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THE PROBABILITY OF EXCEEDING A HIGH BOUNDARY
ON A RANDOM TIME INTERVAL FOR A
HEAVY-TAILED RANDOM WALK
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We study the asymptotic probability that a random walk with heavy-
tailed increments crosses a high boundary on a random time interval. We use
new techniques to extend results of Asmussem], Appl. Probab8 (1998)
354-374] to completely general stopping times, uniformity of convergence
over all stopping times and a wide class of nonlinear boundaries. We also
give some examples and counterexamples.

1. Introduction and main results. The analysis of random walks with
heavy-tailed increments is central to the understanding of many problems in
insurance, finance, queueing networks and storage theory. In particular, we are
often interested in determining the probability of overcrossing a deterministic
curve{x + g(n)},>0 asx is allowed to become large.

Thus, in this paper, we consider a sequefiz¢,>1 of independent identically
distributed random variables with distribution functién We assume throughout
that F belongs to the classL of long-tailed distribution functions, where a
distribution functionG € £ if and only if

= . G(x—h) B
1 Gx)=0 for all x, xILmoo W =

HereG denotes the tail distribution given lfy(x) = 1 — G (x). We further assume
throughout that the distributio® has a finite meam y = E&;. Without loss of
generality (see below), we assume

1 for all fixedh > 0.

mp=0.

Define the random walkS,, },>0 by

n
So=0,  Si=) & nzl
i=1
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For any nonnegative functionon Z. , define also the proce$s; },~o by

S8 =5, —gn), n=>0.

n

The procesgS; },>0 is investigated imonlinear renewal theory (see [22]), and
also in many other examples in probability and queueing theory (see, e.g., [1, 7,
20, 21, 24]). Note also that any subadditive functional of a random walk is of this
form—see [8].
Forn >0, let
M$ = max S¢.
O<i<n

Similarly, for any stopping timer for the random walk{S,},>o (i.e., for any
random variabler taking values irnZ U {oo} such that, for alk > 0, the event
{o <n}isindependent of, 11, &r12,...}), let

M8 = max S¥.

O<i<o
Define also the decreasing functiéff by

HS(x) = Z P(o > n)F(x + g(n)).

n>1

Note that the functiond? is monotone decreasing ia [i.e., if g1(n) > go(n)

for all n, then H5*(x) < H5%(x) for all x] and monotone increasing i [i.e., if

o1 > 0z a.s., thenHS, (x) > HS, (x) for all x]. Note also that, sinc& has a finite
mean,H; is finite for allo and allg such thatg(n) > cn for somec > 0; further,
sinceF € £, an elementary truncation argument along the lines of the proof of
Lemma 1(i) shows that, for any such thatEo < oo and nonnegative functiog,

HE (x) is finite for all x and

(2) HS(x) = (1+ 0(1))Eo F (x) asx — oo.

We are interested in the asymptotic distributionis§ for a general stopping
time o (which need not be a.s. finite). In particular, we are interested in obtaining
conditions under which

(3) P(MS >x)>(1+0(1))HE(x)  asx — oo,
and in obtaining (stronger) conditions under which
4) P(M§ > x) = (1+o(1))HE (x) asx — oo,

in each case with uniformity over suitable classes of stopping timeasnd
functionsg. [We shall say, e.g., that the result (3) holds with uniformity ovetall
and allg—in appropriate classes—if and only if there exists a funcéian R
such tha# (x) — 0 asx — oo andP(M§ > x) > (1 — 8§(x))HS (x) for all x e Ry
and for allo and allg.]



1938 S. FOSS, Z. PALMOWSKI AND S. ZACHARY

The event{M¢ > x} may be reinterpreted as the event that the random
walk {S,},>0 crosses the (arbitrary) increasing boundéryt g(n)},>0 by the
stopping timeo. The intuitive interpretation of the relation (4), in particular, is
that, forx very large, the only significant way in which the random walk can cross
this boundary is that it remains close to its mean zero up to somextimien, with
probability F (x + g(n)), it jumps abovex + g(n). This property is the “principle
of one big jump” and is characteristic of the subexponential property (see below)
which we shall in general require (at a minimum)foin order to obtain conditions
for (4) to hold.

Our results below are also applicable to random walks whose increments have a
nonzero mean: it is clearly sufficient to make the obvious shift transformation. In
particular, by considering, far > 0, the functiong(n) = cn, the results include as
a special case those for the maximum on a random interval of a random walk with
drift —c. The results obtained in this case both generalize and extend earlier results
of Asmussen [2] and Foss and Zachary [14]. We give a more detailed discussion
of this below.

In order to state our results, we require some further definitions. A distribution
function G onR is subexponentiaf and only if G(x) > 0 for all x and

(5) lim_ G*2(x)/ G(x) =2

(whereG*2 is the convolution ofG with itself). More generally, a distribution
function G on R is subexponential if and only ifG™ is subexponential,
whereGT = Glr, andlg, is the indicator function ofR,. It is known that
the subexponentiality of a distribution depends only on its (right) tail, and
that a subexponential distribution is long-tailed. We $etlenote the class of
subexponential distributions, so that, in particua L.

A distribution functionG onR belongs to the clas§* introduced by [16] if and
only if G(x) > 0 for all x and

X __ _ —
(6) / G(x —y)G(y)dy ~2ms+G(x) asx — 00,
0

where

oo __

me+ 2/ G(x)dx
0
is the mean ot . It is again known that the property € §* depends only on the
tail of G. Further, ifG € 8* thenG € 8, and alsaG* € 8, where
oo _
GS(x) = min(l, f G(t)dt>
X

is the integrated, aecond-tail distribution function determined b§y—see [16].
Let 7 be the class of all stopping times for the random walk},,>0. For any
stopping timep, let

To={0eT .0 <¢pasj.
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In particular, for any integeN > 0, Ty is the class of stopping times almost surely
bounded byV.

For any constant (we shall primarily be interested in> 0), letg,. be the class
of nonnegative functiong satisfying

(7) g >c, gn+1)>gn)+c, n>1

In particular,4o is the class of nonnegative nondecreasing functiong_onNote
also that the clasg. is monotone decreasing in

As a preliminary result, we prove the following theorem, which relates to
bounded stopping times.

THEOREM 1. (i) Suppose tha¥ € L. Then given any integeNV > 0, the
result(3) holds uniformly over alb € 7 and all g € Go.

(i) Supposeadditionally, that F € 8. Then given any integerN > 0, the
result(4) holds uniformly over alb € 7y and all g € o.

Our main result is then Theorem 2.

THEOREM 2. (i) Suppose thaF € L. Then given anyc > 0, the result(3)
holds uniformly over alb € 7 and allg € G..

(i) Supposeadditionally that F € 8*. Then given anyc > 0, the result(4)
holds uniformly over alb € 7 and all g € §..

We have stated these results under those conditions which appear to us
most natural. There are some obvious extensions which are immediate from the
condition F € £ which we assume throughout. This condition implies that also
HS e £ with uniformity of convergence in the definition (1) over all stopping
timeso and nonnegative functions Thus, for example, for any for which one
of the results of Theorems 1 or 2 holds, and for any fided 0, we may expand
the corresponding clagg. to include any functiorg such thatg’ < ¢ < ¢’ +d

for some functiong’ € §.—since thenH§/(x)/H§/+d(x) — 1 asx — oo with

the required uniformity properties. One consequence of this observation is that
we may, in either of the results of Theorem 1, replgeeby G. for anyc € R.

That we may not, in general, even for a single bounded stoppingdinubtain

the results of Theorem 1 with uniformity over all nonnegative functigns
shown by Example 1 of Section 3. See also that section for further discussion
and comments.

We now discuss briefly our main result, which is part (ii) of Theorem 2.
Consider first the slightly weaker condition® € 4, and the case where the
function g is given byg(n) = cn for somec > 0, and the stopping time = oo.

The conclusion (4) is then equivalent to the well-known result of Veraverbeke [19]
for the asymptotic distribution of the maximum of the random wWalk— cn},>0
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with drift —c (see the Appendix for conditions under which the functigh has

a tail equivalent integral representation). See also [12] and [11]. Now assume that
F € 8*. In the case where the functigris again given by (n) = cn for ¢ > 0, and

the stopping timer has a finite mean, it follows from (2) that the conclusion (4) is
equivalent to

(8) P(M8 > x)=(1+0(1))EcF(x)  asx — oo.

(Again the evenfM; > x} is most naturally interpreted in relation to the random
walk {S, — cn},>0.) Asmussen [2] proved the result (8) for the stopping time
o=1t.=min{n >1:S, — cn <0} (see also [15]). Foss and Zachary [14] extended
the result (8) to a general stopping time and showed also the necessity (for a
general stopping time) of the conditiadh € §*. However, in the cas&o = oo
(which occurs naturally in many applications—see, e.g., Example 3 of Section 3),
the result (8) simply asserts thBtMS > x)/ F(x) — oo asx — oo and does

not give the asymptotic form of the tail of the distribution & . Nor, as may

be deduced from the results of the present paper, does the result (8) hold with
uniformity even over all finite stopping times. In the present paper we obtain

the correct asymptotics in the caBe = oo, we extend our results to arbitrary
boundarieg, and we give these results in such a form that in each case we obtain
uniformity of convergence over all stopping timegwhich need not be a.s. finite)

and over suitably wide classes of functignsThis uniformity corresponds to the
naturalness of the condition (4), as discussed above, and of course guarantees the
quality of the asymptotic results, notably overallln particular, Theorem 2 thus
unifies the earlier, quite distinct, results for the caBes< oo ando = oo a.s.

(with g linear in each case).

Further, in the present paper we take Asmussen’s result (&(for= cn and
o = 1. as a starting point and use new and direct arguments to obtain our results for
general stopping times and classes of functions (Notably, we make no further
use, beyond its requirement for Asmussen’s result, of the condfiian$*.)
Denisov [9] has recently given a very simple proof of (8) fgin) = cn and
o = 1. This, taken with the present paper, now yields a relatively simple and
direct treatment of all our results.

We note also here that, in the case where the stoppingdiméndependentf
{S»}n>0 and the functiory is given byg(n) = cn for ¢ > 0, that the result (4) holds
with uniformity over all suchs follows from the results of Korshunov [17]—see
the comments on this in [10].

In Section 2 we prove our main results, giving parallel developments of the
lower and upper bounds so as to identify carefully the conditions required for each.
We prove our results successively for bounded stopping times (Theorem 1 above),
stopping times bounded by a stopping time with a finite mean (for the upper bound
we require the stopping time. identified above) and for quite general stopping
times (Theorem 2 above).
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In Section 3 we give various examples to show the applicability of the results,
together with counterexamples to show what goes wrong when we drop the
conditions of our theorems.

The Appendix gives a simple integral representation, under appropriate condi-
tions, of the functionH? .

2. Proofs.

PROOF OF THEOREM 1. Since the results are trivial in the case=0 a.s.
and by otherwise conditioning on the evdat> 0}, we may assume throughout
without loss of generality that > 1 a.s.

SinceF e L throughout, we may choose a functibnR — R, such that

9) hix)<x for all x >0,
(10) hisincreasing, h(x) — oo asx — oo,
F(x —
(11) FOoohtD) 1 asr - .
F(x)

(This follows from the conditionF € £ by allowing the functionz to increase
sufficiently slowly—see [14].)

Note that the results of both parts of the theorem are trivial in the Nas€l.
Given any integetV > 2, consider any stopping time € 7y and any function
g € Go. Then, forx > 0,

N
P(M§ > x) = Z P(c > n, M,f_l <x,8%>x)
n=1

N
= Z Plo >n, M5 , <x,
n=1

Sp—1 < —h(x+g(n —1)), S5 > x)

N
+ Z Plo>n, M5 , <x,
(12) =t
Sp-1€[~h(x +gn — 1), h(x + g —D)],
S8 > x)
N
+ Z Plo>n, M5 , <x,
n=1

Sp—1€ (h(x +g(n—1)),x +g(n —1)), S8 > x),

where, forn = 1, we may take\/$ , =0.
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Since, forg € G,
P(My;_, > x) < P(My—2 > x) =0,
asx — oo, and, from (10),
P(Sn-1¢[~h(x+gn—1), h(x+g(n—1)]) <P(Sy-1¢[-h(x),h(x)]) -0
asx — oo, it follows that, for 1<n < N,

(13) Plozn My p<x Si-1€[~hix+ g —D).h(x+gn - 1))
=P(o >n)+0(2)

asx — oo, uniformly over allo € Ty andg € o. Further, it follows from (11)

that, for anyn,

F(x +g(n) £ h(x +g(n)))
F(x+gn))

uniformly over allg € 0. Since also, for anyt, i(x + g(n — 1)) < h(x 4+ g(n)),
it follows from (13) and (14) that

(14) -1 asx — 0o,

N
Z P(o > n, Mf_z <x,

n=1
Sp—1€[—h(x+gn—1)),h(x +gn —1))], S8 > x)
N
(15) =(1+01) Y (P =n) +o(D)F(x +gn))
n=1
= (14 o(D)HE (x) + o(F (x + g(1)))
= (1—|— 0(1))H§(x)

asx — oo, uniformly over allo € 7y and g € Go, where the final line in (15)
follows sinces > 1 a.s. Since the first and third terms on the right-hand side of (12)
are positive, the result (i) of the theorem now follows from (12) and (15).

To prove (ii), we suppose thaf € 8. We require to show that (4) holds
uniformly over allo € 7y andg € 4o. From (12) and (15), it is sufficient to show
that the first and third terms on the right-hand side of (12) are eéHl (x)) as
x — 00, again uniformly over alb € T andg € §o. That this is true for the first
of these terms follows since, for eaeh

P(o >n, M;f_z <x,Si-1<—-h(x+gn—1)),S%>x)
<P(Sp-1<—h(x+g(n—D))F(x +g(n))

<P(Sy-1 < —h(x))F(x + g(1))
o(HE(x))
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asx — oo [from (10) and sincer > 1 a.s.] with the required uniformity.
In the case where is identically equal taVv andg is identically equal to O, it
is a standard result that

P(M§ > x) = P(oma)z(v Sy > x)
(16)

= (14+0())NF(x) asx — 0o,

(see [11]). Since in this cagé’ (x) = N F(x), it follows from (12), (15) and (16)
that, for 1<n <N,

(A7) P(Si<x,i<n—2 8,-1€ (h(x),x]; Sy > x) = o(F(x)) asx — oo.

For generab € 7y with o > 1 a.s. ang; € %o, it follows sinceg is nondecreasing
that the third term on the right-hand side of (12) is bounded above by

N
Y PSi<x+gn—1),i<n-2
n=1
Sp—1€(h(x+gn—1)),x+gn—1], S, >x+gn —1)).

From (17), the:th term in the above sumig F (x + g(n — 1))), and so also (since
o >1a.s. ang € §o) the sum iso(H3 (x)), asx — oo, uniformly over all suchs
andg as required. O

REMARK 1. In Section 3 we give examples which show that we may not, in
general, drop the condition thatbe nondecreasing.

The proof of our main result, Theorem 2, requires the separate derivation of
upper and lower bounds fa?(M¢ > x). In Lemma 1 below, we first establish
these bounds for classes of stopping times intermediate between those of Theorems
1land 2.

For anya > 0, define the stopping time, = min{n > 1:§,, < an}. Note that,
sinceF has mean Ok, is finite. For anya > 0, define also the functiolon Z_.
by a(n) =an.

LEmmA 1. (i) Given any stopping time such thatEg < oo, the result(3)
holds uniformly over alb € 7, and all g € Go.

(i) Suppose thar € 8*. Then given anyc > 0, the result(4) holds uniformly
overallo € 77, and allg € §..

PrROOF In the proofs of both (i) and (i), we may again assume without loss
of generality, as in the proof of Theorem 1, that 1 a.s. Thus, given such that
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E¢ < oo, for anyo € 7, with o > 1 a.s. ang € $o, and for any integeN > 0
and allx > 0,

HE(x) — HE, y(x)= > P(o >n)F(x + g(n))

n>N

<F(x+g@) ) P(o=n)
n>N

< Hf(x) ) P =n)
n>N

<H{(x) Y P =n).
n>N

Hence, using Theorem 1(i) applied to the stopping tne N, there exists a
function e, which is independent of andg, such thatey(x) — 0 asx — oo
and, foro andg as above and for > 0,

P(M§ > x) > P(MﬁAN > Xx)
> (L—en(x))HS, y(x)

> (1—sN<x))H§<x)(1— 3 Py zn)).

n>N

SinceEg < oo, it now follows that

(18) P(ME > x) > (1— ey (x))HE (x)

for some positive functioa),, again independent ef andg, such that
Nli_r)noo Jim gy (x)=0.

This latter condition implies that (for any such sequence of functiefgy=1)
there exists an integer-valued functidhon R, such that lim_, o s§v(x)(x) =0.
Hence, from (18), we have the required result (3) with the required uniformity over
o €T, andg € Go.

To prove (ii), we suppose that € 8* and thatc > 0. Consider first the stopping
time o = 7. and the functiong = ¢. For integerN > 0, it follows from the
result of Asmussen [2] referred to in the Introduction—see also [3], Chapter X,
Theorem 9.4—that, as— oo,

P(ME > x) = (14 0(1)Et.F(x +¢)

(19) =(1+0)(E(te AN)+E(t. — N)")F(x +¢)
= (1+ o) (H \y@) + E(te = N)TF(x +0)),



MAXIMA OVER RANDOM TIME INTERVALS 1945

where (19) follows sinceF is long-tailed. Since$* C 4§, it follows also from
Theorem 1(ii) that

(20) P(MS .y >x)=(1+0D)H \y(x)  asx— oo.
Since alsonmN(x) < NF(x +¢), it follows from (19) and (20) that
P( fc/\N =X, Mfc > x)
(21) =P(M > x) —P(M_ ,y > x)
=(1+0())E(x.— N)TF(x+c¢)  asx— oo.

We now prove (4) for any € 7. andg € §.. Forn > 1, letd, = g(n) — cn.
Fix any integerN > 0. Then, forx > 0,

(22) P(M(fAN <x,M$>x)< P(Mg <x, Mfc > X)

T.AN —
(23) SP(M‘E(/\N §X+dN,M1€C>x+dN)
(24) <1+ 0@)E(t. — N)TF(x + g(1)),

uniformly over all sucho and g, where (22) follows by consideration of
sample paths, while (23) follows since the conditigre ¢, implies thatd, is
nondecreasing in, and finally, (24) follows from (21) on noting thaly > dy =
g(1) — ¢. Hence, from (24), using Theorem 1(ii) again and noting that, for all
x>0, F(x +g(1)) < H§ (x), we have that, as — oo,

P(MS > x) <P(MS, > x) + (14 0o(1)E(re — N)TF(x + g(1))
<(1+E@.—N)" +o)HS(x),

uniformly over allo and g as above. Sinc&(r. — N)* — 0 asN — oo, we
conclude, as in the final part of the proof of part (i) above, that

P(MS > x) < (1+0(1))HE (x) asx — oo,

again uniformly over alb andg as above. The required result (4) now follows on
using also part (i) of the lemma.J

REMARK 2. Note that the result of Asmussen used in the above lemma
requiresF € 8*. This is the only point in the argument of the present paper in
which this condition is explicitly used.

The proof of the lower bound in Theorem 2 is by consideration of repeated
upcrossings byS,},>0 of boundaries of slope-a < 0, while the proof of the
upper bound is by consideration of repeated downcrossings of boundaries of
slopea > 0. In each case is then allowed to tend to 0. Each argument requires
an application of Lemma 1 to the random walk “restarted” at these upcrossing or



1946 S. FOSS, Z. PALMOWSKI AND S. ZACHARY

downcrossing times. We give this in Corollary 1 below, which is stated in a form
carefully adapted to its subsequent use.

For any a.s. finite stopping time and anya > 0, define the further stopping
time

pl =¢+minn>1:S,4, — S, > —an}.

Note that, sincé” has mean 0p¢ is a.s. finite.
Similarly, for any a.s. finite stopping time and « > O, define the further
stopping time

ty=¢+min{n>1:S,4, — S, <an}.
Note again that! is a.s. finite.

COROLLARY 1. (i) Given anya > 0, there exists a functios, on R, such
thatlim,_ 0 4 (x) =0and

PA@n:g<n<oAp? S8§—85">x)

a’ Pn 0]
(25) _
> (1—ya(x)) Z Plp <n <o Ap?)F(x + g(n) +an),
n>1

for all x > 0, all a.s. finite stopping times and allo € 7 andg € o.
(i) Suppose thak € 8*. Then given anyu > 0, there exists a functiod, onR
such thatim, _, o, 8,(x) =0 and

P(EIn:<p<n§aAtf,S,§—Sg>x)
(26) _
<(1+38,(x)) ZP((p <n<o At?)F(x +gn) —an),

n>1

for all x > 0, all a.s. finite stopping timeg and allo € 7 andg € §,,.

PROOF  We first prove (i). Fixa > 0. Note that the stopping time, = p; =
min{n > 1: S, > —an} has a finite mean. It follows from Lemma 1(i) that there
exists a functiony, on R with lim,_, » y,(x) = 0 and such that, for any € 7
andg € 4o, and allx > 0,

PAn:0<n <o Apg SE>x)

> (1—ya(x)) D _P(n <0 Apa)F(x + gn)).

n>1

(27)

Now giveno and g as above and any stopping tinge to prove (25), we may
assume without loss of generality that= m for some constant: (for otherwise
we may condition on each possible valueof ¢, and note that the functiop,
is independent ofz). Thus, consider the random wall§) },~0 given by S, =
Sm-+n — Sm. We havep!! —m = p/,, wherep, = min{n > 1:S, > —an}, and so the
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application of (27) to the random wall§),}, the stopping time’ =0V (o0 — m)
(for {S;}) and the functiorg’ € 4o given by g’(n) = g(m + n) + am gives, for
x >0,

P(Eln:0<n§(a/\p;")—m,S,§1+n—S,;‘_’>x)

=P@En:0<n<o' Ap,,S,>x+g(n)

(28) > (1= ya(x)) ZPn<(o/\pm)— m)F(x + g(m +n) + am)
n>1
> (1= ya(x) Y _P(n < (o Ap))—m)
n>1

x F(x + g(m +n) +a(m +n)),
where the last line follows sinee> 0. Replace: by n — m in (28) to obtain
PA@n:m<n<o Ap), S;E—Sn_f’ > Xx)

>(1—ya(x) Y. Pn<oAp))F(x+gn) +an)

n>m+1

=(1—y,(x)) ZP(m <n<o ApMF(x+ gn) +an),
n>1
which is (25) withy = m as required.

The proof of (ii) is similar to that of (i) with only minor variations. Thus, we
suppose thaf € 8*, and fixa > 0. It follows from Lemma 1(ii) that there exists
a functions, on R with lim,_, - §,(x) = 0 and such that, for any € 7, any
g € G4, and allx > 0,

PEn:0<n<o At SE>x)

<(1+68,(0) ) _Pn <o Ata)F(x + g(n)).
n>1

Again, giveno € 7, g € 4,4, and any a.s. finite stopping timg to prove (26),
we may assume Wlthout loss of generality that m for some constant:. Since
" —m =t/ wheret, =min{n > 1.5, < an}, application of the result (27) to
the random walk{S, },>0 again given bysS, = S,,+» — Sn., the stopping time
o’ =0vVv (o —m) (for {S,}) and the functiong’ € §, now given byg'(n) =
g(m +n) —am, gives, forx > 0,

PEn:0<n<(@AT") —m,Ssin—S% > x)

(29)

=P@En:0<n<o'At,,S,>x+g(n)

<(1+38,(x)) ZP(n <@ AT") —m)F(x + g(m+n) —am)

n>1

<(1+38.(x)) ZP(H <@ AT —m)F(x +g(m+n) —a(m+n)),

n>1

(30)
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where the last line follows sinee> 0. Now replace: by n —m in (30) to complete
the proof as before.

For any functiong on Z, and any constan&, define the functiong® by
g% =g +a, sothat, for each, g¢(n) = g(n) + an.
We require also the following technical lemma.

LEMMA 2. Foranyo € 7 andg € o, forall 0< b < ¢, and for allx > 0,

¢ b
HE (x) > HS (x) = ~HS (x + 0.
C

PROOF.  The first inequality follows from the monotonicity @f. To prove the
second, for any € R define[y] to be the least integer greater than or equal.to
Then, for O< b < ¢ and ally,

cTy] <c@+y) sc+bﬁy],
and so

H(f((x):/o P(o > |'y'|)F(x—|—C|—y—|+g(|—y—|))dy

Lo e o[ D)
=2 [T Pl = D+ + b1 + 412D ds

b b

PROOF OFTHEOREM2. We prove first (i). Fixx > 0 and define the sequence
of a.s. finite stopping times £ p° < p! < p? < ... for the processs,} by, for
k>1,

k pkfl

P =pl = o1+ min{n > 1:8 k14, — Spk-1 > —an}.

P

Note thatS > —apk, k > 0, that is, that
(31) Sp—,f >0, k>0.

For anyo € 7, g € 0, and for anyx > 0, define the stopping time, by

ox =0 Amin{n:S$ > x}.
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Then
P(M§ >x):P(U{M'§k <x;3n:pk <n§pk+1,02n,S§>x}>
k>0

:ZP(Mﬁk§x;EIn:pk<n§pk+l,azn,S};’>x)
k>0

:ZP(EIn:pk<n§pk+l,oxzn,S;‘f > X)
k>0

zZP(EIn:,ok<n§,ok+l,0xZn,Sﬁ—S;ké>x)

k>0
> (1= 7)) D" D Pp* <n <o o = n)F(x + g(n) +an)
k>0n>1
= (1— ya(0) Y P(oy = W) F(x + g(n) + an)
n>1
> (1—ya(x)) Z(P(o >n) — P(M$ > x))F(x + g(n) +an),
n>1

where the fourth line in the above display follows by (31), while the fifth follows
from Corollary 1(i) (withy, as defined there). Since al§g,.; F(x + g(n) +
an) <Y,=1 F(x + cn), it follows that

P(M$ > x) (1+ Y F(x+ cn))

n>1

> (1= ya(x)) Y _P(o = n)F(x + g(n) +an)

n>1
= (1— ya(x))HE (x)

c
>(1- Va(X))H—aHé’(x +c+a),

(32)

where the last line above follows since the conditipa §. means that we can
apply Lemma 2 to the functiog™ ¢ € Go.

Observe that, as remarked in the Introduction, since the fundfias long-
tailed, the functiond; is similarly long-tailed, with uniform convergence in the
definition (1) over al € 7 andg € .. Since also/, (x) — 0 andy_, -1 F (x +
cn) — 0, both ast — oo, it now follows from (32) that -

P(ME >x)>(1—y,(x))HE(x)

for some positive functiony,, again independent o& and g, such that
limg—olimy_ ¥, (x) = 0. The required lower bound (3) now follows, with uni-
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formity over allo € 7 andg € G, as in the conclusion of the proof of part (i) of
Lemma 1.
We now prove (ii). From the result (i), it is sufficient to show that

(33) P(MS > x) < (1+0(1))HE (x) asx — oo,

uniformly over all stopping times and allg € .. The proof is similar to, but
simpler than, that of (i)—in particular, there is no need to define the stopping
time o,. Fix a € (0,¢) and define the sequence of a.s. finite stopping times
0=1%<1t! <12 <...forthe proces$s,} by, fork > 1,

=t minfn > 1:S41,, — Spe1 <an).
Note thatS_« < at¥, k > 0, that is, that

(34) s% <0, k> 0.

Then, for any stopping time, functiong € .., and anyx > 0,

P(M§>x)5ZP(EIn:rk<n§rk+1,oZn,S,§'>x)

k>0
< ZP(EIn:rk<n§tk+l,a Zn,S;f—ka > x)
k>0
< (148,0)) Y. > P* <n <t o >n)F(x +gn) —an)
k>0n>1
= (1484(x)) Y _P(oc >n)F(x + g(n) —an)
n>1

= (1+8,(x))HE " (x),

where the functiord, is as defined in Corollary 1(ii) above. Here the second line
in the above display follows by (34), while the third follows from Corollary 1(ii).
Hence, since agaig € G, it follows from Lemma 2 that, fox > c,

(35) P(MS > x) = (L+8,(x) —— Hi (x — ).

Note again tha#s is long-tailed, with uniform convergence in the definition (1)

over allo € 7 andg € .. Hence, again arguing as in the conclusion of the proof

of part (i), we obtain the required upper bound (33) with the required uniformity.
O

REMARK 3. The proof of Theorem 2 is close in spirit to that of Theorem 1
of [23].
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3. Comments, examples and counterexamples. We give a number of
examples and counterexamples, together with some commentary on the case where
P(oc = 00) > 0. We continue to assume throughout that .£ and thatF has mean
zero.

In Examples 1-3, we show the importance of conditions on the funcgions

ExaMpPLE 1. Here we show that, even for bounded stopping times, the
functionsg cannot decrease too rapidly if we are to obtain uniform convergence
over all g in the conclusion (4). Suppose thate §, and consider the stopping
time o = 2. Consider also a sequence of functi¢gs},>o such thatg,, (1) =m
andg,,(2) =0 for all m. Then

P(M5" > x) > P(S5" > x) =2(1+0(1))F(x)  asx — oo,
while
H5"(x) = F(x +m) + F(x).

Hence, as in the discussion following Theorem 2, we obtain the conclusion (4),
with ¢ = g,, for each fixedm. However, for anys > 0 and for all sufficiently
largex,

8&m
P(M35" > x) -

liminf

— 8,
m—>00 Hég’” (x)

so that here the conclusion (4) does not hold with uniformity overall

EXAMPLE 2. Note that Theorems 1 and 2 extend to cover also funcigons
which may take infinite values, provided that the definition (7§.efs interpreted
as requiring that if, for any:, g(n) = oo, then g(n’) = oo for all n’ > n.

[A formal proof is given by replacing the stopping timee by o A n, where
n=maxn’:g(n") < oo} and using the existing results.]

In a continuation of the spirit of Example 1, suppose again that § and
consider now instead a functignsatisfyingg(l) = co andg(2) = 0. Fixa > 0
and define the stopping timeby o =1 if £ <a ando =2 if &1 > a. Then, as
X — 00,

P(M§ > x) =P(1>a, &1+ & > x)
=Pé1+6&>x)—P1<a,§1+ & >x)
= (L+0(1)(2F (x) — F(a)F(x))
= (1+0(1)(L+ F(a))F(x),

where the third line in the above display follows from the definition of subexpo-
nentiality and since als# e L. However,

HE(x) = F(@)F(x),
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so that Theorem 1 will not extend to cover this case.

Now consider an alternative stopping timéwhich isindependenof {&,},>1
and has the same distribution asthat is,P(c’ = 1) = F(a) andP(c' = 2) =
F(a). Then, ast — oo,

P(ME, > x) = F(a)P(¢1+ &2 > x) = (24 0(1)) F (a) F (x).

SinceH? (x) = H3 (x) = F(a)F (x), Theorem 1 again fails to extend to this case.
However, this example also shows that, for this funcigothe asymptotic distri-
bution of the tail ofM}5 depends om not just through its marginal distribution
(as in the results of Theorems 1 and 2), but through the joint distributienawfd
{&,}n,>1. See also [6] who consider a general functgoand a.s. constant stopping
times.

ExaMPLE 3. In this example we show that, for a stopping time with
unbounded support, and a functignwhich increases too slowly, the tail of
P(M; > x) may be heavier than that &5 (x). Suppose thag = 0 and thawr is
a random variable, independent{df, },>0, such thatP(c > n) = (1 + o(1))n™¢
asn — oo, for somex > 1. Suppose also that the distributiérhas unit variance.
Then

P(ME > n) > P(c > n?)P(S,2 > n) = (1+0(1))en 2  asn — oo,

wherec = J% [ exp{—1?/2} dt. We also haveHd$ (x) = Eo F(x) for all x > 0.
Thus, if F is additionally such thaF (x) = o(x %) asx — oo, then
P(M§ > x)
—_— > 0 asx — o0.
HE (x)

The informal explanation here is that, fgr= 0, even moderate deviations
contribute to the tail of\/§. For more details on the asymptotics RfM,, > x)
asn, x — oo, see [5].

We now consider an example where the conditions of our main Theorem 2 do
hold, and in whichr < oo a.s., buEo = co. In this case, whelr € 8* andg € .
for somec > 0, it follows, as in the derivation of (2), th#t(x) = o(P(M§ > > x)) as
x — oo, while, from Theorem 2(ii), we may deduce tHRtMé > x) = o(FS (x)).
The example below shows tHatM¢ > x) may be of any order betwednandF* .

EXAMPLE 4. Suppose thak (which, as always, is assumed to have mean 0)
is such that
Fx)=(1+0@))Kx?  asx— oo,
for someK, > 0 andg > 1. ThenF € §* and
FFo)=1+o@)B - kax P asx — oo
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Consider any stopping time with a tail distribution given by
(36) P(oc >n)=(1+o0(1))Kin™* asn — oo,

for some K1 > 0 and O< « < 1. (E.g., sinceF has finite variance, the
distribution of the stopping time = min{n: S, > 0} satisfiesP(oc > n) = (1 +
o(1))Kn~2 for somek € (0, co)—see [13], Chapter 12.) Théfo = oo and, by
Theorem 2(ii), for any > 0 and ast — oo,

(37) P(MS > x) = (1+0(1) Y P(o = n)F(x +cn)
n>1
(38) =(1+o)K1K2 Y n*(x +cn)”F
n>1

= (1—i—o(1))K1K2f0OO T +ct) Pdr

= (14 o(1))Cx1*7P,
where
o0
C= Klec“_lf u A+ u)"Pdu,
0

and where (38) follows from (36) and (37) since the conditian= co implies
that the contributions, as — oo, of any finite humber of the summands in
(37) and (38) may be neglected.

In the case whereF has a Weibull distribution, that isF(x) = (1 +
o(1)) exp(—xP) asx — oo, for somes € (0, 1), thenF* (x) = (1+0(1))K1x1# x
exp(—x#) asx — oo. For the stopping time as above and for > 0, it follows
similarly that

P(ME > x) = (14 0(1)) Koax T3P exp(—xf)  asx — oo,

for somekK>, > 0.

We now discuss briefly the extent to which it is necessary ¢ghahould be a
stopping time for the sequené€g, },,>o in order for our main results to hold.
In Example 5 we indicate briefly why some such condition is necessary.

EXAMPLE 5. Leta > 0 and defines = min{n:S, > a} — 1. Then, for any
nonnegative functiog, P(M5 > x) = 0 for all x > a.

Now suppose again that > 0 and consider the alternative stopping time
o =min{n:§&, > a} — 1. Then by conditioning on each possible valuezodnd
evaluatingP(M$ > x|o = n), one can straightforwardly show thatM; > x) <
cexp(—Ax), for some constants > 0 andA > 0, so that here the distribution of
M¢ is again light-tailed, in contrast to the long tail Bf .
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We now give, with some explanation, an example in which, althauggnot a
stopping time for the sequenég, },,>0, the equivalence (3) nevertheless holds.

EXAMPLE 6. Let {s,},>1 and {t,},>1 be two independent sequences of
independent identically distributed random variables. Supposesihats with
Es1 = a, and thatr; > 0 a.s., withEry = b > 0. Let T > 0 be fixed, letn =
min{n:ty+---+1, > T}, and leto =n — 1.

Let ¢ = b — a and define the sequence of independent identically distributed
random variablegé, },>1, with distribution F, by &, = s, — 1, + ¢. Then, since
t1 is nonnegative and independent @fe 4, it follows easily thaté; is tail-
equivalent tos1, and so alsa&1 € 4 and E&; = 0. As usual, letSo =0, S, =
Y '_1&, n>1, be the random walk generated by the sequdfigh>1. Then
Mg = MaXo<n<o 211 (si — ;) Might, for example, be interpreted as the maximum
loss to timeT of an insurance company with income at unit rate and a claim of
sizes, at each time,,. Note that, clearlyEexp(Ao) < oo for someai > 0. Also
o is not a stopping time for the random w4l },,>0. However,

n n
(39) sup) s; — T < MS <supy_s;.
1 1

n<o i nfai_

SinceT is fixed, o is independent of the sequenfg},>1, ands; and§; are
tail-equivalent, it follows from (39) and Theorem A 3.20 of [11], that, for any

(40) P(MS>x)=(14+0)H (x) = (1+0(1)EoF(x)  asx — oo,

which is the equivalence (4) in this case. In the cAse §* andc > 0, we may

go further and use Theorem 2(ii) of the present paper to obtain uniformity over
all 7 in the first equality in (40). See [18] for some further particular results on
this model.

Note that the result follows here sineeis a stopping time with respect to the
sequencés, },>1. In an intuitive sense (which might be made rigorous) the result
also follows since, for each, the evenf{o < n} is independent of thtails of the
sequencé, 1, £,42. .., and this is what is really required for our present results
to hold.

Note also that the independence of the sequefyés-1 and{z,},>1 is vital.
Consider instead a sequer{ég},>1 of independent identically distributed random
variables with distributionF € 4* and mean 0, and define the sequenegh,>1
and{z,},>1 by s, = max&,, 0} andr, = —min{§,, 0}. DefineT', n ando as above.
Then&, <0 a.s. and, for the random wafl§,, },~0 generated byé, },~1 and any
¢ >0, we haveM’ = M,‘, Sincen is a stopping time fofS,},>o, it now follows
from Theorem 2(ii) that

P(M$ > x) = (14+0(1)EnF(x) = (1+0(1))(Eoc + )F(x)  asx — oo.
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ExAMPLE 7. Finally, we consider further the case of a stopping ttnsuch
that p = P(oc = o00) > 0. Recall that if F € 8%, then bothF € § and F* € 8.
Provided only thatF* € 8 (we do not here require our usual minimal assumption
that F € .£), andmp = 0 as usual, then relatively straightforward arguments can
be used to show that, in this case anddor 0, the equivalence (4) continues to
hold, and that, as — oo,

P(MS > x) = (14 0(1))P(0 = 00)P(MS, > x)
(41) = (14 0(1))HE(x)

_ A+o@p
C
However, under this weaker condition, we cannot expect any uniformity in either
o orc.
In the case wherg =1 (i.e.,0c = oo a.s.), the result (41) is the well-known
theorem of Veraverbeke [19] referred to in the Introduction.

FS(x).

APPENDIX

Recall that, for any stopping time and nonnegative functiog, the func-
tion Hs is defined by

HS(x) = Z P(o > n)F(x + g(n)).
n>1

It is convenient to have a condition under which, for some purposes, we may
replace the above sum by an integral.
Assume that, forg € G0, the definition of the functiorg is extended to all
of R in such a way thag continues to be increasing. For any sughdefine
the functionv® onR, by

v8(x) = SupF(f ten—1)
n>1 Fx+gn))

whereg(0) = 0. For any stopping time andg € o, define also the functiofl$
by

-~ oo —_—
HE(x) :/ P(o >1)F(x +g@))d:r.
0
Then, since; is increasing and is integer-valued, for alt e R,
HS(x) < HS (x)
<Y Plo=nF(x+gn—1)

n>1

<v8(x)HE(x).
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It follows, in particular, that if
(42) v8(x) — 1 asx — oo,

then alsoHS (x) = (1 + o(1)) HS (x) asx — oco.

Since F € £, the condition (42) holds fog = ¢ [i.e., g(n) = cn] for any
constantc > 0 (although observe that it doe®t hold with uniformity over all
¢ > 0). More generally, the condition (42) holds fgre Go if g(n) —g(n — 1) <
h(g(n)) for some functiorn satisfying (11).
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