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In this article we develop a new methodology to prove weak approxi-
mation results for general stochastic differential equations. Instead of using
a partial differential equation approach as is usually done for diffusions, the
approach considered here uses the properties of the linear equation satisfied
by the error process. This methodology seems to apply to a large class of
processes and we present as an example the weak approximation of stochas-
tic delay equations.

1. Introduction. The Euler scheme for stochastic differential equations is
widely used in applications as it is easy to compute. The Euler scheme can be
easily generalized to a variety of stochastic equations beyond the framework of
diffusion equations, in particular Volterra SDEs, delay SDEs, anticipating SDEs
and nonlinear SDEs.

On the other hand, the theoretical properties of the Euler scheme are mostly
studied for the diffusion case as most of the results available so far are in this
framework. In some cases, extensions to other similar equations are straightfor-
ward but in other cases, additional nontrivial work is required. For example, see
[8] for extensions to semimartingales, and [1, 11] for approximations of an irreg-
ular functional of a diffusion which is approached using a Euler type scheme. It
is also well known that the definition of an extension of the Euler scheme for de-
lay type systems is straightforward but the technical results on the weak rate of
convergence are limited. See [4, 6, 9].

In this article we propose a generalization of the theory of weak approxima-
tions which studies the rate of convergence of the Euler scheme considered in law.
This generalization finds as an application the weak rate of convergence of smooth
functionals of general delay type systems and also covers, with a further study of
the Malliavin covariance matrix, the case of irregular functions of the solution of
the stochastic equation.
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The main idea is to change completely the approach used until now to prove
weak approximation rate results. This new idea, which uses the whole path of the
process under study rather than the partial differential equation associated to the
problem, should allow to obtain various other straightforward generalizations of
results of the weak rate of convergence.

In order to describe our approach roughly, let X denote the solution of a stochas-
tic equation and X̄ the Euler scheme associated to it. The problem of weak rate of
convergence consists in finding the rate at which E(f (X) − f (X̄)) converges to
zero for various classes of functionals f . The optimal rate is the step size of the
scheme even though the equations considered may differ.

The classical proof of this result for diffusions is based on the associated partial
differential equation, that is, Ef (X) has through the Feynman–Kac formula an
interpretation using PDEs. This is the important point in the classical approach
which is not used in our approach. In the case of some stochastic equations, if f is
regular enough, the proof is similar if the associated PDE exists. If f is an irregular
function, then the issue of the nondegeneracy of the Malliavin covariance matrix
of the Euler scheme becomes an important issue as has been shown in [1, 11], but
this extension is nontrivial.

In this article we propose a completely different method to prove weak approx-
imation results based on a pathwise approach. That is, we use the mean value
theorem to rewrite f (X) − f (X̄) = ∫ 1

0 f ′(aX + (1 − a)X̄) da(X − X̄). Then, we
derive a linear equation satisfied by Y = X − X̄. When this equation can be ex-
plicitly solved, which seems to be true only for diffusions, one can obtain the rate
of convergence by using the duality property of stochastic integrals. This method-
ology was first introduced by Kohatsu-Higa and Pettersson [7] and used in Gobet
and Munos [5]. It seems to be quite general except for the explicit expression for
Y which can be done only in the case of diffusions. This article presents a general
framework to analyze weak approximations in stochastic equations. In particular
we solve the problem without having an explicit expression for the solution of sto-
chastic linear equations, by using a duality argument. This duality formula (see
Section 3) shows explicitly the weak error as a by-product of the expectation of
an error process (called G in Section 3). To finish the proof one has to use the
duality formula for stochastic integrals. Therefore our approach works mostly for
stochastic equations with regular coefficients. For this reason we have to study the
stochastic derivatives of the solution process. It should be emphasized that this ap-
proach applies to regular functionals of the process X and not only to functions of
the value of X at a fixed time t .

Furthermore, the framework introduced here also extends naturally to the case
of irregular functions f . That is, one uses the integration by parts formula of
Malliavin calculus to regularize the function f . We believe that this approach for
the irregular case follows naturally from the regular case. It also explains clearly
that to obtain the result for the irregular case is just a matter of studying the non-
degeneracy of the limiting stochastic process and not the approximating process.
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In order to show what are the elements in each theorem we also consider as
an example a delay type equation which does not have a clear associated PDE
in order to extend the classical proof. The general framework is directly applied,
which gives the weak rate of convergence.

This article is organized as follows. In Section 2 we present the example of a
diffusion process to introduce the methodology. Section 3 contains the main results
in the general framework and an application to the weak rate of convergence of
approximations of delay equations for regular functions. These results are then
extended to irregular functions in Section 4.

2. The case of one-dimensional diffusions. To clarify the methodology, we
consider a smooth function σ and a Wiener process W and a real diffusion process

Xt = x +
∫ t

0
σ(Xs) dWs, t ∈ [0, T ].

Its Euler approximation is given by

X̄t = x +
∫ t

0
σ

(
X̄η(s)

)
dWs, t ∈ [0, T ],

where η(s) = kT /n for kT /n ≤ s < (k + 1)T /n. The error process Y = X − X̄

satisfies

Yt =
∫ t

0

(
σ(Xs) − σ

(
X̄η(s)

))
dWs

=
∫ t

0

∫ 1

0
σ ′(aXs + (1 − a)X̄η(s)

)
da

(
Xs − X̄η(s)

)
dWs;

this can be written as

Yt =
∫ t

0
σ1(s)Ys dWs + Gt, 0 ≤ t ≤ T ,(1)

with

σ1(s) =
∫ 1

0
σ ′(aXs + (1 − a)X̄η(s)

)
da,

Gt =
∫ t

0
σ1(s)

(
X̄s − X̄η(s)

)
dWs =

∫ t

0
σ1(s)σ

(
X̄η(s)

)(
Ws − Wη(s)

)
dWs.

In this simple case we have an explicit expression for Yt :

Yt = Et

∫ t

0
E−1

s

(
dGs − σ1(s) d〈G,W 〉s),

where E is the unique solution of

Et = 1 +
∫ t

0
σ1(s)Es dWs.
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Finally we obtain

Yt = Et

∫ t

0
E−1

s σ1(s)σ
(
X̄η(s)

)(
Ws − Wη(s)

)
dWs

− Et

∫ t

0
E−1

s σ1(s)
2σ

(
X̄η(s)

)(
Ws − Wη(s)

)
ds.

Now let f be a regular function. We are interested in the determination of the rate
of convergence of Ef (XT ) to Ef (X̄T ). We first write the difference

Ef (XT ) − Ef (X̄T ) = E

∫ 1

0
f ′(aXT + (1 − a)X̄T

)
da YT .

Replacing YT by its expression, we obtain with the additional notation Fh =∫ 1
0 f ′(aXT + (1 − a)X̄T ) da,

EFhYT = EFhET

∫ T

0
E−1

s σ1(s)σ
(
X̄η(s)

)(
Ws − Wη(s)

)
dWs

(2)

− EFhET

∫ T

0
E−1

s σ1(s)
2σ

(
X̄η(s)

)(
Ws − Wη(s)

)
ds.

Applying the duality for stochastic integrals, this gives

EFhYT = E

∫ T

0
Ds(F

hET )E−1
s σ1(s)σ

(
X̄η(s)

)(
Ws − Wη(s)

)
ds

− EFhET

∫ T

0
E−1

s σ1(s)
2σ

(
X̄η(s)

)(
Ws − Wη(s)

)
ds,

where D denotes the stochastic derivative. Consequently, the difference Ef (XT )−
Ef (X̄T ) can be written as

Ef (XT ) − Ef (X̄T ) = E

∫ T

0
Uh

s

(
Ws − Wη(s)

)
ds,

with

Uh
s = (

Ds(F
hET ) − FhET σ1(s)

)(
E−1

s σ1(s)σ
(
X̄η(s)

))
.

We finally obtain the rate of convergence by applying once more the duality for
stochastic integrals

Ef (XT ) − Ef (X̄T ) = E

∫ T

0

∫ s

η(s)
DuU

h
s duds.

This last formula makes clear that |Ef (XT ) − Ef (X̄T )| ≤ T/n and leads to an
expansion of Ef (XT ) − Ef (X̄T ) with some additional work (see Section 3).

In other stochastic equations, the error process also satisfies a linear equation
[similar to (1)] but in a more general form; see Section 3.4. The aim of the next
section is to establish a formula (called the duality formula) which will be a sub-
stitute for (2) when the error process Y does not have an explicit expression.
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3. Duality for the error process and application to delay equations.

3.1. General form of the error process equation. Throughout the paper, we
consider a complete probability space (�,F ,P), which is the canonical space
of a d-dimensional Brownian motion with finite horizon W = {(W 1

t , . . . ,Wd
t ),

0 ≤ t ≤ T }. We denote by F = (Ft )0≤t≤T the usual augmentation of the natural
filtration of W . If H is a separable Hilbert space and p ∈ [1,+∞), we denote by
L

p
a ([0, T ];H) the space of all measurable adapted processes X = (Xt)0≤t≤T , with

values in H such that E
∫ T

0 |Xt |p dt < ∞, where | · | denotes the norm on H .
Recall that according to the Itô representation theorem, any H -valued random

variable X such that E|X|2 < ∞ can be written in the following form:

X = E(X) +
d∑

i=1

∫ T

0
J i

s (X)dWi
s ,

where J 1(X), . . . , J d(X) ∈ L2
a([0, T ];H). Note that this defines J 1, . . . , J d as

linear operators mapping L2(FT ;H) into L2
a([0, T ];H). We will often use the

notation J (X) for the vector (J 1(X), . . . , J d(X)) and Z · dW for
∑d

i=1 Zi dWi .
We consider α1, . . . , αd , β , d + 1 linear continuous operators on the Hilbert

space L2
a([0, T ];H). The aim of Section 3.1 is to study the following generaliza-

tion of (1):

Yt =
d∑

i=1

∫ t

0
αi(Y )(s) dWi

s +
∫ t

0
β(Y )(s) ds + Gt, 0 ≤ t ≤ T ,(3)

where G ∈ L2
a([0, T ];H).

In fact, the study of (3) in the space L2
a will not be sufficient (see Section 3.4)

and we will need Lp-estimates for p large enough. For simplicity we state the
assumption as follows.

ASSUMPTION A1. For every p ≥ 2, there exists a positive constant Cp such
that, for all t ∈ [0, T ], Y ∈ L

p
a ([0, T ];H),

E

∫ t

0

(
d∑

i=1

|αi(Y )(s)|2
)p/2

ds + E

∫ t

0
|β(Y )(s)|p ds ≤ CpE

∫ t

0
|Ys |p ds.(4)

PROPOSITION 1. Let Assumption A1 hold and let p ≥ 2. Given G ∈ L
p
a ([0,

T ];H), (3) has a unique solution Y ∈ L
p
a ([0, T ];H) and we have

E

∫ T

0
|Yt |p dt ≤ C̄pE

∫ T

0
|Gt |p dt,

for some constant C̄p depending on Cp (and T ) only.
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PROOF. Let k be a positive real number. We define an equivalent norm ‖ · ‖k

on the space L
p
a ([0, T ];H) by setting

‖Y‖p
k = E

∫ T

0
e−kt |Y(t)|p dt.

Let A and B be the operators defined by

A(Y )(t) =
d∑

i=1

∫ t

0
αi(Y )(s) dWi

s ,(5)

B(Y )(t) =
∫ t

0
β(Y )(s) ds.(6)

We have, using the Burkholder–Davis–Gundy inequality (BDG inequality in the
sequel) and p ≥ 2,

‖A(Y )‖p
k = E

∫ T

0
dt e−kt

∣∣∣∣∣
d∑

i=1

∫ t

0
αi(Y )(s) dWi

s

∣∣∣∣∣
p

≤ KpE

∫ T

0
dt e−kt

(∫ t

0

d∑
i=1

|αi(Y )(s)|2 ds

)p/2

≤ KpE

∫ T

0
dt e−kt tp/2−1

∫ t

0

(
d∑

i=1

|αi(Y )(s)|2
)p/2

ds

≤ KpCpT p/2−1
E

∫ T

0
dt e−kt

∫ t

0
ds |Ys |p,

where the constant Kp comes from the BDG inequality and Cp from Assump-
tion A1. Using Fubini’s theorem, we derive

‖A(Y )‖p
k ≤ KpCpT p/2−1

k
‖Y‖p

k .(7)

A similar argument leads to

‖B(Y )‖p
k ≤ Cp

k
‖Y‖p

k .(8)

It follows that, for k large enough, the operator A + B is a contraction for the
norm ‖ · ‖k . Hence, if I denotes the identity, the operator I − (A + B) (acting
on L

p
a ([0, T ];H)) is invertible and this implies existence and uniqueness for the

solution of (3). �

REMARK 2. Note that if the process G has right-continuous (resp. continuous)
paths, the solution of (3) has a right-continuous (resp. continuous) modification.
This modification will still be denoted by Y .
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3.2. The duality formulae. The purpose of this section is to establish two
duality formulae relating E〈F,YT 〉 to GT for F in L2(�). We first introduce
some notation. We denote by 〈·, ·〉 the inner product on H . The operators
A∗ :L2

a([0, T ];H) → L2
a([0, T ];H) and B∗ :L2

a([0, T ];H) → L2
a([0, T ];H) are

the adjoints of the operators A and B defined by (5) and (6). If we set α(Y ) =
(α1(Y ), . . . , αd(Y )), we can view α as a linear operator mapping the Hilbert space
L2

a([0, T ];H) into L2
a([0, T ];Hd). The adjoint operator α∗ maps L2

a([0, T ];Hd)

into L2
a([0, T ];H). The following proposition relates the operators A∗ and B∗ to

α∗ and β∗.

PROPOSITION 3. The operators A∗ and B∗ are given by

A∗(Z)(t) =
d∑

i=1

α∗
i

(
J i

(∫ T

0
Zs ds

))
(t)

= α∗
(
J

(∫ T

0
Zs ds

))
(t),

B∗(Z)(t) = β∗
(

E

(∫ T

·
Zs ds

∣∣∣F·
))

(t).

PROOF. For all Y , Z ∈ L2
a([0, T ];H), we have

E

∫ T

0
〈Zt,A(Y )(t)〉dt = E

d∑
i=1

∫ T

0

〈
Zt,

∫ t

0
αi(Y )(s) dWi

s

〉
dt

=
d∑

i=1

∫ T

0
E

∫ t

0
〈J i

s (Zt ), αi(Y )(s)〉ds dt

= E

∫ T

0

(∫ T

s

d∑
i=1

〈J i
s (Zt ), αi(Y )(s)〉dt

)
ds.

Note that, since Zt is Ft -measurable, we have J i
s (Zt ) = 0 for t < s. Hence, using

the linearity of the operators J i ,

E

∫ T

0
〈Zt,A(Y )(t)〉dt = E

∫ T

0

(∫ T

0

d∑
i=1

〈J i
s (Zt ), αi(Y )(s)〉dt

)
ds

= E

∫ T

0

d∑
i=1

〈
J i

s

(∫ T

0
Zt dt

)
, αi(Y )(s)

〉
ds

= E

∫ T

0

〈
d∑

i=1

α∗
i

(
J i

(∫ T

0
Zt dt

))
(s), Y (s)

〉
ds,
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which proves the formula for A∗. We proceed similarly with B:

E

∫ T

0
〈Zt,B(Y )(t)〉dt = E

∫ T

0

〈
Zt,

∫ t

0
β(Y )(s) ds

〉
dt

= E

∫ T

0

〈∫ T

s
Zt dt, β(Y )(s)

〉
ds

= E

∫ T

0

〈
β∗

(
E

(∫ T

·
Zt dt

∣∣∣F·
))

(s), Y (s)

〉
ds. �

The next theorem states the two basic duality formulae. In order to relate
E〈�,YT 〉 to GT , we need a formula for E

∫ T
0 〈Ft , Yt 〉dt when (Ft )0≤t≤T ∈

L2
a([0, T ];H).

THEOREM 4. Let G ∈ L2
a([0, T ];H) and let Y be the solution of (3).

1. If F = (Ft )0≤t≤T ∈ L2
a([0, T ];H), we have

E

∫ T

0
〈Ft , Yt 〉dt = E

∫ T

0
〈θt ,Gt 〉dt,

with θ = (I − A∗ − B∗)−1(F ).
2. If G has a continuous modification, then Y has a continuous modification

(which we still denote by Y ), and if � is an FT -measurable square integrable
random variable with values in H , we have

E〈�,YT 〉 = E〈�,GT 〉 + E

∫ T

0
〈θ̂t ,Gt 〉dt,

with

θ̂ = (I − A∗ − B∗)−1[α∗(J (�)) + β∗(E(�|F·))].

PROOF. The first part of the theorem comes from the equality Y = (I − A −
B)−1(G) and standard duality theory. For the second part, it is clear from (3) that if
t �→ Gt is continuous, the process Y has a continuous modification. We also have

E〈�,YT 〉 = E〈�,GT 〉 + E

〈
�,

∫ T

0
α(Y )(s) · dWs +

∫ T

0
β(Y )(s) ds

〉
.

Now

E

〈
�,

∫ T

0
α(Y )(s) · dWs

〉
= E

∫ T

0

d∑
i=1

〈J i
s (�),αi(Y )(s)〉ds

and

E

〈
�,

∫ T

0
β(Y )(s) ds

〉
= E

∫ T

0
〈E(�|Fs), β(Y )(s)〉ds.
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Therefore

E〈�,YT 〉 = E〈�,GT 〉 + E

∫ T

0
〈Fs,Ys〉ds,

with Ft = α∗(J (�))(t) + β∗(E(�|F·))(t). And the result follows from the first
part. �

REMARK 5. The processes θ and θ̂ given by Theorem 4 can also be character-
ized in connection with backward stochastic differential equations (BSDEs). First
note that θ satisfies the dual equation

θ = F + A∗(θ) + B∗(θ),(9)

which, using Proposition 3, can be written

θ = F + α∗
(
J

(∫ T

0
θs ds

))
+ β∗

(
E

(∫ T

·
θs ds

∣∣∣F·
))

.(10)

Now, observe that, given θ ∈ L2
a([0, T ];H) and � ∈ L2(FT ;H), the pair of

processes (Ỹ , Z̃), defined by

Ỹt = E

(
� +

∫ T

t
θs ds

∣∣∣Ft

)
and Z̃t = Jt

(
� +

∫ T

0
θs ds

)
,

is the unique solution of the following BSDE:

dỸt = −θt dt + Z̃t · dWt,

ỸT = �.

It follows that, if θ satisfies (10), we have

θt = Ft + α∗(Z)(t) + β∗(Y )(t),

where the pair (Y,Z) solves the following BSDE:

dYt = −(
Ft + α∗(Z)(t) + β∗(Y )(t)

)
dt + Zt · dWt,

YT = 0.

Similarly, the process θ̂ in Theorem 4 is given by

θ̂t = α∗(Ẑ)(t) + β∗(Ŷ )(t),

where the pair (Ŷ , Ẑ) solves the following BSDE:

dŶt = −(
α∗(Ẑ)(t) + β∗(Ŷ )(t)

)
dt + Ẑt · dWt,

ŶT = �.
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3.3. Estimates for the stochastic derivatives of the dual equation. In this sec-
tion we study the dual equation (9). We will establish estimates for the derivatives
of the process θ involved in the duality formulae. These estimates will be useful for
the study of the weak rate of convergence of the Euler scheme for the computation
of expectations of regular functions (see Section 3.4). Under Assumption A1, we
know from Proposition 1 that the operator I −A−B is invertible when considered
on the space L

p
a ([0, T ];H) for p ≥ 2. The operators A∗ and B∗ can be viewed as

bounded linear operators on L
p
a ([0, T ];H) for p ≤ 2, and it follows that the oper-

ator (I − A∗ − B∗) is invertible on the space L
p
a ([0, T ];H), for p ≤ 2.

In other words, we may assert that, given F ∈ L
p
a ([0, T ];H) (with 1 < p ≤ 2),

there exists a unique θ ∈ L
p
a ([0, T ];H), satisfying

θ = F + A∗(θ) + B∗(θ).

Using Proposition 3, we have

θ = F + α∗
(
J

(∫ T

0
θs ds

))
+ β∗

(
E

(∫ T

·
θs

∣∣∣F·
))

.(11)

We want to differentiate this equation, in order to estimate the Malliavin derivatives
of θ . We will need some regularity assumptions on the operators α and β . For the
basic theory of Sobolev spaces on Wiener space and for standard notation, we refer
the reader to [13].

We denote by D the derivative operator. If X is a simple functional with values
in H , DX is a random variable with values in L2([0, T ];Hd) and can be viewed
as a nonadapted process (DtX)0≤t≤T . We will say that a functional (or random
variable) X with values in H is smooth, if it can be written as a finite sum of
multiple Wiener integrals with continuous deterministic integrands. Note that if X

is smooth, the process (DtX) has a right-continuous modification. We denote by
Sa([0, T ];H) the space of all adapted processes (Yt )0≤t≤T with values in H , with
continuous paths such that, for each t ∈ [0, T ], the random variable Yt is smooth
in the previous sense. The space Sa([0, T ];H) is dense in L

p
a ([0, T ];H) for all

p ∈ [1,+∞). Our regularity assumptions on α and β can now be formulated as
follows.

ASSUMPTION A2. For γ = α and γ = β and for all Z ∈ Sa([0, T ];H), the
process γ ∗(Z) is in D

2,2 and, for all u, v ∈ [0, T ], there exist operators denoted by
Duγ

∗, D2
uvγ

∗, such that, for Z ∈ Sa([0, T ];H),

Du(γ
∗(Z)) = (Duγ

∗)(Z) + γ ∗(DuZ),

D2
uv(γ

∗(Z)) = (D2
uvγ

∗)(Z) + (Duγ
∗)(DvZ)

+ (Dvγ
∗)(DuZ) + γ ∗(D2

uvZ).
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Moreover, these operators satisfy the following estimate, for all q1, q2 with 1 ≤
q1 < q2 ≤ 2: (

E

∫ T

0
|Duγ

∗(Z)(t)|q1 + |D2
uvγ

∗(Z)(t)|q1 dt

)1/q1

(12)

≤ Cq1,q2

(
E

∫ T

0
|Zt |q2 dt

)1/q2

,

where the constants Cq1,q2 do not depend on u, v (or Z).

The estimate (12) for α and β allows us to extend the operators Duα
∗, D2

uvα
∗,

Duβ
∗, D2

uvβ
∗ as continuous operators from L

q2
a ([0, T ];H) into L

q1
a ([0, T ];H),

for 1 ≤ q1 < q2 ≤ 2. Note that in typical examples [see Section 3.4, (21), (22)],
the operators Duα

∗, Duβ
∗ are not bounded from L

p
a ([0, T ];H) into itself. In the

sequel, it will be convenient to use the following notation. For a random variable
Z in D

2,2, and u, v ∈ [0, T ], let

n(Z,u, v) = |Z| + |DuZ| + |DvZ| + |D2
uvZ|.

PROPOSITION 6. Let Assumptions A1 and A2 hold. Let F ∈ L2
a([0, T ];H).

We assume that F has a modification Ft such that, for each t ∈ [0, T ], Ft ∈ D
2,2

and sup0≤u,v≤T E
∫ T

0 n(Ft , u, v)2 dt < ∞. Then, the solution of (11) has a modifi-
cation θt satisfying, for 1 ≤ p < q ≤ 2,(

E

∫ T

0
np(θt , u, v) dt

)1/p

≤ Kp,q

(
E

∫ T

0
nq(Ft , u, v) dt

)1/q

,

where the constants Kp,q depend on T and the constants Cp and Cq1,q2 in As-
sumptions A1 and A2 (and not on u, v or F ).

For the proof of Proposition 6, we will need the following commutation rela-
tions between the operators J and the derivative and conditional expectation op-
erators. We omit the proof which involves only classical arguments of analysis on
Wiener space.

LEMMA 7. For all X ∈ D
1,2(H), we have

Du(J (X)(v)) = J (Du(X))(v)1{u≤v} and

Du(E(X|Fv)) = E(Du(X)|Fv)1{u≤v}, dudv a.e.

PROOF OF PROPOSITION 6. The formal differentiation of (11) gives

Duθt = DuFt + (Duα
∗)

(
J

(∫ T

0
θs ds

))
(t) + (Duβ

∗)
(

E

(∫ T

·
θs ds

∣∣∣F·
))

(t)

+ α∗
(
Du

(
J

(∫ T

0
θs ds

)))
(t) + β∗

(
Du

(
E

(∫ T

·
θs ds

∣∣∣F·
)))

(t).
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Using Lemma 7 and the linearity of Du, we get

Duθt = DuFt + (Duα
∗)

(
J

(∫ T

0
θs ds

))
(t)

+ (Duβ
∗)

(
E

(∫ T

·
θs ds

∣∣∣F·
))

(t)

(13)

+ α∗
(
1[u,T ]J

(∫ T

0
Duθs ds

))
(t)

+ β∗
(
1[u,T ]E

(∫ T

·
Duθs ds

∣∣∣F·
))

(t).

Now let Iu,T be the operator on L2
a([0, T ];H) defined by

Iu,T (Y ) = 1[u,T ]Y.

Clearly, Iu,T is a self-adjoint operator and defines an operator with norm 1 on
L

p
a ([0, T ];H) for every p ∈ [1,+∞). We have

α∗ ◦ Iu,T = (Iu,T ◦ α)∗ and β∗ ◦ Iu,T = (Iu,T ◦ β)∗,

and the operators Iu,T ◦ α and Iu,T ◦ β satisfy Assumption A1 with the same con-
stants Cp as α and β . Now let Au and Bu be the operators defined on L

p
a ([0, T ];H)

(p ≥ 2) by

Au(Y )(t) =
d∑

i=1

∫ t

0
1[u,T ](s)αi(Y )(s) dWi

s ,

Bu(Y )(t) =
∫ t

0
1[u,T ](s)β(Y )(s) ds.

Using Proposition 3, we can rewrite (13) as

Duθ = φu + (A∗
u + B∗

u)(Duθ),

where φu is the adapted process defined by

φu(t) = DuFt + (Duα
∗)

(
J

(∫ T

0
θs ds

))
(t)

+ (Duβ
∗)

(
E

(∫ T

·
θs ds

∣∣∣F·
))

(t).

It follows from Proposition 1 and the properties of the operators Iu,T ◦ α and
Iu,T ◦ β that, for p ∈ [1,2],

E

∫ T

0
|Duθt |p dt ≤ CpE

∫ T

0
|φu(t)|p dt,
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where Cp does not depend on u. On the other hand, we deduce from Assump-
tion A2 and the assumptions on F that, for 1 ≤ p < q ≤ 2,(

E

∫ T

0
|φu(t)|p dt

)1/p

≤ Cp

(
E

∫ T

0
|DuFt |p dt

)1/p

+ Cp,q

{(
E

∫ T

0

∣∣∣∣Jt

(∫ T

0
θs ds

)∣∣∣∣
q

dt

)1/q

+
(

E

∫ T

0

∣∣∣∣E
(∫ T

t
θs ds

∣∣∣Ft

)∣∣∣∣
q

dt

)1/q}
,

where here again the constants Cp and Cp,q do not depend on u. Here we have used
the notation Jt (Z) for J (Z)(t). We have, using Jensen’s and Hölder’s inequalities,(

E

∫ T

0

∣∣∣∣E
(∫ T

t
θs ds

∣∣∣Ft

)∣∣∣∣
q

dt

)1/q

≤
(

E

∫ T

0

∣∣∣∣
∫ T

t
θs ds

∣∣∣∣
q

dt

)1/q

≤ T

(
E

∫ T

0
|θt |q dt

)1/q

.

On the other hand, using 1 < q ≤ 2 and the BDG inequality, we have(
E

∫ T

0

∣∣∣∣Jt

(∫ T

0
θs ds

)∣∣∣∣
q

dt

)1/q

≤ T 1/q−1/2
(

E

(∫ T

0

∣∣∣∣Jt

(∫ T

0
θs ds

)∣∣∣∣
2

dt

)q/2)1/q

≤ T 1/q−1/2Cq

(
E

∣∣∣∣
∫ T

0
θs ds

∣∣∣∣
q)1/q

≤ T 1/2Cq

(
E

∫ T

0
|θs |q ds

)1/q

.

Recall that θ = (I − A∗ − B∗)−1(F ), so that(
E

∫ T

0
|θt |q dt

)1/q

≤ Cq

(
E

∫ T

0
|Ft |q dt

)1/q

.

Hence, we have, for 1 ≤ p < q ≤ 2,(
E

∫ T

0
|Duθt |p dt

)1/p

≤ Cp

(
E

∫ T

0
|DuFt |p dt

)1/p

+ Cp,q

(
E

∫ T

0
|Ft |q dt

)1/q

,

where the constants Cp and Cp,q depend on T but not on u. We can now differen-
tiate (13) with respect to v and derive in a similar manner the estimate(

E

∫ T

0
|D2

uvθt |p dt

)1/p

≤ Cp

(
E

∫ T

0
|D2

uvFt |p dt

)1/p

+ Cp,q

(
E

∫ T

0
(|Ft | + |DuFt | + |DvFt |)q dt

)1/q

.
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Note that in order to justify the formal differentiations, it suffices to use an iterating
procedure of the form θ0 = F and θj+1 = F + (A∗ + B∗)(θj ). The regularity of
θj carries over to θj+1 and we have convergence of θj toward θ , together with the
derivatives, with the suitable norms. �

For the application of our methodology to numerical schemes, we will need
to consider families of operators (αh,βh)h≥0 and introduce some additional no-
tation. Let A1,2 denote the space of all operators (α,β) satisfying Assump-
tionsA1 and A2. For (α,β) ∈ A1,2, let Cp(α,β) [resp. Cq1,q2(α,β)] be the small-
est constant for which (4) [resp. (12)] holds. The following proposition follows
easily from Proposition 6.

PROPOSITION 8. Assume (αh,βh)h≥0 is a family of operators in A1,2, satis-
fying, for all p ∈ [2,+∞) and for all q1, q2 with 1 ≤ q1 < q2 ≤ 2,

lim
h→0

Cp(αh − α,βh − β) = 0 and lim
h→0

Cq1,q2(α
h − α,βh − β) = 0.

If (F h)h≥0 is a family of adapted processes satisfying sup0≤u,v≤T E
∫ T

0 n(Fh
t ,

u, v)2 dt < ∞ and

lim
h→0

sup
0≤u,v≤T

E

∫ T

0
n(Fh

t − F 0
t , u, v)2 dt = 0,

then the processes θh [defined by θh = (I − A∗
h − B∗

h)−1(F h)] satisfy

∀p ∈ [1,2) lim
h→0

sup
0≤u,v≤T

E

∫ T

0
n(θh

t − θ0
t , u, v)p dt = 0.

3.4. Application to the Euler approximation of delay equations: the regular
case. In this section we assume to simplify the notation that all processes take
values in R. We are interested in the expansion of Ef (XT ) − Ef (X̄T ) where the
process (Xt)t∈[−r,T ] solves the stochastic delay equation

dXt = σ

(∫ 0

−r
Xt+s dν(s)

)
dWt + b

(∫ 0

−r
Xt+s dν(s)

)
dt, t ≥ 0,

Xs = ξs, s ∈ [−r,0],
where r > 0, ξ ∈ C1([−r,0],R) and ν is a finite measure.

We denote by X̄ the following Euler approximation of (Xt)t∈[−r,T ] with step
h = r/n:

dX̄t = σ

(∫ 0

−r
X̄η(t)+η(s) dν(s)

)
dWt + b

(∫ 0

−r
X̄η(t)+η(s) dν(s)

)
dt, t ≥ 0,

X̄s = ξs, s ∈ [−r,0],
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with η(s) = [ns/r]
n/r

, where [t] stands for the entire part of t . We assume that the

functions, f , σ and b are in C3
b . Note that if ν is the Dirac measure at 0, we have

a standard diffusion.
For existence, uniqueness and moment estimates of solutions of stochastic delay

equations in the above form, we refer to [12]. Consistency of the Euler scheme
for delay equations in the case where ν is a Dirac mass has been studied in [9]
through an extension of the PDE method. An infinite-dimensional extension of the
PDE method is used in [4] but their result is limited to drift coefficients linearly
dependent on the past and nondelayed diffusion coefficient.

Our expansion result is derived from the duality formula and the following
lemma.

LEMMA 9. Let (Uh
s ) be a family of FT -measurable real-valued processes,

such that ∀ s ∈ [0, T ], ∀h ∈ [0,1], Uh
s ∈ D

1,2. We assume that, for some p > 1, we
have

lim
h→0

E

∫ T

0
|Uh

s − U0
s |p ds = 0

and

lim
h→0

∫ 0

−r

∫ T

0
sup

v∈[η(s)+η(u),s+u]
‖DvU

h
s − Ds+uU

0
s ‖p1η(s)+η(u)≥0 ds dν(u) = 0.

Then

E

∫ T

0
Uh

s

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) ds = hC(U0) + Ih(U0) + o(h),

where

C(U0) = 1
2

∫ 0

−r
E

∫ T

0

[
U0

s

(
b̃0
s+u1s+u≥0 + ξ ′

s+u1s+u<0
)

+ σ̃ 0
s+uDs+uU

0
s 1s+u≥0

]
ds dν(u),

Ih(U0) =
∫ 0

−r
E

∫ T

0

[
U0

s

(
b̃0
s+u1s+u≥0 + ξ ′

s+u1s+u<0
)

+ σ̃ 0
s+uDs+uU

0
s 1s+u≥0

]
ds

(
u − η(u)

)
dν(u),

b̃0
t = b

(∫ 0

−r
Xt+v dν(v)

)
and σ̃ 0

t = σ

(∫ 0

−r
Xt+v dν(v)

)
.

REMARK. Observe that |Ih(U0)| ≤ hC. Moreover, when ν is a Dirac mass
at −r a good discretization of the time interval gives Ih(U0) = 0. When ν is an
absolutely continuous measure, we obtain Ih(U0) = hC(U0) + o(h).



WEAK APPROXIMATION OF SDES 1139

PROOF OF LEMMA 9. We have

X̄s+u − X̄η(s)+η(u) =
(∫ s+u

η(s)+η(u)
σ̃ h

η(t) dWt +
∫ s+u

η(s)+η(u)
b̃h
η(t) dt

)
1η(s)+η(u)≥0

+ (
ξs+u − ξη(s)+η(u)

)
1s+u<0

+ (
ξ0 − ξη(s)+η(u)

)
1η(s)+η(u)≤0<s+u,

where

σ̃ h
t = σ

(∫ 0

−r
X̄t+η(v) dν(v)

)
(14)

and

b̃h
t = b

(∫ 0

−r
X̄t+η(v) dν(v)

)
.(15)

This gives

E

∫ T

0
Uh

s

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) ds

=
∫ 0

−r
E

∫ T

0
Uh

s 1η(s)+η(u)≥0

∫ s+u

η(s)+η(u)
σ̃ h

η(t) dWt ds dν(u)

+
∫ 0

−r
E

∫ T

0
Uh

s 1η(s)+η(u)≥0

∫ s+u

η(s)+η(u)
b̃h
η(t) dt ds dν(u)

+
∫ 0

−r
E

∫ T

0
Uh

s

(
ξs+u − ξη(s)+η(u)

)
1s+u<0 ds dν(u)

+
∫ 0

−r
E

∫ T

0
Uh

s

(
ξ0 − ξη(s)+η(u)

)
1η(s)+η(u)≤0<s+u ds dν(u).

By duality, we obtain for the first term∫ 0

−r
E

∫ T

0
Uh

s 1η(s)+η(u)≥0

∫ s+u

η(s)+η(u)
σ̃ h

η(t) dWt ds dν(u)

=
∫ 0

−r
E

∫ T

0
1η(s)+η(u)≥0

∫ s+u

η(s)+η(u)
DtU

h
s σ̃ h

η(t) dt ds dν(u).

Since η(s) + η(u) ≤ 0 < s + u implies −u < s < −u + 2h, one can easily verify
that ∫ 0

−r
E

∫ T

0
Uh

s

(
ξ0 − ξη(s)+η(u)

)
1η(s)+η(u)≤0<s+u ds dν(u) = o(h).

Now recall that if g is an integrable function on [0, T ], we have
∫ T

0 g(s)(s −
η(s)) ds = h

2

∫ T
0 g(s) ds + o(h). It follows that in order to derive the expansion
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stated in the lemma, it is enough to prove that when h tends to 0,

1

h

∣∣∣∣
∫ 0

−r
E

∫ T

0
U

h

s

∫ s+u

η(s)+η(u)
b̃h
η(t) dt ds dν(u)

(16)

−
∫ 0

−r
E

∫ T

0
U 0

s b̃
0
s+u
s+u ds dν(u)

∣∣∣∣ → 0,

1

h

∣∣∣∣
∫ 0

−r
E

∫ T

0

∫ s+u

η(s)+η(u)
DtU

h
s σ̃

h
η(t) dt ds dν(u)

(17)

−
∫ 0

−r
E

∫ T

0
σ̃ 0

s+uDs+uU
0
s
s+u ds dν(u)

∣∣∣∣ → 0,

1

h

∣∣∣∣
∫ 0

−r
E

∫ T

0
Uh

s

∫ s+u

η(s)+η(u)
ξ ′
t dt 1s+u<0 ds dν(u)

(18)

−
∫ 0

−r
E

∫ T

0
U0

s ξ ′
s+u1s+u<0
s+u ds dν(u)

∣∣∣∣ → 0,

where 
s+u = s + u − η(s) − η(u), U
h

s = Uh
s 1η(s)+η(u)≥0 and U 0

s = U0
s 1s+u≥0.

Using Hölder’s inequality, the left-hand side of (16) is bounded by∫ T

0
‖Uh

s − U0
s ‖p ds sup

t
‖b̃h

t ‖q

+
∫ T

0
‖U0

s ‖p ds sup
u,s

sup
t∈[η(s)+η(u),s+u]

∥∥b̃h
η(t) − b̃0

s+u

∥∥
q

+ sup
u

∫ T

0
‖Uh

s ‖p1η(s)+η(u)≤0≤s+u ds sup
t

‖b̃h
t ‖q,

with 1
p

+ 1
q

= 1. Observe that supu

∫ T
0 ‖Uh

s ‖p1η(s)+η(u)≤0≤s+u ds supt ‖b̃h
t ‖q =

o(h). In the same way the left-hand side of (17) is bounded by∫ 0

−r

∫ T

0
sup

t∈[η(s)+η(u),s+u]
‖DtU

h
s − Ds+uU

0
s ‖p1η(s)+η(u)≥0 ds dν(u) sup

t
‖σ̃ h

t ‖q

+
∫ 0

−r

∫ T

0
‖Ds+uU

0
s ‖p ds dν(u) sup

u,s
sup

t∈[η(s)+η(u),s+u]
∥∥σ̃ h

η(t) − σ̃ 0
s+u

∥∥
q

+ o(h).

Similar bounds hold for the left-hand side of (18) and we obtain the result of
Lemma 9 as soon as

sup
h>0,s∈[0,T ]

‖b̃h
s ‖q < ∞ and sup

h>0,s∈[0,T ]
‖σ̃ h

s ‖q < ∞,

sup
u,s

sup
t∈[η(s)+η(u),s+u]

∥∥σ̃ h
η(t) − σ̃ 0

s+u

∥∥
q → 0
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and

sup
u,s

sup
t∈[η(s)+η(u),s+u]

∥∥b̃h
η(t) − b̃0

s+u

∥∥
q → 0,

for all q ∈ [1,+∞). This can be proved as in [6]. �

The following theorem can be viewed as an analogue of the classical expansion
of the error for diffusions (see [15]).

THEOREM 10. We have, if f ∈ C3
b ,

Ef (XT ) − Ef (X̄T ) = hCf + Ih(f ) + o(h),

where Cf = C(U0) and Ih(f ) = Ih(U0) are defined as in Lemma 9 with

U0
s = σ ′

(∫ 0

−r
Xs+u dν(u)

)
Dsf

′(XT ) + b′
(∫ 0

−r
Xs+u dν(u)

)
f ′(XT )

+ σ ′
(∫ 0

−r
Xs+u dν(u)

)
Ds

(∫ T

0
θt dt

)
+ b′

(∫ 0

−r
Xs+u dν(u)

)∫ T

s
θt dt

and θ is the unique solution of

θt = α∗
(
J

(
f ′(XT ) +

∫ T

0
θs ds

))
(t) + β∗

(
E

(
f ′(XT ) +

∫ T

·
θs ds

∣∣∣F·
))

(t)

with

α∗(X)(t) = E

(∫ 0

max(t−T ,−r)
σ ′

(∫ 0

−r
Xt−u+v dν(v)

)
Xt−u dν(u)

∣∣∣Ft

)
,

β∗(X)(t) = E

(∫ 0

max(t−T ,−r)
b′

(∫ 0

−r
Xt−u+v dν(v)

)
Xt−u dν(u)

∣∣∣Ft

)
.

PROOF. We have

Ef (XT ) − Ef (X̄T ) = E

∫ 1

0
f ′(aXT + (1 − a)X̄T

)
da(XT − X̄T ).

Let Fh = ∫ 1
0 f ′(aXT + (1 − a)X̄T ) da and Yt = Xt − X̄t . We have

b

(∫ 0

−r
Xs+u dν(u)

)
− b

(∫ 0

−r
X̄η(s)+η(u) dν(u)

)

= bh
1(s)

∫ 0

−r

(
Xs+u − X̄η(s)+η(u)

)
dν(u)

and

σ

(∫ 0

−r
Xs+u dν(u)

)
− σ

(∫ 0

−r
X̄η(s)+η(u) dν(u)

)

= σh
1 (s)

∫ 0

−r

(
Xs+u − X̄η(s)+η(u)

)
dν(u),
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where

σh
1 (s) =

∫ 1

0
σ ′

(
a

∫ 0

−r
Xs+u dν(u) + (1 − a)

∫ 0

−r
X̄η(s)+η(u) dν(u)

)
da,(19)

bh
1(s) =

∫ 1

0
b′

(
a

∫ 0

−r
Xs+u dν(u) + (1 − a)

∫ 0

−r
X̄η(s)+η(u) dν(u)

)
da.(20)

We deduce that Yt is a solution of

dYt = αh(Y )(t) dWt + βh(Y )(t) dt + dGh
t , t ≥ 0,

Ys = 0, s ∈ [−r,0],
with

αh(Y )(s) = σh
1 (s)

∫ 0

−r
Ys+u dν(u),(21)

βh(Y )(s) = bh
1(s)

∫ 0

−r
Ys+u dν(u),(22)

Gh
t =

∫ t

0
σh

1 (s)

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) dWs

+
∫ t

0
bh

1(s)

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) ds.

The operators αh and βh satisfy Assumption A1 uniformly with respect to h. The
adjoint operators αh∗ and βh∗ are given by

αh∗(X)(s) = E

(∫ 0

max(s−T ,−r)
σ h

1 (s − u)Xs−u dν(u)
∣∣∣Fs

)
,

βh∗(X)(s) = E

(∫ 0

max(s−T ,−r)
bh

1(s − u)Xs−u dν(u)
∣∣∣Fs

)
.

They satisfy Assumption A2 uniformly in h. Note that the estimates on Duα
h∗,

Duβ
h∗, and so on, follow from the boundedness of the derivatives of b and σ and

the following estimates (see [6]):

∀p ∈ [1,+∞) sup
0≤u,v,t≤T

Enp(Xt , u, v) < ∞ and

sup
h>0

sup
0≤u,v,t≤T

Enp(X̄t , u, v) < ∞.

Using Theorem 4, we obtain

Ef (XT ) − Ef (X̄T ) = EFhYT = EFhGh
T + E

∫ T

0
θh
s Gh

s ds,
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with

θh = (
I − (Ah)∗ − (Bh)∗

)−1[αh∗(J (Fh)) + βh∗(E(F h|F·))]
But

EFhGh
T = E

∫ T

0
DsF

hσh
1 (s)

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) ds

+ E

∫ T

0
Fhbh

1(s)

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) ds

and

E

∫ T

0
θh
s Gh

s ds = E

∫ T

0
Ds

(∫ T

0
θh
t dt

)
σh

1 (s)

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) ds

+ E

∫ T

0

(∫ T

s
θh
t dt

)
bh

1(s)

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) ds.

We end the proof applying Lemma 9 with

Uh
s = DsF

hσh
1 (s) + Fhbh

1(s) + Ds

(∫ T

0
θh
t dt

)
σh

1 (s) + bh
1(s)

∫ T

s
θh
t dt.

Since limh sup0≤u,v,t≤T Enp(Xt − X̄t , u, v) = 0 for p ≥ 1, the convergence of Uh
s

and its derivatives follows from Proposition 8. �

4. The irregular case.

4.1. Duality for the derivatives of Y . In this section we want to establish dual-
ity formulae similar to those in Theorem 4, for the derivatives of the solution of (3).
This is motivated by the treatment of irregular functions of the Euler scheme,
which will involve integrations by parts (see Section 4.2).

We will need regularity assumptions on the operators α and β . We will assume
that for Z ∈ Sa([0, T ];H), α(Z) and β(Z) are in D

∞ and that we can define
recursively the operators Dk

s1···skα and Dk
s1···skβ so that, for k > 1 and s1, . . . , sk ∈

[0, T ],
Ds1

((
Dk−1

s2···skα
)
(Z)

) = (
Dk

s1···skα
)
(Z) + (

Dk−1
s2···skα

)(
Ds1Z

)
,

Ds1

((
Dk−1

s2···skβ
)
(Z)

) = (
Dk

s1···skβ
)
(Z) + (

Dk−1
s2···skβ

)(
Ds1Z

)
.

Note that Dk
s1···skZt can be viewed as an element of Hdk

, with coordinates D
l1···lk
s1···sk ,

where the li superscripts refer to the coordinates of W with respect to which dif-
ferentiation occurs (li = 1, . . . , d). We now introduce the following assumption.

ASSUMPTION A3. For γ = α and γ = β , the operators D
j
s1···sj γ defined

above are bounded from L
q
a([0, T ];H) into L

p
a ([0, T ];Hdj

) for 2 ≤ p < q < ∞.
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Moreover, their adjoints satisfy the following estimates. For all positive integers
j and for 1 ≤ p < q ≤ 2, there exists a positive constant Cp,q,j such that for all
u, v, s1, . . . , sj ∈ [0, T ], we have∥∥(

Dj
s1···sj γ

)∗∥∥
q→p + ∥∥Du

(
Dj

s1···sj γ
)∗∥∥

q→p + ∥∥D2
uv

(
Dj

s1···sj γ
)∗∥∥

q→p ≤ Cp,q,j ,

where ‖ · ‖q→p stands for the operator norm from L
q
a into L

p
a , and the operators

Du(D
j
s1···sj γ )∗, D2

uv(D
j
s1···sj γ )∗ are defined in the same way as Duγ

∗ in Assump-
tion A2.

Recall the notation

n(Z,u, v) = |Z| + |DuZ| + |DvZ| + |D2
uvZ|.

THEOREM 11. Let Assumptions A1, A2 and A3 hold. Let G = (Gt)0≤t≤T

be a continuous adapted process with values in H , satisfying Gt ∈ D
∞, for all

t ∈ [0, T ]. Then the solution of (3) satisfies Yt ∈ D
∞, for t ∈ [0, T ].

Moreover, given an adapted process F = (Ft )0≤t≤T with values in

L2([0, T ]k;Hdk
) such that Ft ∈ D

2,2 for t ∈ [0, T ], and

sup
0≤u,v,s1,...,sk≤T

(
E

∫ T

0
n2(

Ft(s1, . . . , sk
)
, u, v) dt

)1/2
< ∞,

there exist adapted processes θ(0), . . . , θ (j), . . . , θ (k), with values in H, . . . ,

Lp([0, T ]j ;Hdj
), . . . ,Lp([0, T ]k;Hdk

) respectively for all p ∈ [1,2), such that

E

∫ T

0
〈Ft ,D

kYt 〉dt =
k∑

j=0

E

∫ T

0

〈
θ

(j)
t ,DjGt

〉
dt,(23)

and, for 1 ≤ p < q ≤ 2, j = 0, . . . , k,

sup
u,v,s1,...,sj∈[0,T ]

(
E

∫ T

0
np(

θ
(j)
t (s1, . . . , sj ), u, v

)
dt

)1/p

(24)

≤ Cp,q,k sup
u,v,s1,...,sk∈[0,T ]

(
E

∫ T

0
nq(

Ft(s1, . . . , sk), u, v
)
dt

)1/q

,

where the constants Cp,q,k do not depend on F .

COROLLARY 12. In addition to the assumptions of Theorem 11, we assume
that the process (DkGt) is right-continuous with respect to t for k ≥ 1. Then, if Y is
the solution of (3), the process (DkYt )0≤t≤T has a right-continuous modification.
Moreover, given a random variable � with values in L2([0, T ]k;Hdk

), such that
� ∈ D

2,2 and

sup
u,v,s1,...,sk∈[0,T ]

En2(
�(s1, . . . , sk), u, v

)
< ∞,
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there exist adapted processes θ̂ (0), . . . , θ̂ (j), . . . , θ̂ (k), with values in H, . . . ,

Lp([0, T ]j ;Hdj
), . . . ,Lp([0, T ]k;Hdk

) respectively for all p ∈ [1,2), such that

E〈�,DkYT 〉 = E〈�,DkGT 〉 +
k∑

j=0

E

∫ T

0

〈
θ̂

(j)
t ,DjGt

〉
dt,(25)

and, for 1 ≤ p < q ≤ 2, j = 0, . . . , k,

sup
u,v,s1,...,sj∈[0,T ]

(
E

∫ T

0
np(

θ̂
(j)
t (s1, . . . , sj ), u, v

)
dt

)1/p

(26)
≤ Cp,q,k sup

u,v,s1,...,sk∈[0,T ]
(
Enq(

�(s1, . . . , sk), u, v
))1/q

,

where the constants Cp,q,k do not depend on �.

PROOF. By differentiating (3) k times, we get

DkYt = DkGt +
∫ t

0
Dk(α(Y )(s)) · dWs +

∫ t

0
Dk(β(Y )(s)) ds + I

(k)
t ,

with

I
(k)
t (s1, . . . , sk) =

k∑
i=1

Dk−1
s1···ŝi ···sk (α(Y )(si))1{si≤t},

where the notation ŝi means that the variable si is omitted. More precisely, recall
that Dk

s1···skYt can be viewed as an element of Hdk
, with coordinates D

l1···lk
s1···sk , where

the li superscripts refer to the coordinates of W with respect to which differentia-
tion occurs. With this more precise notation, we have

I
l1···lk
t (s1, . . . , sk) =

k∑
i=1

D
l1···l̂i ···lk
s1···ŝi ···sk

(
αli (Y )(si)

)
1{si≤t}.

We can write

Dk
s1···skYt = G

(k)
t (s1, . . . , sk) +

∫ t

0
α

(
Dk

s1···skY
)
(s) · dWs

(27)

+
∫ t

0
β

(
Dk

s1···skY
)
(s) ds,

with

G
(k)
t (s1, . . . , sk) = Dk

s1···skGt +
k∑

j=1

∑
τ∈Ak

j

∫ t

0

(
Dj

sτ
α

)(
Dk−j

sτ̄
Y

)
(s) · dWs

(28)

+
∫ t

0

(
Dj

sτ
β

)(
Dk−j

sτ̄
Y

)
(s) ds + I

(k)
t (s1, . . . , sk),
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where Ak
j is the set of j -tuples τ = (i1, . . . , ij ), with 1 ≤ i1 < · · · < ij ≤ k

sτ = si1 · · · sij , and τ̄ is the ordered complement of τ . We deduce from (27) that
Dk

s1···skYt solves an equation similar to (3) and we can derive Lp − Lq estimates
for the derivatives of Y using Assumption A3 and the regularity of G. Here again
the formal differentiation can be justified by a standard approximation argument.

We now prove (23) by induction. For k = 0, the result reduces to the first part of
Theorem 4 and Proposition 6. Now assume that (23) and (24) hold up to the order
k − 1. We first deduce from (27) that

E

∫ T

0
〈Ft ,D

kYt 〉dt = E

∫ T

0

〈
G

(k)
t , θ

(k)
t

〉
dt,

with θ
(k)
t (s1, . . . , sk) = (I − A∗ − B∗)−1(F (s1, . . . , sk)). The estimates for θ(k)

follow from Proposition 6. It follows from (28) that

E

∫ T

0

〈
G

(k)
t , θ

(k)
t

〉
dt = E

∫ T

0

〈
DkGt, θ

(k)
t

〉
dt + RT ,

where RT is the sum of terms which are of three types, which we study succes-
sively.

TYPE 1.

E

∫ T

0
dt

∫
[0,T ]k

dt1 · · ·dtk

〈
θ

(k)
t (t1, . . . , tk),

(∫ t

0

(
D

j
t1···tj α

)(
D

k−j
tj+1···tkY

)
(s) · dWs

)〉
,

with j ≥ 1. We have

E

∫ T

0
dt

∫
[0,T ]k

dt1 · · ·dtk

〈
θ

(k)
t (t1, . . . , tk),

(∫ t

0

(
D

j
t1···tj α

)(
D

k−j
tj+1···tkY

)
(s) · dWs

)〉

=
∫
[0,T ]k

dt1 · · ·dtk

× E

∫ T

0
dt

〈
θ

(k)
t (t1, . . . , tk),

(∫ t

0

(
D

j
t1···tj α

)(
D

k−j
tj+1···tkY

)
(s) · dWs

)〉

=
∫
[0,T ]k

dt1 · · ·dtk E

∫ T

0

〈
θ̃s(t1, . . . , tk),D

k−j
tj+1···tkYs

〉
ds,

with

θ̃t (t1, . . . , tk) = (
D

j
t1···tkα

)∗(
J

(∫ T

0
θ(k)
s (t1, . . . , tk) ds

))
(t).

Here, we have used Proposition 3, with D
j
t1···tkα instead of α. Using Assump-

tion A3, we have, as in the proof of Proposition 6,(
E

∫ T

0
np(

θ̃t (t1, . . . , tk), u, v
)
dt

)1/p

≤ Cp,q

(
E

∫ T

0
nq(

θ
(k)
t (t1, . . . , tk), u, v

)
dt

)1/q

,
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for 1 ≤ p < q ≤ 2. We can now apply the induction hypothesis, for a fixed
t1, . . . , tj , to the process θ̃t (t1, . . . , tj ) considered as a process with values in

Lp([0, T ]k−j ;Hdk−j
). Note that these processes are not in L2 but, by a suitable

density argument, the induction hypothesis can be applied.

TYPE 2.

E

∫ T

0
dt

∫
[0,T ]k

dt1 · · ·dtk

〈
θ

(k)
t (t1, . . . , tk),

(∫ t

0

(
D

j
t1···tj β

)(
D

k−j
tj+1···tkY

)
(s) ds

)〉
,

with j ≥ 1. We have

E

∫ T

0
dt

∫
[0,T ]k

dt1 · · ·dtk

〈
θ

(k)
t (t1, . . . , tk),

(∫ t

0

(
D

j
t1···tj β

)(
D

k−j
tj+1···tkY

)
(s) ds

)〉

=
∫
[0,T ]k

dt1 · · ·dtk

× E

∫ T

0
dt

〈
θ

(k)
t (t1, . . . , tk),

(∫ t

0

(
D

j
t1···tj β

)(
D

k−j
tj+1···tkY

)
(s) ds

)〉

=
∫
[0,T ]k

dt1 · · ·dtkE

∫ T

0
dt

〈
θ̃t (t1, . . . , tk),D

k−j
tj+1···tkYt

〉
,

with

θ̃t (t1, . . . , tk) = (
D

j
t1···tkβ

)∗(
E

(∫ T

·
θ(k)
s (t1, . . . , tk) ds

∣∣∣F·
))

(t).

Here again, we have used a variant of Proposition 3, with D
j
t1···tkβ instead of β , and

the Lp −Lq estimate follows from Assumption A3 as in the proof of Proposition 6.

TYPE 3. The terms of type 3 come from I (k). They are of the following form
(we let θ = θ(k)):

E

∫ T

0
dt

∫
[0,T ]k

ds1 · · ·dsk

× 〈(
Dj−1

s1···sj−1
α

)(
Dk−j

sj+1···skY
)
(sj )1{sj≤t}θt (s1, . . . , sj , . . . , sk)

〉
and can be treated as follows (the notation

∫
[0,T ]k−1 dŝj means that integration with

respect to sj is omitted):

E

∫ T

0
dt

∫
[0,T ]k

ds1 · · ·dsk

× 〈(
Dj−1

s1···sj−1
α

)(
Dk−j

sj+1···skY
)
(sj )1{sj≤t}, θt (s1, . . . , sj , . . . , sk)

〉
=

∫
[0,T ]k−1

dŝj
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× E

∫ T

0
dsj

∫ T

sj

dt
〈
θt (s1, . . . , sj , . . . , sk),

(
Dj−1

s1···sj−1
α

)(
Dk−j

sj+1···skY
)
(sj )

〉

=
∫
[0,T ]k−1

dŝj E

∫ T

0
ds

〈
E

(∫ T

s
θu(s1, ·, s, ·, sk) du

∣∣∣Fs

)
,

(
Dj−1

s1···sj−1
α

)(
Dk−j

sj+1···skY
)
(s)

〉

=
∫
[0,T ]k−1

dŝj E

∫ T

0

〈
θ̃t (s1, . . . , sj−1, sj+1, . . . , sk),D

k−j
sj+1···skYt

〉
dt,

with

θ̃t (s1, . . . , sj−1, sj+1, . . . , sk)

= (
Dj−1

s1···sj−1
α

)∗(
E

(∫ T

·
θu(s1, . . . , sj−1, ·, sj+1, . . . , sk) du

∣∣∣F·
))

(t).

We have, using Assumption A3,(
E

∫ T

0
|θ̃t (s1, . . . , sj−1, sj+1, . . . , sk)|p dt

)1/p

≤ Cp,q

(
E

∫ T

0

∣∣∣∣E
(∫ T

t
θu(s1, . . . , sj−1, t, sj+1, . . . , sk) du

∣∣∣Ft

)∣∣∣∣
q

dt

)1/q

≤ Cp,q

(
E

∫ T

0

∣∣∣∣
∫ T

t
θs(s1, . . . , sj−1, t, sj+1, . . . , sk) ds

∣∣∣∣
q

dt

)1/q

≤ Cp,qT sup
0≤t≤T

(
E

∫ T

0
|θs(s1, . . . , sj−1, t, sj+1, . . . , sk)|q ds

)1/q

.

Finally, we have E
∫ T

0 〈Ft ,D
kYt 〉dt as a sum of terms like E

∫ T
0 〈θ(j)

t ,DjGt 〉dt ,

with j ≤ k, or E
∫ T

0 〈F (i)
t ,DiYt 〉dt , with i ≤ k − 1, with appropriate estimates

for the processes F (i). We can now apply the induction hypothesis to terms like
E

∫ T
0 〈F (i)

t ,DiYt 〉dt . The various θ ’s given by the induction hypothesis combine
to produce the final form stated in Theorem 11. �

PROOF OF COROLLARY 12. The continuity of the derivatives of Y follow
easily from the assumptions on G and (27). Using the notation of the proof of
Theorem 11, we have

E〈�,DkYT 〉 = E
〈
�,G

(k)
T

〉 + E

〈
�,

∫ T

0
α(DkY )(s) · dWs +

∫ T

0
β(DkY )(s) ds

〉

= E
〈
�,G

(k)
T

〉 + E

∫ T

0
〈α∗(J (�))(s),DkYs〉ds

+ E

∫ T

0
〈β∗(E(�|F·))(s),DkYs〉ds.
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For the last two terms, we can apply Theorem 11, and the fact that, for 1 ≤ p <

q ≤ 2,(
E

∫ T

0
np(

Jt

(
�(s1 · · · sk)), u, v

)
dt

)1/p

≤ Cp,q

(
Enq(

�(s1 · · · sk), u, v
))1/q

and(
E

∫ T

0
np(

E
(
�(s1 · · · sk)|Ft

)
, u, v

)
dt

)1/p

≤ Cp,q

(
Enq(

�(s1 · · · sk), u, v
))1/q

.

For the first term, we have, using (28),

E
〈
�,G

(k)
T

〉 = E〈�,DkYT 〉 + RT ,

where RT is a sum of terms of three different types, which can be treated in the
same way as in the proof of Theorem 11. �

4.2. Application to the Euler approximation of delay equations: the irregular
case. In this section we consider the processes X and X̄ of Section 3.4. We as-
sume that f is a measurable bounded function, b and σ are in C∞

b and that the
variable XT is nondegenerate:

E
((

γXT

)−p)
< ∞ ∀p > 1,(29)

where γXT
denotes the Malliavin covariance matrix of XT . This condition is sat-

isfied in the uniformly elliptic case, that is, σ(x) ≥ a > 0 for all x ∈ R (see [10])
and under weaker assumptions (see [2]) when ν is a Dirac measure.

THEOREM 13. For b and σ in C∞
b and XT satisfying (29), we have for f

measurable bounded:

|Ef (XT ) − Ef (X̄T )| ≤ Cf h.

SKETCH OF PROOF. We consider the following truncation function. Let
� : [0,+∞) �→ R be a C∞ function with bounded derivatives such that 1[0,1/8] ≤
� ≤ 1[0,1/4] and let γXT

be the Malliavin covariance matrix of XT be which in our
one-dimensional setting reduces to γXT

= ∫ T
0 (DuXT )2 du. We define �h

T by

�h
T = �

(∫ T
0 (DuXT − DuX̄T )2 du

γXT

)
.(30)

Observe that

P(�h
T �= 1) ≤ P

(
γ −1
XT

∫ T

0
(DuXT − DuX̄T )2 du > 1/8

)

≤ 8p
Eγ

−p
XT

(∫ T

0
(DuXT − DuX̄T )2 du

)p

,
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for all p > 0. Using Hölder’s inequality and supu E|DuXT − DuX̄T |p ≤ Chp/2

one can easily prove that for all p ≥ 1

P(�h
T �= 1) ≤ Chp.(31)

Moreover, we have

{�h
T �= 0} ⊂

{∫ T

0
(DuXT − DuX̄T )2 du ≤ γXT

/4
}
.

Since

γaXT +(1−a)X̄T
≥ γXT

/2 − (1 − a)2
∫ T

0
(DuXT − DuX̄T )2 du,

we obtain for 0 ≤ a ≤ 1

{�h
T �= 0} ⊂ {

γaXT +(1−a)X̄T
≥ 1

4γXT

}
.(32)

Now we have

Ef (XT ) − Ef (X̄T )

= E
{(

f (XT ) − f (X̄T )
)
(1 − �h

T )
} + E

{(
f (XT ) − f (X̄T )

)
�h

T

}
.

By construction of �h
T , the first term is of order hp for all p ≥ 1 and we just have

to prove that the second one is of order h.
Let YT = XT − X̄T and let (fm) be a sequence of C1 functions such that

‖fm‖∞ ≤ ‖f ‖∞ and (fm) converges dx a.e. to f . We have

E
(
fm(XT ) − fm(X̄T )

)
�h

T =
∫ 1

0
Ef ′

m

(
aXT + (1 − a)X̄T

)
YT �h

T da.

Since XT admits a density Efm(XT )�h
T converges to Ef (XT )�h

T . Now on the
set {�h

T �= 0}, detγX̄T
> 0 and from [13], Corollary 2.2.1, page 88 (see [3] in

higher dimension) X̄T has an absolutely continuous law conditioned by {�h
T �= 0}

and Efm(X̄T )�h
T converges to Ef (X̄T )�h

T . It remains to prove that E(fm(XT ) −
fm(X̄T ))�h

T is bounded by Cf h where the constant Cf only depends on f through
‖f ‖∞. Using the Malliavin integration by parts formula (see [14]) we obtain

E
(
fm(XT ) − fm(X̄T )

)
�h

T

=
∫ 1

0
Egm

(
aXT + (1 − a)X̄T

)
H3

(
aXT + (1 − a)X̄T , YT �h

T

)
da,

where gm(x) = ∫ x
0 dy

∫ y
0 dzfm(z) so that gm is in C3 and g′′

m = fm and H3 is
defined recursively by

H1(F,G) = Gγ −1
F δ(DF) − 〈D(Gγ −1

F ),DF 〉,
Hk(F,G) = H1

(
F,Hk−1(F,G)

)
, k ≥ 2,
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with

〈DH,DF 〉 =
∫ T

0
DuHDuF du.

Hence for any measurable set A, we have (see [1])

‖Hk(F,G)1A‖p ≤ C‖γ −1
F 1A‖k1

p1
‖F‖k2

p2,q2
‖G‖p3,q3(33)

for some constants C, k1, p1, k2, p2, q2, p3, q3, depending on k and p.
Observe that

H3
(
aXT + (1 − a)X̄T , YT �h

T

) =
3∑

i=0

〈�h
i ,D

iYT 〉,

for smooth variables �h
i , and finally

E
(
fm(XT ) − fm(X̄T )

)
�h

T = E

3∑
i=0

〈 ∫ 1

0
gm

(
aXT + (1 − a)X̄T

)
�h

i da,DiYT

〉

= E

3∑
i=0

〈F i,h
m ,DiYT 〉.

Moreover, the variables F i,h
m ∈ D

2,2 and from (33) and (39) we deduce the follow-
ing estimate:

sup
u,v

En2(F i,h
m ,u, v) ≤ C

∥∥γ −1
XT

∥∥k1
p1

‖aXT + (1 − a)X̄T ‖k2
p2,q2

,

for some k1, p1, k2, p2, q2, with C independent of m. Applying Corollary 12, this
gives

E
(
fm(XT ) − fm(X̄T )

)
�h

T =
3∑

i=0

(
E〈F i,h

m ,DiGT 〉 +
i∑

j=0

E

∫ T

0

〈
θ̂

(i,j)
t ,DiGt

〉
dt

)
,

where the process Gh
t is defined in Section 3.4 by

Gh
t =

∫ t

0
σh

1 (s)

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) dWs

+
∫ t

0
bh

1(s)

∫ 0

−r

(
X̄s+u − X̄η(s)+η(u)

)
dν(u) ds

=
∫ t

0
σh

1 (s)

∫ 0

−r

∫ s+u

η(s)+η(u)
σ̃ h

η(v) dWv dν(u) dWs

+
∫ t

0
bh

1(s)

∫ 0

−r

∫ s+u

η(s)+η(u)
b̃h
η(v) dv dν(u) ds.

σh
1 , bh

1 , σ̃ h
v and b̃h

v are, respectively, defined in (19), (20), (14) and (15). We end
the proof using the duality relationship as in Lemma 9. �
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REMARK 14. The above proof carries over to a multidimensional setting. The
only technical difficulty is to extend the localization argument. Suppose XT takes
its values in R

r with r > 1, and the Malliavin covariance matrix of XT is de-
fined by (γXT

)i,j = 〈DXi
T ,DX

j
T 〉, 1 ≤ i ≤ j ≤ r . We want to define a smooth

functional �h
T such that outside a set where all the Malliavin derivatives Dk�h

T

vanish, we have a uniform control of the determinant of the Malliavin matrix
of aXT + (1 − a)X̄T , 0 ≤ a ≤ 1. Let � : [0,+∞) → R be a C∞ function with
bounded derivatives such that 1[0,1/8] ≤ � ≤ 1[0,1/4]. We define �h

T by

�h
T = �

( |D(XT − X̄T )|2(1 + ‖γXT
‖2

2)
(r−1)/2

detγXT

)
,(34)

where |DXT |2 = ∑
i |DXi

T |2 = ∑
i,k

∫ T
0 (Dk

uX
i
T )2 du and ‖γXT

‖2 is the Hilbert–
Schmidt norm of the matrix γXT

, that is, the l2 norm of the coefficients. We denote
by ‖γXT

‖ the operator norm.
Note that �h

T ∈ D
∞ [the sum of squares of the coefficients (γXT

)i,j is smooth]
and that

{�h
T �= 1} ⊂

{
|D(XT − X̄T )|2 ≥ detγXT

8(1 + ‖γXT
‖2

2)
(r−1)/2

}
,

so that for all p ≥ 1, we have as in the one-dimensional case

∃C > 0 P(�h
T �= 1) ≤ Chp,(35)

provided ‖D(XT − X̄T )‖p ≤ Cp

√
h for all p ∈ [1,+∞).

Now observe that we have the following inequality for any positive-definite
r-dimensional matrix A:

‖A‖ ≤ ‖A‖2 ≤ √
r‖A‖.(36)

Moreover, if λ1(A) is the smallest eigenvalue of A, we have

λ1(A)r ≤ detA ≤ λ1(A)‖A‖r−1.(37)

Observe that λ1(A) = inf|ξ |=1 ξ tAξ , where |ξ | is the Euclidean norm of ξ in R
r .

Now for a ∈ [0,1], we derive a uniform lower bound for the smallest eigenvalue
of γXT +(1−a)X̄T

:√
λ1

(
γXT +(a−1)(XT −X̄T )

) = inf|ξ |=1

√
ξ tγXT +(a−1)(XT −X̄T )ξ

= inf|ξ |=1

∣∣∣∣∣
∑
i

ξiD
(
Xi

T + (a − 1)(Xi
T − X̄i

T )
)∣∣∣∣∣

(38)

≥ inf|ξ |=1

√
ξ tγXT

ξ − sup
|ξ |=1

∣∣∣∣∣
∑
i

ξiD(Xi
T − X̄i

T )

∣∣∣∣∣
≥

√
λ1

(
γXT

) − |D(XT − X̄T )|.
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Moreover, we have⋃
k

{Dk�h
T �= 0} ⊂

{
|D(XT − X̄T )|2 ≤ detγXT

4(1 + ‖γXT
‖2

2)
(r−1)/2

}
.

But from (36) and (37) we have

detγXT

4(1 + ‖γXT
‖2

2)
(r−1)/2

≤ λ1(γXT
)

4
.

We deduce that ⋃
k

{Dk�h
T �= 0} ⊂

{
|D(XT − X̄T )|2 ≤ λ1(γXT

)

4

}
.

Now if |D(XT − X̄T )|2 ≤ λ1(γXT
)/4, it follows from (39) that√

λ1
(
γXT +(1−a)(XT −X̄T )

) ≥
√

λ1
(
γXT

)
/2

and consequently, using (37),

detγXT +(1−a)(XT −X̄T ) ≥ λ1
(
γXT

)r
/4r ≥ (

detγXT

)r
/
(‖γXT

‖r(r−1)4r).
Finally we obtain for 0 ≤ a ≤ 1

⋃
k

{Dk�h
T �= 0} ⊂

{
detγaXT +(1−a)X̄T

≥ (detγXT
)r

‖γXT
‖r(r−1)4r

}
.(39)

Therefore on the set
⋃

k{Dk�h
T �= 0}, we have a control of the determinant of

the inverse of the Malliavin matrix of aXT + (1 − a)X̄T by the random variable
‖γXT

‖r(r−1)

(detγXT
)r

.
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