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LARGE DEVIATIONS ASSOCIATED WITH POISSON–DIRICHLET
DISTRIBUTION AND EWENS

SAMPLING FORMULA

BY SHUI FENG 1

McMaster University

Several results of large deviations are obtained for distributions that are
associated with the Poisson–Dirichlet distribution and the Ewens sampling
formula when the parameter θ approaches infinity. The motivation for these
results comes from a desire of understanding the exact meaning of θ going to
infinity. In terms of the law of large numbers and the central limit theorem, the
limiting procedure of θ going to infinity in a Poisson–Dirichlet distribution
corresponds to a finite allele model where the mutation rate per individual
is fixed and the number of alleles going to infinity. We call this the finite
allele approximation. The first main result of this article is concerned with the
relation between this finite allele approximation and the Poisson–Dirichlet
distribution in terms of large deviations. Large θ can also be viewed as a
limiting procedure of the effective population size going to infinity. In the
second result a comparison is done between the sample size and the effective
population size based on the Ewens sampling formula.

1. Introduction. It is an effective tool to study the infinite dimensional model
using their finite dimensional counterpart even though differences, sometimes es-
sential, exist between the two. In this article we focus on a probability distribution,
the Poisson–Dirichlet distribution with parameter θ > 0 [henceforth denoted by
PD(θ)], on an infinite dimensional space, and its finite dimensional counterpart,
the Dirichlet distribution.

Let

∇ =
{
(p1,p2, . . .) :p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
k=1

pk = 1

}
.

The infinitely-many-neutral-alleles model is a ∇-valued process describing the
evolution of a population under random sampling and parent independent muta-
tion. If the total mutation rate is θ , then the stationary distribution of this process
is the PD(θ). Kingman [15] introduced the PD(θ) as an asymptotic distribution
of the descending order statistics of a symmetric Dirichlet distribution with para-
meters K,α when K → ∞ and α → 0 in a way such that limK→∞ Kα = θ . We
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use P(θ) = (P1(θ),P2(θ), . . .) to denote the ∇-valued random variable with dis-
tribution PD(θ). It is equal in law to the normalized jump sizes of Gamma process
over the interval (0, θ) ranked in descending order. A more friendly description of
PD(θ) is as follows.

Consider an i.i.d. sequence of random variables Uk, k = 1,2, . . . , with common
distribution Beta(1, θ). Set

X1 = U1, Xn = (1 − U1) · · · (1 − Un−1)Un, n ≥ 2.(1.1)

Then the law of the descending order statistics of X1,X2, . . . is PD(θ). The repre-
sentation in (1.1) is called the GEM representation after R. C. Griffiths, S. Engen
and J. W. McCloskey. The sequence Xk, k = 1,2, . . ., corresponds to the size-
biased permutation of PD(θ) and can be obtained through the size-biased sam-
pling of a symmetric Dirichlet distribution with parameters K,α following the
procedure of K → ∞, α → 0, and Kα → θ .

For any fixed n ≥ 1, let

An =
{
(a1, . . . , an) :ak ≥ 0, k = 1, . . . , n;

n∑
i=1

iai = n

}
.

Consider a random sample of size n from a Poisson–Dirichlet population and
for k = 1, . . . , n, define

Ak = the number of alleles appearing in the sample exactly k times.(1.2)

Then An = (A1, . . . ,An) is an An-valued random variable with distribution given
by the well-known Ewens sampling formula [7]:

P {An = (a1, . . . , an)} = n!
θ(n)

n∏
j=1

(
θ

j

)aj 1

aj ! ,(1.3)

where θ(n) = θ(θ + 1) · · · (θ + n − 1).
Consider instead a random sample of size n from a symmetric Dirichlet(α, . . . ,

α) distribution with θ = Kα, and let k = ∑n
i=1 ai , then

P {An = (a1, . . . , an)}
(1.4)

= n!
θ(n)

αk�(K + 1)

�(K − k + 1)

n∏
j=1

(
�(j + α)

�(j + 1)�(α + 1)

)aj 1

aj ! .

When K goes to infinity, we end up with (1.3).
Hence, many properties of PD(θ) can be derived from the corresponding results

of the Dirichlet distribution with finite alleles. The approximation procedure used
is to let K → ∞, α → 0, and Kα → θ . If α is held constant, then θ will converge
to infinity. This limiting procedure was first suggested by Watterson [22], and some
results of the law of large numbers and fluctuations were obtained in Griffiths [11].
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But this is not exactly the same as letting θ go to infinity in PD(θ) since the latter
is a two step limiting procedure: first Kα → θ as K → ∞, then θ goes to infinity.

In a large neutral population, the role of mutation is to bring in new type of
alleles and to reduce the proportion of existing alleles. The parameter θ = 4Nu

is the population mutation rate with u and N being the individual mutation rate
and the effective population size, respectively. The limiting procedure of large θ

is equivalent to a situation where the mutation rate per individual is fixed and the
effective population size is large. Motivated by the work of Gillespie [10] on the
role of population size in molecular evolution, there have been renewed interests
in the asymptotic behaviors of PD(θ) for large θ (see [3, 12–14]).

The first topic in this article is the comparison in terms of large deviations
between the finite allele Dirichlet( θ

K
, . . . , θ

K
) distribution and the infinite allele

PD(θ). Two types of limits are considered: the first one is θ → ∞ followed by
K → ∞; the second is θ = K → ∞. For the first type limit, the following dia-
gram is commutative in terms of the law of large numbers:

Dirichlet
(

θ

K
, . . . ,

θ

K

)
θ large

K large
PD(θ)

θ large

δ(1/K,...,1/K)

K large
δ(0,0,...).

(1.5)

In terms of the law of large numbers, the diagram is still commutative when
Dirichlet( θ

K
, . . . , θ

K
) and PD(θ) are replaced by the law of the size-biased sam-

pling and the law of GEM, respectively. But we will show that it fails to be com-
mutative in terms of large deviations. The second type limit corresponds to the
diagonal limit in the diagram. The results in [11] and [13] show that the central
limit behavior of the finite allele Dirichlet distribution under the second type limit
is the same as the infinite allele PD(θ) for large θ . We will show that the same
relation holds for LDP.

The second topic is the comparison between the population and a random sam-
ple based on the Ewens sampling formula. Consider θ as a certain population size.
Then it would be interesting to see how large the sample size should be so that it
behaves the same as the population for large θ .

Here is an outline of the development of this article. In Section 2 the large
deviation principles (LDP) are established for the GEM representation and for the
finite allele approximations. A detailed comparison is done between the LDPs for
PD(θ) and the GEM, and the corresponding LDPs for Dirichlet distribution and
its descending order statistics. An entropy connection is established for the LDP
result of PD(θ) obtained in [3].

LDPs for the conditional and unconditional Ewens sampling formula are estab-
lished in Section 3. The difference between the speed of the two LDPs indicates
the strong effect of averaging and finite sample size.
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In Section 4 we consider the variable sample size and establish the relation be-
tween the sample size n, the parameter θ and the LDP speeds for the total number
of alleles, and for the age-class sizes. For the age-class sizes, the sample LDP will
be the same as the population LDP if the sample size grows faster than θ .

The reference [4] includes all the terminologies and standard techniques on
large deviations used in this article. Since the state spaces encountered here are
all compact, we do not make the distinction between a rate function and a good
rate function. Generalizations to the two-parameter Poisson–Dirichlet distribution
(cf. [17–19]) will be addressed in a separate article.

2. LDP associated with PD(θ). Let

∇̄ =
{
(p1,p2, . . .) :p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
k=1

pk ≤ 1

}

be the closure of ∇ equipped with the subspace topology of R∞.
Let P = (P1,P2, . . .) be distributed as PD(θ). In [3] it was shown that an LDP

holds for PD(θ) with speed θ and rate function

I (p) =

 log

1

1 − ∑∞
k=1 pk

, (p1,p2, . . .) ∈ ∇̄,

∞∑
k=1

pk < 1,

∞, else.

(2.6)

As the first result of this section, we establish the LDP for the GEM. Let

� =
{
(x1, x2, . . .) :xk ≥ 0, k = 1,2, . . . ;

∞∑
i=1

xi ≤ 1

}
,

and X = (X1,X2, . . .) be the GEM in (1.1) generated by the i.i.d. sequence of
Beta(1, θ) random variables U1,U2, . . . . Let �

gem
θ denote the law of X on �.

Since P and X stay in different spaces and the ordering operation is not continuous,
the LDP for GEM does not follow easily from the LDP for PD(θ).

For each n ≥ 1, set

Xn = (X1, . . . ,Xn),

�n =
{
(x1, . . . , xn) :xk ≥ 0, k = 1,2, . . . , n;

n∑
i=1

xi ≤ 1

}

and

Sn(x) =

 log

1

1 − ∑n
k=1 xk

, x ∈ �n;
n∑

k=1

xk < 1,

∞, else.

LEMMA 2.1. For any n ≥ 1, let �
gem
n,θ be the law of Xn. Then the family

{�gem
n,θ : θ > 0} satisfies a LDP on �n with speed θ and rate function Sn(·).
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PROOF. The LDP follows easily from Lemma 3.1 in [3], the independency of
U1, . . . ,Un and the contraction principle. The rate function has the form

inf

{
n∑

i=1

log
1

1 − ui

:xk = (1 − u1) · · · (1 − uk−1)uk, k = 1, . . . , n

}
,

which is Sn(·) by direct calculation. �

THEOREM 2.2. The family {�gem
θ : θ > 0} satisfies a LDP with speed θ and

rate function

S(x) =

 log

1

1 − ∑∞
k=1 xk

, x = (x1, x2, . . .) ∈ �,

∞∑
k=1

xk < 1,

∞, else.

(2.7)

PROOF. First note that the topology on � can be generated by the following
metric:

d(x,y) =
∞∑

k=1

|xk − yk|
2k

,

where x = (x1, x2, . . .),y = (y1, y2, . . .) ∈ �, and the space � is compact. Thus,
to establish the LDP, it suffices [20] to verify that

lim
δ→0

lim sup
θ→∞

θ−1 log�
gem
θ {d(y,x) ≤ δ}

(2.8)
= lim

δ→0
lim inf
θ→∞ θ−1 log�

gem
θ {d(y,x) < δ} = −S(x).

For each fixed δ1 > 0, n ≥ 1, and small enough δ > 0, one has

{d(y,x) ≤ δ} ⊂
{

sup
1≤k≤n

{|yk − xk|} ≤ δ1

}
,

which implies that

lim
δ→0

lim sup
θ→∞

θ−1 log�
gem
θ {d(y,x) ≤ δ}

≤ lim sup
θ→∞

θ−1 log�
gem
n,θ

{
sup

1≤k≤n

{|yk − xk|} ≤ δ1

}

≤ − inf
sup1≤k≤n{|yk−xk |}≤δ1

Sn(y1, . . . , yn).

Since the very left-hand is independent of δ1 and n, letting δ1 go to zero and
then n go to infinity, we get

lim
δ→0

lim sup
θ→∞

θ−1 log�
gem
θ {d(y,x) ≤ δ} ≤ −S(x).(2.9)
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On the other hand, for each fixed δ > 0, we can choose n large enough so that{
sup

1≤k≤n

{|yk − xk|} <
δ

2

}
⊂ {d(y,x) < δ},

which leads to

lim inf
θ→∞ θ−1 log�

gem
θ {d(y,x) < δ}

≥ lim inf
θ→∞ θ−1 log�

gem
n,θ

{
sup

1≤k≤n

{|yk − xk|} < δ/2
}

≥ −Sn(x1, . . . , xn)

≥ −S(x).

By letting δ approach zero, it follows that

lim
δ→0

lim inf
θ→∞ θ−1 log�

gem
θ {d(y,x) < δ} ≥ −S(x),(2.10)

which, combined with (2.9), implies the result. �

REMARK. The rate function for GEM has the same form as the rate function
for PD(θ), which is expected because of its exchangeable form.

For each fixed K ≥ 2, let (P K
1 , . . . ,P K

K ) be the decreasing order statistics of a
Dirichlet( θ

K
, . . . , θ

K
) random vector. Then the law of (P K

1 , . . . ,P K
K ) converges

to PD(θ) in the sense that, for every fixed r ≥ 1, (P K
1 , . . . ,P K

r ) converges to
(P1, . . . ,Pr) when K approaches infinity. The LDP for (P K

1 , . . . ,P K
K ) when θ ap-

proaches infinity has been established in Theorem 2.1 of [2] with the rate function
given by the relative entropy

IK(p1, . . . , pK) =
K∑

i=1

1

K
log

1/K

pi

.

We now investigate the structure of diagram (1.5) in terms of the large deviation
rate functions.

Type I limit. θ goes to infinity followed by K approaches infinity.

THEOREM 2.3.

Sr(p1, . . . , pr)

= lim
K→∞ inf

{
IK(p1, . . . , pr, qr+1, . . . , qK) :

p1 ≥ · · · ≥ pr ≥ qr+1 ≥ qK ≥ 0,

r∑
i=1

pi +
K∑

i=r+1

qi = 1

}
.
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PROOF. The equality holds trivially if p1 +· · ·+pr = 1. We now assume that∑r
i=1 pi < 1. It follows that

IK(p1, . . . , pr, qr+1, . . . , qK)

=
r∑

i=1

1

K
log

1

Kpi

+ K − r

K
log

1

K
+ 1

K
log

1

qr+1 · · ·qK

.

Since
∑K

i=r+1 qi = 1 − ∑r
i=1 pi and qr+1 · · ·qK reaches the maximum when they

are all equal, it follows that

inf{IK(p1, . . . , pr, qr+1, . . . , qK) :p1 ≥ · · · ≥ pr ≥ qr+1 ≥ qK ≥ 0,

p1 + · · · + pr + qr+1 + · · · + qK = 1}

= r

K
log

1

K
+ 1

K

r∑
i=1

log
1

pi

+ K − r

K
log

K − r

K

+ K − r

K
log

1

1 − ∑r
i=1 pi

.

By letting K go to infinity, the equality follows. �

REMARK. The LDP rate function for (P1, . . . ,Pr) under PD(θ) has been
shown to be Sr(·) in [3]. Note that IK(q) is the relative entropy of ( 1

K
, . . . , 1

K
)

with respect to q. Thus, we are able to establish certain connections between rel-
ative entropy and the LDP for PD(θ). This also makes a connection between the
LDP for Dirichlet(ν) in Dawson and Feng [1, 2] and the LDP for PD(θ). The LDP
speeds for (P1, . . . ,Pr) and (P K

1 , . . . ,P K
r ) are both θ .

Let V1, . . . , VK−1 be independent random variables with Vi having a
Beta( θ

K
+ 1, (K − i) θ

K
) distribution, and

YK
1 = V1, YK

i = (1 − V1) · · · (1 − Vi−1)Vi, i = 2, . . . ,K − 1,(2.11)

be the size-biased sampling of the symmetric Dirichlet( θ
K

, . . . , θ
K

) distribution.

LEMMA 2.4. The family of the laws of (YK
1 , . . . , YK

K−1) satisfies a LDP on
�K−1 with speed θ and rate function

SK(y1, . . . , yK−1) =
K−1∑
i=1

[
1

K
log

1 − ∑i−1
l=1 yl

yi

+ K − i

K
log

1 − ∑i−1
l=1 yl

1 − ∑i
l=1 yl

]

+
K−1∑
i=1

[
1

K
log

1

K + 1 − i
+ K − i

K
log

K − i

K + 1 − i

]
.

PROOF. The LDP with speed θ for Vi for each i = 1, . . . ,K − 1 can be estab-
lished by a direct application of the Laplace method and the rate function for Vi
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is

IK,i(v) = 1

K
log

1

v
+ K − i

K
log

1

1 − v

+ 1

K
log

1

K + 1 − i
+ K − i

K
log

K − i

K + 1 − i
,

which implies the result by a combination of independency of V1, . . . , VK−1 and
the contraction principle. �

THEOREM 2.5. The LDP rate function for (YK
1 , . . . , YK

r ) for each fixed r does
not converge to the LDP rate function for (X1, . . . ,Xr) as K approaches infinity.

PROOF. It follows from Lemma 2.1 that the LDP rate function for (X1, . . . ,

Xr) is Sr(x1, . . . , xr), which is finite as long as
∑r

i=1 xi < 1. By contraction prin-
ciple, the LDP rate function for (YK

1 , . . . , YK
r ) is given by

inf{SK(x1, . . . , xr , yr+1, . . . , yK−1) : (x1, . . . , xr , yr+1, . . . , yK−1) ∈ �K−1},
which is infinite when x1 = 0 for every K . �

Thus, under the Type I limit, the diagram (1.5) is commutative in terms of the LDP
rate functions for the ordered distributions but not for the GEM.

Type II limit. θ = K → ∞.
When θ = K , the Dirichlet( θ

K
, . . . , θ

K
) distribution becomes the uniform distri-

bution on the simplex {(x1, . . . , xK) :xi ≥ 0, i = 1, . . . ,K;∑K
i=1 xi = 1}. For each

fixed r ≥ 1, the density of (P K
1 , . . . ,P K

r ) is given (cf. [21]) by

g(p1,p2, . . . , pr) = K(K − 1) · · · (K − r + 1)�(K)L(r,K;B),(2.12)

where

L(r,K;B) =
∫

. . .

∫
B

d xr+1 · · ·d xK−1,

B =
{
(xr+1, . . . , xK−1) : 0 ≤ xi ≤ pr, i = r + 1, . . . ,K − 1;

K−1∑
i=r+1

xi ∈ [1 − ar − pr,1 − ar ]
}

and ar = ∑r
j=1 pj . If 1 − ar ≤ pr , then

B =
{
(xr+1, . . . , xK−1) : 0 ≤ xi ≤ 1 − pr, i = r + 1, . . . ,K − 1;

K−1∑
i=r+1

xi ∈ [0,1 − ar ]
}
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and

L(r,K;B) =
∫

. . .

∫
[0,1−ar ]⊗K−r−2

χ{∑K−1
i=r+1 xi∈[0,1−ar ]} dxr+1 · · ·dxK−1

(2.13)

= (1 − ar)
K−r−1

�(K − r)
.

To deal with the case of 1 − ar > pr , let Xr+1, . . . ,XK−1 be i.i.d. uniform
random variables over (0,pr). Then

L(r,K;B) = pK−r−1
r P

{
1 − ar − pr ≤

K−r−1∑
i=1

Xr+i ≤ 1 − ar

}

= pK−r−1
r

[
P

{
K−r−1∑

i=1

Xr+i ≤ 1 − ar

}
(2.14)

− P

{
K−r−1∑

i=1

Xr+i ≤ 1 − ar − pr

}]
.

Let Zr+1, . . . ,ZK−1 be i.i.d. uniform random variables over (0,1 − ar). Since
1 − ar > pr , the conditional distribution of Zi given Zi < pr is the same as the
law of Xi . Hence, by direct calculation, we get

pK−r−1
r P

{
K−r−1∑

i=1

Xr+i ≤ 1 − ar

}

≤ (1 − ar)
K−r−1P

{
K−r−1∑

i=1

Zr+i ≤ 1 − ar

}

= (1 − ar)
K−r−1

�(K − r)

=
m∑

l=0

(
K − r − 1

l

)
(1 − ar − pr)

lpK−r−1−l
r

(2.15)

× P

{
K−r−1∑

i=1

Zr+i ≤ 1 − ar

∣∣∣Zr+1 > pr, . . . ,Zr+l > pr,Zr+j ≤ pr,

l < j ≤ K − r − 1

}

≤ C(K, r,m)pK−r−1−m
r P

{
K−r−1∑
i=m+1

Xr+i ≤ 1 − ar

}
,
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where

m = inf{k ≥ 1 :kpr > 1 − ar}
and

C(K, r,m) =
m∑

l=0

(
K − r − 1

l

)
(1 − ar − pr)

lpm−l
r .(2.16)

This combined with (2.13) implies that

(1 − ar)
K+m−r−1

C(K + m,r,m)�(K + m − r)
≤ pK−r−1

r P

{
K−r−1∑

i=1

Xr+i ≤ 1 − ar

}
(2.17)

≤ (1 − ar)
K−r−1

�(K − r)
.

Similarly, we can prove that

pK−r−1
r P

{
K−r−1∑

i=1

Xr+i ≤ 1 − ar − pr

}
≤ (1 − ar − pr)

K−r−1

�(K − r)
.(2.18)

Taking into account (2.14) we get

(1 − ar)
K−r−1

�(K − r)
≥ L(r,K;B)

≥ (1 − ar)
K−r−1

�(K − r)

(1 − ar)
m�(K − r)

C(K + m,r,m)�(K + m − r)
(2.19)

×
[
1 − C(K + m,r,m)

×
(

1 − ar − pr

1 − ar

)K−r−1 �(K + m − r)

(1 − ar)m�(K − r)

]
.

THEOREM 2.6. The family of the laws of (P K
1 , . . . ,P K

r ) for each fixed r sat-
isfies a LDP with speed θ and rate function Sr(p1, . . . , pr) as θ = K approaches
infinity.

PROOF. Let

∇r =
{
(q1, . . . , qr) : 0 ≤ qr ≤ · · · ≤ q1,

r∑
i=1

qi ≤ 1

}
.

For each δ > 0 and (p1, . . . , pr) in ∇r , let B = B((p1, . . . , pr), δ) and B̄ =
B̄((p1, . . . , pr), δ) denote, respectively, the open and closed balls in ∇r centered
at (p1, . . . , pr) with radius δ. Consider the case of

∑r
k=1 pk < 1,pr > 0 first. By

choosing δ small, we can have
∑r

k=1 qi < 1, qr > 0 for all (q1, . . . , qr) in B̄ . It



1580 S. FENG

then follows from (2.19) that for each (q1, . . . , qr) in B̄

lim
θ→∞

1

θ
logg(q1, . . . , qr) = − log

1

1 − ∑r
k=1 qk

.(2.20)

Choose (qδ
1, . . . , qδ

r ) in B̄ such that

qδ
r = inf{qr : (q1, . . . , qr) ∈ B̄}

and
r−1∑
k=1

qδ
k = sup

{
r−1∑
k=1

qk : (q1, . . . , q
δ
r ) ∈ B̄

}
.

The existence of such point follows from the continuity of the corresponding func-
tions in the above definition.

Since the density function g(q1, . . . , qr) is increasing in qr for fixed q1, . . . ,

qr−1, and decreasing in
∑r−1

k=1 qk for fixed qr , we get that

lim
δ→0

lim inf
θ→∞

1

θ
logP {(P K

1 , . . . ,P K
r ) ∈ B}

= lim
δ→0

lim inf
θ→∞

1

θ
log

∫
B

g(q1, . . . , qr)d q1 · · · d qr

≥ lim
δ→0

lim inf
θ→∞

1

θ
log

∫
B

g(q1, . . . , qr−1, q
δ
r ) dq1 · · ·d qr(2.21)

≥ lim
δ→0

lim inf
θ→∞

1

θ
log

∫
B

g(qδ
1, . . . , qδ

r ) dq1 · · ·d qr

= lim
δ→0

log

(
1 −

r∑
k=1

qδ
k

)
= −Sr(p1, . . . , pr),

where (2.20) is used to get the second equality.
On the other hand, from (2.19) we have

g(q1, . . . , qr) ≤ K(K − 1) · · · (K − r + 1)
(1 − ∑r

k=1 qk)
K−r−1�(K)

�(K − r)
.

Thus,

lim
δ→0

lim sup
θ→∞

1

θ
logP {(P K

1 , . . . ,P K
r ) ∈ B̄}

≤ lim
θ→∞

1

θ
logK(K − 1) · · · (K − r + 1)

�(K)

�(K − r)
(2.22)

+ lim
δ→0

lim
θ→∞

1

θ
log

∫
B̄
(1 − q1 − · · · − qr)

K−r−1 dq1 · · ·d qr

= − log
1

1 − ar

.
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Since the state space is compact, partial LPD holds. From (2.21) and (2.22),
all partial rate functions are the same and equal to Sr(p1, . . . , pr) on the set
{(p1, . . . , pr) ∈ ∇r

∑r
k=1 pk < 1,pr > 0}. If

∑r
k=1 pk < 1 and there exists k0 ≤ r

such that pk > 0 for k ≤ k0 − 1 and pk = 0 for k ≥ k0, then, for any partial
rate function I ′, we have I ′(p1, . . . , pr) ≤ Sr(p1, . . . , pr) due to the continuity
of Sr(p1, . . . , pr) and the lower semi-continuity of I ′. Thus, the lower bound still
holds. If

∑r
k=1 pk = 1, the lower bound is trivial.

The upper bound holds true in all cases due to the monotonicity of the function
(1 − ∑r

k=1 qk)
K−r−1 in

∑r
k=1 qk . Thus, (2.21) and (2.22) hold in all cases. This

combined with the compactness of the state space implies the theorem. �

For each fixed r ≥ 1 and the size-biased permutation defined in (2.11), we have
the following:

THEOREM 2.7. The family of the laws of (YK
1 , . . . , YK

r ) satisfies a LDP with
speed θ and rate function Sr(y1, . . . , yr) as θ = K approaches infinity.

PROOF. Noting that V1, . . . , Vr are independent and Vi has a Beta(2, θ − i)

distribution, it follows that the law of (V1, . . . , Vr) satisfies a LDP with speed θ

and rate function
r∑

i=1

log
1

1 − vi

as θ = K approaches infinity. The theorem then follows easily from the contraction
principle. �

REMARK. From Theorems 2.6 and 2.7, we conclude that the LDPs for the
finite allele model under the Type II limit are the same for the infinite allele
model for large θ . A similar result is expected to hold under the general limit
of limθ→∞ θ

K
= c > 0.

3. LDP for Ewens sampling formula. For each fixed n ≥ 1, let An be the
random partition defined in (1.2). For a given allele proportion p = (p1,p2, . . .) in
∇ , and (a1, . . . , an) in An, the conditional sampling probability Fan(p) = P {An =
an = (a1, . . . , an)|P(θ) = p} is given by (cf. Kingman [16])

Fan(p) = C(n,an)
∑

pl11pl12 · · ·pl1a1
p2

l21
p2

l22
· · ·p2

l2a2
p3

l31
· · · ,(3.23)

where

C(n,an) = n!∏n
j=1(j !)aj aj !

and the summation is over distinct

lij , li1 < li2 < · · · < liai
, i = 1, . . . , n; j = 1, . . . , ai .

If we extend the function Fan(p) directly to ∇̄ , then we have the following:
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LEMMA 3.1. The function Fan(p) is continuous on ∇̄ if and only if a1 = 0.

PROOF. Let k = ∑n
i=1 ai and a1 = r . If r = k, then k = n. For each m ≥ 1, let

pm =
(

1

m
, . . . ,

1

m︸ ︷︷ ︸
m

,0, . . .

)
∈ ∇,

which converges to (0, . . .) as m goes to infinity. By direct calculation,

Fan(pm) =
(

m

n

)(
1

m

)n

→ 1

n! 
= Fan((0, . . .)).

Next we assume that 1 ≤ r < k. For any m ≥ r ∨ (k − r), let

pm =
( k−r︷ ︸︸ ︷

1

2(k − r)
, . . . ,

1

2(k − r)
,

1

2m
, . . . ,

1

2m︸ ︷︷ ︸
m

,0, . . .

)
∈ ∇,

which converges to q = ( 1
2(k−r)

, . . . , 1
2(k−r)

,0, . . .) as m goes to infinity. Write

Fan(p) = C(n,an)

[∑
1

+∑
2

]
pl11pl12 · · ·pl1a1

p2
l21

p2
l22

· · ·p2
l2a2

p3
l31

· · · ,

where
∑

1 is over indexes such that {lij : i = 2, . . . , n; j = 1, . . . , ai} = {1, . . . ,

k − r}.
By direct calculation, we get

Fan(pm) = C(n,an)

{(
k − r

a2, . . . , an

)(
m

r

)(
1

2(k − r)

)n−r( 1

2m

)r

+ o

(
1

m

)}

→ C(n,an)

(
k − r

a2, . . . , an

)(
1

2(k − r)

)n−r 1

2r r! 
= 0 = Fan(q),

where the o( 1
m

) follows from the fact that each nonzero term in
∑

2 involves higher
orders of 1/m.

Thus, Fan(p) is not continuous for a1 ≥ 1. Next we assume that a1 = 0. Set
N = max{l2a2, . . . , lnan}. Then for each M ≥ 1,

Fan(p) = F 1
an

(p) + F 2
an

(p),

where

F 1
an

(p) = C(n,an)
∑

N≤M

p2
l21

p2
l22

· · ·p2
l2a2

p3
l31

· · · ,

F 2
an

(p) = C(n,an)
∑

N>M

p2
l21

p2
l22

· · ·p2
l2a2

p3
l31

· · · .
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Clearly, F 1
an

(p) is continuous in p. Let H denote the collection of partitions of
n − 1 obtained from an by removing one individual from the sample.

Then

F 2
an

(p) ≤ C(n,an)

M

{ ∑
b∈H

1

C(n − 1,b)

}
→ 0 uniformly in p.

Thus, for any p,q in ∇̄ ,

|F{an(p) − Fan(q)| ≤ |F 1
an

(p) − F 1
an

(q)| + |F 2
an

(p) − F 2
an

(q)|

≤ |F 1
an

(p) − F 1
an

(q)| + 2
C(n,an)

M

{∑
b

∈ H} 1

C(n − 1,b)

}
,

which implies the continuity of Fan(p) and the lemma. �

Now Theorem 4.4 in [3] combined with the contraction principle leads to the
following:

THEOREM 3.2. For each an in An with a1 = 0, the family of the laws of
Fan(p) under PD(θ) satisfies an LDP with speed θ and rate function

Ian(x) = inf

{
log

1

1 − ∑∞
i=1 pi

:Fan(p) = x

}
.(3.24)

REMARK. If PD(θ) is replaced by the finite allele symmetric Dirichlet distri-
bution, then the law of Fan(p) will satisfy the LDP for all an. The function Fan(p)

can also be extended continuously to ∇̄ by replacing
∑∞

i=1 pi with constant 1. By
using this extension, the law of Fan(p) satisfies a LDP for all an. More detailed
discussions on this extension are found in [6].

Next we turn to the large deviations associated with the Ewens sampling for-
mula. The state space is now An and the random element is An.

THEOREM 3.3. The family of the laws of An under PD(θ) satisfies an LDP
with speed log θ and rate function

Iesf(a) = n −
n∑

i=1

ai.(3.25)

PROOF. From the Ewens sampling formula, we have

1

log θ
logP {An = a} = 1

log θ

{
log

n!∏n
j=1 jaj aj ! + log

θ
∑n

i=1 ai

θ(n)

}
.

The theorem follows by letting θ go to infinity. �
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For the K-allele symmetric Dirichlet( θ
K

, . . . , θ
K

) distribution, the sampling for-
mula has the form

P {An = a} = n!∏n
j=1 aj !

K!
(K − ∑n

i=1 ai)!
1

θ(n)

n∏
j=1

(
�(j + θ/K)

j !�(θ/K)

)aj

.(3.26)

THEOREM 3.4. Assume that θ grows with K and

lim
K→∞

θ

K
= c ∈ (0,+∞].

Then the family of the law of An under Dirichlet( θ
K

, . . . , θ
K

) satisfies an LDP with
speed logK and rate function Iesf(a).

PROOF. For c < ∞,

1

logK
logP {An = a} = 1

logK

{
log

n!∏n
j=1 j !aj aj !

+ log
K!

θ(n)(K − ∑n
i=1 ai)!

+ log

[
n∏

j=1

(
�(j + θ/K)

�(θ/K)

)aj
]}

→ −Iesf(a) as K goes to infinity.

For c = ∞, by Stirling’s formula, we get

1

logK
logP {An = a}

= 1

logK

{
log

n!∏n
j=1 j !aj aj !

+ log
K!

(K − ∑n
i=1 ai)!

+ log

[
1

θ(n)

n∏
j=1

(
�(j + θ/K)

�(θ/K)

)aj
]}

= 1

logK

{
log

K(K − 1) · · · (K − ∑n
i=1 ai + 1)

Kn

+ log
(

θn

θ(n)

)}
+ O

(
1

logK

)
→ −Iesf(a) as K goes to infinity. �
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REMARK. An interesting feature of this theorem is the fact that the large de-
viation speed and rate function do not depend on the exact speed of θ as long as it
grows no slower than K .

4. Scaling limit with varying sample size. From the previous section, we see
that the LDPs for the conditional Ewens sampling formula and the unconditional
Ewens sampling formula have different speeds. This is due to the averaging and
the finite sample size which reduce the randomness. It is thus natural to consider
the case of varying sample size.

There are four possible relations between the sample size n and parameter θ ,
namely:

Case A: n fixed and θ approaches infinity.
Case B: n grows with θ and limθ→∞ θ/n = ∞.
Case C: n grows with θ and limθ→∞ θ/n = c > 0.
Case D: n grows with θ and limθ→∞ θ/n = 0.
Define

α(θ) =




log θ, Case A,

n log
θ

n
, Case B,

θ, Case C,
θ log

n

θ
, Case D,

and

β(θ) =




log θ, Case A,

log
θ

n
, Case B,

θ

n
, Case C,

1, Case D.
Let

Kn(θ) =
n∑

i=1

Ai

be the total number of distinct alleles in a random sample of size n. Let |Sk
n|

denote the coefficient of θk in θ(n). Then the distribution of Kn(θ) is given
by (cf. page 114 in [8])

P {Kn(θ) = k} = |Sk
n| θk

θ(n)

.(4.27)

The moment generating function of Kn(θ) is calculated as

M(t) = E[etKn] = (et θ)(n)

θ(n)

= �(θet + n)�(θ)

�(θet )�(θ + n)
.(4.28)

For large θ , we obtain the following result.



1586 S. FENG

THEOREM 4.1.


(t) = lim
θ→∞

1

α(θ)
logM(β(θ)t) =





1(t), Case A,

2(t), Case B,

3(t), Case C,

4(t), Case D,

(4.29)

where,


1(t) =
{

nt, if t > −1,
(t + 1) − n, else,

(4.30)


2(t) =
{

t, if t > −1,
−1, else,

(4.31)


3(t) = 1

c
{[c log c − (1 + c) log(1 + c)](4.32)

+ [(1 + cect ) log(1 + cect ) − cect log cect ]}

4(t) = et − 1.(4.33)

PROOF. Case A and Case C follow easily from direct calculations. For
Case B, we use the Stirling formula to get

1

α(θ)
logM(β(θ)t)

= 1

log θ/n

[
log

(
1 + (θ/n)t+1

1 + θ/n

)
+ log

(
1 + 1

(θ/n)t+1

)(θ/n)t+1

− log
(

1 + 1

(θ/n)

)(θ/n)]
+ o(1)

→
{

t, if t > −1,
−1, else.

For Case D, using Stirling’s formula again, we get

1

α(θ)
logM(β(θ)t) = et log(1 + n/θe−t )

logn/θ
− log(1 + n/θ)

logn/θ
+ o(1)

→ et − 1. �

THEOREM 4.2. In Case A, the family of the laws of Kn(θ) on space {1, . . . , n}
under PD(θ) satisfies an LDP with speed log θ and rate function

I (k) = n − k.



LARGE DEVIATIONS 1587

PROOF. For each k = 1, . . . , n, it follows from (4.27) that

lim
θ→∞

1

log θ
logP {Kn(θ) = k} = lim

θ→∞
1

log θ
log

θk

θ(n)

= −(n − k),

which implies the result. �

THEOREM 4.3. In Case B, the family of the laws of Kn(θ)/n on space [0,1]
under PD(θ) satisfies an LDP with speed n log θ

n
and rate function

I (x) = 1 − x.

PROOF. As the coefficient of θk in θ(n), the number |Sk
n| lies between (n−1)!

(k−1)!
and

(n−1
k−1

) (n−1)!
(k−1)! . It follows from Stirling’s formula that

log
(n − 1)!θk

(k − 1)!θ(n)

= n

[
− log

(
1 + θ

n

)
+ k

n

(
log

θ

n
− log

k

n

)

− log
(

1 + 1

θ/n

)θ/n

+ o(1)

]

= −α(θ)

[
1 − k

n
+ o(1)

]

and

log
(

n − 1
k − 1

)

= −(n − 1)

[
k − 1

n − 1
log

k − 1

n − 1
+

(
1 − k − 1

n − 1

)
log

n − k

n − 1
+ o(1)

]
= −α(θ)o(1).

Thus, it follows from (4.27) that

1

α(θ)
logP

{
Kn(θ)

n
= k

n

}
= −

(
1 − k

n
+ o(1)

)
.

For each x in [0,1] and δ > 0, the total number of integers in

{1, . . . , n} ∩ [nx − nδ,nx + nδ]
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is of the magnitude of nδ which is α(θ)o(1). Hence,

lim
δ→0

lim inf
θ→∞

1

α(θ)
logP

{∣∣∣∣Kn(θ)

n
− x

∣∣∣∣ < δ

}

= lim
δ→0

lim sup
θ→∞

1

α(θ)
logP

{∣∣∣∣Kn(θ)

n
− x

∣∣∣∣ ≤ δ

}
= −(1 − x),

which combined with the compactness of [0,1] implies the result. �

THEOREM 4.4. In Case C, the family of the laws of Kn(θ)/n on space [0,1]
under PD(θ) satisfies an LDP with speed θ and rate function

I (x) = sup
t∈R

{tx − 
3(t)}.

PROOF. Extend the law of Kn(θ)/n to the whole real line R and denote the
extension by Pθ,n.

According to Definition 2.3.5 in [4], the function 
3(t) is essentially smooth.
By the Gärtner–Ellis Theorem, a LDP holds for the family {Pθ,n : θ > 0, n = 1, . . .}
with rate function

Ĩ (x) = sup
t∈R

{tx − 
3(t)}.

To prove the theorem, it suffices to show that Ĩ (x) = ∞ for x /∈ [0,1]. Since

lim
t→−∞
3(t) = 1

c
[c log c − (1 + c) log(1 + c)],

by letting t approach negative infinity, one gets that Ĩ (x) = ∞ for x < 0. By direct
calculation,

(1 + cect ) log(1 + cect ) − cect log(cect )

= log(1 + cect ) + (cect ) log
(

1 + 1

cect

)
≈ ct as t approaches positive infinity.

Hence, by choosing t > 0 large, we get that Ĩ (x) = ∞ for x > 1. �

Since 
4(t) is also essentially smooth, by an argument similar to that used in
the proof of Theorem 4.4, we get the following:

THEOREM 4.5. In Case D, the family of the laws of Kn(θ)/θ log n
θ

on space
[0,+∞) under PD(θ) satisfies an LDP with speed θ log n

θ
and rate function

I (x) = x logx − x + 1.

As a by-product of these LDPs, we get the following weak laws of large num-
bers.
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COROLLARY 4.1.

Case A, lim
θ→∞Kn(θ) = n,(4.34)

Case B, lim
θ→∞

Kn(θ)

n
= 1,(4.35)

Case C, lim
θ→∞

Kn(θ)

n
= log

(
1 + 1

c

)c

,(4.36)

Case D, lim
θ→∞

Kn(θ)

θ log(n/θ)
= 1.(4.37)

PROOF. In Case A, the rate function has a unique zero point at n. Thus, (4.34)
holds. Similarly, results (4.35) and (4.37) follow from the fact that the correspond-
ing rate functions have unique zero point at 1. To prove (4.37), rewrite 
3(t) as


3(t) = 1

c
[F(cect ) − F(c)],

where F(x) = (1 + x) log(1 + x) − x log(x). Then, by a change of variable of
u = cect , it follows that

I3(x) = 1

c

[
sup
u>0

{x logu − F(u)} − (
x log c − F(c)

)]
.(4.38)

For each fixed x ∈ (0,1), the supremum in (4.38) is achieved at a unique ux satis-
fying

ex =
(

1 + 1

u

)u

.

The cases of x = 0 or 1 correspond to u → 0 or u → ∞, respectively. Thus,
I3(x) > 0 unless ux = c or, equivalently, for x = log(1 + 1

c
)c. This leads to (4.36).

�

REMARK. It follows from (4.37) that the LDP in Case D is very similar to
the case studied in [9] where θ is fixed and n approaches infinity.

The parameter θ is proportional to certain effective population size when the
individual mutation rate is held constant. The limiting procedure of θ approaching
infinity is thus equivalent to letting the population size go to infinity. This next
result compares sample size n with the effective population size through the study
of the age-class size. It reveals how large the sample size should be so that the
sample and the effective population will behave the same as θ approaches infinity.

Let X1,n, . . . ,Xn,n be the age-class sizes in the sample. Then from Donnelly
and Tavaré [5], one has

P {X1,n = k} = θ

n

(n
k

)
(θ+n−1

k

) = θ

n

n!
(n − k)!

(θ + n − k − 1)!
(θ + n − 1)! .(4.39)
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THEOREM 4.6. In Case A, the family of the laws of X1,n on space {1, . . . , n}
satisfies a LDP with speed log θ and rate function k − 1.

PROOF. A direct calculation gives

lim
θ→∞

1

log θ
logP {X1,n = k}

(4.40)

= 1 −
k∑

i=1

lim
θ→∞

log(θ + n − i)

log θ
= −(k − 1).

�

THEOREM 4.7. The family of the laws of X1,n

n
on space E = [0,1] satisfies a

LDP with speed γ (θ) and rate function I (x) given respectively by

γ (θ) =



n log
θ

n
, Case B,

θ, Case C,
θ, Case D,

(4.41)

and

I (x) =




x, Case B,
Ic(x), Case C,

log
1

1 − x
, Case D,

(4.42)

where

Ic(x) = 1

c
[(c + 1) log(c + 1)

(4.43)
+ (1 − x) log(1 − x) − (c + 1 − x) log(c + 1 − x)].

REMARK 1. The last case is the same as the LDP for the GEM. In other words,
when n grows faster than θ , the random sample behaves the same as the population.

PROOF OF THEOREM 4.7. It follows from Stirling’s formula that

logP {X1,n = k}

= log
[
(n + 1)n+1/2(n + θ − k)θ+n−k−1/2

(n − k + 1)n−k+1/2(θ + n)θ+n−1/2

]
(4.44)

+ log
θ

n
+ o(1)

= I1 + I2 + I3 + I4 + I5 + I6 + o(1),
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where

I1 = log
θ

n
,

I2 = 1

2

[
log

n + 1

n
+ log

(
θ

n
+ 1

)]
,

I3 =
(
k − 1

2

)
log

(
1 + 1

n
− k

n

)
,

I4 = −
(
k + 1

2

)
log

(
1 + θ

n
− k

n

)
,

I5 = n log
n + 1

n + 1 − k
,

I6 = (θ + n) log
(

1 − k

θ + n

)
.

For each x in E, let �nx� denote the integer part of nx. It is not hard to see that
in Case B I1 + I2 + I3 + I5 + I6 = o(γ (θ)) uniformly in k/n and I4(

�nx�
n

)/γ (θ)

converges to −x uniformly in x. In Case C, I1 + I2 = o(γ (θ)) uniformly in k/n

and 1
γ (θ)

[I3 + I4 + I5 + I6]( �nx�
n

) → −Ic(x) uniformly in x. Thus, we have

lim
θ→∞

1

γ (θ)
logP {X1,n = �nx�} = −I (x).(4.45)

For each x in E and δ > 0, choose n large enough so that �nx� is in the interval
(nx − nδ,nx + nδ). Then

P {X1,n = �nx�} ≤ P {|X1,n/n − x| < δ}
≤ P {|X1,n/n − x| ≤ δ}

(4.46)
= ∑

|k/n−x|≤δ

P {X1,n = k}

≤ 2(nδ + 1) max
k∈[nx−nδ,nx+nδ]P {X1,n = k}.

By the uniform convergence, and (4.46), we get

lim
δ→0

lim
θ→∞

1

γ (θ)
logP {|X1,n/n − x| < δ}

(4.47)

= lim
δ→0

lim
θ→∞

1

γ (θ)
logP {|X1,n/n − x| ≤ δ} = −I (x).

The maneuvering in Case D is a little different. By a reorganization of the
terms, we have

logP {X1,n = k} = J1 + J2 + J3 + J4 + J5 + o(1),(4.48)
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where

J1 = log θ − logn,

J2 = 1

2

[
log

(
1 + 1/n

1 + 1/n − k/n

)
+ log

(
1 + θ/n

1 + θ/n − k/n

)]
,

J3 = k log
1 + 1/n − k/n

1 + θ/n − k/n
,

J4 = n log
(n + 1)(θ + n − k)

(n + 1 − k)(θ + n)
,

J5 = θ log
θ/n + 1 − k/n

θ/n + 1
.

Noting that

nδ min
k∈[nx−nδ,nx+nδ]P {X1,n = k}

≤ P {|X1,n/n − x| ≤ δ}(4.49)

≤ 2(nδ + 1) max
k∈[nx−nδ,nx+nδ]P {X1,n = k},

by taking the logarithm, the term − logn in J1 is cancelled by log(nδ) and the term
log θ clearly grows slower than γ (θ).

First consider the case 0 ≤ x < 1, and choose δ small enough so that x + δ < 1.
It is clear that J2 = o(θ), and 1

θ
J5 converges uniformly to log(1 − y) over [x −

δ, x + δ] as θ → ∞, k/n → y. For J3 and J4, we have

1

θ
J3 = k

θ
log

(
1 + (1 − θ)/n

1 + θ/n − k/n

)

= k

n

n

θ
log

(
1 + (1 − θ)/n

1 + θ/n − k/n

)

→ − y

1 − y
as θ → ∞, k/n → y

and

1

θ
J4 = n

θ
log

(
1 + (θ − 1)k

n2 + nθ + (1 − k)(n + θ)

)

= n

θ
log

(
1 + (θ − 1)k/n2

1 + θ/n + (1/n − k/n)(1 + θ/n)

)

→ y

1 − y
as θ → ∞, k/n → y.
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Summing-up all the terms, one gets

lim
δ→0

lim
θ→∞

1

θ
logP {|X1,n/n − x| < δ}

= lim
δ→0

lim
θ→∞

1

θ
logP {|X1,n/n − x| ≤ δ}(4.50)

= − log
1

1 − x
.

Finally, for x = 1, the result still holds from the fact that P {X1,n = k} is decreasing
in k and

max
k∈[nx−nδ,nx+nδ]P {X1,n = k} ≤ P {X1,n = �n(1 − δ)�}. �

This result can be generalized to the first r family sizes in a sample of size n.
From Donnelly and Tavaré [5], one has, for ki ≥ 1, i = 1, . . . , r ,

P {X1,n = k1, . . . ,Xr,n = kr}
= (θ/n)r

(1 − k1/n) · · · (1 − k1/n − · · · − kr−1/n)
(4.51)

× n!
(n − k1 − · · · − kr)!

(θ + n − k1 − · · · − kr − 1)!
(θ + n − 1)! .

This formula is very similar to (4.39) and all asymptotic calculations are almost
the same except one needs to replace k there with k1 + · · · + kr . The state space is{

(k1, . . . , kr) :ki ≥ 1, i = 1, . . . , r;
r∑

j=1

kj ≤ n

}

in Case A and {
(x1, . . . , xr) :xi ∈ [0,1], i = 1, . . . , r;

r∑
j=1

xj ≤ 1

}

in all other cases. The corresponding LDP results are summarized in Table 1.

TABLE 1

Case Speed Rate function

A log θ
∑r

i=1 ki − r

B n log θ
n

∑r
i=1 xi

C θ Ic(
∑r

i=1 xi)

D θ log 1
1−∑r

i=1 xi
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