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Universidade de São Paulo

We study a model of a polling system, that is, a collection of d queues
with a single server that switches from queue to queue. The service time dis-
tribution and arrival rates change randomly every time a queue is emptied.
This model is mapped to a mathematically equivalent model of a random
walk with random choice of transition probabilities, a model which is of in-
dependent interest. All our results are obtained using methods from the con-
structive theory of Markov chains. We determine conditions for the existence
of polynomial moments of hitting times for the random walk. An unusual
phenomenon of thickness of the region of null recurrence for both the ran-
dom walk and the queueing model is also proved.

1. Introduction. The results presented in this paper, depending on the affini-
ties of the reader, can be looked at from two different viewpoints: a model from
queueing theory or a model from the theory of Markov chains. These two mod-
els are mathematically equivalent but have their own individual interest. In this
paper we start by describing the queueing model and stating the results for it. Sub-
sequently, the proofs are obtained, after the queueing model has been bijectively
mapped to a random walk model, by using methods from the constructive theory of
Markov chains to determine the asymptotic behavior of this random walk. A phe-
nomenon, exceptional in the theory of stochastic processes, namely, a thick region
of null recurrence, is also proved for our model.

Our main objective is to investigate stability conditions for a polling model with
parameter regeneration. We feel that parameter regeneration is quite a natural hy-
pothesis for realistic queueing systems: it models changes in behavior (of cus-
tomers or servers) due to factors that are external to the studied system. In our
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model there are d ≥ 2 stations where queues of jobs can form and a single server
which switches from station to station. The server only processes jobs at its cur-
rent station. For clearer exposition we treat in this paper the case where only two
stations are open, that is, receiving jobs, at any time. We study the model where
all stations are open in a separate paper [9]. The reason for splitting this work into
two separate papers, depending on whether two or more stations receive jobs, is
that in the former case stability conditions are expressible in terms of explicitly de-
termined factors, while in the latter, they are expressible in terms of factors whose
existence is shown but whose values are inaccessible to direct computation. These
factors are reminiscent of the Lyapunov exponents for products of random matri-
ces whose values can be approximated only by stochastic simulation. Moreover,
while the obtained results in the two papers can be phrased in similar ways, the
techniques used to obtain them differ at key points.

When the server completes all the jobs at its current station k, say, it starts to
move to the other open station i, station k closes and independently of the process
history, station j �= i opens with probability Pij , where

∑
j �=i Pij = 1 for each

station i. The sequence of stations visited by the server thus forms a Markov chain
{Ir : r = 1,2, . . .} on state space Sd = {1,2, . . . , d} with transition matrix P which
we will assume is irreducible but may be periodic (this is necessary for the case
d = 2 and for cases where one station has priority over the others). We call the time
period between the server’s arrival at and departure from a station an epoch. The
server takes some time with distribution Hij which is independent of the process
history to switch between stations and we will assume such times have bounded
first moments (for some results a stronger assumption will be needed).

During each switching time and service epoch, jobs arrive at the open stations
in independent Poisson streams with rates λ1 at the server’s station i and λ2 at
the other open station j . The jobs at station i have independent service times with
distribution function G, mean µ−1, where G is selected from the class of distrib-
utions � with uniformly bounded second moments. This service time distribution
and the arrival rates (λ1, λ2) are regenerated at the start of each switching time
independently of the process history using a measure νij which depends upon the
ordered pair (i, j) of open stations. It will follow from our Condition E, given later
in the paper, that there exist two positive constants m0 and M0, with m0 < M0

such that m0 < λi < M0 for i = 1, 2. Each job at queue i leaves the system after
processing by the server and when the server completes all jobs at station i, includ-
ing any that arrive since the server switched to i (exhaustive service), the epoch
ends. Succeeding epochs are defined in the same way except that if the system ever
has no jobs, then the server waits for some to arrive—we do not go into any de-
tails as we are interested in establishing stability criteria, not studying equilibrium
behavior. Our main interest is in the queue lengths, but their behavior is controlled
by the process of regenerated parameters, so we consider this in detail.
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Parameter regeneration. The parameters in each epoch have the form (i, j,G,

λ1, λ2) ∈ S2
d ×�× (m0,M0)

2 ≡ �e. We impose below conditions on service times
and arrival rates that ensure that the overall rate of events for the random walk is
uniformly bounded and all epochs are finite with probability 1.

As stated above, we assume that the Markov chain {Ir} supplying the sequence
of open stations is irreducible and starts from a state i1 ∈ Sd . Denote the space of
parameter sequences by �S = �N

e = {(ir , ir+1,Gr,λr ) : r = 1,2, . . .}, the collec-
tion of all sequences of ordered pairs of open stations together with service time
distribution and arrival rates.

Probability is associated with events in �S as follows. At each switching time
r ≥ 1, the station where the server was closes, the server starts switching to station
Ir = i and at the same time, with chance Pij , j = 1, . . . , d , station Ir+1 = j �= i

opens. The arrival rates λr = (λ1(r), λ2(r)) and the service time distribution Gr

at queue i (the random parameters) are chosen using measure νij independently
of the process history and are constant throughout the epoch. As stated above, the
server takes a time with distribution Hij to complete its switch from i to j .

We will use ω ∈ �S to denote a sequence of regenerated parameters and ωr =
(ir , ir+1,Gr,λr ) to denote the parameter set in epoch r . Where it will not cause
confusion we will drop the epoch number dependence from parameter sets and
write ωr = (i, j,G,λ).

Embedded Markov chain. We find it convenient to establish our stability re-
sults for the queueing process in a discrete time setting, so we work with a Markov
chain embedded in the continuous time process. Specifically, we consider the dis-
crete time embedded process (W, ξ) = {Wn, ξn}n∈N by observing the continuous
time process just after the instants of service completions and the ends of switch-
ing times. Here Wn ∈ �e identifies the parameters immediately after event n and ξn

denotes the ordered pair of queue lengths so ξn ∈ N
2
0 (where N0 = {0,1,2,3, . . .})

and specifically, ξn,1 is the queue length at the server’s current station and ξn,2 the
queue length at the other open station.

Let e1 and e2 denote the unit vectors of R
2. Given Wn = (k, i,G,λ), the possible

increments of the queue lengths at event n are of the form

se1 + te2, s, t ∈ N0 during a switching time

and

se1 + te2, s ∈ {−1} ∪ N0; t ∈ N0 during a service epoch

(as the server’s queue is always given by x1). During switching times and during
service epochs when ξn = (x1, x2) with x1 > 1, the parameters will not change,
that is, Wn+1 = Wn but if, during a service epoch, we have x1 = 1, then an incre-
ment (−1, t) ends the current epoch. For the continuous time process, as stated
earlier: station k closes; the server starts the switch to station i; some station j ,
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selected using the Markov chain {Ir}, opens; given the pair (i, j) a service time
distribution G and arrival rates λ are selected using measure νij ; the customers
waiting at station i become the initial queue at the server’s new location and dur-
ing the switching time customers arrive at the open stations (i, j) with the selected
rates. The possible transitions for our embedded process are to states

(i, j, Ĝ, λ̂;x2 + s, t) with intensity Pijdνij (Ĝ, λ̂)hki(s, t;λ),

where hki(s, t;λ) is the probability of increment se1 + te2, given the arrival rates
λ, at the transition where the server switches from station k to i.

In order to study the stability of the queueing system, we will consider the tra-
jectories of a particle moving according to drift vector fields D related to the para-
meter regeneration process. As such vector field or fluid models are quite standard
in the queueing literature, we will leave details for later and briefly describe now
only what we need to state our main results. The one-step mean drifts of ξ , condi-
tioned on the parameters in the service epochs, form a vector field D0 :�×N → R

2

defined by

D0(ω, r) = E(ξn+1 − ξn | ωr) =
(

λ1

µ
− 1,

λ2

µ

)
,(1)

where ωr = (i, j,G,λ1, λ2). The process ξ is homogeneous during each service
epoch so the mean drift does not depend on queue lengths ξn but only upon
ωr = (ir , ir+1,Gr,λr ), the parameters in epoch r . Our vector field model will
not include switching times so we only define the mean drifts for service epochs.

Now we observe that if a particle starts from position (x,0) and moves across a
quarter plane in direction D0, then it eventually arrives at point (0, xλ2/(µ − λ1)).
The multiplying ratio that appears here plays a key role in the phenomena we are
interested in. For later use we observe that, given open stations (i, j),

Yij ≡ λ2

µ − λ1
= tan θ,(2)

where θ is the minor angle between D and the vector −e1. We also introduce the
notation

Fij (x) = νij [(G,λ1, λ2) :Yij ≤ x] for x > 0

for the cumulative distribution function of the slope Yij for each pair of stations
i, j ∈ Sd = {1,2, . . . , d} with i �= j . For notational convenience, set Fii(x) = 0,
x < 1 and Fii(x) = 1, x ≥ 1, for all i ∈ Sd .

Regularity conditions. In order to obtain our results, we have to impose some
restriction on the regeneration of parameters and we state these now.

CONDITION E. For all pairs of distinct stations i, j , there exists m0 > 0, M0 >

m0 such that:
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(i) νij [(G,λ) :λ1 + m0 < µ < M0] = 1,
(ii) Fij

(
1/M0

) = 0, Fij

(
M0

) = 1.

Part (i) ensures that the service rate is uniformly bounded from above and be-
low and that the server is never trapped at any station forever. Part (ii) limits the
effect that any single epoch can have on the long term behavior of the process by
preventing the mean drift vectors D(ω, r) from approaching the axial directions
too closely (so it is a type of uniform ellipticity condition).

By observing the vector field model only at parameter regeneration times we
obtain a multiplicative Markov process of independent interest which we now de-
fine.

Multiplicative model. Let (I,X) = {(Ir ,Xr) : r ≥ 0} denote a discrete time
Markov process on the state space Sd × R+ (recall that Sd = {1,2, . . . , d}) which
jumps from state (i, x) �→ (j, αx) with transition measure PijdFij (α) for α > 0.
The matrix P = [Pij ] is the transition matrix of an irreducible Markov chain on
Sd and the Fij are a family of distribution functions with support R+ that satisfy
Condition E(ii). Assuming that the process waits for time x in state (i, x) before
making its next jump, we associate with (I,X) an accumulated time process {Tr}
defined by

T0 = 0 and Tr = Tr−1 + Xr =
r∑
1

Xn, r = 1,2, . . . .(3)

The sequence of times {Tr} is increasing and so the limit T = limr→∞ Tr exists (in
some cases it is infinite) and we call it the total time of the multiplicative model.

2. The main results. Let π = (π1, π2, . . . , πd) denote the equilibrium distri-
bution of the open stations Markov chain {Ir}. For each pair i, j ∈ S2

d , let Yij be a
random variable with distribution Fij and for any constant s > 0, set

Li =
d∑

j=1

Pij E(logYij ) and Mij (s) = Pij E(Y s
ij ).(4)

The d × d matrix M(s) = [Mij (s)] is nonnegative and irreducible because {Ir}
is irreducible. Hence, M(s) has a Perron–Frobenius eigenvalue η(s) > 0 such that
η(s) ≥ |ηi(s)| for all other eigenvalues of M(s). The size of η(s) determines which
moments of the total time T of the multiplicative model exist, which in turn affects
the long term behavior of the random walk ξ .

It is important in Theorem 3.1 below to note that

η′(0) =
d∑

i=1

πiLi.(5)
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We briefly indicate why this is the case. We have M ′
ij (0) = Pij E(logYij ) and we

note that the matrix M(0) has η(0) = 1 with corresponding left eigenvector π and
right eigenvector 1. For any fixed s > 0, let u(s) be the left eigenvector correspond-
ing to eigenvalue η(s) of M(s). Scale u(s) so that (π −u(s)) ·1 = 0 (· indicates the
scalar product). Now, for s small, write u(s) = π + sx, where x · 1 = 0. We note
that Mij (s) = Pij (1 + sE(logYij )) + O(s2) and η(s) = u(s)M(s)1(u(s)1)−1 =
u(s)M(s)1.

Now we expand u(s)M(s)1 to get

η(s) = (π + sx)
[
Pij

(
1 + sE(logYij )

)]
1 + O(s2) = 1 + s

∑
πiLi + O(s2)

since xP 1 = x · 1 = 0. The relation η(s) = 1 + s
∑

πiLi + O(s2) immediately
implies (5).

The multiplicative Markov chain’s time component and our calculations for it
are key elements of our main results which give stability conditions for the queue
length component ξ = {ξn} of the stochastic model (W, ξ). Let ∅ denote the state
(0,0) where both open queues have no customers and let τ = min{n > 0 : ξn = ∅}
be the time until the system first reaches this empty state. In both of the following
theorems it is assumed that the measures νij for selecting the parameters at the
starts of epochs satisfy Condition E.

THEOREM 2.1. (i) If
∑d

1 πiLi < 0, then P(τ < ∞) = 1.

(ii) If
∑d

1 πiLi = 0 and switching times are all 0, then P(τ < ∞) = 1.
(iii) If

∑d
1 πiLi > 0, then P(τ = ∞) > 0.

REMARK. The case where
∑d

1 πiLi = 0 and switching times are nonzero is
difficult and we do not consider it here. The two station model in this case but with
constant, not regenerated, parameters was considered by Menshikov and Zuyev
in [11]. A detailed classification of a critical random walk on a 2-dimensional
complex, again with a fixed jump distribution on each face, was given by MacPhee
and Menshikov in [8]. In these papers, generalizations of the results of Lamperti
on processes with asymptotically zero drift (see [6]) were used to establish how the
behavior of the process during switching events affects which moments of hitting
times to the empty state exist.

The major result in this paper is that we can make refined statements about
the tail of the hitting time τ in the recurrent case (i) of the previous result by
determining which moments of τ are finite and which are infinite. The existence
of moment s of τ requires moment conditions on the service and switching times,
specifically that there is some constant Ks such that

∫ ∞
0 xs dG(x) < Ks uniformly

over G ∈ � and, similarly,
∫ ∞

0 xs dHij (x) < Ks for all pairs of stations i, j .

THEOREM 2.2. If
∑d

1 πiLi < 0, then:
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(i) if η(s) < 1 and the sth moments of switching times and service times are
uniformly bounded by some constant Ks , then E(τ s) < ∞;

(ii) if η(s) ≥ 1, then E(τ s) = ∞.

This result implies that the region of parameter space where the queueing
process ξ exhibits “null-recurrence” can be of considerable volume. It also implies
that we have only polynomial ergodicity in the sense that the time of reaching the
empty state has only finite order moments and the order smoothly changes when
we pass from the null recurrent to the positive recurrent case. Note that as long
as they have sufficient moments, the switching times play no role whatever in the
result which is in accord with what is known about the constant parameter polling
network in the recurrent case; see [5]. The phenomenon of a large null-recurrence
region is present even in the case of zero switching times. We now illustrate it with
a simple example before further commenting on it.

EXAMPLE. There are d = 2 nodes and the arrival rates are λ1 = λ2 = 1 in all
epochs. When the server is at station 2 service times are always exponential with
rate 2. At station 1 service times are again exponential, but there are two possible
service rates, 5/4 and 5. Each time the server comes to station 1 it works at the
smaller rate with probability p ∈ [0,1] and at the larger rate with probability 1−p.
That is, according to our notation,

ν12[(µ,λ) :µ = 2,λ = (1,1)] = 1,

ν21[(µ,λ) :µ = 5/4,λ = (1,1)] = p,

ν21[(µ,λ) :µ = 5,λ = (1,1)] = 1 − p.

Now, elementary computations show that L1 = (4p − 2) log 2, L2 = 0, π1 = π2 =
1/2 so that

∑
πiLi < 0 is equivalent to p < 1/2. Further, M11(s) = M22(s) = 0,

M12(s) = 1 and M21(s) = p4s + (1 − p)(1/4)s so that

η(s) = [p4s + (1 − p)(1/4)s]1/2 and η′(0) = (2p − 1) log 2.

By Theorem 2.1, the process is certain to return to the empty state ∅ when∑
πiLi < 0, that is, p < 1/2 and has positive probability of never returning when

p > 1/2. The condition p < 1/2 implies that η′(0) < 0 and so η(s) = 1 has a root

sp = log(1 − p) − logp

log 4
> 0

in this case. By Theorem 2.2, E(τ s) is finite when 0 ≤ s < sp , and is infinite when
s > sp . We see that sp = 1 for p = 1/5 and, thus, the system is transient for p ∈
(1/2,1], null recurrent for p ∈ [1/5,1/2) and positive recurrent for p ∈ [0,1/5),
so, indeed, we have a “thick” null recurrent phase here.
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In order to establish stability results for the queueing system, we need vari-
ous Lyapunov functions. We can find them by studying the long term behavior of
particles moving according to some random vector field models built using the pa-
rameter regeneration process and, in particular, the mean drift vector field of the
process ξ over service epochs.

The phenomenon of thickness of the critical region implied by the Theorem 2.2
and exhibited in the previous example is quite exceptional in the theory both of
stochastic processes and of critical phenomena. This phenomenon appeared in a
related model but with fixed parameters that was studied by Fayolle, Ignatyuk,
Malyshev and Menshikov [4] (their results also appear in Section 5 of [3]). Their
model is a random walk ξ on a 2-dimensional complex, that is, a collection of
quarter planes connected at their edges in some fashion with possible multiple
connections and with no edge unconnected. On any quarter plane the walk drifts
away from one axis and toward the other. When the boundary is reached, the quar-
ter plane to enter next is chosen according to a transition matrix P . Specifically,
Theorem 5.3.2 of [3] establishes recurrence of the Markov chain ξ in a fixed envi-
ronment (which satisfies our Condition E) if and only if the condition

∑
i πiLi < 0

holds (in fact, their result is established also for cases where the transition matrix
P is not irreducible). Further, Theorem 5.3.4 of [3] shows that under the same reg-
ularity conditions ξ (again with fixed parameters) is positive recurrent if and only
if η(1) < 1.

The new features in this paper are the following: all the parameters in the FIMM
model are known constants, while here they change at each switching event ac-
cording to some known distributions; moreover, the results in [4] concern only es-
timates of E(τ ), while here we have conditions for deciding whether E(τ s) < ∞
or not for any s > 0. Finally, the phenomenon of thickness of the critical region
both in [4] and in the present paper is due to some underlying randomness in the
choice of the next set of parameters. In [4] this randomness is due to a Markovian
choice of the next complex, analogous to our matrix P = [Pij ]: when this random-
ness is eliminated, the critical region shrinks to a zero measure manifold. In the
present paper the thickness persists even when the Markov process induced by the
matrix P = [Pij ] becomes a deterministic routing process.

3. The multiplicative model and the vector field model. We first establish
our results for the multiplicative model. We then define the random vector field
model and show that our results for the multiplicative model enable us to describe
its behavior. Using the vector field model, we can define the “random” Lyapunov
function we use to establish our results for the stochastic process (W, ξ).

Let (I,X) denote the multiplicative model and σA = min{r > 0 :Xr ≤ A} for
any given constant A > 0. Part of the next result appears in [2] where conditions
were found determining when the expected total time of (I,X) is finite.

THEOREM 3.1. Suppose that the multiplicative Markov chain (I,X) has dis-
tributions Fij that satisfy Condition E above:
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(i) If
∑d

1 πiLi < 0, then Xr → 0 a.s. as r → ∞, the total time T of (I,X) is
a.s. finite and for any s > 0 satisfies

E(T s)

{
< ∞, if η(s) < 1,
= ∞, if η(s) ≥ 1.

(ii) If
∑d

1 πiLi = 0, then, for any A > 0, P(σA < ∞ | X0 = x0) = 1 for any
finite x0.

(iii) If
∑d

1 πiLi > 0, then Xr → ∞ a.s. as r → ∞.

REMARK. It is important to note that η(0) = 1 and η is log-convex in s so
η(s) < 1 for some s > 0 is equivalent to η′(0) = ∑

πiLi < 0. If
∑d

1 πiLi > 0,
then T = ∞ a.s.

3.1. Proofs for the multiplicative model. We prove first the results about the
limiting behavior of the process {Xr} and then establish conditions for the exis-
tence of E(T s).

PROOF OF THEOREM 3.1 (Limiting properties of {Xr}). The process

(I, logX) ≡ {(Ir , logXr) : r ≥ 0}
is a nonlattice random walk on Sd × R which is homogeneous in its second coor-
dinate. Its jumps in this coordinate are bounded due to Condition E(ii). As we now
show, its stability conditions can be demonstrated using the Lyapunov function
f (i, x) = ai + logx, where the ai , i = 1, . . . , d , are constants to be determined.
For all states (i, x), let

βi = E
(
f (Xr+1) − f (Xr) | Ir = i,Xr = x

)
.

Writing a = (a1, . . . , ad), L = (L1, . . . ,Ld) and β = (β1, . . . , βd), we find that
β = −(I −P)a +L, where I denotes the d × d identity matrix. The Markov chain
{Ir} is irreducible with equilibrium vector π so it follows that the matrix I − P

has rank d − 1 and that π is orthogonal to the range of I − P . Hence, by standard
linear algebra arguments, for any ε > 0, there exists a such that:

(i) βi ≤ −ε for each i only when
∑d

i=1 πiLi < 0;
(ii) βi = 0 for each i only when

∑d
i=1 πiLi = 0;

(iii) βi ≥ ε for each i only when
∑d

i=1 πiLi > 0.

Applying Theorem 2.1.7 of [3], we see that logXr → ±∞ a.s. or, equivalently,
Xr → ∞ or 0 a.s. according as to whether

∑d
i=1 πiLi is positive or negative. If∑d

i=1 πiLi = 0, then there exist constants ai such that {f (Ir ,Xr)} is a martingale
with bounded jumps. By standard results, for example, Theorem 8.4.3 of Meyn
and Tweedie [12], the process f (I,X) is recurrent and as

{Xr ≤ A} ⊃ {f (Ir ,Xr) ≤ amin + logA},
the a.s. finiteness of σA follows. �
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REMARK. A similar model, a Markov chain on the half-strip Sd × Z+, was
studied in Section 3.1 of [3] and we borrowed the Lyapunov function x + ai from
there.

We now consider the question of the total time of the multiplicative process.
We start by restating its definition (3) in a slightly different way. For each pair
(i, j) ∈ S2

d with i �= j , Fij is a distribution function satisfying Condition E. We
construct a sequence of random variables α1, α2, . . . tied to the Markov chain {Ir}
as follows: when Ir−1 = i, Ir = j , then αr has distribution function Fij . The αi

are conditionally independent given the state of {Ir}. The total time of the multi-
plicative model started from state (i,1) is

T = 1 + α1 + α1α2 + α1α2α3 + · · · = 1 +
∞∑

r=1

r∏
1

αn.

If
∑

i πiLi ≥ 0, then the set of states (i, x) with x ≥ 1 is visited infinitely often and
the total time T will be infinite a.s. When

∑
i πiLi < 0, we can calculate which

s > 0 have E(T s) < ∞.
Recall the d × d matrix M(s) = [Pij E(Y s

ij )]i,j , where Yij has distribution
function Fij . Let vi(s) denote the right eigenvectors and ηi(s) the correspond-
ing eigenvalues of M(s). As E(Y s

ij ) > 0 for all pairs i, j and {Ir} is irreducible,
the results of Perron–Frobenius state there is a simple eigenvalue η(s) > 0 such
that η(s) ≥ |ηi(s)| for all other eigenvalues and its eigenvector v(s) has elements
v(j)(s) > 0 and is the only eigenvector with this property.

We start by determining the asymptotic behavior of E(α1 · · ·αn)
s .

LEMMA 3.2. For any s > 0, there exist constants C > 0, γ ∈ (0,1) such that

lim
n→∞η(s)−n(E(α1 · · ·αn)

s) = C + O(γ n).

PROOF. Let u be the row vector with ui = P(I0 = i) and 1 denote the d-vector
of 1s. Following the standard argument for establishing the Chapman–Kolmogorov
conditions, we can write

E(α1 · · ·αn)
s = u(M(s))n1

and the result follows directly from this for each fixed s using the result of Frobe-
nius. �

This estimate makes it evident that the value of η(s) is crucial to deciding
whether E(T s) is finite or infinite.

PROOF OF THEOREM 3.1 [Conditions for E(T s) = ∞]. The proof that
E(T s) = ∞ when η(s) > 1 is straightforward. As the αi are a.s. positive, we have
for any n

E(T s) ≥ E(α1 · · ·αn)
s.
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If η(s) > 1, then E(α1 · · ·αn)
s → ∞ as n → ∞ by Lemma 3.2 and so E(T s) = ∞.

When η(s) = 1 and s ≥ 1, we have T s = (
∑∞

n=1 α1 · · ·αn)
s ≥ ∑∞

n=1(α1 · · ·αn)
s

and again the result follows from Lemma 3.2.
When η(s) = 1 and s < 1, we can use Jensen’s inequality applied to f (x) = xs

which says that, for any u, v, G, H > 0 and s < 1 with G �= H ,(
uG + vH

u + v

)s

>
uGs + vHs

u + v

or

(uG + vH)s > (u + v)s−1(uGs + vHs).(6)

Let Tn = 1 + α1 + α1α2 + · · · + α1 · · ·αn and let tn = E(T s
n ). Applying (6) with

u = 1, v = n−a , G = Tn and H = naα1 · · ·αn+1 where a > 1 is constant, we obtain

tn+1 = E(T s
n+1) = E((Tn + α1 · · ·αn+1)

s)

> (1 + n−a)s−1(
E(T s

n ) + na(s−1)E(α1 · · ·αn+1)
s).

From Lemma 3.2, there exist constants C > 0, γ ∈ (0,1) such that the term
E(α1 · · ·αn+1)

s = C + O(γ n) and so

tn+1 > (1 + n−a)s−1(
tn + Cna(s−1)) + O(γ n)

>
(
1 + (s − 1)n−a)(

tn + Cna(s−1)) + O(γ n)

= tn + (s − 1)n−atn + C
(
na(s−1) − (1 − s)na(s−2)) + O(γ n),

where (1 +n−a)s−1 > 1 + (s − 1)n−a as s < 1. Choose a = (1 − s/2)/(1 − s) > 1
and for some constant β ∈ (0,C/s), pick n0 ≡ n0(C, s) such that, for n ≥ n0,

(1 − s)
(
βn−a+s/2 + Cna(s−2)) + O(γ n) < (C − βs/2)n−1+s/2.

This is possible as −a + s/2 < −1 + s/2 and a(s − 2) < a(s − 1) = −1 + s/2. As
tn > t1 = E(αs

1) > 0 for all n, we can choose β ∈ (0, tn0n
−s/2
0 ). Hence, tn > βns/2

for some n ≥ n0 and for such n,

tn+1 > βns/2 + Cn−1+s/2 − (1 − s)
(
βn−a+s/2 + Cna(s−2)) + O(γ n)

> β

(
ns/2 + s

2
n−1+s/2

)
> β(n + 1)s/2,

so, by induction, tn > βns/2 for all n ≥ n0. Finally, as T s > T s
n for all n, E(T s) =

∞.
Conditions for E(T s) < ∞. Now we assume η(s) < 1. If s ≤ 1, then for, any n,

T s =
( ∞∑

n=1

α1 · · ·αn

)s

≤
∞∑

n=1

(α1 · · ·αn)
s

and E(T s) < ∞ by comparison with the tail sum
∑

n≥n0
η(s)n.
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It only remains to sort out the case when s > 1. Again, applying Jensen’s in-
equality to the function f (x) = xs , we have, for any real numbers u, v, G, H > 0
and s > 1 with G �= H , (

uG + vH

u + v

)s

<
uGs + vHs

u + v

or

(uG + vH)s < (u + v)s−1(uGs + vHs).(7)

Fix any β ∈ ((η(s))1/s,1), and apply (7) with u = 1, v = βn+1, G = Tn, H =
β−(n+1)α1 · · ·αn+1 to obtain the inequality

E(T s
n+1) = E

(
Tn + βn+1 × β−(n+1)α1 · · ·αn+1

)s
(8)

≤ (1 + βn+1)s−1(
E(T s

n ) + βn+1β−s(n+1)E(α1 · · ·αn+1)
s).

From the definition of η(s) and, choice of β , it follows that

lim
n→∞β−s(n+1)E(α1 · · ·αn+1)

s = 0.

Again, as tn ≥ t1 = E(αs
1) > 0 for any n, it follows that there exists n0 such that,

for all n ≥ n0,

β−s(n+1)E(α1 · · ·αn+1)
s ≤ tn.

Now (8) implies that, for all n ≥ n0,

tn+1 ≤ (1 + βn+1)s−1(tn + βn+1tn) = (1 + βn+1)stn.

Thus, for any n,

E(T s
n ) ≤ tn0

∞∏
m=n0

(1 + βm+1)s < ∞.

That E(T s) < ∞ when η(s) < 1 and s > 1 follows from this bound and the
monotone convergence theorem. �

3.2. Definition and properties of the random vector field model. We now de-
fine a random vector field model {(S(ω, t),V (ω, t)) :ω ∈ �S, t ≥ 0} using the pa-
rameter process W . It is motivated by the one-step mean drift vector field defined
in (1), but we define a more general version so we can consider perturbations of
this natural field. This type of model is simple and standard, but we describe it
carefully here as we use it to define the random Lyapunov functions we need to
establish the properties of the random walk process ξ .

There are no switching times in the vector field model. Consider a particle that
moves around on S2

d × R
2+ with velocity field D = {D(ω, r) ∈ R− × R+ :ω ∈

�S, r ∈ N}, where the D(ω, r) = (−d1(ωr), d2(ωr)) satisfy conditions equivalent
to Condition E which we now specify.



A MARKOV CHAIN WITH PARAMETER REGENERATION 1459

CONDITION E′ . As before, let Fij denote the distribution function of the slope
Y(ω, r) = d2(ωr)/d1(ωr) and assume that there exists some constants m0, M0
such that

νij [d1 > m0,‖D‖ < M0] = 1 and that Fij (1/M0) = 0, Fij (M0) = 1

for each pair i, j .

For our regenerated parameter process (W, ξ), the natural vector field satisfies
d1 = 1 − λ1/µ, d2 = λ2/µ and we denote it by D0. In this section we are consid-
ering d1 and d2 to be more general functions of the parameters.

The process (S,V ) on the state space �e × N × R
2+ has components

S(ω, t) = (ir , ir+1,Gr,λr , r),

the parameter set at time t including the current epoch number and

V (ω, t) = (v1(ω, t), v2(ω, t)),

the position of the particle on the quarter plane indicated by the parameter ir at
time t . For each parameter sequence ω and initial point (x0,0) with x0 > 0 and
t0 = 0, set S(ω, t) = S(ω,0) = ω1 = (i1, i2,G1,λ1,1) and

V (ω, t) = (x0,0) + tD(ω,1)

until the particle reaches the boundary of quarter plane (i1, i2) which defines the
end of the current epoch. This occurs at time

t1 ≡ t1(ω, x0) = x0

d1(ω1)
.

Switching times are assumed to be 0 in this model so at t = t1 set

S(ω, t1) = ω2 and V (ω, t1) =
(
d2(ω1)

x0

d1(ω1)
,0

)
= (x0Y(ω,1),0),

where Y(ω, r) = d2(ωr)/d1(ωr). The components of V are transposed at t1 as the
particle moves from plane (i1, i2) to plane (i2, i3) at that moment, corresponding
to the server switching stations. For epochs r = 2, 3, . . . , define their end times by

tr ≡ tr (ω, x0) = tr−1 + v1(ω, tr−1)

d1(ωr)
.(9)

Now, for t ∈ [tr−1, tr ), we set S(ω, t) = ωr and

V (ω, t) = V (ω, tr−1) + (t − tr−1)D(ω, r)

so that v2(ω, t) = d2(ωr)(t − tr−1) and then

V (ω, tr) = (
d2(ωr)(tr − tr−1),0

)
.
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It is clear from these definitions that, for every parameter sequence ω, the sequence
{tr} is increasing and so t∅(ω, x0) = limr→∞ tr (ω, x0) exists. Under conditions
such that t∅ is bounded a.s., it is the time taken for the particle to reach the empty
state ∅. We now determine conditions which ensure ‖V (ω, t)‖ → 0 and condi-
tions under which ‖V (ω, t)‖ → ∞ as t → ∞ and then consider the process time.

The sequence v1(ω, tr ), r = 1,2, . . . , describes the distance of the particle from
the origin at the starts of epochs r + 1. For each r = 1,2, . . . ,

v1(ω, tr ) = d2(ωr)(tr − tr−1) = d2(ωr)
v1(ω, tr−1)

d1(ωr)
= v1(ω, tr−1)Y (ω, r)

and, hence,

v1(ω, tr ) = x0

r∏
n=1

Y(ω,n).(10)

We re-iterate at this point that this vector field model is a random process driven by
the parameter regeneration process including the Markov chain {Ir} for the server
location. Recall that when In = i, In+1 = j �= i, then Y(ω,n) = d2(ωn)/d1(ωn)) ∼
Yij with distribution Fij ; π = (π1, π2, . . . , πd) denotes the equilibrium distribu-
tion of {Ir}; Li = ∑d

j=1 Pij E(logYij ) for each i. For C > 0, let tC = min{t ≥
0 :v1(ω, t) + v2(ω, t) ≤ C}.

LEMMA 3.3. For the random vector field model (S,V ):

(i) if
∑d

i=1 πiLi < 0, then v1(ω, tr ) → 0 a.s. and

t∅(ω, x0) = lim
r→∞ tr (ω, x0) < ∞ a.s.,

(ii) if
∑d

i=1 πiLi = 0, then P(tC < ∞) = 1,
(iii) if

∑d
i=1 πiLi > 0, then v1(ω, tr ) → ∞ a.s. as r → ∞.

PROOF. The process {(Ir , v1(ω, tr ))}r is a multiplicative Markov process, so
parts (i) and (iii) follow immediately from Theorem 3.1(i) and (iii). Theorem 3.1(ii)
implies that min{r :v1(ω, tr ) < C} is finite ω-a.s. From equation (9) epoch r lasts
for time tr − tr−1 = v1(ω, tr−1)/d1(ωr) which is finite as d1(ωr) ≥ m0 and, hence,
tC < ∞ a.s. �

REMARK. As tr (ω, x0) = x0tr (ω,1) for all r and all x0 > 0, it follows that if
t∅(ω,1) < ∞, then t∅(ω, x0) < ∞ for all x0 > 0.

Next we recall the Perron–Frobenius eigenvalue η(s) of the matrix M(s) defined
in (4).

LEMMA 3.4. Suppose
∑d

i=1 πiLi < 0. For s > 0, if η(s) < 1, then E(ts
∅
) < ∞

while if η(s) ≥ 1, then E(ts
∅
) = ∞.
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PROOF. Combining equations (9) and (10), we obtain

tr − tr−1 = v1(ω, tr−1)

d1(ωr)
= v1(ω, tr )

d2(ωr)
= x0

d2(ωr)

r∏
n=1

Y(ω,n)

for r = 1, 2, . . . and so

t∅ =
∞∑

r=1

tr − tr−1 = x0

∞∑
r=1

1

d2(ωr)

r∏
n=1

Y(ω,n).

Under Condition E′ for the vector field model, there exists a constant K > 0 (uni-
formly in ω) such that 1/K < 1/d2(ωr) < K a.s. for all epochs r . It follows that

x0

K

∞∑
r=1

r∏
1

Y(ω,n) < t∅(ω, x0) < Kx0

∞∑
r=1

r∏
1

Y(ω,n).

The expression
∑

r

∏
n Y (ω,n) is the total time for the multiplicative random walk

associated with the parameter regeneration process that drives this vector field
model. From Theorem 3.1(i), it follows that E(ts

∅
) < ∞ is equivalent to η(s) < 1.

�

The assumptions in Condition E′ ensure this construction can be carried out
for indefinitely many epochs for all parameter sequences from any initial particle
position x with x > 0 in any epoch r . To indicate this, we denote the switching
instants defined above by tn(ω, r,x) for n ≥ r . Under the condition

∑d
i=1 πiLi < 0,

it follows that t∅(ω, r,x) = limn→∞ tn(ω, r,x) < ∞ and is the time taken by the
particle to reach 0 from initial point x in epoch r . In this case, for any constant
A > 0,

tA(ω, r,x) = min{t :V (t) ∈ BA,S(0) = ωr,V (0) = x} < ∞ a.s.,(11)

where BA = {x ∈ R
2+ :x + y ≤ A}.

4. Lyapunov functions and their properties. Now we return to studying
(W, ξ), the random walk together with its regenerated parameter process. We
use the vector field model to construct Lyapunov functions along each parame-
ter sequence ω and then take expectations over the parameter process to estab-
lish Theorems 2.1 and 2.2. We outline the simplest case of our scheme now to
help explain this general argument. Let Eω denote expectation for the random
walk conditioned on the parameter sequence ω, let (rn, ξn) denote the epoch and
queue lengths at time n and let τA = min{n : ξn ∈ BA}. For the natural vector field
D0(ω, r) ≡ (−d0

1 (ω, r), d0
2 (ω, r)) = (λr,1/µr − 1, λr,2/µr) consider the function

tA defined in (11). For ω such that tA is finite and for x /∈ BA,

Eω

(
tA(ω, r, ξn+1) − tA(ω, r, ξn) | ξn = x

) = −1.(12)



1462 MACPHEE, MENSHIKOV, PETRITIS AND POPOV

In the case where switching happens instantaneously, Foster’s criterion (see Theo-
rems 2.1.1 and 2.2.3 of [3]) implies that

Eω(τA | ξ0 = x0) < tA(ω,1,x0) < ∞
and it follows, by taking expectation over �S and using Lemma 3.4 with s = 1,
that E(τA | ξ0 = x0) < ∞ whenever η(1) < 1.

We see from this that, during epoch r , tA(ω, r, ·) based on D0 is a random
(ω-dependent) Lyapunov function for establishing stability (E(τA) < ∞) of the
queue length process ξ . Our plan is to show that when E(tsA) < ∞ (conditions for
this are given in Lemma 3.4), then E(τ s

A) < ∞. However, a stronger result than
Foster’s is necessary to decide whether E(τ s

A) < ∞ for given s > 1 (see The-
orem 5.3 below). This result requires stronger bounds, than (12). To get these
stronger bounds we actually have to use tA from a vector field which is a mod-
ification of D0. It is also necessary to handle nonzero switching times.

To establish which moments of τA are infinite, a different approach is needed.
We show that for almost all parameter sequences ω there is some probability,
β > 0, say, that the random walk takes time comparable with the vector field to
reach BA. This β is uniform over ω, so we can take expectation over �S to show
that E(tsA) = ∞ implies E(τ s

A) = ∞.

4.1. Modified vector fields and Lyapunov functions. Consider the set of par-
ticle trajectories, under a vector field D, from all possible initial points on the e1
axis in epoch 1. For any parameter sequence ω, any point (r,x) ∈ N × R

2+ lies on
a unique such trajectory.

DEFINITION 4.1. For a vector field D satisfying Condition E′, we define two
distinct Lyapunov functions. For each parameter sequence ω, define

g :�S × N × R
2+ → R+ by g(ω, r,x) = γ,

where γ is such that the trajectory under D(ω, ·), started from (1, γ e1), passes
through the point (r,x), that is, g is constant along particle trajectories under the
vector field D. On

F = {ω ∈ �S : t∅(ω,1, e1) < ∞},
the set of parameter sequences for which t∅ is everywhere finite, define f :F ×
N × R

2+ → R+ by

f (ω, r,x) = tA(ω, r,x) where A > 0 is a given constant.

We will need to consider expectations Eω of f and g as functions of the random
walk ξ for given ω and, subsequently, with respect to the measure on the parameter
sequences.
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REMARK. For any given ω, the functions f and g are linear within epochs
and we consider their properties for general vector fields D. We will call f the
remaining life, as it is the time for the particle to reach BA = {x ∈ R

2+ :x + y ≤ A}
from initial point x in epoch r along the trajectory defined by the vector field
D for the parameter sequence ω ∈ F . Similarly, we will call g the initial value
function and observe that it is everywhere finite for a.s. all ω for any D satisfying
Condition E′.

In particular, we will use f for establishing that specified moments of the ran-
dom time τA = min{n : ξn ∈ BA} exist, g for establishing instability and f and g

together for showing nonexistence of certain moments of τA. We now describe
some of their properties.

LEMMA 4.2. If vector field D has
∑

i πiLi < 0, then P�(F) = 1. For fixed ω,
the functions f (for ω ∈ F ) and g are linear in x for fixed r and continuous at
changes of epoch r . Writing:

(i) f (ω, r,x) = arx1 + brx2 + f0 for ω ∈ F (ar , br and f0 are functions of
ω), we have:

• ar = br−1 for each r and there exists M > 0, uniform in ω and r , such that
br/M ≤ ar ≤ Mbr ,

• φr ≡ max{ar, br} ≥ 1/M0 (the constant in Condition E′),
• f (ω, r,x) ≥ (x1 + x2)/M0;

(ii) g(ω, r,x) = crx1 + cr+1x2, we have:

• cr+1 = cr/Y (ω, r) for each r and, hence, cr/cr+1 = Y(ω, r) ∈ (1/M0,M0) for
all epochs r ,

• cr

∏r−1
n=1 Y(ω,n) = c1 for all r .

PROOF. P�(F) = 1 is the content of Lemma 3.3(i). That f , for ω ∈ F , and g

are linear in x for fixed r and continuous at changes of epoch r follows from the
vector field D being constant during epochs.

The properties of f for ω ∈ F follow from Condition E′ which constrains d1

and d2 and the relations ar(x1 − d1) + br(x2 + d2) = arx1 + brx2 − 1 or, equiva-
lently, 1 + brd2(r) = ard1(r) for each r . The lower bound on f is immediate. The
relations satisfied by the cr follow similarly. �

Unfortunately, ar and br , the x-coefficients of f within an epoch, can be arbi-
trarily large, so the level curves of f (ω, r, ·) (constructed under D0) in the x-plane
can make an arbitrarily small angle with the natural drift direction D0(ω, r) of
{ξn}. This prevents us making the estimates needed to establish which hitting time
moments exist if we construct f with respect to field D0.
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Modified vector fields. To resolve this problem, we construct modified vector
fields (small perturbations of the natural vector field D0) for which f and g per-
mit some useful estimations. We do this in different ways for showing whether
E(τ s

A) < ∞ or not.
To show that E(τ s

A) < ∞, we want a vector field D such that its remaining life
f is greater than that of D0 but is still finite a.s. and for which moment s of f

exists. When we want to show that E(τ s
A) = ∞ for some s, we use a different

modification of D0 and the initial value function g.

DEFINITION 4.3. As in equation (2), we write

θ0(ω, r) = arctan
[
λ2(ω, r)/

(
µ(ω, r) − λ1(ω, r)

)]
for the minor angle between D0(ω, r) and −e1. We define

D+(ω, r) ≡ (−d+
1 (ωr), d

+
2 (ωr))

(13)
= ‖D0(ω, r)‖(− cos

(
θ0(ω, r) + θ ′), sin

(
θ0(ω, r) + θ ′))

for some θ ′ > 0 such that θ0(ω, r) + θ ′ < π/2 for all pairs ω, r . We will say that
such a D+ is uniformly above D0. We further define

D−(ω, r) ≡ (−d1(ωr), d2(ωr))
(14)

= ‖D0(ω, r)‖(− cos
(
θ0(ω, r) − θ ′), sin

(
θ0(ω, r) − θ ′))

for some sufficiently small θ ′ > 0. In this case we say that D− is uniformly be-
low D0.

This definition is possible, as, by Condition E,

θ0(ω, r) ∈ (arctanm0/M0, arctanM0/m0) ⊂ (0, π/2).

Clearly, there are ω for which the remaining life under D0 is finite, but under
D+ it becomes infinite. In fact, the set of these has zero probability for some suit-
ably small θ ′ as we now show. Let M+(s), M0(s) and M−(s) denote the matrix
[Pij E(Y s

ij )] under the vector fields D+, D0 and D− respectively and let η+(s),

η0(s) and η−(s) denote the Perron–Frobenius eigenvalues of these matrices. Also,
for each station i, let L0

i = ∑d
j=1 Pij E(logYij ) under D0 and L−

i the same quanti-
ties under D−.

LEMMA 4.4. For any given s > 0, we can choose θ ′ > 0 small enough that:

(i) if η0(s) < 1, then η+(s) < 1;
(ii) if η0(s) > 1, then η−(s) > 1;

(iii) if
∑

i πiL
0
i > 0, then

∑
i πiL

−
i > 0

(θ ′ does not depend upon ω).
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REMARK. When
∑

i πiL
0
i < 0 and θ ′ is chosen to satisfy condition (i) or (ii),

we say that D+ or D− respectively is s-neutral.

PROOF OF LEMMA 4.4. For the vector field D+, we have Yij = d+
2 /d+

1 =
tan(θ0 + θ ′) when ωr = (i, j,G,λ). As the function tan is continuous on (0, π/2)

and η+(s) is a continuous function of M+(s), it follows that η+(s) is continuous
in θ ′. Part (i) follows as Condition E bounds the rate of change of η+(s) in θ ′ and
parts (ii) and (iii) follow from a similar argument. �

The advantage of working with D+ rather than D0 is that the expected one-step
jumps of the process {f (ω, rn, ξn)}n are of size comparable to φr where, as before,
f (ω, r,x) = arx + bry +f0 and φr = max{ar, br}. Let �fn = f (ω, rn+1, ξn+1)−
f (ω, rn, ξn) and �gn = g(ω, rn+1, ξn+1) − g(ω, rn, ξn).

LEMMA 4.5. Suppose that D+ lies uniformly above D0 and is s-neutral
for some s > 0. Let f denote the remaining life of D+. Then F+ = {ω ∈
�S :f (ω,1, e1) < ∞} satisfies P�(F+) = 1 and for each ω ∈ F+ and any ser-
vice epoch r ,

E(f (ω, r,x)s) < ∞
and there exists ε1 > 0 such that

Eω(�fn | rn = r, ξn = x) = −ard
0
1 (ω, r) + brd

0
2 (ω, r) ≤ −ε1φr,

where φr ≥ 1/M0. Similarly, the initial value function g of a vector field D− which
is uniformly below D0 satisfies

Eω(�gn | rn = r, ξn = x) = −crd
0
1 (ω, r) + cr+1d

0
2 (ω, r) ≥ ε2cr

for some ε2 > 0 which does not depend upon r and there exists a constant κ > 0
such that

Eω(�g2
n | rn = r, ξn = x) ≤ c2

r κ.

PROOF. P(F+) = 1 and E(f (ω, r,x)s) < ∞ follow immediately from
Lemma 3.4 applied to the vector field D+.

Let β , β+ denote the angles between the vector (ar , br) and D0, D+ respec-
tively. By comparison with (12), we see that β > π/2 and, by construction, there
exists θ ′ > 0 such that β+ = β + θ ′. The inequality for E(�fn) follows from the
comparability of ar and br , φr ≥ 1/M0 (from Lemma 4.2), ‖D0‖ ≥ m0 and the
cosine rule.

The inequality for E(�gn) follows from a very similar argument, while the
existence of the constant κ for bounding E(�g2

n) follows from the restriction on the
rates λ imposed by Condition E and the assumption that service time distributions
G are selected from a set � with uniformly bounded second moments. �
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5. Proofs for the polling system. We are now in a position to establish The-
orems 2.1 and 2.2. Our treatment of the vector field model in the previous sections
ignored switching times, but we must now consider them.

5.1. Technique for handling switching times. Our main method is to observe
the process not at all transitions, but at carefully calculated sampling times. The-
orem 5.1 below states the semi-martingale result from Fayolle, Menshikov and
Malyshev [3] which we will use to establish the recurrence part of Theorem 2.1.

Let {Zt, t ≥ 0} be a sequence of nonnegative random variables with Z0 constant
and Zt measurable with respect to a filtration F = {Ft , t ≥ 0}. Let {Nn,n ≥ 0} be
a strictly increasing sequence of stopping times adapted to F such that N0 = 0
and |Nn+1 − Nn| is bounded for all n ≥ 0. Define a sampled process {Xn,n ≥ 0}
by X0 = Z0 and Xn = ZNn for n ≥ 1. Also, for constant C > 0, let ζC = min{t ≥
1 :Zt ≤ C} and σ = min{n ≥ 1 :Xn ≤ C}. Finally, let {Xt∧σ } denote the sequence
{Xt } stopped at σ . With this notation, we now state Theorem 2.1.2 of [3].

THEOREM 5.1. If Z0 > C and for some ε > 0 and all n ≥ 0

E
(
X(n+1)∧σ | FNn∧σ

) ≤ Xn∧σ − εE
(
N(n+1)∧σ − Nn∧σ | FNn∧σ

)
a.s.,

then E(ζC) ≤ Z0/ε < ∞.

To use this result, we will calculate in the proof of Theorem 2.1 a constant N

such that the inequality of this theorem is satisfied N steps after any switching
time.

5.2. A key supermartingale for the instability results. We now show that the
level curves of the initial value function g of D− form a useful barrier for the
random walk ξ . For each ω ∈ �, K > 0, let

GK(ω) = {(r,x) ∈ N × R
2+ :g(ω, r,x) ≤ K}(15)

denote the set of states below the trajectory of D− with initial value K . Let

ρK(ω) = min{n : (rn, ξn) ∈ GK(ω)}
denote the hitting time of the random walk to GK (rn denotes the epoch in which
step n of ξ occurs). We recall that BA = {x ∈ R

2+ :x + y ≤ A}.
LEMMA 5.2. Let g denote the initial value function of vector field D− and let

τA denote the hitting time of BA by ξ . Let Zn = g(ω, rn, ξn) for n ∈ N and suppose
that Z0 = z0 for some constant z0 > A. Define Un = 1/Zn∧τA

for n = 1, 2, . . . .

If A is sufficiently large, then, for every epoch r and every parameter sequence ω,

Eω(Un+1 − Un | rn = r, ξn = x) < 0

and, hence, U∞ exists a.s.
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PROOF. Taylor’s theorem applied to the function (1 + x)−1 provides the in-
equality

(1 + x)−1 − 1 < −x + x2(1 − t0)
−3 at any x > −t0 > −1.

Write Zn = z, rn = r and consider ξn = x /∈ BA. From Lemma 4.2(ii), we have
z ≥ crA/M0 and either �gn = Zn+1 − Zn ≥ 0 or 0 < −�gn ≤ cr . In either case
�gn/z ≥ −M0/A > −1 for A > M0. It now follows from Lemma 4.5 and the
assumption cr/z ≤ M0/A that

Eω(Un+1 − Un | ξn = x) = 1

z

(
Eω

(
1

1 + �gn/z

∣∣∣ ξn = x
)

− 1
)

<
1

z
Eω

(
−�gn

z
+ (1 − M0/A)−3 �g2

n

z2

∣∣∣ ξn = x
)

< −ε2M0

zA
+ (1 − M0/A)−3 κM2

0

zA2 .

The right-hand side can be made negative by choosing A sufficiently large. There-
fore, along any given parameter sequence, the process (Un) is a bounded super-
martingale which guarantees the existence of U∞. �

5.3. Proof of Theorem 2.1. (i) We wish to show that τ , the return time to the
empty state ∅, is a.s. finite under the condition

∑
i πiLi < 0. Consider a vector

field D+ which is uniformly above D0 and s-neutral for some s > 0. As before,
we denote the remaining life of D+ by f and let F denote the set of parameter
sequences where f is a.s. finite for all points (r,x). For each ω ∈ F , Lemma 4.5
implies

Eω

(
f (ω, r, ξn+1) − f (ω, r, ξn) | ξn = x

) ≤ −ε1φr ≤ −ε1/M0

during service epochs. During switching times, the queue lengths have drift up-
ward so this inequality does not hold. Let Tr−1 denote the time at which the event
which concludes epoch r − 1 occurs. Then

Eω

(
f (ω, r, ξn+1) − f (ω, r, ξn) | ξn = x, Tr−1 = n,ωr = (i, j,G,λ)

)
= (arλ1 + brλ2)mij > 0,

where mij is the mean switching time from station i to j . To employ Theo-
rem 5.1, we choose ε1 > 0 according to Lemma 4.5, ε′ ∈ (0, ε1) and an integer
N ≥ 2M0m

∗/(ε1 − ε′), where m∗ = maxij mij . As long as x = (x, y) has x > N ,

Eω

(
f (ω, r, ξn+N) − f (ω, r, ξn) | ξn = x, Tr−1 = n,ωr = (i, j,G,λ)

)
(16)

≤ φr [(λ1 + λ2)m
∗ − ε1N] < −ε′φrN ≤ − ε′

M0
N

as φr = max(ar , br) ≥ 1/M0 and λ1 + λ2 ≤ 2M0 by Condition E.
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Now we apply Theorem 5.1 to Zn = f (ω, rn, ξn), with C chosen so that τA, the
time {ξn} hits BA, satisfies τA < ζC (the time {Zn} falls to level C). This is possible
because, by Lemma 4.2, f (ω, r,x) ≥ ‖x‖/M0, that is, ‖x‖ large implies f large.
Hence,

Eω(τA | ξ0 = x) <
f (ω,0,x)M0

ε′ < ∞
for each ω ∈ F and this in turn implies that the process ξ enters BA infinitely often
along almost all parameter sequences. Our process is not irreducible in the normal
sense, as it is not possible to reach the empty state ∅ in epoch r from state (r,x),
where x = (x, y) with y > 0. However, it is possible to reach ∅ in epoch r + 1
and the probability of this is bounded away from 0 uniformly in ω (the bound does
depend upon A and M0). Hence, by Borel–Cantelli, we have τ < ∞ a.s.

(ii) Here
∑

πiLi = 0. Again, we use f to denote the remaining time for the
vector field model, but this time with the natural field D0. We have from Lemma 4.2
that f is finite a.s. and from the inequality (12), we know that for each parameter
sequence ω ∈ F the process (f (ω, rn, ξn))n is a supermartingale (remember that
we only consider instantaneous switching in this case). Now, from standard results,
it follows that τA is a.s. finite for every ω ∈ F . That τ is a.s. finite follows as in
part (i).

(iii) We have
∑

πiLi > 0 and we wish to show that τ = ∞ with positive proba-
bility. Consider the initial value function g for a vector field D− uniformly below
D0 but with

∑
i πiL

−
i > 0. We know from Lemma 3.3(iii) and Lemma 4.2(ii) that,

for almost all parameter sequences ω, the x-coefficients cr of g in epoch r con-
verge to 0 as r → ∞. For such ω and for any given constants A > 0 and K ′ > 0,
there exists r0 such that [recall (15)] the set (r,BA) ⊂ GK ′(ω) for all epochs
r ≥ r0. For any fixed parameter sequence ω, the process ξ is certain to reach
some state (r ′,x′) /∈ GK ′(ω) where r ′ ≥ r0. Let K = g(ω, r ′,x′). Starting from
(r ′,x′), ρK ′ ≤ τA a.s. by construction but, as we now show, ρK ′ < ∞ a.s. is impos-
sible. The conditions of Lemma 5.2 hold from which we get Eω(U∞) ≤ 1/K ,
but if ρK ′ < ∞ a.s., then U∞ ≥ 1/K ′ > 1/K a.s. As U∞ ≥ 0, it follows that
Pω(τA = ρK ′ = ∞) ≥ 1 − K ′/K > 0 for almost all ω.

REMARK. Another way to describe the idea in part (iii) of the proof above
is to say when (r,BA) ⊂ GK ′ for all epochs r there is some probability β > 0
(uniform over parameter sequences ω) such that Pω(ξn /∈ GK ′ for all n) > β , that
is, if the vector field D− has trajectories that remain outside GK ′ , then the random
walk ξ can stay outside GK ′ indefinitely.

5.4. Semimartingale estimates for Theorem 2.2(i). We now state the key result
we use for establishing finiteness of moments of hitting times to the neighborhood
of the empty state. It is a slight extension of Theorem 1 of [1]. This, in turn, is
the generalization to general powers s of Theorem 2.2 of [7] (a similar result for
integer moments only).
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THEOREM 5.3. Let K > 1, (�, (Fn)n,P) be a filtered probability space and
(Zn)n∈N an (Fn)n-adapted positive valued process with Z0 = z ≥ K . Let σK =
inf{n ≥ 1 :Zn ≤ K}, σ ′ an arbitrary (Fn)n-stopping time and σ = inf{σK,σ ′}.
Suppose that there exists s0 > 0 such that, for every n ∈ N, we have E(Z

s0
n ) < ∞.

If there exists ε2 > 0 such that

E(Z
s0
n+1 − Zs0

n | Fn) ≤ −ε2Z
s0−1
n on {σ > n},

then, for all s ≤ s0, there exists C = C(s0, ε2) such that E(σ s | Z0 = z) ≤ Czs .

REMARK. If we try to apply this result to Zn = f (ω, rn, ξn), where f is the
remaining life of the natural field D0, the condition of the theorem is not generally
satisfied. This is why we have to introduce the modified field D+.

PROOF OF THEOREM 5.3. Straightforward extension (to deal with the intro-
duction of σ ′) of the corresponding proof of Theorem 1 of [1]. �

The following result establishes the key inequality for the application of The-
orem 5.3 under a condition on η0(s), the Perron–Frobenius eigenvalue of M0(s)

which was considered in Lemma 4.4. As in the proof of Theorem 2.1(i), it is nec-
essary to sample the process at carefully chosen times to deal with the absence of
service during switching times.

PROPOSITION 5.4. Suppose that η0(s0) < 1 for some s0 > 0 and let D+ be
uniformly above D0 and s0-neutral. Write Zn = f (ω, rn, ξn) for all ω ∈ F , where
f denotes the remaining life under D+. Then for such ω and all s < s0, there exists
ε2 > 0 such that at times n which are not switching times and for ‖x‖ sufficiently
large,

Eω(Zs
n+1 − Zs

n | rn = r, ξn = x) ≤ −ε2Z
s−1
n .

PROOF. Letting z = Zn = f (ω, r,x), we have, for ‖x‖ (and, hence, z) large,
by Lemma 4.2, 1/C‖x‖ ≤ φr/z ≤ C/‖x‖ for some C > 0 which is uniform in ω.
Writing �fn = f (ω, rn+1, ξn+1) − f (ω, rn, ξn), we have

Eω(Zs
n+1 − Zs

n | rn = r, ξn = x) = Eω

(
(z + �fn)

s − zs | rn = r, ξn = x
)

and from Taylor’s theorem,

(z + �fn)
s = zs + s�fnz

s−1 + s(s − 1)

∫ 1

0
(�fn)

2(z + t�fn)
s−2(1 − t) dt.

As �fn ≥ −φr , when rn = r , we have, for t ∈ [0,1],

(z + t�fn)
s−2 ≤ zs−2

(
1 − φr

z

)s−2

if s ≤ 2
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and so, from Lemma 4.5,

E(Zs
n+1 − Zs

n | rn = r, ξn = x) ≤ φr

(
−sε1 + C1s(s − 1)

φr

z

)
zs−1,

where C1 > 0 is some constant which is uniform in ω.
For s > 2, we have

(z + t�fn)
s−2 ≤

{
zs−2(1 + t)s−2, if �fn ≤ z,
(�fn)

s−2(1 + t)s−2, if �fn > z.

The assumption of a uniform bound Ks on moment s of the service time distri-
bution implies there is some constant C′ such that Eω(�f s

n | rn = r, ξn = x) ≤
φs

rC
′Ks and, hence, Eω(�f s

n I {�fn > z} | rn = r, ξn = x) = O(φs
r ). In this case,

for ‖x‖ large enough, there exists some C1 > 0 (uniform in ω) such that

E(Zs
n+1 −Zs

n | rn = r, ξn = x) ≤ φrz
s−1

(
−sε1 +C1s(s −1)

φr

z
+O((φr/z)

s−1)

)
,

again using Lemma 4.5.
Finally, for any given s > 2 and any ε2 with 0 < ε2 < sε1, we can choose ‖x‖

large enough that −sε1 + C1s(s − 1)
φr

z
+ O((φr/z)

s−1) < −ε2. The argument is
similar for s ≤ 2. This establishes the result as φr ≥ 1/M0. �

PROOF OF THEOREM 2.2(i). As in Proposition 5.4, we consider the process
f (ω, rn, ξn) where f is the remaining life under a vector field D+ which
is uniformly above D0 and s-neutral. It follows from E(f (ω, r,x)s0) < ∞
(Lemma 4.5) and the fact that Eω((ξn1 + ξn2)

s) < ∞ for all ω, s > 0 and all n

that E(f (ω, rn, ξn)
s) < ∞ for all s ∈ [0, s0] and all n.

To deal with switching times, we sample this process at times Nn where Nn+1 −
Nn = 1 unless Nn is the end of an epoch, in which case Nn+1 − Nn = N for
some constant N to be determined. This makes it necessary to introduce modified
versions of the hitting times for which we wish to make moment estimates.

Let Zn = f (ω, rNn, ξNn), σ̃K = inf{n ≥ 1 :Zn ≤ K}, τ̃A = inf{n ≥ 1 : ξNn ∈ BA}
for suitably large A and σ̃ = min{σ̃K, τ̃A}. For Z0 = z > K for some sufficiently
large constant K , we have, by Proposition 5.4,

Eω(Zs
n+1 − Zs

n | rn = r, ξn = x) ≤ −ε2Z
s−1
n on {σ̃ > n}(17)

as long as jump Nn is not a switching event. If the server switches queues at time
Nn, then

Zn+1 = Zn + f (ω, rNn + 1, ξNn+N − ξNn).

By the argument leading to the inequality (16), we have, for large enough N (but
ξNn > N to ensure there is no change of epoch),

E
(
f (ω, rNn + 1, ξNn+N − ξNn) | FNn

) ∝ −N.
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Using this together with the moment bound assumed above, it follows that, for
given ε2, there exists N such that the bound (17) also holds when the jump at time
Nn is a switching event.

Hence, by Theorem 5.3, there exists a constant C such that Eω(σ̃ s | Z0 = z) <

Czs uniformly over ω ∈ F . We can choose A > KM0 which ensures that τ̃A ≤ σ̃K

a.s. and, hence, for x /∈ BA,

E(τ̃ s
A | ξ0 = x) = E(σ̃ s | Z0 = z)

= E
(
Eω(σ̃ s | Z0 = z)

)
≤ CE(f (ω,1,x)s) < ∞.

To complete the proof, let τA = inf{n ≥ 1 : ξn ∈ BA} for suitably large A (so τA

is measured in process time n rather than the sampling sequence {Nn}) and recall
that τ = inf{n ≥ 1 : ξn = ∅}. Observe that τA < Nτ̃A so that E(τ s

A | ξ0 = x) < ∞.
Finally, by a standard argument, for example, Theorem A.1 from [10], it follows
that E(τ s | ξ0 = x) < ∞ for all finite x. �

5.5. Proof of Theorem 2.2(ii), nonexistence of moments. We start this proof
by showing that, with a probability that can be bounded away from 0 uniformly
for all parameter sequences, the random walk started outside GK stays outside GK

at least until it hits BA.

PROPOSITION 5.5. Suppose that η0(s0) < 1 for some s0 > 0 and that g is
the initial value function of an s-neutral vector field D−. For any given parameter
sequence ω, suppose that the queue length process ξ starts at state (r,x) such
that g(ω, r,x) = K and x /∈ BA for A large enough to satisfy the conditions of
Lemma 5.2. For 1 < K ′ < K ,

Pω(ρK ′ ≥ τA) ≥ 1 − K ′

K
> 0.

PROOF. As η0(s0) < 1, Theorem 2.1(iii) implies that τA is a.s. finite. Con-
sider the process Un = 1/g(ξn∧τA∧ρK′ ). By Lemma 5.2, (Un) is a positive super-
martingale. Therefore, the limit U∞ exists almost surely and its law is supported
by [0,1] as K ′ > 1. Moreover, by Fatou’s lemma,

1

K
= Eω(U0) ≥ Eω(U∞)

= 1

K ′ Pω(ρK ′ < τA) + Eω(UτA
| ρK ′ ≥ τA)Pω(ρK ′ ≥ τA)

as τA is a.s. finite. Hence, Pω(ρK ′ < τA) ≤ K ′
K

< 1 by the initial choice of K and

K ′ and (Un) being nonnegative. Thus, Pω(ρK ′ ≥ τA) ≥ 1 − K ′
K

> 0. �



1472 MACPHEE, MENSHIKOV, PETRITIS AND POPOV

PROOF OF THEOREM 2.2(ii). We have η0(s) > 1 and η0(s0) < 1 for some
s0 < s. Hence, the remaining life f of vector field D− (uniformly below D0) is a.s.
finite. As f and the initial value function g of D− are both linear within epochs,
g can be scaled so that g(ω,1, xe1) = f (ω,1, xe1) for all x > 0. Starting ξ from
state (r,x) with g(ω, r,x) = K > K ′ and applying Proposition 5.5, we see that
Pω(ρK ′ ≥ τA) ≥ 1 − K ′/K > 0 uniformly over all ω.

We now show that on the event {ρK ′ ≥ τA} the random walk takes such a long
time to reach BA that the s0 moment of τA cannot be finite. The event {ρK ′ ≥ τA}
can only happen when (i) there is an epoch r̂ where (r̂,BA) is not a subset of GK ′ ,
that is, where the D− trajectory {g(ω,S(t),V (t)) : t ≥ 0, g(ω,S(t),V (t)) = K ′}
enters BA during epoch r̂ ; (ii) the random walk does not enter GK ′ prior to epoch r̂ .

For fixed ω and K ′, suppose the random walk starts from ξ0 = (x0,0) in epoch 1
with g(ω,1, x0e1) > K ′. Let the random times T1, T2, . . . denote the ends of the
epochs (for the random walk, not the dynamical system) up to epoch r̂ − 1. On the
event {ρK ′ ≥ τA} we have

f (ω,1, x0e1) ≤
r̂−1∑
r=1

tr − tr−1 + AM0/m0,

where, in the notation of Section 3.2, the tr are the epoch endtimes for a parti-
cle moving according to the vector field D− and the bound AM0/m0 on the final
epoch’s contribution to f (ω,1, x0e1), the time for the particle trajectory to reach
BA, is obtained from Condition E with some obvious geometry. Recalling the no-
tation v1(ω, tr−1) for the particle position at the start of epoch r (for the dynamical
system) and writing Xr−1 for the queue length at the start of epoch r (for the ran-
dom walk), we have, for each epoch r < r̂ ,

Tr − Tr−1 ≥ Xr−1 > v1(ω, tr−1),

as only one job can complete in each service time and, by assumption, the random
walk does not enter GK ′ . From

v1(ω, tr−1) = d1(tr − tr−1) ≥ m0(tr − tr−1),

we have

τA > Tr̂−1 =
r̂−1∑
r=1

Tr − Tr−1 >

r̂−1∑
r=1

v1(ω, tr−1) ≥ m0

r̂−1∑
r=1

tr − tr−1

≥ m0f (ω,1, x0e1) − AM0

on all random walk trajectories such that τA ≤ ρK ′ .
Finally, as η−(s) > 1, for any initial vector x /∈ BA for A sufficiently large,

E(τ s
A | ξ0 = x) ≥ (1 − K ′/K)ms

0E
([f (ω,1,K ′e1) − AM0]s) = ∞,

where the final equality follows from Lemma 3.4 applied to the vector field D−.
�
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