∥∥1

2

∂2Rn(τ )

∂τ ∂τ ′ − An(τ )

∥∥∥∥= op(1),(2.61)

sup
τ∈Nε

‖An(τ ) − A(τ )‖ = op(1)(2.62)

for some ε > 0, as n → ∞. As ε < 1/2, the proof for (2.61) is almost identical to
that for (2.12), noting the orders in Lemma 4. To prove (2.62), we show that

sup
τ∈Nε

∥∥∥∥∥1

n

n∑
t=2

t−1∑
j=0

t−1∑
k=1

cj

∂2ck

∂τ ∂τ ′ γk−j −
∞∑

j=0

∞∑
k=1

cj

∂2ck

∂τ ∂τ ′ γk−j

∥∥∥∥∥(2.63)

is op(1), the proof for the corresponding result concerning the difference between
the second terms in (2.59), (2.60) being almost identical. By Lemma 4, (2.63) is
bounded by

K

n

n∑
t=1

t∑
j=1

∞∑
k=t+1

jε−1kε−1(k − j)−1−ς log2 k + K

n

n∑
t=1

∞∑
j=t

j2ε−2 log2 j

(2.64)

+ K

n

n∑
t=1

∞∑
j=t

∞∑
k=j+1

jε−1kε−1(k − j)−1−ς log2 k,

noting that (2.1) implies that γj = O(j−1−ς ). The first term in (2.64) is bounded
by

K

n

n∑
t=1

tε
∞∑

k=t+1

kε+a−1(k − t)−1−ς ≤ K

n

n∑
t=1

tε
∞∑

k=1

(k + t)ε+a−1k−1−ς(2.65)

for any a > 0. Choosing a such that 2ε + a < 1, (2.65) is bounded by

K

n

n∑
t=1

t2ε+a−1
∞∑

k=1

k−1−ς = O(n2ε+a−1) = o(1).

Similarly, the second term in (2.64) can be easily shown to be o(1), whereas the
third term is bounded by

K

n

n∑
t=1

∞∑
j=t

j2ε+a−2
∞∑

k=j+1

(k − j)−1−ς(2.66)

for any a > 0, so choosing again a such that 2ε + a < 1, (2.66) is O(n2ε+a−1) =
o(1), to conclude the proof of (2.53), and thus of the theorem. �
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3. Multivariate extension. When observations on several related time series
are available joint modeling can achieve efficiency gains. We consider a vector
xt = (x1t , . . . , xrt )

′ given by

xt = �−1
0 {ut1(t > 0)}, t = 0,±1, . . . ,(3.1)

where ut = (u1t , . . . , urt )
′,

ut = �(L;ϕ0)εt , t = 0,±1, . . . ,(3.2)

in which εt = (ε1t , . . . , εrt )
′, ϕ0 is (as in the univariate case) a p × 1 vector of

short-memory parameters, �(s;ϕ) =∑∞
j=0 �j (ϕ)sj , �0(ϕ) = Ir for all ϕ, and

�0 = diag(�δ01, . . . ,�δ0r ), where the memory parameters δ0i are unknown real
numbers. In general, they can all be distinct but for the sake of parsimony we
allow for the possibility that they are known to lie in a set of dimension q < r .
For example, perhaps as a consequence of pre-testing, we might believe some or
all the δ0i are equal, and imposing this restriction in the estimation could further
improve efficiency. We introduce known functions δi = δi(δ), i = 1, . . . , r , of q×1
vector δ, such that for some δ0 we have δ0i = δi(δ0), i = 1, . . . , r . We denote
τ = (δ′,ϕ′)′ and define [cf. (1.4)]

εt (τ ) = �−1(L;ϕ)�(δ)xt , t ≥ 1,

where �(δ) = diag(�δ1, . . . ,�δr ). Gaussian likelihood considerations suggest the
multivariate analogue to (1.6)

R∗
n(τ ) = det{	n(τ )},(3.3)

where 	n(τ ) = n−1∑n
t=1 εt (τ )ε′

t (τ ), assuming that no prior restrictions link τ 0
with the covariance matrix of εt . Unfortunately our consistency proof for the uni-
variate case does not straightforwardly extend to an estimate minimizing (3.3) if
q > 1. Also (3.3) is liable to pose a more severe computational challenge than (1.6)
since p is liable to be larger in the multivariate case and q may exceed 1; it may
be difficult to locate an approximate minimum of (3.3) as a preliminary to itera-
tion. We avoid both these problems by taking a single Newton step from an initial√

n-consistent estimate τ̃ . Defining

Hn(τ ) = 1

n

n∑
t=1

(
∂εt (τ )

∂τ ′
)′

	−1
n (τ )

∂εt (τ )

∂τ ′ ,

hn(τ ) = 1

n

n∑
t=1

(
∂εt (τ )

∂τ ′
)′

	−1
n (τ )εt (τ ),

we consider the estimate

τ̂ = τ̃ − H−1
n (τ̃ )hn(τ̃ ).(3.4)

We collect together all the requirements for asymptotic normality of τ̂ in:
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A4. (i) For all ϕ, �(eiλ;ϕ) is differentiable in λ with derivative in Lip(ς), ς >

1/2;
(ii) for all ϕ, det{�(s;ϕ)} �= 0, |s| ≤ 1;

(iii) the εt in (3.2) are stationary and ergodic with finite fourth moment,
E(εt |Ft−1) = 0, E(εtε

′
t |Ft−1) = 	0 almost surely, where 	0 is pos-

itive definite, Ft is the σ -field of events generated by εs , s ≤ t , and
conditional (on Ft−1) third and fourth moments and cross-moments of
elements of εt equal the corresponding unconditional moments;

(iv) for all λ, �(eiλ;ϕ) is twice continuously differentiable in ϕ on a closed
neighborhood Nε(ϕ0) of radius 0 < ε < 1/2 about ϕ0;

(v) the matrix B having (i, j)th element
∞∑

k=1

tr
{(

d(i)
k (ϕ0)

)′
	−1

0 d(j)
k (ϕ0)	0

}
is nonsingular, where

d(i)
k (ϕ0) = −∂δi(δ0)

∂δi

k∑
l=1

1

l

k−l∑
m=0


(i)
m (ϕ0)�k−l−m(ϕ0), 1 ≤ i ≤ r,

=
k∑

l=1

∂
l(ϕ0)

∂ϕi

�k−l(ϕ0), r + 1 ≤ i ≤ r + p,

the �j(ϕ) being coefficients in the expansion �−1(s;ϕ) = 
(s,ϕ) =∑∞
j=0 
j (ϕ)sj , where �

(i)
m (ϕ0) is an r × r matrix whose ith column is

the ith column of �i(ϕ0) and whose other elements are all zero;
(vi) δi(δ) is twice continuously differentiable in δ, for i = 1, . . . , r;

(vii) τ̃ is a
√

n-consistent estimate of τ 0.

The components of A4 are mostly natural extensions of ones in A1, A2 and A3,
are equally checkable, and require no additional discussion. The important ex-
ception is (vii). When �(s;ϕ) is a diagonal matrix [as in the simplest case
�(s;ϕ) ≡ Ir , when xit is a FARIMA(0, δ0i ,0) for i = 1, . . . , r] then τ̃ can be
obtained by first carrying out r univariate fits following the approach of Section 2,
and then if necessary reducing the dimensionality in a common-sense way: for ex-
ample, if some of the δ0i are a priori equal then the common memory parameter
might be estimated by the arithmetic mean of estimates from the relevant univariate
fits. Notice that in the diagonal-� case with no cross-equation parameter restric-
tions the efficiency improvement afforded by τ̂ is due solely to cross-correlation
in εt , that is, nondiagonality of 	0.

When �(s;ϕ) is not diagonal, it is less clear how to use the
√

n-consistent
outcome of Theorem 2.2 to form τ̃ . We can infer that ut has spectral density ma-
trix (2π)−1�(eiλ;ϕ0)	0�(e−iλ;ϕ0)

′. From the ith diagonal element of this (the
power spectrum of uit ), we can deduce a form for the Wold representation of uit ,
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corresponding to (1.3). However, starting from innovations εt in (3.2) satisfying
(iii) of A4, it does not follow in general that the innovations in the Wold represen-
tation of uit will satisfy a condition analogous to (2.4) of A2, indeed it does not
help if we simply strengthen A4 such that the εt are independent and identically
distributed. However, (2.4) certainly holds if εt is Gaussian, which motivates our
estimation approach from an efficiency perspective. Notice that if ut is a vector
ARMA process with nondiagonal �, in general all r univariate AR operators are
identical, and of possibly high degree; the formation of τ̃ is liable to be affected
by a lack of parsimony, or some ambiguity.

An alternative approach could involve first estimating the δ0i by some semipara-
metric approach, using these estimates to form differenced xt and then estimating
ϕ0 from these proxies for ut . This initial estimate will be less-than-

√
n-consistent,

but its rate can be calculated given a rate for the bandwidth used in the semipara-
metric estimation. One can then calculate the (finite) number of iterations of form
(3.4) needed to produce an estimate satisfying (2.51), following Theorem 5 and
the discussion on page 539 of [17].

THEOREM 3.1. Let (3.1), (3.2) and A4 hold. Then as n → ∞
n1/2(τ̂ − τ 0) →d N(0,B−1).(3.5)

PROOF. Because τ̂ is explicitly defined in (3.4), we start, standardly, by ap-
proximating hn(τ̃ ) by the mean value theorem. Then in view of A4(vii), (3.5) fol-
lows on showing

√
nhn(τ 0) →d N(0,B),(3.6)

Hn(τ 0) →p B,(3.7)

Hn(τ ) − Hn(τ 0) →p 0(3.8)

for ‖τ − τ 0‖ ≤ ‖τ̃ − τ 0‖. We only show (3.6), as (3.7), (3.8) follow from similar
arguments to those given in the proof of (2.53). Noting that ∂ε1(τ 0)/∂τ ′ = 0,
whereas for t ≥ 2, ∂εt (τ 0)/∂τ ′ equals

t−1∑
j=1

(
−


(1)
j (ϕ0)

t−j−1∑
k=1

ut−j−k

k
, . . . ,−


(r)
j (ϕ0)

t−j−1∑
k=1

ut−j−k

k
,

∂
j (ϕ0)

∂ϕ1
ut−j , . . . ,

∂
j (ϕ0)

∂ϕp

ut−j

)
by similar arguments to those in the proof of Theorem 2.2, it can be shown that the
left-hand side of (3.6) equals

1√
n

n∑
t=2

( ∞∑
j=1

d(1)
j (ϕ0)εt−j · · ·

∞∑
j=1

d(r+p)
j (ϕ0)εt−j

)′
	−1

0 εt + op(1).
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Then by the Cramér–Wold device, (3.6) holds if for any (r + p)-dimensional vec-
tor ϑ (with ith component ϑi)

1√
n

n∑
t=2

∞∑
j=1

ε′
t−j M′

j (ϕ0)	
−1
0 εt →d N(0,ϑ ′Bϑ),(3.9)

where Mj (ϕ0) =∑r+p
k=1 ϑkd(k)

j (ϕ0). As in the proof of (2.55), (3.9) holds by The-
orem 1 of [7], for example, noting that

E

( ∞∑
j=1

ε′
t−j M′

j (ϕ0)	
−1
0 εt

)2

= E

( ∞∑
j=1

∞∑
k=1

ε′
t−j M′

j (ϕ0)	
−1
0 E(εtε

′
t |Ft−1)	

−1
0 Mk(ϕ0)εt−k

)

= E

( ∞∑
j=1

∞∑
k=1

tr{ε′
t−j M′

j (ϕ0)	
−1
0 Mk(ϕ0)εt−k}

)

=
∞∑

j=1

tr{M′
j (ϕ0)	

−1
0 Mj (ϕ0)	0} = ϑ ′Bϑ

to conclude the proof. �

4. Further comments and extensions. (1) Our univariate and multivariate
structures cover a wide range of parametric models for stationary and nonstation-
ary time series, with memory parameters allowed to lie in a set that can be arbi-
trarily large. Unit root series are a special case, but unlike in the bulk of the large
unit root literature, we do not have to assume knowledge that memory parameters
are 1. Indeed, in Monte Carlo [14] our method out-performs one which correctly
assumes the unit interval in which δ0 lies, while in empirical examples our findings
conflict with previous, unit root, ones.

(2) As the nondiagonal structure of A and B suggests, there is efficiency loss in
estimating ϕ0 if memory parameters are unknown, but on the other hand if these
are misspecified, ϕ0 will in general be inconsistently estimated. Our limit distri-
bution theory can be used to test hypotheses on the memory and other parameters,
after straightforwardly forming consistent estimates of A or B.

(3) Our multivariate system (3.1), (3.2) does not cover fractionally cointegrated
systems because 	0 is required to be positive definite. On the other hand, our
theory for univariate estimation should cover estimation of individual memory pa-
rameters, so long as Assumption A2, in particular, can be reconciled with the full
system specification. Moreover, again on an individual basis, it should be possible
to derive analogous properties of estimates of memory parameters of cointegrating
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errors based on residuals that use simple estimates of cointegrating vectors, such
as least squares.

(4) In a more standard regression setting, for example, with deterministic re-
gressors such as polynomial functions of time, it should be possible to extend our
theory for univariate and multivariate models to residual-based estimates of mem-
ory parameters of errors.

(5) Adaptive estimates, which have greater efficiency at distributions of un-
known, non-Gaussian form, can be obtained by taking one Newton step from our
estimates (as in [20]).

(6) Our methods of proof should be extendable to cover seasonally and cycli-
cally fractionally differenced processes.

(7) Nonstationary fractional series can be defined in many ways. Our definition
[(1.1) and (3.1)] is a leading one in the literature, and has been termed “Type II.”
Another popular one (“Type I”) was used by [25] for an alternate type of estimate.
That estimate assumes invertibility and is generally less efficient than τ̂ due to
the tapering required to handle nonstationarity. It seems likely that the asymptotic
theory derived in this paper for τ̂ can also be established in a “Type I” setting.

5. Technical lemmas. The proofs of the following lemmas appear in [14].

LEMMA 1. Under A1

εt (τ ) =
t−1∑
j=0

cj (τ )ut−j(5.1)

with c0(τ ) = 1 where for any δ ∈ I , as j → ∞,

sup
ϕ∈


|cj (τ )| = O
(
jmax(δ0−δ−1,−1−ς)),

(5.2)
sup
ϕ∈


|cj+1(τ ) − cj (τ )| = O
(
jmax(δ0−δ−2,−1−ς)).

LEMMA 2. Under A1, A2

εt (τ
∗) =

t−1∑
j=0

ajεt−j + vt (δ),

where τ ∗ = (δ,ϕ0) and for any κ ≥ 1/2

sup
δ0−κ≤δ<δ0−1/2+η

|vt (δ)| = Op(tκ−1)

and vt (δ0) = Op(t−1/2−ς ).
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LEMMA 3. Under A1, A2
n∑

j=1

Iε(τ )(λj ) =
n∑

j=1

∣∣∣∣θ(eiλj ;ϕ0)

θ(eiλj ;ϕ)

∣∣∣∣2Iε(τ∗)(λj ) + Vn(τ ),(5.3)

where for any real number κ ≥ 1/2

sup
δ0−κ≤δ<δ0−1/2+η

ϕ∈


|Vn(τ )| = Op

(
log2 n1(κ = 1/2) + n2κ−11(κ > 1/2)

)
.(5.4)

LEMMA 4. Under A3, given an open neighborhood Nε of radius ε < 1/2
about τ 0, as j → ∞,

sup
τ∈Nε

|cj (τ )| = O(jε−1),

sup
τ∈Nε

∣∣∣∣∂cj (τ )

∂δ

∣∣∣∣= O(jε−1 log j),

sup
τ∈Nε

|cj+1(τ ) − cj (τ )| = O
(
jmax(ε−2,−1−ς)),

sup
τ∈Nε

∣∣∣∣ ∂

∂δ

(
cj+1(τ ) − cj (τ )

)∣∣∣∣= O(j−1−ς + jε−2 log j),

sup
τ∈Nε

∣∣∣∣∂2cj (τ )

∂δ2

∣∣∣∣= O(jε−1 log2 j),

sup
τ∈Nε

∥∥∥∥∂cj (τ )

∂ϕ

∥∥∥∥= O(jε−1),

sup
τ∈Nε

∣∣∣∣ ∂2

∂δ2

(
cj+1(τ ) − cj (τ )

)∣∣∣∣= O(j−1−ς + jε−2 log2 j),

sup
τ∈Nε

∥∥∥∥ ∂

∂ϕ

(
cj+1(τ ) − cj (τ )

)∥∥∥∥= O
(
jmax(ε−2,−1−ς)),

sup
τ∈Nε

∥∥∥∥∂2cj (τ )

∂ϕ ∂ϕ′
∥∥∥∥= O(jε−1),

sup
τ∈Nε

∥∥∥∥∂2cj (τ )

∂ϕ ∂δ

∥∥∥∥= O(jε−1 log j),

sup
τ∈Nε

∥∥∥∥ ∂2

∂ϕ ∂ϕ′
(
cj+1(τ ) − cj (τ )

)∥∥∥∥= O
(
jmax(ε−2,−1−ς)),

sup
τ∈Nε

∥∥∥∥ ∂2

∂ϕ ∂δ

(
cj+1(τ ) − cj (τ )

)∥∥∥∥= O(j−1−ς + jε−2 log j).
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SUPPLEMENTARY MATERIAL

Supplement to “Gaussian pseudo-maximum likelihood estimation of frac-
tional time series models” (DOI: 10.1214/11-AOS931SUPP; .pdf). The supple-
mentary material contains a Monte Carlo experiment of finite sample performance
of the proposed procedure, an empirical application to U.S. income and consump-
tion data, and the proofs of the lemmas given in Section 5 of the present paper.
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