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TRANSLATED POISSON APPROXIMATION USING
EXCHANGEABLE PAIR COUPLINGS

BY ADRIAN RÖLLIN1

University of Zurich

It is shown that the method of exchangeable pairs introduced by Stein
[Approximate Computation of Expectations (1986) IMS, Hayward, CA] for
normal approximation can effectively be used for translated Poisson approx-
imation. Introducing an additional smoothness condition, one can obtain ap-
proximation results in total variation and also in a local limit metric. The
result is applied, in particular, to the anti-voter model on finite graphs as ana-
lyzed by Rinott and Rotar [Ann. Appl. Probab. 7 (1997) 1080–1105], obtain-
ing the same rate of convergence, but now for a stronger metric.

1. Introduction. Let W be a random variable with

EW = µ and VarW = σ 2 < ∞.(1.1)

Stein [17] introduced a method (which is commonly called the exchangeable pairs
approach) to approximate Wc := (W − µ)/σ by the standard normal distribution;
Rinott and Rotar [14] then generalized the result and successfully applied it to
weighted U -statistics and the antivoter model. Their results imply convergence to
the standard normal distribution in the Kolmogorov and even in some stronger
metrics; however, in this context, they do not provide approximations in the total
variation metric or prove local limit-like results.

We will consider such results in this paper in the special case, in which W is
integer valued, the most common situation being the one where W is a sum of
random indicators. As the total variation distance between W and the normal dis-
tribution will always be 1, we will instead use a translated Poisson distribution as
approximation, having the same support as W and matching the first two moments
of W as well as possible. If not otherwise stated, we will assume throughout that
σ 2 → ∞. This actually implies that the approximating probability distributions are
not converging to a limiting distribution, but the accuracy of our approximations
nonetheless increases as σ 2 becomes large. The total variation metric is invariant
under scaling, so that working with Wc would bring no benefit. Besides the total
variation metric, we will also consider a metric from which local limit approxima-
tions can be obtained.
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We note that in the framework of Stein’s method there are other approaches to
replacing the normal distribution by discrete analogues. In [12] a distribution with
support on Z is constructed, with the advantage of having no truncation and round-
ing effect but at the cost of a somewhat more complicated Stein operator. There,
approximation theorems are provided using the so-called zero biasing approach
introduced in [9]. In [16] a translated binomial distribution is used, and in [4] a
special translated signed compound Poisson distribution, both in the context of the
so-called local approach. In the discrete setting, exchangeable pairs have also been
successfully used in [8] for Poisson approximation in total variation.

The rest of the paper is organized as follows. In the next section we recall the
setup of the exchangeable pairs approach in the context of normal approxima-
tion. We then introduce a simple smoothing condition under which it is possible
to obtain the stronger total variation bounds for translated Poisson approximation.
In Section 3 we state and prove the main approximation theorem, Theorem 3.1,
which is the discrete equivalent to Theorem 1.2 of [14]. We also prove a second
general result, Theorem 3.11, from which, under an additional assumption, more
accurate rates can be obtained for local limit results. In Section 4 some applications
are given, among others to the anti-voter model.

2. Exchangeable pairs for normal approximation and a smoothness condi-
tion. We call a pair of random variables (W,W ′) exchangeable if L (W,W ′) =
L (W ′,W). As in [17] and [14], assume now that there is a positive number λ < 1
and a random variable R such that

E
W(W ′ − µ) = (1 − λ)(W − µ) + R,(2.1)

holds, where E
W denotes the conditional expectation with respect to W . Of course,

one can always find R to satisfy (2.1), so R must be thought of as being small for
the approximation to be successful. Note that (2.1) implies ER = 0.

If the pair (W,W ′) can be chosen such that condition (2.1) holds and E
W(W ′ −

W)2 does not fluctuate too much, convergence of Wc to the standard normal dis-
tribution will follow in the Kolmogorov metric. As the behavior of the difference
W ′ − W is mainly responsible for the quality of the approximation, it is an obvi-
ous starting point to introduce a smoothness condition, to make sure that the local
perturbations of W are not too strong.

Rinott and Rotar [14] propose to choose W and W ′ as two successive steps of a
reversible Markov chain with stationary distribution L (W). Then, condition (2.1)
states that a particle on Z obeying the transition rules of such a Markov chain is
forced to have an (almost) linear drift to the center. Now E

W=k(W ′ − W)2 is the
average of the squared jump size of the Markov chain if the particle is in k, so
that, for a good normal approximation, the average jump size of the particle must
not fluctuate too much with varying k. It is clear that, under these conditions, the
particle may still behave irregularly on a local scale, for instance, the particle could
still make only jumps of size two and thus stay on the odd or even integers, such
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that an approximation with a distribution on Z with span 1 will not be successful
in total variation.

Thus, in addition to (2.1), we assume further that

W ′ − W ∈ {−1,0,+1},(2.2)

and we will see that this seems to be an appropriate condition. Note that under
condition (2.2) the corresponding Markov chain does not need to be reversible for
(W,W ′) to be a exchangeable pair; see Lemma 1.1 of [14].

Condition (2.2) is in sharp contrast to other approaches using Stein’s method
for the translated Poisson distribution such as [7, 15] or [3], where an embedded
sum of independent random variables within W is used for an explicit smoothing
argument; in contrast, the smoothing effect of (2.2) will enter only implicitly into
the proof of the main result. As we are restricted to the integers, we cannot arbitrar-
ily shift a Poisson distribution with a given variance to fit the mean, so some care
is needed here. We say that an integer valued random variable Y has a translated
Poisson distribution with parameters µ and σ 2 and write

L (Y ) = TP(µ,σ 2)

if L (Y − µ + σ 2 + γ ) = Po(σ 2 + γ ), where γ = 〈µ − σ 2〉 and 〈x〉 = x − �x�
denotes the fractional part of x; in particular, TP(σ 2, σ 2) = Po(σ 2). So, approxi-
mating W with TP(µ,σ 2), we can fit the mean exactly, but note that for the vari-
ance we have σ 2 ≤ VarY = σ 2 + γ ≤ σ 2 + 1. This will, however, cause no further
problems as the order of error of this mismatch is O(σ−2); see also Remark 3.5
below.

Throughout the paper, we shall be concerned with two metrics for probability
distributions, the total variation metric dTV and the local limit metric dloc, where,
for two probability distributions P and Q given by the point probabilities {pk, k ∈
Z} and {qk, k ∈ Z} respectively,

dTV(P,Q) := sup
A⊂Z

|P(A) − Q(A)| = 1
2

∑
k∈Z

|pk − qk|,

dloc(P,Q) := sup
k∈Z

|pk − qk|.

3. Main results.

THEOREM 3.1. Assume that (W,W ′) is an exchangeable pair with values on
the integers and which satisfies (1.1), (2.1) and (2.2). Then, with S = S(W) =
P[W ′ = W + 1|W ] and qmax = maxk∈Z P[W = k],

dTV
(
L (W),TP(µ,σ 2)

) ≤
√

VarS

λσ 2 + 2
√

VarR

λσ
+ 2

σ 2 ,(3.1)

dloc
(
L (W),TP(µ,σ 2)

) ≤ 2
√

qmax VarS

λσ 2 + 2qmax
√

VarR

λσ
(3.2)
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+
√

VarR

λσ 2 + 2

σ 2 .

REMARK 3.2. In some of the applications, instead of S(W) = P[W ′ =
W + 1|W ], we will estimate the variance of a more general random variable
S∗ = S∗(X) := P[W ′ = W + 1|X] for some random variable X such that the
corresponding σ -algebras satisfy σ(W) ⊂ σ(X) and then use the basic fact that
VarS ≤ VarS∗.

EXAMPLE 3.3. To illustrate the above theorem, we apply it to the Poisson-
binomial distribution. To this end let J = (J1, . . . , Jn) be a sequence of inde-
pendent indicators with EJi = pi and W = ∑n

i=1 Ji , thus, µ = ∑n
i=1 pi and

σ 2 = ∑n
i=1 pi(1 − pi). We use the standard construction of [17] to obtain an ex-

changeable pair. Let J ∗
1 , . . . , J ∗

n be independent copies of the Ji and let K be
uniformly distributed over {1, . . . , n}. Then, with W ′ = W − JK + J ∗

K , it is easy
to check that (W ′,W) is an exchangeable pair, satisfying (2.1) with R ≡ 0 and
λ = 1/n and, clearly, (2.2) is also satisfied. So,

S∗(J ) := E
J I [W ′ − W = 1]

= 1

n

n∑
i=1

E
J I [Ji = 0, J ∗

i = 1]
(3.3)

= 1

n

n∑
i=1

(1 − Ji)E
J J ∗

i

= 1

n

n∑
i=1

(1 − Ji)pi.

Thus, VarS∗ = n−2 ∑n
i=1 p3

i (1 − pi), and, by Remark 3.2, (3.1) yields

dTV
(
L (W),TP(µ,σ 2)

) ≤ 2 +
√∑

p3
i (1 − pi)∑

pi(1 − pi)
.(3.4)

Assume now that the pi are bounded away from 0 and 1, so that σ 2 � n as n →
∞. Then (3.4) is of the correct order O(n−1/2). This also implies that qmax =
O(n−1/2) (see Corollary 3.9 below) so that (3.2) yields dloc(L (W),TP(µ,σ 2) =
O(n−3/2), which in contrast is not optimal. We will improve this bound using
Theorem 3.11 below.

In the above case of the Poisson-binomial distribution, Corollary 2.1 of [7]
seems to be better in constant than (3.1). For instance, for the binomial distrib-
ution, we have

dTV
(
Bi(n,p),TP(µ,σ 2)

) ≤ C

√
p

n(1 − p)
+ 2

np(1 − p)
,
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where [7] obtain C = 0.93 and (3.1) yields C = 1.

REMARK 3.4. Theorem 3.1 is a direct analogue of Theorem 1.2 of [14]. How-
ever, the first term in (3.1) is slightly different in quality from Theorem 1.2 of [14],
as can be seen by comparing the result of their Theorem 1.3 for the anti-voter
model with estimate (4.4) below.

REMARK 3.5. The additional 2/σ 2 in (3.1) and (3.2) appears because the
Poisson distribution cannot take negative values, and because the translation must
be integer valued. Depending on the problem at hand, this error term can be further
reduced or even be omitted by replacing estimates (3.12) and (3.17) in the proof
below. For example, to obtain the best possible total variation estimates from (3.1)
in the Poisson-binomial case, recall from Section 2 that γ = 〈µ − σ 2〉 = 〈∑p2

i 〉
and s = �µ − σ 2� = µ − σ 2 − γ = ∑

p2
i − 〈∑p2

i 〉. From (2.8) of [7] we obtain
for (3.12)

P[W < s]
{≤ e−σ 2/4, if s > 0,

= 0, if s = 0.

For the last term in (3.16), we have

|Eγ�g̃(W)| ≤ ‖�g̃‖
〈∑

p2
i

〉
.

Using the first inequality of the estimate of ‖�g̃‖ in (3.13) and applying this in the
above estimate and also in (3.23), we obtain

dTV
(
L (W),TP(µ,σ 2)

)

≤ 1 − e−σ 2−〈∑p2
i 〉

σ 2 + 〈∑p2
i 〉

(√∑
p3

i (1 − pi) +
〈∑

p2
i

〉)
(3.5)

+ I
[∑

p2
i ≥ 1

]
e−σ 2/4.

This estimate now covers also the regime of Poisson approximation. However,
(3.5) is larger in constant than previous results and one would have to go back to
the proof of the theorem to reproduce the bounds of [1] and [8]; see Remark 3.8.

REMARK 3.6. As becomes clear from equation (3.22) in the proof of Theo-
rem 3.1, there is a close connection between the random variable S = S(W) and
the so-called w-functions as examined, for example, in [5] and [6] for the normal
and the Poisson distributions. In the case of the standard normal distribution, their
problem is as follows: for a given random variable X with EX = 0 and VarX = 1,
find a function w : R → R such that

E{Xf (X)} = E{w(X)f ′(X)}(3.6)
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holds for a large set of functions f . For the translated Poisson distribution, the
corresponding equation is

E{(W − µ)f (W)} = E{w(W)�f (W)},(3.7)

and it is indeed satisfied for any W as in Theorem 3.1 if R ≡ 0 and if we choose
w(W) = S(W)/λ. Unfortunately, it is often difficult to give an explicit expression
for S as a function of W . However, if we allow w(W) in (3.7) to be replaced by a
more general random variable, we see from (3.22) that we can use the random vari-
able S∗(X)/λ from Remark 3.2 instead. For instance, for the anti-voter model as
discussed in the next section, S∗(X) has the nice and explicit representation (4.7).

Instead of (3.6), one can also formulate the problem of finding a random variable
Xz such that

E{Xf (X)} = Ef ′(Xz),(3.8)

which leads to the so-called zero biasing approach. There is a close connection
between this and the exchangeable pairs approach; see [10] and references therein,
and for more general versions of (3.8), see [11].

Before proving Theorem 3.1, we give a short introduction into Stein’s method
for translated Poisson approximation. The starting point is the Stein–Chen method
for the Poisson distribution as presented in detail by Barbour, Holst and Janson [2].

Let W satisfy (1.1) and let s = �µ − σ 2� and γ = 〈µ − σ 2〉, where 〈x〉 = x −
�x� denotes the fractional part of x. Note that, if Y ∼ TP(µ,σ 2), then Y − s ∼
Po(σ 2 + γ ). Let Ag(j) = (σ 2 + γ )g(j + 1) − jg(j) be the usual Stein operator
for the Poisson distribution with mean σ 2 +γ , and for A ⊂ Z+ := {0,1,2, . . .}, let
gA : Z → R be the solution of the following:

(i) g(j) = 0 for all j ≤ 0,(3.9)

(ii) Ag(j) = I [j ∈ A] − Po(σ 2 + γ ){A} for all j ≥ 0.(3.10)

We can thus bound the total variation distance as

dTV
(
L (W),TP(µ,σ 2)

)
= dTV

(
L (W − s),Po(σ 2 + γ )

)
(3.11)

= sup
B⊂Z

|EI [W − s ∈ B] − Po(σ 2 + γ ){B}|

≤ sup
A⊂Z+

|EAgA(W − s)| + P[W − s < 0].

The last term in (3.11) can be bounded using Chebyshev’s inequality as

P[W − s < 0] = P[W − µ < −(σ 2 + γ )]
(3.12)

≤ P[|W − µ| > σ 2 + γ ] ≤ 1

σ 2 .
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From [2], Lemma 1.1.1, we have the well-known bounds on the supremum norm
of gA,

‖gA‖ ≤ (σ 2 + γ )−1/2 ≤ σ−1,
(3.13)

‖�gA‖ ≤ 1 − e−σ 2−γ

σ 2 + γ
≤ σ−2,

where �gA(j) := gA(j + 1) − gA(j). If A = {k} for some k ∈ Z, we even have∥∥g{k}
∥∥ ≤ σ−2.(3.14)

For the proof of the results in the dloc metric, we will also need the following
nonstandard but simple result.

LEMMA 3.7. Let gi be the solution of (3.9)–(3.10) for A = {i}. Then∑
k

|�gi(k)| ≤ 2σ−2,
∑
k

(�gi(k))2 ≤ 4σ−4.(3.15)

PROOF. Recall from [2], proof of Lemma 1.1.1, that gi(k) is negative and
decreasing in 0 ≤ k ≤ i and positive and decreasing in k > i with the only positive
jump in i satisfying

|�gi(i)| ≤ (σ 2 + γ )−1 ≤ σ−2.

From this, it is easy to see that the first bound of (3.15) holds and the second bound
is then immediate. �

With g̃A(j) := gA(j − s), we can rewrite the Stein operator A as

AgA(W − s) = (σ 2 + γ )gA(W − s + 1) − (W − s)gA(W − s)
(3.16)

= σ 2�g̃A(W) − (W − µ)g̃A(W) + γ�g̃A(W).

The bounds on g̃A are of course the same as on gA in (3.13)–(3.15). Thus, the
expectation of the last term in (3.16) is easily bounded by

|E{γ�g̃A(W)}| ≤ γ σ−2 ≤ σ−2.(3.17)

Inserting (3.16) into (3.11) and invoking the bounds (3.12) and (3.17), we obtain

dTV
(
L (W),TP(µ,σ 2)

)
(3.18)

≤ sup
A⊂Z+

|E{σ 2�g̃A(W) − (W − µ)g̃A(W)}| + 2σ−2;

the same estimate holds for dloc but with the supremum taken only over the sets
A = {i} for i ∈ Z+.
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PROOF OF THEOREM 3.1. We only have to bound the supremum in (3.18).
In [17] it was shown that, if F satisfies F(w,w′) = −F(w′,w) for all w and
w′, exchangeability implies EF(W,W ′) = 0. Define the random variable D :=
W ′ − W and the function F(w,w′) := (w′ − w)(g(w′) + g(w)) for g ≡ g̃A and
note that, from (2.1), E

WD = −λ(W − µ) + R. This yields

0 = EF(W,W ′) = E
{
D

(
2g(W) + g(W ′) − g(W)

)}
(3.19)

= −2λE{(W − µ)g(W)} + 2E{Rg(W)} + E
{
D

(
g(W ′) − g(W)

)}
.

Note now that, for Di := I [D = i], i ∈ {−1,+1}, we can write

D
(
g(W ′) − g(W)

) = D+1�g(W) + D−1�g(W − 1),

and further, using exchangeability,

E{D−1�g(W − 1)} = E{I [W ′ − W = −1]�g(W − 1)}
= E{I [W − W ′ = 1]�g(W ′)}(3.20)

= E{D+1�g(W)},
thus,

E
{
D

(
g(W ′) − g(W)

)} = 2E{D+1�g(W)}.(3.21)

Together with (3.19) this yields

E{(W − µ)g(W)} = E{D+1�g(W)}
λ

+ E{Rg(W)}
λ

.(3.22)

Note now that, by exchangeability, ED+1 = ED−1 and, hence, that

ED+1 = 1
2E(W ′ − W)2

= 1
2 [E(W ′ − µ)2 − 2E{(W ′ − µ)(W − µ)} + bE(W − µ)2](3.23)

= λσ 2 + E{(W − µ)R} =: λσ 2 + a,

from (2.1); then use (3.22) to express the expectation in (3.18) as

E{(W − µ)g(W) − σ 2�g(W)}
= E{(W − µ)g(W) − (σ 2 + λ−1a)�g(W)} + λ−1aE�g(W)

= E{(D+1λ
−1 − σ 2 − λ−1a)�g(W)} + λ−1

E{Rg(W)} + λ−1aE�g(W)

=: B1 + B2 + B3.

Now, recall that S = E
WD+1, and thus, with the estimates

|B1| ≤ ‖�g‖λ−1
E|S − ES| ≤ ‖�g‖λ−1

√
VarS,(3.24)

|B2| ≤ ‖g‖λ−1
E|R| ≤ ‖g‖λ−1

√
VarR,(3.25)

|B3| ≤ ‖�g‖λ−1
E|(W − µ)R| ≤ ‖�g‖λ−1σ

√
VarR,(3.26)
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and the bounds (3.13), (3.1) follows.
To prove (3.2), we also use (3.18), but now we take the supremum only over

all subsets A = {i} for i ∈ Z. Writing g ≡ g̃{i} and following the proof as for dTV
above, the bound on (3.25) remains and recalling (3.14), the third term in (3.2)
follows. We thus need only refine the bounds on B1 and B3. Note that by the
Cauchy–Schwarz inequality

|B1| ≤ λ−1
√

VarS
√

E(�g(W))2.

Using Lemma 3.7, the latter expectation can be bounded by

E(�g(W))2 = ∑
k

(�g(k))2
P[W = k]

(3.27)
≤ qmax

∑
k

(�g(k))2 ≤ 4σ−4qmax,

which implies the first term in (3.2). Using a similar argument on B3, we obtain

|B3| ≤ λ−1σ
√

VarR qmax
∑
k

|�g(k)|,

which, together with Lemma 3.7, yields the second term in (3.2). �

REMARK 3.8. It is interesting to compare our approach to the one used in [8],
who also use exchangeable pairs but for Poisson approximation. As we have
TP(µ,µ) = Po(µ), it should be expected that we can reproduce their results. This
is indeed the case.

Now, assume our conditions (2.1) and (2.2) and assume that we are in the regime
of Poisson approximation, that is, σ 2 ≈ µ. We also assume for the sake of simplic-
ity that R ≡ 0. Taking TP(µ,µ) as the approximating distribution, it is easy to see
that the Stein operator (3.16) reduces to the classical Stein operator

Ag(w) := µg(w + 1) − wg(w)

for Po(µ) also used in [8]. Using the anti-symmetric function from the proof of
Theorem 3.1, we have

0 = E
{
(D+1 − D−1)

(
g(W ′) + g(W)

)}
(3.28)

= E{D+1g(W + 1) − D−1g(W)},
where for the second equality we exploited the same argument as in (3.20) and
the fact that W ′ = W + 1 if D+1 = 1. Note that (3.28) is the same equality as in
[8], obtained through a different anti-symmetric function. Multiplying (3.28) by
an arbitrary constant c, we obtain the bound

dTV
(
L (W),Po(µ)

) = dTV
(
L (W),TP(µ,µ)

) = sup
g

|EAg(W)|

≤ sup
g

|E{(µ − cE
WD+1)g(W + 1)(3.29)

+ (W − cE
WD−1)g(W)}|,
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where the supremum ranges over the same functions g as in (3.11). Note that,
from (3.23), we have E

WD+1 = λσ 2 ≈ λµ and this, in conjunction with (2.1),
also implies E

WD−1 ≈ λW , so that, with the choice c = λ−1, (3.29) is expected to
be reasonably small in the regime of Poisson approximation.

Instead of (2.1) and (2.2), in [8] it is only assumed that (W,W ′) is exchangeable.
With this assumption, they prove the same bound (3.29), where again c can be
chosen arbitrarily. It is noteworthy that, although differences of |W ′ − W | larger
than 1 are allowed in their approach, again only jumps of size 1 appear in (3.29);
this is a consequence of exchangeability.

So, we are able to reproduce the estimates of [8] under our assumptions, by
taking TP(µ,µ) instead of TP(µ,σ 2) as the approximation. However, we have
the extra flexibility of being able to match mean and variance separately, so that
our approach also works when σ 2 is not near µ; for instance, if

∑
p2

i is not small
in the Poisson-binomial case. In contrast, in [8] they do not assume (2.1), and allow
for differences larger than 1.

Using (3.1) with the following corollary, one easily obtains a bound for qmax.

COROLLARY 3.9. For any Z-valued random variable W ,

qmax ≤ dTV
(
L (W),TP(µ,σ 2)

) + 1

2.3σ
.

PROOF. Just apply Proposition A.2.7 of [2]. �

REMARK 3.10. Estimate (3.2) in combination with Corollary 3.9 is enough to
obtain a local limit theorem in the applications of the next section. Although it can
be easily calculated in many circumstances, the example of the Poisson-binomial
distribution shows that the bound on dloc need not be optimal; estimate (3.2) is of
order O(n−3/4) in the special case of the binomial distribution, in contrast to the
true order O(n−1). Under additional assumptions on S, however, the bound (3.2)
can be used to derive the better dloc-bound, given in the following theorem. This
bound is used in the examples of the Sections 4.1 and 4.2 to obtain the correct
order O(n−1) of approximation.

THEOREM 3.11. Assume the conditions of Theorem 3.1; assume, in addition,
that S, as a function of W , can be extended on R such that it is Lipschitz continu-
ous. Then,

dloc
(
L (W),TP(µ,σ 2)

)
≤ 2LS(σ−3

E|W − µ|3 ∨ (dσ 3/2 + 1))

λσ 2 + 2LSqmax

λσ
(3.30)

+ 2qmax
√

VarR

λσ
+

√
VarR

λσ 2 + 2

σ 2 ,
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where d is the dloc-bound (3.2) and LS is the Lipschitz constant of S.

To obtain useful bounds from the above theorem, it is essential that one has
a good bound on LS . In the Sections 4.1 and 4.2 and in the special case of the
anti-voter model on the complete graph (Example 4.7), this is easily done, because
there we know S explicitly. Recall also Example 3.3 for the binomial distribution,
that is, pi = p for some fixed p. Then (3.3) yields S∗(J ) = λp(n − W) = S(W).
Clearly, LS = λp, so that from (3.30) we obtain the correct order O(n−1) for
the dloc-metric. For the general Poisson-binomial and anti-voter models from Sec-
tion 4.3, however, we only know a more general function S∗(J ) with S(W) =
E

WS∗(J ) (see Remark 3.2), and it is unclear how to obtain useful bounds on LS

in these cases.
To prove Theorem 3.11, we need the following lemma.

LEMMA 3.12. For any µ and σ 2, the bound

TP(µ,σ 2){k}|k − µ| ≤ 1

holds for all k ∈ Z.

PROOF. Recall from (3.10) that, if Z ∼ TP(µ,σ 2),

E{(Z − µ)g(Z) − (σ 2 + γ )�g(Z)} = 0(3.31)

for any g for which the expectations exist. With πk = TP(µ,σ 2){k} and putting
g(·) = I [· = k] we obtain from (3.31) the bound

πk|k − µ| ≤ (σ 2 + γ )|πk−1 − πk|
≤ (σ 2 + γ )dloc

(
TP(µ + 1, σ 2),TP(µ,σ 2)

)
= (σ 2 + γ )dloc

(
L (Y + 1),L (Y )

)
,

where Y ∼ Po(σ 2 +γ ). The later dloc-distance can easily be bounded using Stein’s
method for the Poisson distribution, that is, (3.10) in connection with the bound
(3.14), which yields dloc(L (Y + 1),L (Y )) ≤ (σ 2 + γ )−1. �

PROOF OF THEOREM 3.11. Follow the proof of Theorem 3.1 for the dloc
metric up to the bounds on the Bi . The bounds on |B2| and |B3| remain. Recalling
that S is a function defined on all R, write now B1 as

B1 = λ−1
E

{(
S(W) − ES(W)

)
�g(W)

}
= λ−1

E
{(

S(W) − S(µ)
)
�g(W)

} + λ−1
E

{(
S(µ) − S(W)

)}
E�g(W)

=: B1,1 + B1,2.
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Exploiting Lipschitz continuity of S and recalling (3.15), we obtain with qk =
P[W = k]

|B1,2| ≤ λ−1σLS

∑
k

qk|�g(k)| ≤ 2LSqmax

λσ
,

which is the second term in (3.30). For B1,1, we have

|B1,1| ≤ λ−1
∑
k

qk|S(k) − S(µ)||�g(k)|
(3.32)

≤ λ−1LS

∑
k

qk|k − µ||�g(k)|.

We now bound qk|k − µ|. Assume first that |k − µ| > σ 3/2; then, by Chebyshev’s
inequality,

qk ≤ P[W ≥ k] ≤ E|W − µ|3
|k − µ|3 P[|W − µ| ≥ |k − µ|]

and, thus,

qk|k − µ| ≤ σ−3
E|W − µ|3.

On the other hand, if |k − µ| ≤ σ 3/2, observe that

qk ≤ d + TP(µ,σ 2){k}
and, hence, using Lemma 3.12,

qk|k − µ| ≤ dσ 3/2 + 1.

Thus, (3.32) can be further bounded to

|B1,1| ≤ λ−1LS

(
σ−3

E|W − µ|3 ∨ (dσ 3/2 + 1)
)∑

k

|�g(k)|

and applying again (3.15), this yields the first term in (3.30). �

The following lemma can be used to estimate the second and third moments
of W .

LEMMA 3.13. Under the assumptions of Theorem 3.1 and with A = {w :
P[W = w] > 0} and a := E{R(W − µ)},

λ−1
(

inf
w∈A

S(w) − a

)
≤ σ 2 ≤ λ−1

(
sup
w∈A

S(w) − a

)
,

E|W − µ|3 ≤ λ−1(
8qmax + 1 + σ + E{|R|(W − µ)2}).
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PROOF. The estimates for the variance are immediate from equality (3.23) and
the bounds

inf
w∈A

S(w) ≤ ES(W) ≤ sup
w∈A

S(w).

Note now that, from equation (3.22),

E{(W − µ)g(W)} = λ−1
E{S(W)�g(W)} + λ−1

E{Rg(W)}
for all functions g, for which the expectations exist. With Kµ(w) = I [w > µ] −
I [w ≤ µ] and g(w) = Kµ(w)(w − µ)2, we thus obtain

E|W − µ|3 = λ−1
E{S(W)[(W − µ)2 + 2(W − µ) + 1]�Kµ(W)}

+ λ−1
E

{
S(W)

(
2(W − µ) + 1

)
Kµ(W)

}
+ λ−1

E{R(W − µ)2Kµ(W)} =: B ′
1 + B ′

2 + B ′
3.

Note now that |K(w)| = 1 and

�Kµ(w) =
{

2, if w = �µ�,
0, else,

and thus, as |�µ� − µ| ≤ 1 and |S(w)| ≤ 1,

|B ′
1| ≤ 8λ−1qmax,

|B ′
2| ≤ λ−1 + λ−1σ.

The bound on B ′
3 is immediate. �

4. Applications. In this section we illustrate our results using some examples
in which W = ∑n

i=1 Ji for a sequence J = (J1, J2, . . . , Jn) of random indicators.
In [4] and [15], cases are considered where the Ji have a local dependence struc-
ture; in contrast, the examples in this paper exhibit global dependence.

For latter use, we recall the following easy to prove fact.

LEMMA 4.1. Let f : R → R be a Lipschitz continuous function with Lipschitz
constant Lf . Then, for any random variable X,

Varf (X) ≤ L2
f VarX.

4.1. Hypergeometric distribution. Assume that we have N urns and m balls,
and that we distribute the balls uniformly into the N urns, in such a way that there
is at most one ball per urn. Clearly, the number of balls W in the first n urns has
the hypergeometric distribution Hyp(m,n,N), for which

σ 2 = VarW = nm(N − n)(N − m)

(N − 1)N2 .
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THEOREM 4.2. If W has the hypergeometric distribution, then (3.1) and (3.2)
hold with R ≡ 0 and λ = N

m(N−m+1)
and we have

VarS ≤ nm(m + n)2(N − n)(N − m)

m2(N − m + 1)2(N − 1)N2 .(4.1)

Thus, with N = N(n) � n and m = m(n) � n,

dTV
(
L (W),TP(µ,σ 2)

) = O(n−1/2),

dloc
(
L (W),TP(µ,σ 2)

) = O(n−1).

PROOF. Consider the following construction. Pick uniformly an urn with a
ball, and put this ball into any empty urn (including the urn from which the ball was
picked). Denote now by W ′ the number of balls in the first n urns. Exchangeability
of (W,W ′) is easy to see and condition (2.2) is clearly satisfied. Now, W ′ −W = 1
is the event that a ball is picked from one of the urns n+ 1, . . . ,N and put into one
of the empty urns 1, . . . , n, thus,

S(W) = P[W ′ = W + 1|W ]
= m − W

m
× n − W

N − m + 1
(4.2)

= mn − (m + n)W + W 2

m(N − m + 1)

and, conversely,

P[W ′ = W − 1|W ] = W

m
× N − n − m + W

N − m + 1
,

thus,

E
W(W ′ − W) = E

WI [W ′ − W = 1] − E
WI [W ′ − W = −1]

= mn − NW

m(N − m + 1)
,

and (2.1) is satisfied with R ≡ 0 and λ = N
m(N−m+1)

.
Note now from (4.2) that S, as a function of W , is Lipschitz continuous with

constant LS = m+n
m(N−m+1)

; thus, applying Lemma 4.1, we have

VarS ≤ (m + n)σ 2

m2(N − m + 1)2 . �

This is enough to prove the dTV-order and, together with Corollary 3.9, the or-
der O(n−3/4) for the dloc-metric. Now, noting that Lemma 3.13 yields E|W −
µ|3 = O(n3/2), we obtain from Theorem 3.11 the desired order O(n−1) for the
dloc-metric.
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4.2. A parity problem. Let J1, . . . , Jn be a sequence of independent Be(1/2)-
distributed random indicators. Define

Jn+1 :=



1, if
n∑

i=1

Ji is odd,

0, else,

and V := ∑n+1
i=1 Ji , so V is simply obtained by “rounding” a Bi(n,1/2)-distributed

random variable to the next even integer. An approximation of V by a translated
Poisson distribution will clearly not succeed; however, we may try with W := 1

2V .
Regard now the following exchangeable pair coupling. Pick two random indices

K,L uniformly on {1, . . . , n + 1} so that almost surely K �= L, and define

V ′ = V + 2 − 2JK − 2JL;(4.3)

that is, take two summands of V at random, and replace each of them by its com-
plement.

LEMMA 4.3. The pair (V ,V ′) defined as above is an exchangeable pair and
(W,W ′) := (1

2V, 1
2V ′) satisfies (2.1) and (2.2) with λ = 2/(n + 1).

PROOF. It is enough to regard the situation on M = {0,1}n because the values
J1, . . . , Jn uniquely determine the random variable Jn+1. Note first that construc-
tion (4.3) gives rise to a discrete time Markov chain on M , with jumps from j ∈ M

to j ′ ∈ M , if j ′ differs from j in exactly one or two coordinates (j ′ differing in ex-
actly one coordinate corresponds to K or L being equal to n+1). Now, as the jump
from j to j ′ happens with the same probability as from j ′ to j and all the states
are connected, it is easy to see that the such defined Markov chain is irreducible
and reversible and that the equilibrium distribution assigns equal probability to
any j ∈ M , which corresponds to n independent Be(1/2) random variables. Thus,
exchangeability is proved.

Note now that

E
J (V ′ − V ) = 2 − 2

n(n + 1)

n+1∑
k=1

n+1∑
l=1
l �=k

(Jk + Jl)

= 2 − 2

n(n + 1)
2nV = 2 − 4V

n + 1
,

thus, we can take λ = 2/(n + 1). �

THEOREM 4.4. For W defined as above, (3.1) and (3.2) hold with R ≡ 0 and
λ = 2/(n + 1) and if n ≥ 2, we have σ 2 = (n + 1)/16 and

VarS ≤ (4n − 2)2(n + 1)

16n2(n + 1)2 ;
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thus, as n → ∞,

dTV
(
L (W),TP(µ,σ 2)

) = O(n−1/2),

dloc
(
L (W),TP(µ,σ 2)

) = O(n−1).

PROOF. Note first that if n ≥ 2, the Ji are uncorrelated and, thus,

σ 2 = Var(V )/4 = (n + 1)/16.

Now,

E
J I [W ′ − W = 1] = 1

n(n + 1)

n+1∑
k=1

n+1∑
l=1
l �=k

(1 − Jk)(1 − Jl)

= n(n + 1) − (4n − 2)W + 4W 2

n(n + 1)
=: S(W).

Observe that S, as a function of W , is Lipschitz continuous with LS = 4n−2
n(n+1)

;
thus, applying Lemma 4.1,

VarS(W) ≤ (4n − 2)2σ 2

n2(n + 1)2 .

This is enough to prove the dTV-order and, together with Corollary 3.9, the order
O(n−3/4) for dloc. Now, noting that Lemma 3.13 yields E|W −µ|3 = O(n3/2), we
obtain from Theorem 3.11 the desired order O(n−1) for the dloc-metric. �

4.3. Anti-voter model on finite graphs. We closely follow the setup of [14]; see
also references therein and [13]. Let G be an n-vertex r-regular graph, which is
neither bipartite nor an n-cycle. At each vertex i we assume that there is a “voter”
attached, having an opinion J

(t)
i which can take the values 0 or 1 in every time

point t ∈ N. Define a Markov chain by the following transition rule. Choose uni-
formly a random vertex, say, i; then, out of the neighborhood Ni of i, choose
uniformly a random vertex, say, j , and let J

(t+1)
i be the opposite of J

(t)
j and leave

the other voters untouched. Assume now that the Markov chain is in its equilibrium
and put W = ∑n

i=1 Ji := ∑n
i=1 J

(0)
i .

THEOREM 4.5. For the anti-voter model as described above, (3.1) and (3.2)
hold with R ≡ 0 and λ = 2/n and we have

VarS ≤ 16r2σ 2 + VarQ

16r2n2 ,(4.4)

where

Q =
n∑

i=1

∑
j∈Ni

(2Ji − 1)(2Jj − 1);
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hence, as n → ∞,

dTV
(
L (W),TP(µ,σ 2)

) = O

(√
VarQ

rσ 2 + 1

σ

)
,

dloc
(
L (W),TP(µ,σ 2)

) = O

(
(VarQ)3/4

r3/2σ 3 + 1

σ 3/2

)
.

REMARK 4.6. Note that the bound for dTV in Theorem 4.5 is very similar to
the bound for the weaker Kolmogorov metric dK given in Theorem 1.3 of [14];
they obtain

dK
(
L (Wc),N (0,1)

) = O

(√
VarQ

rσ 2 + n

σ 3

)
,(4.5)

where Wc = (W − µ)/σ .

EXAMPLE 4.7. Consider the sequence Kn of complete graphs of size n.
Rinott and Rotan [14] show that σ 2 � n and VarQ = O(n3). Thus, from Theo-
rem 3.1, the dTV-distance is of the order O(n−1/2) and the dloc-distance of order
O(n−3/4) which proves the LLT. Now, from (4.8) below,

S∗(J ) = n(n − 1) − (2n − 1)W + W 2

n(n − 1)
= S(W),(4.6)

and we can thus take LS = 2
n−1 . From Lemma 3.13, we obtain E|W − µ|3 =

O(n3/2) and, therefore, Theorem 3.11 yields the order O(n−1) for dloc. Note that
the estimates on LS are obtained only because of the explicit representation (4.6);
they are difficult to obtain in general. For further examples of graphs, see [14].

PROOF OF THEOREM 4.5. Define W ′ := ∑n
i=1 J

(1)
i , and note that (W,W ′)

is an exchangeable pair, satisfying (2.1) and (2.2) with the choices λ = 2/n and
R ≡ 0 (for more details, see [14]). Now, let K be the random index of the vertex
that was resampled in the transition from W to W ′. As W ′ = W − JK + J

(1)
K ,

S∗(J ) = E
J I [W ′ − W = 1]

= 1

n

n∑
i=1

E
J {

I
[
Ji = 0, J

(1)
i = 1

]|K = i
}

(4.7)

= 1

n

n∑
i=1

(1 − Ji)E
J {

J
(1)
i |K = i

}

= 1

n

n∑
i=1

(1 − Ji)

(
1 − 1

r

∑
j∈Ni

Jj

)
.
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With Xi = 2Ji − 1 and W̃ = ∑n
i=1 Xi , (4.7) becomes

S∗(J ) = 1

4rn

n∑
i=1

(1 − Xi)

(
r − ∑

j∈Ni

Xj

)

= 1

4rn

(
rn −

n∑
i=1

∑
j∈Ni

Xj − r

n∑
i=1

Xi + Q

)
(4.8)

= rn − 2rW̃ + Q

4rn
.

The variance of S∗ is thus

VarS∗(J ) = Var(2rW̃ ) + VarQ − 4r Cov(W̃ ,Q)

16r2n2
(4.9)

= 16r2σ 2 + VarQ

16r2n2 ,

because E{XiXjXk} = 0 for any choice of i, j and k, due to the symmetry of the
anti-voter model, and, hence, E{W̃Q} = 0. �
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