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We introduce a bond portfolio management theory based on foundations
similar to those of stock portfolio management. A general continuous-time
zero-coupon market is considered. The problem of optimal portfolios of zero-
coupon bonds is solved for general utility functions, under a condition of no-
arbitrage in the zero-coupon market. A mutual fund theorem is proved, in
the case of deterministic volatilities. Explicit expressions are given for the
optimal solutions for several utility functions.

1. Introduction. This paper is a first step toward a unified theory of portfolio
management, including both stocks and bonds. There is a gap between the
traditional approaches to manage bond portfolios and stock portfolios. Managing
bond portfolios relies on concepts such as duration, sensibility and convexity,
while managing stock portfolios relies on optimization of expected utility. We
give two results toward bridging this gap. First, we set up and solve the problem
of managing a bond portfolio by optimizing (over all self-financing trading
strategies for a given initial capital) the expected utility of the final wealth. Second,
we express the solution of this problem as portfolios of self-financing trading
strategies which include naturally stocks and bonds.

The well-established theory of portfolio management, initiated in the seminal
papers [13—15], [20] and further developed by many, see [12], [17] and references
therein, does not apply as it stands to bond portfolios. The difficulty here is that
stocks and bonds differ in many ways, the most important of which is the fact that
bonds mature at a prescribed date (time of maturity) after which they disappear
from the market, whereas the characteristics of a stock do not change, except in
reaction to business news or management decisions. Another difference is that
in an unconstrained market, the time of maturity can take an infinity of values,
so there is an infinity of different bonds. As a first consequence, the price of a
stock depends only on the risks it carries (market risk, idiosyncratic risk), whereas
the price of a bond depends both on the risks it carries (interest rate risk, credit
risk) and on time to maturity. Mathematically, this is expressed by the fact that the
stochastic differential equations used to model stock prices are usually autonomous
(meaning that the coefficients are time-independent functions of the prices, as in
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geometric Brownian motion or mean-reverting processes), whereas any model for
bond prices must incorporate the fact that the volatility goes to zero when time to
maturity goes to zero. So the mathematical analysis of a portfolio including stocks
and bonds is complicated by the fact that the prices for each type of assets evolve
according to different rules, even in the most elementary case. An added difficulty,
due to the maturity dependence, is that certain strategies which are possible for
stocks are no longer allowable for bonds: a simple buy-and-hold strategy, for
instance, results in converting bonds to cash on maturity. The particular case of
strategies involving only a finite number of bonds, all with maturities exceeding the
portfolio management horizon, is similar to the case of a pure stock market (with
stochastic interest rate). Optimal portfolios for such cases were obtained in [10].
An optimal portfolio problem in a truly maturity-dependent context of reinsurance
contracts was solved in [21] for discrete time.

Our suggestion is to work in a “moving frame,” that is, to consider time to
maturity, instead of maturity, as the basic variable on which the zero-coupon
depends at each time. At timethere will be a curves — p;(S), S > 0, where
p:(S) is the price of a standard zero-coupon maturing at timeS. Here S is
time to maturity andl’" = ¢ + S is time of maturity. Such a parameterization was
introduced in [16]. When changes, so does the curpg and a bond portfolio
then is simply a linear functional operating on the space of such curves. Now
from the financial point of view, this can be seen in different perspectives: (1) The
static point of view, say, is to consider the portfolio at timsimply as a linear
combination (possibly infinite) of standard zero-coupons, each of which has a
fixed time of maturityT > ¢. Such a portfolio has to be rebalanced each time a
zero-coupon in the portfolio comes to maturity. (2) The dynamic point of view
is to consider the portfolio at time as a linear combination of self-financing
instruments, each one with a fixed time to maturfty> 0. We term such an
instrument a Roll-Over and it is simply a certailependent multiple of a zero-
coupon with time to maturitys, independent of (see Remark 2.7). Its price has
a simple expression, given by (2.33). Such instruments were introduced earlier
in [19] under the name “rolling-horizon bond.” Roll-Overs behave like stocks, in
the sense that their time to maturity is constant through time, so that their price
depends only on the risk they carry. One can then envision a program where
portfolios are expressed as combinations of stocks and Roll-Overs, which are
treated in a uniform fashion.

However, it is well known that this program entails mathematical difficulties.
The first one is that rewriting the equations for bond prices in the moving frame
introduces the operat%%, which has to make sense as an unbounded operator in
the spaceH of curvesp, chosen to describe zero-coupon prices. The second one
is that this spacéf has to be contained in the space of all continuous functions
onR*, sothatits duaH* contains the Dirac masség_;, corresponding at time
to one zero-coupon of maturif, but should not be too small, otherwigg* will
contain many more objects which cannot easily be interpreted as bond portfolios.
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In this paper we choosH to be a standard Sobolev space, which in particular is a
Hilbert space. Bond portfolios are then simply elements of the Hilbert sfigce
Reference [1] introduced portfolios being signed finite Borel measures. They also
are elements off *. The analysis is in our case simplified by the fact tHeand H*

are Hilbert spaces. In a different context, Hilbert spaces of forward rates were
considered in [3] and [6]. The image of these spaces, under the nonlinear map of
forward rates to zero-coupons prices, is locally include#fin

We believe that this abstract, Hilbertian approach opens up many possibilities.
In this paper, as mentioned above we explore one, namely portfolio management.
We give existence theorems for very general utility functions andHeralued
price processes driven by a cylindrical Wiener process, that is, in our case by a
countable number of independent Brownian motions. We give explicit solutions,
taking advantage of the Hilbertian setting. These solutions are expressed in
terms of (nonunique) combinations of classical zero-coupon bonds [i.e., financial
interpretation (1) above], but the optimal strategy can readily be translated in
terms of Roll-Overs, which may not be marketed, although they are self-financing
[i.e., financial interpretation (2) above]. If the price of bonds depends on a
d-dimensional Brownian motion, then the optimal strategy can be expressed as
a linear combination of bonds and in certain cases these can bedamarketed
bonds, with time of maturity exceeding the time horizon of the optimal portfolio
problem.

The outline of the paper is as follows. We begin by setting up the appropriate
framework in Section 2, where bond portfolios are defined as elements of a
certain Hilbert space?*. Bond dynamics are prescribed in (2.11) according to
the HIM methodology [7] and a self-financing portfolio is defined (cf. [1]) by
formulas (2.27) and (2.28). An arbitrage-free market is prescribed according to
Condition A and we introduce certain self-financing trading strategies with fixed
time to maturity, which we call Roll-Overs (Remark 2.7). The optimal portfolio
problem is set up in Section 3, and solved in two special cases, the first being when
the underlying Brownian motion is finite-dimensional (Theorem 3.6), the second
being when it is infinite-dimensional, but the market price of risk is a deterministic
function of time (Theorem 3.8). Examples of closed-form solutions are then given
in Section 4. All our portfolios are functions of the market price of risk, similar
to those giving the Merton portfolio in the case of stocks. This indicates that our
treatment indeed unifies bond and stock portfolio management.

Mathematical proofs are provided in Section 5 and the Appendix. In the
Appendix we state and prove some existence results and estimates for infinite-
dimensional processes with stochastic volatility that we have not found in standard
references such as [4] or [9]. We note that the appropriate mathematical framework
for the study of infinite-dimensional (cylindrical) processes is the theory of
Hilbert—Schmidt operators, to which we appeal in the proofs, although we have
avoided it in the statement of the results.
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Several remarks of a mathematical nature are made in Section 5. Remark 5.1
justifies our market condition (Condition A), in Remark 5.4 it is shown that our
results apply to certain incomplete markets and in Remark 5.5 a Hamilton—Jacobi—
Bellman approach is considered. We note, in Remark 5.6, that our existence result
for certain utility functions with asymptotic elasticity equal to 1 stands in apparent
contrast with the earlier result of [11] and [12] for stock portfolios. This is because
we have used a narrower definition (Condition A) of arbitrage-free prices for
bonds.

2. The bond market. We consider a continuous-time bond market and
without restriction we can assume that only zero-coupon bonds are available. The
time horizon in our model is some finite dafe> 0. At any dater € T = [0, T'],
one can trade zero-coupon bonds with matutity [7, co[. Bonds with maturity
s =1t at timer will be assimilated to money in a current account (see (ii) of
Example 2.6 and cf. [2]).

Uncertainty is modeled by a filtered probability space, P, ¥, 4); here
A = {F10<t < T} is a filtration of thes-algebra . The random sources are
given by independent Brownian motiohg’, i € I. The index sefl can be finite,
I={1,...,m}, orinfinite, = N* = N — {0}. The filtration 4 is generated by
thew!,iel.

2.1. Zero-coupons and state space. As usual, we denote bB(z, s) the price
at timer of a zero-coupon bond yielding one unit of account at timé < ¢ < s,
so thatB(z, t) = 1. It is an F-measurable random variable. In order to introduce
interest rates let us assume that, almost surely, the functionB(z, s) is strictly
positive andC!. We denote by-(r) the spot interest rate atand by f;(S) the
instantaneous forward rate contracted atT for time to maturitysS:

1 0B
(2.1) r(t)=f;(0) and ft(S)=—mﬁ(f,t+S),
which is allowed to be negativ&(z, s) denotes the price discounted to time O:
— t
(2.2) B(t,s) = B(t,s) exp(—/ r(‘L’)d‘L’).
0

It will be convenient to characterize zero-coupon bonds by their time to maturity.
For this reason we introduce th-adapted”([0, oo[)-valued processes and p
defined by

(2.3) pi(S)=B(t,t+8) and p,(S)=B(t,t+S),

wherer € T and S > 0. This parameterization was introduced in [16]. One should
here take care thét is the time to maturity and not the maturity itself. Note that
p:(0) = 1. We shall callp; (resp.p;) the zero-coupon bond (resp. discounted zero-
coupon bond) state at time For simplicity we will also use zero-coupon bond
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state or just state for both cases. The state at tican thus be thought of as the
curve: zero-coupon bonds price at the instamas function of time to maturity.
Obviously

(2.4) B(t,s)=p;(s—t) and B(t,s)=p;(s —1),

wherer € T ands — ¢t > 0.

More generally we will assume the procespeand p to take values in a certain
Sobolev spacél, the zero-coupon bond state space. Our choidé &f motivated
by the following considerations:

(a) H is aspace of continuous functions going to zero at infinity, because zero-
coupon bond prices are continuous with respect to time to maturity and they tend
to zero as time to maturity tends to infinity.

(b) H should be a Hilbert space, because it is the simplest possible infinite-
dimensional topological vector space.

Conditions (a) and (b) leave us little choice, except to tHk® be a Sobolev space
such asH* (10, oo[), with s > 1/2 (see below). Note that further conditions should
be required for the model to be completely realistic:

(c) p:(S) must be differentiable with respect that S = 0, so that the spot
interest rate is well defined.

(d) p;(S) should be positive for alf > 0 andp;(0) = 1.

(e) p:(S) should be decreasing with respectsto

Conditions (c) and (d) will be satisfied as a result of our model. However, to
include simple Gaussian interest rate models, we will not impose condition (e).
The state space of portfolios at each ti#é, which is the dual of the zero-
coupon bond state space, will contain measures as it shall. If wanted, we can now
chooseH such that portfolios have certain regularity properties, for example, such
that derivatives of measures are not elementd 6fWe next define and recall
certain elementary facts concerning Sobolev spaces.

Fors e R, let H* = H*(R) (cf. Section 7.9 of [8]) be the usual Sobolev space
of real tempered distributions on R such that the functiom > (1+ |x|2)*/2 f (x)
is an element ofL2(R), where f is the Fourier transform [irR" we denote
Xy = 1<i<pXiyi. X,y € R", and we define the Fourier transforfof f by

F) = @2r)"/? [ exp(—iy - x) f (x) dx] of £, endowed with the norm:

X 1/2
1 f e = (/(1+ IXIZ)SIf(x)Ide> .

All the H® are Hilbert spaces. Clearlyf® = L2 and H* C H¥ for s > s’ and in
particularHS C L2Cc H™, fors > 0. If fisC", neN,and if f together with
its n first derivatives belong td.?, then f € H”. For everys, the spaceC°(R)
of C*° functions with compact support is densefi. For everys > 1/2, by the
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Sobolev embedding theorems, we h&lieC C%N L. In additionH* is a Banach
algebra fors > 1/2: if f € H® andg € H?, then fg € H® and the multiplication
is continuous. Also, ifs > 1/2, f € HS andg € H™*, then fg € H~* and the
multiplication is continuous also here.

We define, fors € R, a continuous bilinear form o —¥ x H® by

(2.5) (.8 = [ (Fo)gdx,
wherez is the complex conjugate af Any continuous linear formf — u(f)
on H*® is of the formu(f) = (g, f) for someg € H~*, with ||g|l g = llull(as)*,

so that henceforth we shall identify the daf*)* of HS with H.

Fix somes > 1/2. We then haveH* C C%N L, so thatH—* contains all
bounded Radon measures Bn In H®, consider the set{® of functions with
support in] — oo, 0], so thatf € H* ifand only if f(r) =0 forallt > 0. Itis a
closed subspace df®, so that the quotient spadé®/H® is a Hilbert space as
well. This is the space we want:

(2.6) H=H'/H’.

To sum up, a real-valued functiofi on [0, co[ belongs toH if and only if it is
the restriction tdO0, oo[ of some function inH*, that is, if there is some function
f € H* (and hence defined on the whole real line) such s = f(r) for all

t > 0. The norm onH is given by

I £l = inf{ll fllas| f € H, f(©)=f(t)Vt >0}
and the dual spacH* by
H*={ge H*|(f,g)=0V feH).

It follows that H* is the set of all distributions iH —* with support in[0, co[
and in particular, it contains all bounded Radon measures with supp@;taa.
H inherits the property of being a Banach algebra frérn

2.2. Bond dynamics. From now on, it will be assumed tha4 and p, take
values inH, so that the processesand p are-adapted and/ -valued. Moreover,
it will be assumed thaip and p are A-progressively measurable. As in the
finite-dimensional case, if (resp.p) is A-adapted and measurable, then it has
an A-progressively measurable modification. The reader who wants to avoid
progressive measurability can therefore thinkof(resp. p) as anw-adapted
measurable process.

We shall denote byt : [0, oo[ x H — H the semigroup of left translations H:

(2.7) (Laf)(s) = fla+s),

wherea >0, s > 0 and f € H. This is well defined since botl#* and H*
in (2.6) are invariant under left translations. One readily verifies thats
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a strongly continuous contraction semigroup ih Therefore (cf. Section 3,
Chapter I1X of [22]), it has an infinitesimal generator which we shall denot&, by
with dense and invariant domain [the domain consists offaf H such that
lim. 0e~ (L. f — f) exists inH and for suchf the limit is equal tadf], denoted
by £(09). D(9) is a Hilbert space with norm

(2.8) I fllowy = (LFIZ + 18 12)Y2.

\olatilities are assumed to take values in the Hilbert spiagef all real-valued
functionsF on [0, oo such thatF =a + f, forsomea e Rand f € H. The norm
is given by

(2.9) 1Pl 5, = @+ FIZDY2,

which is well defined since the decompositionfot=a + f, a c Rand f € H, is
unique.Hy is a subset of continuous multiplication operatorsfnin fact, since
H is a Banach algebra it follows thitFh|| g = C||F||H lZlg, whereC > 0

is independent o € Hy andh € H. We also mtroduce a Hilbert spadé; of
continuous multiplication operators o (3). Hi is the subspace of elements
F € Ho with finite norm

(2.10) 1F 1L, = @@+ 1 F15) ™2

whereF =a + f, a e R and f € D(9). Finally let us define the left translation
in Hy by (L4, F)(s) = F(a+s), whereF € Hy, a > 0, s > 0. Hy is the domain of
the generator of£, which we also denot8.
We shall assume that the bond dynamics are given by an equation of the
following type. (Let fi, ..., f, € Ho (resp.Hy). Then f1--- f, € Ho (resp. H1)
and when there is no rlsk for confusion, we shall also witefs - - - f,, instead
of L,(f1---fu). If moreover onef; € H [resp. D(d)], then f1---f, € H
[resp.D(9)].)

@11) = £fpo+/ Lo s(msps>ds+/ S £y y(0f p) AW,
iel

for t € T, wheres/, i €I, andm, are A-progressively measurablé-valued
processes and th&', i € I, are the already introduced standard Brownian
motions. One must also take into account the boundary condBign) = 1,
which in this context becomes

t
(2.12) p:(0) = exp(—/o r(s) ds).

This can only be satisfied in general if

(2.13) o/(0)=0 foriel
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and
(2.14) m;(0) =0.

WhenT is finite, then (2.11) gives the usual HIM equation (equation (9) of [7])
for B.

In this paper, the procegsis given. So formula (2.11), which then defines
andm, can be considered as the decomposition of the real-valued semimartingale
t = p(T —1t) = B(t,T), describing the value of the zero-coupon bond with
maturity 7, for each fixed value off. Alternatively, one may want to take’
andm; as the parameters in the model, and defiwes the solution of a stochastic
differential equation inf. Proceeding formally, (2.11) gives after differentiation

t t . .
(2.15) Fi=po+ [ @+ hmds+ [ 5 Yol W

iel
A mild solution (cf. [4], Chapter 6, Section 1 for the case of deterministic
of (2.15) is an«-progressively measurablH-valued proces$ satisfying the
condition

T .
(2.16) /O (uﬁth + 1 pimila + Y | prof ||%1) di<oco  as.
iel
and which satisfies (2.11). An-progressively measurablé-valued procesg is
astrong solution of (2.15) if condition (2.16) is satisfied andjif € £(9) a.s. for
eachr € T and

T
(2.17) / 10 psll g dt < o0 a.s.
0

We note that a strong solution of (2.15) is a semimartingale and it satisfies the
evolution equation (2.11). However, the last term on the right-hand side of (2.11)
is not in general the local martingale part. The aim of the following theorem is to

ensure consistency in our model between the propertigsaofl those of andm.

THEOREM 2.1. If ¢/, i eI, and m are given A-progressively measurable
Hi-valued processes, such that (2.13)and (2.14)are satisfied and such that

T .
(2.18) / lea}lli}ldt<oo as.
0 “
iel
and
T
(2.19) /Ollmt||ﬂldt<oo a.s.

and if po € H is given and satisfies [we use obvious functional notation such as
f>0for f e H, meaningVs >0 f(s) > 0]

(2.20) po € D(9), po(0) =1, po>0,
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then (2.11) has, in the set of mild solutions of (2.15),a unique solution p. This
solution has the following properties: p isa strong solution of (2.15), p isstrictly
positive (i.e, Vt € T, p, > 0), t = dp, € H is continuous a.s., the boundary
condition

(2.21) 5,(0) = exp( /‘ (8lis()o()0> )

is satisfied for each r € T and an explicit expression of the solution is given by

(2.22) p, = exp(/ot Lo_s ((ms -1 Z(gj)2> ds+> o] de))OCtﬁo.

iel iel

In particular p; € C1([0, o) as.

So, given appropriate’, i € I, andm, the mixed initial value and boundary
value problem (2.11), (2.12) has a unique solution for any initial curve of zero-
coupon bond prices satisfying (2.20). The proof of Theorem 2.1 is given in
Section 5.

Under additional conditions ow’, i € I, and m, we are able to prove
L?-estimates op.

THEOREM 2.2. If ¢/, i €1, and m in Theorem 2.1 satisfy the following
supplementary conditions: for each a € [1, ool

(2.23) ((/ o1, dr) +exp< / AR dr)><oo

iel iel

and

(2.24) E<(‘/j lmll g, dt)a + exp<a /OT lmell g, dt)) < 00,

then the solution p in Theorem 2.1 has the following property: If u € [1, ool
q(1) = p:i/Lipo and (1) = p;/L: po, then p, p € L*(2, P, L>(T, D(9))) and
q, qa 1/qv 1/@ € Lu(Qa P, LOO(Ta Hl))

We remind that, under the hypotheses of Theorem2,(D) satisfies (2.21), so
it is the discount factor (2.12). Theorem 2.1 has the

COROLLARY 2.3. Under the hypotheses of Theorem 2.2, if « € R, then the
discount factor satisfies

E(sup(ﬁ,(O))“) <00

teT
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2.3. Portfolios. The linear functionals iH* will be interpreted as bond port-
folios. More precisely, a portfolio is af/*-valued A-progressively measurable
proces® defined orT. Its value at time is

and its discounted value is
(2.26) V(t,0)= (61, py)-

EXAMPLE 2.4. (i) A portfolio consisting of one single zero-coupon bond with
a fixedtime of maturity 7, T > T,is represented by, wheref, = 87—, € H*,
the Dirac mass with support & — ¢, wherer € R. Note that wherr increases
its support moves to the left toward the origin, which also can be expressed by
0;(s) = 6o(s + 1), for s > 0. Its value at time is p,(T —1).
(i) A portfolio 6 consisting of one single zero-coupon bond with a fikeae
of maturity 7, 0< T < T. Then6, = 87—, € H*, for t < T and 6, = 0, for
T <t <T. Its value at timer < T is p,(T —t) and its value at time > T is
zero.
(i) 6 givenbyd, =85 € H*, the Dirac mass with fixed support&trepresents
a portfolio which consists at any time of a single zero-coupon bond tiviga to
maturity S; note that it has to be constantly readjusted to keep the time to maturity
constant, and that its value at timés p,(S).

As usual, a portfolio will be calleddf-financing if at any time, the change in
its value is due to changes in market prices, and not to any redistribution of the
portfolio, that is,

(2.27) V(t,0)=V(0,0)+ G(t,0),

whereG(z, 0) represents the discounted gains in the time inti®all. We shall
find the expression ofi (1, 8). We remind that the subspace of elemefitsf H*
with support not containing 0 is denseffi*. Suppose that the portfolio is already
defined up to time and tha®; contains no zero-coupon bonds of time to maturity
smaller than somd > 0, that is,6; has no support if0, A[. At ¢ let the portfolio
evolve itself without any trading until+ ¢, where O< ¢ < A. Then6,, is given

by 60;1.(s) =6,(s + ¢), for s > 0. At ¢ + &, the discounted value of the portfolio
iSV(t+e0)= (01, Pire) = J4°0:(s) Prye (s — €) ds. We can now differentiate
in . Using (2.11) and (2.27) and taking the limiés— O and thenA — 0 we
obtain:

(2.28) dG(t,0) = (6;, pimy)dt + Y (0, pro} ) dW;.

iel
We now takeG(0,6) = 0 and this expression, in case it makes sense, as the
definition of the discounted gains for an arbitrary portf@lio
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To formalize this idea, we need to define appropriately the space of admissible
portfolios. Given the procesg, an admissible portfolio is an H*-valued
A-progressively measurable procéssuch that

T
||e||§=E(/O 1612« + 10,6, pe 11+ dt

7 2
+ (/0 I3 ﬁtmt>|dt) ) < o0,
where we have used tmetation

(2.30) |U; 91171”11* Z( (6:, p tU;

iel
For the mathematically minded reader this notation will be given a meaning in
Section 5. The set of all admissible portfolios is Banach spaead the subset
of all admissible self-financing portfolios is denotedmy. The discounted gains
process for a portfolio i is a continuous square-integrable process:

(2.29)

PROPOSITION2.5. Assumethat po, m and o areasin Theorem2.1.1f6 € P,
then G(-, 6) iscontinuous a.s. and E (sup (G (z, 0))?) < oco.

ExAMPLE 2.6. (i) The portfolio of Example 2.4(i) is self-financing and the
portfolios of Example 2.4(ii) and (iii) are not self-financing.

(i) We define a self-financing portfolié of zero-coupon bonds with constant
timeto maturity S. Let6 be given byo, = x(¢)ds, where

(2.31) (1) = x(0) exp( /o " (S) ds)

and f;(S) is given by (2.1). Thav is self-financing is readily established by
observing that in this case(t) p,(S) = V(t,0), V(t,0) = V(0,0) + [§ V(s,6) x
(mg(S)ds + Y;c10!l(S)dW!) and by applying 1td’s lemma ta(s) = V(t,0)/
pi(8); cf. [19].

We note thate () = V (¢, 0)/ p,(S) is the wealth at time expressed in units of
zero-coupon bonds of time to maturisy According to (2.31), the self-financing
portfolio 6 is then given by the initial number(0) of bonds and by the growth
rate f(S) of x. So this is as a money account, except that here we count in zero-
coupon bonds of time to maturity.

In particular, if§ = 0, then the equality (r) = V (¢, ), the definition (2.1) of
and the definition (2.31) show thétcan be assimilated to money at a usual bank
account with spot rate see [2].

REMARK 2.7 (Roll-Overs). (i) LetS > 0, x(0) = 1 and the portfolicd be
as in (ii) of Example 2.6. Of cours& = V (T, 60) is then an attainable interest



A THEORY OF BOND PORTFOLIOS 1271

rate derivative, for whicl® is a replicating portfolio. We name this derivative a
Roll-Over or more precisely a-Roll-Over to specify the time to maturity of the
underlying zero-coupon bond. Lg{(S) be the discounted price of éhRoll-Over

at timet. Then po(S) = po(S) by definition and the price dynamics of Roll-Overs
is simply given by

t t . .
(2.32) 2 =po+/0 ﬁsmsds+/0 psY_osdW;,

iel

t € T, which solutionp is given by

t
(2.33) pi(S) = pi(S) eXp(/o f5(8) dS), §=0.

An S-Roll-Over can be denounced at timewith a notice ofS time units and it
will then payx (¢) units of account at time+ S.

(if) Zero-coupon bonds do not in general permit self-financing buy-and-hold
portfolios, that is, constant portfolios. However, Roll-Overs do, since a constant
portfolio of Roll-Overs is always self-financing. Mathematically, this can be
thought of as changing from a fixed frame to a moving frame for expressing a self-
financed discounted wealth process in terms of coordinates, that is the portfolio. To
be more precise let us consider a technically simple case: betnondegenerated
in the sense that the linear span of the{géti € I} is dense a.s. ito for every
t € T. Let the initial price satisfy sypy sup.-q po(s)/po(t +s) < oo and let the
hypotheses of Theorem 2.2 be satisfied. Then a self-financing portfali®s;
is the unique replicating portfolio i@ € Pgs of V(T,6). Moreover, there is a
uniquen € P such that(6;, p;) = (n,, p;), for all ¢t € T. The coordinates of the
self-financed discounted wealth procéss, ) with respect to the moving frame
is n. In particular, anS-Roll-Over is given by the constant portfolip, where

n: =4s.

We next set up an arbitrage-free market by postulating a market-price of risk
relation betweem ando .

CONDITION A. Thereexistsafamily {T"|i € I} of real-valued #-progressively
measurable processes such that

(2.34) m; +ZF§0} =0
iel
and

T .
(2.35) E(exp(a/o > |I‘;|2dt>> <00  VYa=0.

iel
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Condition (2.34) is similar to a standard no-arbitrage condition in finite
dimension and we refer to Remark 5.1 for further motivation in the infinite-
dimensional case. Inequality (2.35) permits the use of Novikov's criteria (cf. [18],
Chapter VIII, Proposition 1.15). When Condition A is satisfied, (2.28) for the
discounted gains of a portfol@® becomes

(2.36) dG(t,0) = (6, pyo;)(—Tidt +dW)).

iel
The following result shows how to obtain a martingale measure in the general case
of Condition A. Introduce the notation

(2.37) £ = exp(—%/(;t S (H%ds + /0, ngdW;),

iel iel

wheret € T.

THEOREM 2.8. If (2.35)is satisfied, then & is a martingale with respect to
(P, A) and sup.p & € LY(Q, P) for each « € R. The measure Q, defined by

dQ=§&7dP,

is equivalent to P on F7 and ¢t > W) = W/ — [{Tids, t € T, i €1, are
independent Wiener processwith respect to (Q, +). (The Girsanov formula holds.)

The expected value of a random varialflevith respect taQ is denotedt o (X)
andEo(X) = E (&5 X).
Proposition 2.5 and Theorem 2.8 have the

COROLLARY 2.9. Assumethat pg and o are asin Theorem 2.1 and assume
that Condition A is satisfied. Then all conditions of Theorem 2.1 are satisfied and
if 0 € P, then G(-, 9) iscontinuous a.s., E(sup.r(G(t,6))?) < oo and G(-,0) is
a(Q, A)-martingale.

By an arbitrage-free market, we mean as usually, that there does not exist a
self-fir]ancing dynamical portfolié € Ps such thatv (0,0) =0, V(T,0) > 0 and
P(V(T,0) > 0) > 0. The following result shows that the market is arbitrage-free:

COROLLARY 2.10. Assumethat po and o areasin Theorem 2.1and assume
that Condition A is satisfie(_j. If 0 € Pg, its discounted price V(-,0) isa (Q, #4)-
martingale and E (supp(V (¢, 6))?) < oo. In particular the market is arbitrage-
free
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3. The optimal portfolio problem. The investor is characterized by his
utility u(wyz), wherewy is terminal wealth, discounted to= 0. Given the initial
wealthx, denote byC (x) the set of all admissible self-financing portfolios starting
from x:

C(x) ={0 € Psf|V(0,0) = x}.
The investor's optimization problem is, for a given initial weakf, to find a
solutiond € C(Kp) of
(3.1) E(V(T,0))= sup Eu(V(T,6))).
0eC(Ko)

In the following, the utility function is allowed to take the valueco, so
u:R — R U {—o0}. Throughout this section, we make the following Inada-type
assumptions:

CONDITION B.

(@) u:R — RU{—o0} isdtrictly concave, upper semi-continuous and finite on
aninterval 1x, oo[, with x < 0 (thevalue x = —oo isallowed).

(b) uisCton]x, oo and u’(x) — oo when x — x in Jx, oo[.

(c) Thereexists some g > 0 such that

(3.2) liminf(1+ |x))"%u’(x) > 0
x|x

and such that, if ¥’ > 0 on ]x, oo[, then

(3.3) limsupx?u’(x) < oo
X—> 00

and if u’ takes the value zero, then

(3.4) limsupx~7u’(x) < 0.
X—>00

REMARK 3.1. (i) If u satisfies Condition B, them obtained by an affine
transformationy(x) = au(ax +b) — B, @,a >0, B € R, b > x, also satisfies
Condition B. Usual utility functions, such as exponentiét) = —e™*, quadratic
u(x) = —x2/2, poweru(x) = x%/a, x >0, a <1 anda # 0 and logarithmic
u(x) =Inx, x > 0, satisfy Condition B. Others, like HARA, are obtained by affine
transformations.

(i) Strictly negative wealth is admitted when< 0 and additional constraints
such as positivity are not included in the present theory. However, positivity of
wealth is obviously satisfied for all utility functions with= 0, such asu(x) =
x%/a, a < 1 anda # 0 and logarithmia:(x) = Inx.

It follows that u’ restricted to]x, oo[ has a strictly decreasing continuous
inverseg, that is, a map such thap o u’)(x) = x for x €]x, oo[. The domain
of g is I =u’(]x, oo[). Condition B has an equivalent formulation in termsgof
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LEMMA 3.2. If u satisfies Condition B, then:

() fu’ >00n]x, oo, then I =10, oo[ and for some C, p > 0,

(3.5) lp()| < C(xP +x77),
for all x > 0.
(i) If u’ takesthe value zeroin ]x, oo[, then I =R and for some C, p > 0,
(3.6) lp(x)| < C(L+[x])?,
for all x e R.

Conversdly, if I =10,00[ (resp. I = R), x € [—00,0], and ¢:I — ]x, o0[
satisfying (3.5) [resp. (3.6)] is a strictly decreasing continuous surjection with
inverse g, a € R, xp €lx,o00[ and if u(x) =a + f;og(y)dy, for x e]x, oo,
u(x) =limy, u(x), u(x) = —oo, for x < x, then u satisfies Condition B.

We shall next give existence results of optimal portfolios. In order to construct
solutions of the optimization problem (3.1), we first solve a related problem
of optimal terminal discounted wealth at tin#e, which gives candidates of
optimal terminal discounted wealths, and second, we construct, for certain of these
candidates, a hedging portfolio, which then is a solution of the optimal portfolio
problem (3.1). The construction of terminal discounted wealths is general and only
requires that Conditions A and B are satisfied. For the construction of hedging
portfolios, we separate the case of a finite number of random sources, that is,
I={1,...,m} (Theorem 3.6) and the case of infinitely many random sources
I =N* (Theorem 3.8). In the case bffinite, general stochastic volatilities being
nondegenerated according to a certain condition are considered. In the dase of
infinite, we only give results for deterministic, but which can be degenerated.

If X is the terminal discounted wealth for a self-financing strateg§ (Ko),
then due to Corollary 2.%o = E (£ X). We shall employ dual techniques to find
candidates of the optima; cf. [17].

THEOREM3.3. Let u satisfy Condition B and let I" satisfy condition (2.35).If
Ko € |x, oo[, then thereexistsaunique X € L3(2, P, ;) suchthat Ko = E(£7 X)
and

(3.7) Eu(X))= sup E®u(X)).
Ko=E(£;X)

Moreover, X € LP(, P) for each p € [1, o[ and there is a unique A € I such
that X = ¢(£7).

Now, if § hedges¥, thend is an optimal portfolio. More precisely, we have:
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COROLLARY 3.4. Letm and o satisfy the hypotheses of Theorem2.1and also
be such that there exists a I with the following properties. I" satisfies Condition A
and X, given by Theorem 3.3, satisfies X = V (T, §) for some§ € Ps;. Thend isa
solution of the optimal portfolio problem (3.1).

REMARK 3.5. Instead of optimizing in (3.1) the expected utility of the
discounted terminal wealthy (T, 6), one can choose to optimize that of the
terminal wealthV (T, #). This leads to a similar result as that of Theorem 3.3.
Using thatp, (0) is the discount factor, we obtain that the optlmal terminal wealth
isZ = ¢(p7(0)A&7) and thatx is given byE(sTpT(O)Z)

3.1. Thecase I ={1,...,m}. Here we assume that a.s. the set of volatili-
ties{ol,..., 0/} is linearly independent ity for eachr € T. Sincepg > 0 and
po € H, thisis equivalent to the a.s. linear independenc{eﬁﬁzpo, ey Gtrhoﬁtpo}
in H, for eachr. Consider then x m matrix A(¢) with elements

A(0)ij = (0{ L1po, o L1 po)n
(beware that we are using the scalar produd¥iand not inL?):

THEOREM 3.6. Let po € D), po(0) =1 and po > O, let o # O satisfy
conditions (2.13) and (2.23) and let Conditions A and B be satisfied. Assume
that there exists an adapted process k£ > 0, such that for each ¢ > 1 we have
E(sup.r k) < oo and, for each x e R™ and ¢ € T:

1/2
(3.8) (x, A(O)x) gink; = (Z lo; oCzPoIIfq) IIXllfw as.

iel

If Ko € Ix, oo[, then problem (3.1) has a solution 6.

We note that condition (3.8) only involves prices at time 0 and the volatilities.
We also note that the optimal portfolio is never unique since one can always add
a nontrivial portfoliod’ such that the linear span of the $e}1ﬁt, ..,a"p}isin
the kernel o®;.

REMARK 3.7. Due to the nonuniqueness of the optimal portfélim Theo-
rem 3.6, it can be realized using different numbers of bonds:

1. One can always choose an optimal portfofiosuch thatd, consists of
at most 1+ m zero-coupon bonds at every time This can be seen
by a heuristic argument. Since, for every> 0, the set of continuous
functions {o1p,, ..., o/ p,} is linearly independent a.s., there exists positive

F:-measurable finite random variabl§$ such that O< S* < --- < § and
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such that the vectors,j = (atl(S,j)ﬁ,(Stj),...,o,’;’(Sf)ﬁt(Sf)), 1<j<m,
are linearly independent a.s. Lét = Yi<j<m a,fas,-, where a/ are real
- t

F:-measurable random variables. The equati(@ni,a,") =y@),1<i<m,
wherey; (¢) is given by (5.31), then have a unique solutipnSo at timer it is
enough to use bonds with time to maturitg=0s° < S < ... < §7 to realize
an optimal portfoliod. The number of bonds with time to maturity=9S° is
adjusted to obtain a self-financing portfolio.

2. Alternatively to zero-coupon bonds, one can alsormse 1 coupon bonds or
Roll-Overs to realize an optimal portfolio.

3. For certain volatility structures, one can even useanyiven Roll-Overs or
m given marketed coupon bonds (supposed to have distinct times of maturity,
each exceedin@) to realize an optimal portfolio. In particular, this is the case
if the above vectors{, 1< j <m, are linearly independent for every sequence
O<St<...<sm

3.2. The case of deterministic o and I'.  Condition (3.8) cannot hold in the
infinite case] = N*. In fact this is a consequence of trﬂ[ Sierllof ||12flO dt < oo

a.s., as explained in Remark 5.3. WherandI" are deterministic, we can give
another, weaker condition, which only involves I" and the zero-coupon bond
prices at time zergy. This will give us a result which will hold for the infinite
case as well. Properties of the invegsef the derivative of the utility functiom,
satisfying Condition B, were given in Lemma 3.2. For simplicity we shall need one
more property, which we impose directly as a conditiopoiVe keep in mind that

¢’ <0, sinceu is strictly concave.

CONDITION C. Let Condition B be satisfied, assume that « is C2 on Jx, oo
and assume that there exist C, p > 0 such that:

(@) Ifu’ > 0on ]x, oof, then

(3.9) lxg’ ()| < C(xP +x7P),
for all x > 0.

(b) If u’ takesthe value zeroin Jx, oo, then
(3.10) lx¢'(x)] < C(A+ [x])?,
for all x e R.

We note that Condition B implies Condition Cif is homogeneous. Condi-
tion C is satisfied for the utility functions in Remark 3.1.

THEOREM 3.8. Let 0 and m be deterministic, while I is finite or infinite.
Let po € D), po(0) =1and pg > 0, let o satisfy conditions (2.13)and (2.18)
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and let Conditions A and C be satisfied. Assume that there exists a (deterministic)
H*-valued function y € L2(T, H*) such that

(3.11) (Vi 0f£,po) = Ff,

for eachi eI and 7 € T. If Kq € ]x, oo[, then problem (3.1) has a solution 6.

As explained in Remark 5.4, condition (3.11) can be satisfied in highly
incomplete markets. In the situation of Theorem 3.8, we can derive an explicit
expression of an optimal portfolio. We use the notatipf) = p;/L;po of
Theorem 2.2.

COROLLARY 3.9. Under the hypotheses of Theorem 3.8,an optimal portfolio
is given by = 0% + 6%, where 69,61 e P, 6° = 4,60, 6 = b, (G(1)) "1y, The
coefficients a and b are real-valued A-progressively measurable processes given
by

(3.12) bi = Eg(Ae;¢' (AE)| F)
and
(3.13) ar = (p(O) (Y (1) — by (v, L1 o)),

teT, whereY () = Eg(¢(A&;7)|F;) and A € I isunique. The discounted price of
the portfolio 6 isgiven by V (r,0) = Y (1), t € T. Moreover, (0°, o/ p;) = 0 and

(3.14) 01, 0/ pr) = Eg(r&70' (AE7) | F1)TE,
ielandr eT.

The proofs of Theorem 3.8 and Corollary 3.9 are based on a Clark—Ocone
like representation of the optimal terminal discounted wealth (see Lemma A.5).
Alternatively, the explicit expressions in Corollary 3.9 can be obtained by a
Hamilton—Jacobi—Bellman approach (see Remark 5.5). This corollary has an
important consequence, since it leads directly to mutual fund theorems. We shall
state a version only involving self-financing portfolios.

THEOREM 3.10. Under the hypotheses of Theorem 3.8, there exists a self-
financing portfolio ® € Pst, with the following properties:

(i) Theinitial value of ® is 1 euro, that is, (®q, po) = 1 and the value at each
timer € T isstrictly positive, that is, (®;, p;) > 0.

(i) For each given utility function u satisfying Condition C and each initial
wealth Kg € ]x, oo[, there exist two real-valued processes x and y such that if
6, = x,80 + y:©,, then 4 is an optimal self financing portfolio for u, that is a
solution of problem (3.1).
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4. Examples of closed-form solutions. In this section we shall give, in the
situation of Corollary 3.9, examples of solutions of problem (3.1), for certain
utility functions «. In particular, condition (3.11) is satisfied, soandI" are
deterministic.

According to Corollary 3.9, the final optimal wealth ’(T) = ¢(1£7) and
the optimal discounted wealth processs given byY (1) = Eg(¢(A&5)|F7). The
initial wealth Y (0) = Ko determines.. We introduce the optimal utilityy as a
function of discounted wealttv at timer € T,

(4.1) Ut,w) = Eu(Y(D))|Y () =w).

We recall that(p,) 1L, po € H1 a.s. andp;(0))~1 € R a.s. which is a particular
case of Theorem 2.2 and Corollary 2.3.

EXAMPLE 4.1. Quadratic utility. The utility function is
(4.2) u(x) = px — x2/2,

where u € R is given. Condition B is satisfied with = —co and O< ¢ < 1.
We haveI = R and ¢(x) = —x + u and Condition C is satisfied with
p > 2. The P-martingale¢ can be writterg, = n, exp(/g >;c1(T'})?ds), where
e = exp(—3 § Xiar(TD2ds + [§ ;i TEdW!) defines aQ-martingalen (see
Theorem 2.8). Since

Ko=Eg(p(&f)) = —AEg(§f) + = —4 eXp(/OT EZH(Fé)ZdS) + 1,
it follows that |
(4.3) A= (u— Kp) exp(- /oT Z(r;')st).
The optimal discounted wealth proceEsis tlhein given byY (1) = Eg(p(A&7)]
F) = —rexpfy Liar(T)?ds)Eg(n7|F2) + . SO
(4.4) Y(t) =+ (Ko— ) exp(/(: %(r;’ dw! — %(Fg)zds))
For givenu, w € R andr € T, formula (4.11) leads to the optimal utility

Ut, w) = (—3w? + pw) exp(— /IT Z(Fg)zds)

iel

T
+ %Mz(l— exp(—ft Z(F§)2d3>>-

iel

(4.5)

One finds firsb, = Y (r) — u and then
(4.6) ar = (ﬁt(o))_l(y(t) — (Y (&) — ) (v, L1 P0))-
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An optimal portfolio is given by) = 6° + 6, whereg? = 4,80 and

(4.7) oF = (Y (t) — 1) ye (pr) " Ls po.

We see that the discounted wealth investedSris Y (1) — (Y (1) — ) (y:, L1 po)
and ingtitis (Y (t) — w) (v, L; po). If we want a certain expected return over the
periodT, then this will of course fixu in formula (4.4).

EXAMPLE 4.2. Exponential utility. The utility function is
(4.8) u(x) = —exp—ux),
whereu > 0 is given andv € R. Determination ol gives
1
(4.9) ——In—_Ko—i——/ > (T2 ds.
K K iel
The optimal discounted wealth procassfor initial wealth Ko € R, is given by
(4.10) Y (1) = Ko — —/ S riaw,

iel

The optimal utility is given by

(4.11) U(t,w) = —exp( pw — —/ > (ri )st)
t

iel
wherew € R andr € T. For an optimal portfolio we get, = —1/p,

_ _ 1
(4.12) a= () v+ = £1p0))
andd = 6° + 61, whereg? = 4,60 and

1
(4.13) 0 = =) 1L po.
So in this case the discounted wealth invested in the risky zero-coupon bond of
time to maturity S is etl(S)ﬁ,(S) = —%y,(S)po(S + 1), which is deterministic.

However, the portfoli(ﬁf), that is, the numbes, of zero-coupon bonds of time
to maturity O is random through its dependence on the discounted wéaith
The discounted wealth invested &P is Y (¢) + %(y;, L:po) and in ot it is

—=+ (1, £: po). Expressed in Roll-Overs the portfolio beconfies n° + n*,

0 1
(4.14) n,($) =Y+ ;(Vz, L1 p0)8(S),

1oy L oo po(t +S)
(4.15)  nis)= Mexp( [ fs<s>)ds)T 5oS)

wheresS > 0 ands = §p.
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ExAamMPLE 4.3. Homogeneous utility. The utility function is
(4.16) u(x) =x*,

where O< u < 1 is given ande > 0. Determination of. gives

1/(1-p)
(4.17) (%) :Koexp( AR / Z(F) ds)

The optimal discounted wealth procassfor initial wealth K > 0, is given by
(4.18) Y(r) = Koexp</t Z(—iFidW; — }<LF§)2ds)>
0 g\ 1-n 2\1—n
The optimal utility is given by
(4.19) U(t,w) =w" exp(L fT Z(Fé)zds>, w > 0.
21-w )i 5

The optimal portfolidd is given by

(4.20) b= )
and
_ 1
(4.21) a = (5,(0)) 1(1+ m(yt,oc,pm)m),

so both® and#! are proportional to the wealth. The fractiéf’l(S) pi(S)/Y ()
= —1(S)po(S +1)/(1 — ), invested in the risky zero-coupon bond of time to
maturity S, is deterministic.

REMARK 4.4. If, instead of maximizing expected utility of discounted termi-
nal wealth, we maximize expected utility of terminal wealth (see Remark 3.5), we
find, in the case of a homogeneous utility function (4.16), that the optimal portfo-
lio & satisfies

1
i E,S()tp ;()S) = 1_1Mpo(z+5)yt<5) - sf /()

for time to maturityS > 0. The fraction invested in the risky zero-coupon bond
of time to maturityS > 0 is thus deterministic. In the particular case when the
portfolio is restricted to a current account and a zero-coupon bond of maturity
exceeding the portfolio management horizbna similar formula was obtained

in [10]. It refers to the first term as the Merton result, and to the second as the
correction term.
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5. Mathematical complements and proofs. In the sequel it will be conve-
nient to use a more compact mathematical formalism, which we now introduce.
The dual ofHp is identified withHy = R & H* by extending the bilinear form,

defined in (2.5), tadg x Ho:
(5.1) (F,G)=ab+(f,g),

WhereF=a+feFI§, G=b+gel:lo, a,beR, fe H* andg € H. {e;};ien+
is an orthonormal basis itlp. For i € N*, the elemente; € Hy is given by
(el, f) = (e, ) g for every f € Hyp. The map L(E, F) denotes the space of
linear continuous mappings frol into F, L(E) = L(E, E)] 4 € L(Ho, H}) is
defined byS f = ";-1(e}, f)e;. The adjoint§* e L(Hg, Ho) is given by$* f =
Sis1lei. flei. Moreover,(f.g) g, = (8£.g) for f.g € Ho. (f.8) = = (/. 8"3)
for f,¢ € H§ and 4 is unitary. For a given orthonormal badig};c1 in Hj we
define thel (Hp)-valued proceséo, };cT by
(5.2) o f =Y {eh o,

iel
for f € Ho. We note that ify";-; ||o,"||12:10 < oo a.s., theno, is a.s. a Hilbert—
Schmidt operator-valued process, with Schmidt norm

1/2
(5.3) [CAPEE (gl lof ”%) :

The adjoint is given by
(5.4) ol f =Y (f o}l

iel
for f e Af.
We define a cylindrical Wiener proce$¥ on Ho; cf. Section 4.3.1 of [4]:
W, =Y ;a1 We;. We also defind”, = Y2, ' e;, which is an element offp a.s.
if 30°,(I')? < oo a.s. Equation (2.11) now reads

(5.5) P =£fﬁo+/ot L1 psims ds+/0t Li—spsog dWy,
its differential

(5.6) dp: = (m;p: + dpy) dt + pro, dW,,
eguation (2.28)

(5.7) dG(t,0) = (6;, pim,)dt + (0, p,6;, dW,),



1282 |. EKELAND AND E. TAFLIN

relation (2.34)

(5.8) m;+o,I', =0

and equation (2.36)

(5.9) dG(t,0) = —(0; p:6;, T,y dt + (o] p:6;, dW,),
wherer € T.

The quadratic variation for a proceasis, when defined, denotetVz, M)).

REMARK 5.1. In order to justify condition (5.8), we note (omitting the a.s.)
that if 6’ is a self-financing strategy such th@te H* is in the annihilator
{polli e I}t c H* of the set{p,0/li € I} C H, then (2.28) givesiG(t,0') =
6,,m:p;)dt. 6" is therefore a riskless self-financing strategy. Since the interest
rate of the discounted bank account is zero, in an arbitrage-free market we must
have (6], m, p;) = 0. This shows thatr, p; € ({p;0/|i € I}1)*, thatis,m, p, is an
element of the closed linear span{(ﬁtoﬂi e I}. Sincep; > 0, we choosen; to
be an element of the closed linear spanf {o/]i €I} in Ho.

When (also omitting the a.s.) the linear sparafii € I} has infinite dimension,
then condition (5.8) is slightly stronger thane F, sinces, must be a compact
operator inHp. This phenomenon, which is purely due to the infinite dimension
of the state spac#, is not present in the case of a market with a finite number of
assets.

REMARK 5.2. The conditions involving: are redundant when equality (5.8)
is satisfied. For example, conditions (2.23) and (2.35) imply condition (2.24). In

fact, lmillg, = CierllofI5)Y2CialTiIPY? < Y2Cialloflf +
YierITil?). By the Schwarz inequality, E(expla g Yt llmill g, dt) <

(E©exp2a g Yicrllof 1% d0)Y2(E@xp2a Jg Yier T} 2d)Y2.

REMARK 5.3. When the number of random sources is infinite, thdtisN*,
then the straightforward generalization of condition (3.8) frora R™ to x € [2
cannot be satisfied, sinegis a.s. a compact operatorﬂ‘b. In fact, in this case the
left-hand side of (3.8) reads, A(7)x),2. Letl; = L£; po. By the definition ofA(z)
and by the canonical isomorphism betwe@rand Hy we obtain(x, A(f)x),2 =
I Zieﬂxiatil,||§10 = ||l,atf||§~10, wherex; = (¢;, f),- Condition (3.8) then reads
||l,o,f||f§ok, > ||lt0t||H—S||f||fqo- Sinceo, is a.s. compact, which then also is the

case forl;o,, it follows that inf“fHﬁO:]_ Ilioy fll g, = 0. This is in contradiction
with ; finite a.s. and;o, # 0 a.s.

REMARK 5.4. Concerning condition (3.11):
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() T is unique or more precisely: Givan andm such that the hypotheses
of Theorem 3.8 are satisfied, then there is a unifuatisfying Condition A and
satisfying condition (3.11) for somg. To establish this fact let, be the usual
adjoint operator irHp, with respect to the scalar product#fy, of the operatob,.
Condition (3.11) can then be writterjs, = I',, wheres; = 8*I,y; andl, = £, po.

8, € Ho, since||8,||ﬁ0 = ||l,y,||ﬁg < C||l,||ﬁ0||y,||ﬁ6k < oo. This shows thaf, is

in the orthogonal complement, with respect to the scalar produdprof Kero,.
There cannot be more than one solutlgrof (5.8) with this property.

(i) Condition (3.11) can be satisfied for arbitrary (included degenerated)
volatilities o, resulting in incomplete markets. An example is obtained by, for
giveno, choosing a2 and then defining” andm by (3.11) and (5.8), respectively.

REMARK 5.5. Whenm, ando, are given functions op;, for everyr € T,
then the optimal portfolio problem (3.1) can be considered within a Hamilton—
Jacobi—Bellman approach. We illustrate this in the simplest case, whando,
are deterministic. The optimal value functidhthen only depends on timec T
and on the value on the discounted weailtlat timez:

(5.10) U(t, w) =sup{Eu(V(T,9)|V(t,0) =w)|0 € Pst}

[here E(Y|X = x) is the conditional expectation df under the condition that
X = x]. One is then led to the HIB equation

U . U

—(t w) + sup{ (o] f, F,)a—(t,w)
feH* w

511

(5.11) 520

+3l07 1oyt w)}=

with boundary condition

(5.12) U(T,w) =u(w).

Equation (5.11) gives

AU 32U 1 U
5.13 —_—— )
(5.13) or gw? 2! f"’{(aw)
Each self-financing zero-coupon bond stratégyPsf, such that
. . TiU/ow _
(514) <9[, tO’;) W’ 1 EI[,

if V(r,0) =w, is then a solution of problem (3.1). In particular, the solution of
Corollary 3.9 satisfies (5.14). Whem, ando, are functions of the pricg, then

the HJB equation contains supplementary terms involving Frechét derivatives with
respect top. The solution of such HIB equations is to our knowledge an open
problem.
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REMARK 5.6. Asymptotic elagticity. We can prove that there exist utility
functions satisfying Condition B with asymptotic elasticity limsup, xu'(x)/
u(x) = 1. For suchy, in the situation of Theorems 3.6 and 3.8 there exist optimal
portfolios in Pst. This is in contrast to the situation considered in [11], where for
suchu and K sufficiently large, there is for certain complete financial markets no
solution X of (3.7) (see Proposition 5.2 of [11]). This remark will be developed in
a forthcoming work.

PROOF OF THEOREM 2.1. Existence, unigueness and continuitypoind
o p follow from Lemma A.1l. It then follows from (A.22) of Lemma A.2, with
Y (¢t) = L, po, that the solution is given by (2.22). This shows that it is positive.
Finally we prove that condition (2.21) is satisfied. Formula (5.6) and conditions
(2.13) and (2.14) give (p;(0)) = (3 p;)(0) dt. Sincepp(0) = 1, (2.21) follows by
integration. O

PROOF OFTHEOREM 2.2. It follows from the explicit expression (2.22) of
p and (A.20) thag = (L), whereL(r) = [{(msds + ¥ ;c0l dWi). Leta = 1
ora =—1and letly, = f[{((ams +ala — 1)/2Y (0P ds + ¥;craal dWh.
Then(§)® = &€ (J,). According to conditions (2.23) and (2.24), hypotheses (i)—(iv)
of Lemma A.4 (withJ, instead ofl) are satisfied. We now apply estimate (A.40)
of Lemma A.4 toX = (¢)%, which proves thatg)* € L*(2, P, L*°(T, Hy)), for
o = +1. Sincep;, = §(1)L; po, L is a contraction semigroup arfth is a Banach
algebra, we havéi p; 1% + 1513 < C(lpol% + 13 pollZ) 141115 , for some
constantC given by H. This proves the statement of the lemma in the gase

To prove the case of we note thatg (1) = ¢(¢) p,(0). Using that the case
of (g)* is already proved and Holder’s inequality, it is enough to prove ghat
L"(Q, P, L*(T, R)), whereg(t) = (p,(0))~*. Sincep, (0) = (L po) (0)(g(1))(0)
= po(1)(g(1))(0), it follows that 0< g(r) = (po(1)) "% ((g(r))(0))~*. By Sobolev
embedding,pp is a continuous real-valued function @, co[ and it is also
strictly positive, sa(pg) ™ is bounded oril. Once more by Sobolev embedding,
(@GO @ < C||(q_(t))_°‘||ﬁ0. The result now follows, since we have already
proved the case di)*. The case op is so similar to the previous cases that we
omitit. O

PROOF OF COROLLARY 2.3. The second part of the proof of Theorem 2.2
gives the result. O

PROOF OFPROPOSITION2.5. Letd e P and introdu_ceX = SURcT |G (t,0)],
Y(t) = [§(0s, Psms)ds and Z(t) = [§(o) psbs, dW,). G(t,0) = Y () + Z(t),
according to formula (5.7). Lep be given by Theorem 2.1, of which the
hypotheses are satisfied.
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We shall give estimates faf and Z. By the definition (2.29) oP,

(5.15) E(suer(r))z) < E(( [ " ﬁsmsnds)z) < lI6]12.

teT
By isometry we obtain

E(Z0)?) E( [ <9sﬁs ol dwf>)2

iel

! - N2
E( /O S (6y. 5s07)) ds)

(5.16)

iel

T
< E(/O o sﬁsn%,*ds) <1612.

Doob’s L? inequality and inequality (5.16) giveE(sup.r Z(1)%) < 4[6]3.
Inequality (5.15) then give& (X?) < 10||0|3, which proves the proposition.]

PROOF OFTHEOREM 2.8. As we will see, the strong condition (2.35) Bn
introduced in (2.34) assures the existence of a martingale me@serplivalent
to P, with Radon—Nikodym derivative i (2, P), for eachu e [1, ool.

LEMMA 5.7. If (2.35)is satisfied, then (&;);eT is a (P, A)-martingale and
supr(&)® € LY(Q, P) for each a € R.

PROOF Let M(t) = [§ X ;i TEdW!. Then (M, M) (1) = [§ Yicr(ThH?ds
and according to condition (2.3%)(expla{{M, M) (T)) < oo, for eacha > 0. By
choosinga = 1/2, Novikov's criterion (cf. [18], Chapter VIII, Proposition 1.15),
shows that is a martingale. Leb > 0. It then follows from the same reference,
by choosing: = 2b?, that E(exp(b sup |M(1)])) < oc.

Leta € R and lete(r) = [§ X ;ci(T)%ds. Then&® = explaM (t) — a/2c(1)),

o

sup&)* < supexp(|a|M(t) + c(T)|e|/2)
teT teT

< exp<a sup|M ()| + c(f)|a|/2).
teT

This and the Schwarz inequality show that

(E (supé,‘"))z <E (exp(2|a| sup|M(r) |)) E (exp(|e|c(T))).

teT teT

The first factor on the right-hand side of this inequality is finite as is seen by
choosingh = 2|«|, and the second is finite due to condition (2.35)]
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The next corollary is a direct application of Girsanov’s theorem.

COROLLARY 5.8. Let (2.35)be satisfied. The measure Q, defined by dQ =
E7dP, is equivalent to P on ¥ and t > W, = W, — [{T,ds, t € T, is a
cylindrical H-Wener process with respect to (Q, #A).

ProOF According to Lemma 5.7% is a martingale with respect t@®, #4).
Theorem 10.14 of [4] then gives the result]

Corollary 5.8 and (2.22) and (5.9) give

t _ . .
(5.17) ﬁt=exp</o oc,_s(Z dW;—%Z<a;>2ds)>£,ﬁo

ielol iel
and
(5.18) dG(t,0) = (o] p:6;,dW,).

To finish the proof of Theorem 2.8, we note that its first part is a restatement of
Lemma 5.7 and that its second part is a restatement of Corollary b18.

PROOF OF COROLLARY 2.9. LletX = sugeT|G(t,9)|. That conditions
(2.14) and (2.19) are satisfied follows as in Remark 5.2. The hypotheses of
Theorem 2.1 are therefore satisfied apdgiven by Theorem 2.1 is well
defined. The square integrability property follows from Proposition 2.5. Finally
we have to prove the martingale property. According to hypotheses, (2.35) is
satisfied, so Lemma 5.7, Proposition 2.5 and Schwarz inequ_alit;(g“'@eX))2 <
E(g%)E(XZ) < o00. This shows thatX € L1(2, Q) and sinceG(-, 0) is a local
Q-martingale according to (5.18) it follows that it igzxmartingale (cf. comment
after Theorem 4.1 of [18]). [

PROOF OF COROLLARY 2.10. V(z,60) is given by (2.27), sincé e Pg;.
According to Corollary 2.9G(-, ) is a Q-martingale, so this is also the case for
V (-, 6). The estimate also follows from Corollary 2.9. We note that{f", 6) > 0
and Eo(V(T,#)) > 0, then the martingale property gives(0,0) > 0, so the
market is arbitrage-free.[d

PROOF OFLEMMA 3.2. First suppose thatsatisfies Condition B. According
to condition (3.2) there exists a sufficiently smalle ]x, oo[, C > 0 andg > 0
such that for each € |x, x'[

(5.19) u'(x)>CL+ x|,
With x = ¢(y) we then have for som€’ > 0 and for eachy = u/(x) > 0
(5.20) lp(y) < C'yMa.
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Consider case (i). According to condition (3.3) there ekist 0 andx” > O,
such that for each €]x”, oo[

(5.21) u'(x) <Cx™1.

Thenu'(]x, oo[) =10, oo[, sincex’ > 0 and according to Condition B(b). With
x = ¢(y), for someC’ > 0 and for each €10, u’(x”)[

(5.22) lp(y)| < C'y~ Y,

The continuity ofu’ and inequalities (5.20) and (5.22) then prove statement (i)
with p =1/q.

Consider the case (ii). There exists a unigyges |x, oo[ such thatu’(xg) = 0.
Thenu'(x) < 0 on]xg, oo[. According to condition (3.4) lim, o u'(x) = —o0,
so using Condition B(b) we get (]x, oo[) = R. Also by (3.4), for someC > 0
andg > 0, for eachx €]xg, co[N]0, o[, —u'(x) > Cx9. We then obtain G
o(y) < C’|y|¥4, for someC’ and fory < 0. This inequality, the continuity of’
and inequality (5.20) then prove statement (ii).

Second, the proof of the converse statement is so similar to the first part of the
proof that we omit it. We only note that the definition:ofx) guarantees that is
us.c.

PrOOF OFTHEOREM 3.3. We recall thaf =10, oo[ if «’ > 0 on]x, oo[ and
I =R if u’ takes the value zero ilx, oo[, according to Lemma 3.2. We first prove
the following lemma:

LEMMA 5.9. Let u satisfy Condition B and let ' satisfy condition (2.35).
Then ¢(A&7) € LP(Q2, P) for each p € [1,00[, A € I, and A — E(§79(A&7))
defines a strictly decreasing homeomor phism from I onto ]x, oo[. In particular,
if Ko €lx, oof, then there exists a unique x € I such that Ko = E(§7¢(x&7)) and
x iscontinuous and strictly decreasing as a function of K.

PROOF Let) e I andg, =&7¢(A&7). Lemma5.7, inequalities (3.5) and (3.6)
of Lemma 3.2 and Holder's inequality show thati&;) € LP(Q2, P) for each
p € [1, 00[. This result and Hélder’s inequality give, € LY(2, P). It follows
that f (L) = E(g,) is well defined.

We show thatf is continuous. Lef{A,},cy+ be a sequence ih converging
to 1. There existsk € I such thatA < » and A < A,, for n > 1. Since gy is
decreasing and continuous according to Lemma 3.2, we faye- g,| < 2g;
andg,, —g. — 0, a.e. a3t — 00. g5 € LY(Q, P), so by Lebesgue’s dominated
convergencef (A,) — f(A) = E(gx, — g1) — 0, asn — oo, which proves the
continuity.

The function f is decreasing, sincg is decreasing. If.1, A2 € I are such that
f(A1) = f(ro), theng,, = g, a.e. sinc&; > 0 a.e.¢ is strictly decreasing, so
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it follows that11&7 = A2¢7. This givesii = A2, which proves thatf is strictly
decreasing.

The functiong : I — ]x, oo[ is a strictly decreasing bijection, so jf— inf 7
in 7, thenp(y) — oo and ify — oo, thengp(y) — x. By Fatou’s lemma it follows
that

(5.23) lminf £ (i) = E(miorlf g)hn) — o,

if A\, = infIinI.Let), — ooin I. Choose: € I such that. < inf{,|n > 1}.
Theng; —g», = 0, sincey is decreasing. Application of Fatou’s lemmégto— g;,,
gives
(5.24) E<Iim supgkn) > limsupE(gy,)-

n—oo n—oo

If x is finite, then (5.24) and, according to Lemma 5E1£7) = 1 give x >
limsup,_, o, £(g5,)- Sinceg;, > &7x it follows that

(5.25) x = limsupE(g;,),
n—oo
if x is finite. Inequality (5.24) gives
(5.26) —oo =limsupE(g,)
n—oo

if x = —o00. Sincef is decreasing it follows from (5.23), (5.25) and (5.26) tlfat
is onto]x, oo[ and therefore a homeomorphismiato ]x, oo[. This completes the
proof. [

Now we finish the proof of Theorem 3.3. L&t (Kp) = {X € L%(Q, P, F)l
Ko=E(¢£7X)} and let

(5.27) v(x)= sup (xy+u(y)),

y€lx,00(
x € R. Here v is the Legendre—Fenchel transform efu. It follows from
Condition B thatv:R —]—o0, 00] is I.s.c. and strictly convex; cf. [5]. Left =
10, o[ if w’ > 0on]x, ool andl =R if u’ takes the value zero dn, oo[. Since
—u is C* and strictly convex

(5.28) v(x) = x@(—x) + u(p(—x)),

for —x € I, which are the elements of the interior of the domain of

If wel, then o(u&;) € LP(2,P) for each p € [1,00[, according to
Lemma 5.9. Le be the unique element ih according to Lemma 5.9, such that
p(AE7) € C'(Kp). LetY = p(A&f). GivenX e C'(Ko). By definition E (u(X)) =
Eu (X)) — n(E(7X) — Ko). It then follows from (5.27) that

(5.29) Eu(X))=Eu(X)—1;X) + 1Ko < E(v(—A&7)) + AKo.
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Formula (5.28) gives thaf (v(—A&7)) = E(u(Y)) —AE(£7Y). SinceY € C'(Ko),
it follows from (5.29) that

(5.30) Eu(X)) < Eu(Y)).

ThereforeX = Y is a solution of problem (3.7). This solution is unique sinds
strictly concave, which completes the proofl]

PROOF OF COROLLARY 3.4. It follows from Corollary 2.10 thatV (T, 6)|
0 € C(Kp)} C C'(Kp), where C'(Kp) is given before (5.27). According to

Corollary 2.10,V (-, ) is a Q-martingale, so Theorem 3.3 shows tha0, §) =
Ko and therefor® € C(Kp). This and Theorem 3.3 give

sup E(V(T.0)) < sup E@u(X))=E(u(X))=Eu(V(T.0))),
6€C(Kop) XeC'(Ko)

which proves thaf is a solution of problem (3.1).0]

PROOF OFTHEOREM 3.6. Herel is a finite set and(o € ]x, oo[. We shall
construct a portfollcﬁ € C(Kp) such thatV(T,9) = X, where X is given by
Theorem 3.3.

Since &y, X e LP(Q2, P) for eachp € [1, oo[, according to Lemma 5.7 and
Theorem 3.3, it follows by Hélder’s inequality thgg X € L? (2, P), that is, X €
LP (R, Q), foreachp € [1, oo[. In particularf( e L%, 0), so by Corollary 5.8
and by the representation of a square integrable random variable as a stochastic
integral, there exist progressively measurable real-valued procgssges/, such

that Eg(fy i1 vi(t)?dt) < oo and such thak = Y (T'), where

(5.31) Y (1) =Ko+ Zf yi(s)dW!,

iel
fort € T. We definey(r) = 3",y i (t)e;. Theny(r) € H* a.s. since
(5.32) Iyl =D yi@)>.

iel

Let Z =sup.t|Y ()| and letp > 2. By Doob’s inequality,E o (Z7) < (£ )P X
supcr Eo(IY(1)[P). Now Y|P is a Q-submartingale, soEQ(|Y(t)|P) <
Eo(Y(T)|P) = Eg(IX|P), which gives
(5.33) Eg(ZP) < o0.

By the Burkholder—Davis—Gundy inequalities, by equality (5.32) and inequal-
ity (5.33) one obtains

(5.34) Eo(( [ " IOl dr)p/z) <0,
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for p > 2. Since E(-) = EQ(f;T_l-), it follows from this inequality and from
Lemma 5.7 that

T p/2
(5.35) ([ voi-ar) ) <.
for p > 2. We also note that similarly
(5.36) E(ZP) < o0,
for p > 2.

According to inequality (3.8)A(¢) is invertible a.s.; we set(r)~1 = 0, when
A(t) is notinvertible and&l(r)i_j1 are the matrix elements @f(z) 1. We then obtain

(5.37) 1Yo, | 5 -sIlA@) I L @y < Ch(2),

wherel(t) = £, po. Condition (3.8), Schwarz’s inequality and inequality (5.37)
give

)4
(5.38) E((squnl(r)o,||H_s||A<t>—1||L(Rm)) ) < o0,
te
for p e [1, ool.
We define
(5.39) n(t)= Y. AW®;(00]y0).
ij=1

It follows from (5.32) that

(5.40) In@la < TAO ™ iy ly Ol a1 @O0, 15 -s,
for ¢ € T. This inequality and inequalities (5.35) and (5.38) give

T p/2
(5.41) E((/ In)11% dt) ) < 00,

0

for p > 2. By constructiony (¢) satisfies
(5.42) (), 1(D)0}) y = i (1),
fort € T andi € I. Defining é,l = 4n(t), we obtain a solution of the equation
(5.43) oG @) = y (1),

for t € T. Let g(r) = p,;/1(t) and 8} = (G(t))"161. We obtain |6}z <
Cl@) g In@lla, where we have used thd6}!||x= = |n()|u. Theo-
rem 2.2 and inequality (5.41) then give

(5.44) E((/OT 16112, dt)p/2> < 00,
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for p > 2. Equation (5.43) shows that satisfies the equation
(5.45) 06 i = y(0),

for + € T. This equality, expression (5.18) of the discounted gains and the
martingale representation (5.31), show that

(5.46) Y(1) =Ko+ G(t,6Y,
fort e T.

We next prove thab® e P. By the hypotheses of the theorem it follows that
E((J§ Yic1ITi12dr)P/2) < oo, for p > 2. This inequality, definition (2.29) of the
portfolio norm, inequality (5.44) and Schwarz inequality gi¥e |p < oo, which
proves the statement.

Finally we shall construct the announced self-financing stradebet us define
the portfoliod by § = 6° 4+ 61, whered?® = a(1)8o and

(5.47) a(®) = ((p)©) (Y1) — (6}, pr))

forO<r<T. A
We have to prove thdt € C(Ko). To this end it is enough to prove théft P,
sinced?! e P. By definition, we have

162 g+ = sup (62, )l < sup (la@)||f(0)]) < Cla@®)l,
Ifllg<1 Ifllp<1

where the constant is given by Sobolev embedding.b@t= a(z) p;(0). By the
definition of Z and Schwarz inequality it follows that

<E((/0T 'b<t)|2dt>”/ 2)>1/,,

< F(E@M)Y” + (E(( / " 1612, df)p/z(ngpllﬁ;IIZ>)>1/p,

p > 1. The first term on the right-hand side of this inequality is finite due to (5.36)
and the second term is finite due to Theorem 2.2, (5.44) and Schwarz’s inequality.
Using Corollary 2.3, we obtain now

E T|a(t)|2dt e < 00,
J

p > 1. This proves in particular that

7
(5.48) E(/ 162112, dt) < 0.
0

Since(o,)(0) = 0 according to (2.13),(0) = 0 according to (2.14) and by the
definition of the norm inH*, we have that|o;*0°p, || z+ = 0 and (82, p,m,) = 0.
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This proves, together with inequality (5.48) and the definition (2.29) of the
portfolio norm, thav® € P.

We note that by the definition &f, it follows thatV (z,0) = (6(t), p;) = Y (¢),
for + € T. Moreover, since(o,)(0) = 0, it follows from formula (2.28) that
G(t,0% = 0, for eachs € T. So by (5.46),Y(-) = Ko + G(-, §), which proves
thaté is self-financing with initial valueky. [

PROOF OFTHEOREM 3.8. This proof is, with some exceptions, so similar to
the proof of Theorem 3.6 that we only develop the points which are different. Here
I=N*orl={1,...,m}.

According to Theorem 3.3, there is a unique 7 such thatX = p(AE7). Let
M) = [§X;aTidWi, t € T. Then (M, M)) is deterministic and according
to (2.37) and Corollary 5.8, = exp(M (1) + 3 (M, M))(1)). Let

F(x) = g(rexpx + 3(M, M)(T))),

x € R. Then F(M(T)) = X. We now apply Lemma A.5 toF. This gives an
integral representation, as in (5.31), with

(5.49) yi(t) = Eg(\7¢' (A&5) | F/)T ),

ielandreT.

Using that ¢’ satisfies conditions (3.9) and (3.10) we obtain also here
inequalities (5.33) to (5.36).

Letz(t) = Eq(AE7¢'(AE7)|F;) and lety be given by (3.11). We defir = zy.
By condition (3.11), (5.43) is satisfied.

The remaining part of the proof is the same as for Theorem 3.6. For later
reference we observe thet = (I/p)zy. O

PROOF OF COROLLARY 3.9. The observation in the end of the proof of
Theorem 3.8 and expression (5.47) give the stated explicit expression of the
optimal portfolio. [

PROOF OF THEOREM 3.10. We first choose a utility functiom satisfying
Condition C,u’ > 0 andx = 0. This is possible as seen by choosing) = x/?,
for example. We defin® e P to be the optimal portfolio given by Corollary 3.9
for Ko = 1. Let ©, = a'do + bly,(p;) 1L po, where a' and b' are the
coefficients defined by (3.12) and (3.13), respectively. Sidce O, it follows
from Theorem 3.3 and Corollary 3.4 thiat> 0. It follows from A £ 0, ¢’ < 0 and
formula (3.12) thabt1 # 0, after a possible redefinition on a set of measure zero.

Since x = 0, it follows by the definition of¢y that ¢ > 0 and then by
Theorem 3.3 and Corollary 3.4 thelt(t, ®) = Eo(V (T, ©®)|%) > 0. This shows
that statement (i) is satisfied.
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Let us now consider a genernalsatisfying Condition C. The solutiof given
by Corollary 3.9, for a generdlp € ]x, oo[, can now be written

0 = (ar — aibi /b})d0 + (b /D)6,
which definest andy in statement (ii) of the theorem

APPENDIX

A.1l. SDEsand L? estimates. In this appendix, we state and prove results,
used in the article, concerning existence of solutions of some SDEs.&nd
estimates of these solutions. Through the Appendixand o/, i € I, are
A-progressively measurabléy-valued processes satisfying

(A.1) /<|m,||HO+Z||6t|| )dt<oo a.s.

iel

The Ho-valued semimartingalg is given by

t S .
(A.2) L(t):/ (msds—i-ZGS’dW;) ifO<t<T,
0

iel

and byL(r) = L(T), if t > T. We introduce, for > 0, the random variable

(A.3) u(t)—t+f (Hms”Ho‘i‘Z”U 1% )ds if0<r<T,

iel
and u(t) =t — T + n(T) if t > T. n is a.s. strictly increasing, absolutely
continuous and ont@0, oo[. The inverser of u also has these properties and
7(¢) < t. For a continuougp-valued proces¥ on[0, 7] we introduce

(A4) o) = (E( swp 1Y) ))1/2,

s€[0,¢]
for ¢t € [0, oo, where we have defined(¢) for r > T by Y (¢) = Y(T). We note
thatp, (Y) < (E(SUR¢[0. ”Y(s)leflo))l/Z’ sincet () <t.
We will use certain supplementary properties of the Sobolev spHée&f.

Section 7.9 of [8]) and the spadé. Let s > 0. There is a normV; equivalent to
Il - ll s, given by

(n) (”) 2
(48 W= Y [ 1Ol +a [ IO dxay

O<k=<n

where f® (x) = (d/dx)* f(x), s=n+s',0<s' <1, neN, ¢y >0 andco=0.
For f € H®, let («f)(x) = f(x), x > 0. The mapping«: HS — H*/H® is
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continuous and surjective, whef&® is the closed subspace &f° of functions
with support in]—oco, 0]. Let ¢: HS/H® — H*® be a continuous linear injective
mapping such thad: is the identity mapping o#/* / H* . To give explicitly such a
mapping., letg € H/H* . Forx > 0, h is defined byz(x) = g(x). Forx <0 and
k=0,....,n—1, leth"(x) = (8"g)(—x) andh*(x) = (8*g)(0) + fg W T1(y)dy.
Now, for x < O, let A*(x) = h(x). Let ¢ be aC> positive function onR,
satisfyingg(x) =1 if x > -1 and¢(x) =0 if x < —2. Then f = h¢ € H®
and«f = g. The mappingg = f has the desired properties. In fact it follows
using (A.5) and the definition of the norm i*/H?S that N, (f) < Cs|gll g, for
some constan€s. Let R > 7 > £; be theCO unitary group of left translations
in H*, thatis,(L; f)(x) = f(x +1), for f € H® andr, x € R.

Let now s be the given number > 1/2, in (2.6) definingH. The mapx is
extended toc:R @ H® — Ho by k(a + f) =a + «f, wherea e R and f € Hy.
The map is extended to: Hy — R @ H* by ((a + f) = a + (f, wherea € R and
f € H. £ is extended to &° unitary group inRR @ H* by £, (a+ f) =a+ L} f,
wheret e R, a e R and f € H. One easily establishes that with this extend®d

(A.6) Lk =KLy,
forall r > 0.

LEMMA A.1. If condition (A.1) is satisfied and if Y is an #-progressively
measurable Hp-valued continuous process on [0, T'], satisfying p;(Y) < oo, for
all + > 0, then the equation

(A7) Xt =Y+ /(: L5 X (5) (m ds+ o] de),

iel
t €0, T1, has a unique solution X, in the set of 4-progressively measurable
Hp-valued continuous processes satisfying

T .
(A.8) /0 (IIX Ol g, + 1IX Omell g, + Y I1X @)o; II§O> dt <oco  as
iel
Moreover, this solution satisfies:
M) 1f Jg (lmell g, + Sierllo I2,)dt < 0o and ¥ is a continuous f-valued

processwith p,;(3Y) < oo, for all # > 0, then X isa continuous H;-valued process.

(i) If (i) issatisfied and if Y isa semimartingale, then X isa semimartingale.

(iii) 1fY is H-valued, then X is H-valued.

PROOF  The given continuous process is extended ta > T by Y(r) =
Y (T). For anA-progressively measurably-valued procesX on[0, oo[, which
satisfies (A.8), let

(A.9) (AX)(1) = /O Lo_sX(s)dL(s),
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0 <t. AX is then a continuous process andXifis a solution of (A.7), thenX
must be a continuous process. It is therefore sufficient to consider existence and
uniqueness for continuous proce¥s A is a linear operator from the space of
continuousHp-valued processes into itself, singg is a Banach algebra,— £,
is aC% semigroup inHy and . (T) < oo a.s. We note thatd X)(¢) is constant for
t>T.

It is enough to prove that the equation

(A.10) X=Y+AX

has a unique solutiol being a continuous process. Its restrictiofi@o7'] is then
the unique solution of the lemma.

In order to introduce the time-transformed equation of (A.10) with respect
tor letX'(t) =X(z (1)), Y1) =Y (z(t)), (A’X")(t) = (AX)(z(r)) andp;(X") =
(E(SUR¢[0.1] ||X/(s)||12L}O))1/2. Let also A’ = (Fr()):=0 be the time-transformed
filtration. Equation (A.10) has a continuous solution if and only if the time-
transformed equation

(A.11) X =Y +AX

has a continuous solutioX’.

_For givenT > 0 let F be the Banach space of’-progressively measurable

Ho-valued continuous a.s. procesgesn [0, 71, with finite norm|| Z|| r = p7(2).
We denote, forG<r < T, K1(t) = 0’(’)” Lry—s X' (n(s))msds andKo(1) =

OT(’)AT Lo@y—s X' (1(s) Y;erol dWi, wherea A b = min{a, b}. Since Hp is an

algebra.£ is aC? contraction semigroug; ||f~10 <du(t)/dt andr is the inverse
of u, it follows from Schwarz’s inequality that

ik = cu(( [ X Gl zmsl ds)z)
=cx(([ Xl ;,Odum)z)

(A12) cu(( [ awe) ([ X @iz due))
<cie( [ X613, ds)

t t
< CtE(/ sup | X'(s)1I% ds) < c;/ (pL(X"))?ds,
0 s'€[0,s] 0 0
for someC > 0.
To establish an estimate &>, we shall use the property (A.6) of the left
translation. Since and: are continuous linear operators andis the identity
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operator onHy, it follows from (A.6) that
. HOUV S
(A.13) Ko(t) = kLl A L X (1)) > ol dW,,

iel

for all £ > 0. Let K5 (1) = Jg " £/ X' (1u(s)) Xierol dW!, for t > 0. Then

K3 is anR @ H*-valued square integrable martingale, with respect to the time-
transformed filtration4’. In fact, we obtain by isometry, the unitarity gf and as

in the case oK, that

2
/" 2 T ! i d
E(IK5(0)ggns) < E L Xw)Y o) u
0 icl  IR@HS
W, 2 in2
<CE( ) IX )l D lloy I, du
iel

(A.14) t )
ECE(/O sup ||X/(M(M/))||ﬁodﬂ(u)>

u’€[0,u]
L w2
=c [ (pux))du.

for someC > 0 and for allt > 0. Since £, is unitary and ax is continu-
ous with norm equal to 1, it follows from (A.13) th{zp,’(l(z))2 < E(SUR,¢[0.1]

||Kg(u)||]%§@m). By Doob’s inequality (cf. Theorem 3.8 of [4]) we hai&sup, (o
1KY @) 1Bgps) < 4SURcro.) EIKS () |3gps)- This gives, together with in-
equality (A.14), that

t
(A.15) (bi(K2)* = € [ (p}x))?ds.

for r > 0, whereC chosen sufficiently big is independentroformula (A.9) and
inequalities (A.12) and (A.15) show that foe [0, T],

t
(A.16) (ol (A'X")? < C2(1+ 1) / (0l (X)) ds,
0
whereC’ is a constant independent 6f In particular,
(A.17) p(A'X") < C'(1+ Y2 2p] (X)),
te[0,T].

If T > 0 is sufficiently small, then (A.17) gives thaitA’X’'||r < a| X'||F,
where 0< a < 1. Therefore A’ € L(F) and I + A’ has bounded inverse.
Equation (A.11) has then a unique solutihe F. Leth () = fé(p;(X/))zds and
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a(t) = [§(pl(Y")?ds. Equation (A.11) and inequality (A.16) show that a solution
X' € F satisfies

(A.18) h(1) < 2a(t) + 2C"? /0 z(1 + $)h(s)ds,

for r € [0, T]. Grénwall's inequality givesi(r) < 2a(r) exp(C%t(2 + 1)). Equa-
tion (A.11) and inequality (A.16) then show that there exists a finite constant
for everyT > 0 independent ok’, such that| X' |12 = (p7-(X"))? < C7.(p}(Y'))?.
It follows that the solution can be extended to&l- 0 and this extended solution
is unique. This proves the statement of the lemma concerning the existence and
uniqueness of alp-valued continuous solution of (A.7).
We next prove the supplementary statements (i), (ii) and (iii):

(i) We have just to replace, in the above proof, the spAgeby H; and
redefine appropriately the mapandx.

(i) If Y is a semimartingale, then It6’s lemma and the fact th&tis a
continuous process give

(A.19) dX (1) =dY (@) +9(X () —Y())dt + X ()dL().

This shows thak is a semimartingale.
(i) H is a closed subspace @iy and if X is H-valued, thenAX is also
H-valued. This shows that the unique solution of (A.10}isvalued. [

The solution of (A.7) can be given explicitly, which we shall use to derive
estimates of the solution. Let

(A.20) (E(L))(t)= exp(/(: L1—s ((ms - %Z(o})z> ds+> o] de)),

iel iel

forreT.

_LEMMA A.2. Let condition (A.1) be satisfied. Then &(L) is the unique
Hp-valued continuous a.s. solution of

- t -
(A21) EW)O =1+ [ £ (EL)©LE).

for + € T. Let also L'(t) = J§ Y ;e1(0)?ds — L(t). Then the unique solution X
of (A.7)in Lemma A.1isgiven by

~ t ~
(A2D)  X(O=Y®) = EL)O [ LY OELIL ),

forreT.
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PROOF Letlr(t) = f§ L1—s(ms+ Y ;crol dWD), letny (t) = [§ L1—s((my—
I @)D ds + Yol dWi), for 0<t < T < T and letN (1) = n, (1), for
t € T. ThenN is an Hp-valued continuous process, according to the hypothesis
onm ando and sinceHy is a Banach algebra. This is then also the casg(af,

since ||(é(L))(t)||ﬁ0 < exp(||N(t)||go). We note thatdir (t) = L7_;dL(¢t) and
thatL7_;(E(L))(t) = exp(nr(¢)). Integration gives

t 5 t
|| £ W) aLes) = [ expln () dis(s)

A.23 -
( ) =exp(n;(t)) —1=&(L)(r) — 1.

This proves thaté(L) is a solution of (A.21). The uniqueness follows from
Lemma A.1. . B

To prove (A.22), let’. (1) = [6 LT_g Zid(o;)zds —Ir (), forO<t<T<T.
Then

dexp(nr (1)) =explnr(¢))dir(t) and
dexp(—nr (1)) = exp(—nr (1)) dly(1).

Let alsoyr (1) = L7, Y (t) andzp(t) = L7_s(X (&) — Y (1)) /(E(L))(¢), for 0 <

t <T <T. Let X be the unique solution given by Lemma A.1. Equation (A.7)
then readsX (1) = Y (¢) + fé Li—sX(s)dL(s), for t € T. Applying L7_;, with
0<¢<T <T, onboth sides we obtain

t
(A25)  zr(t) =expl=nr(0) [ () +27(5) explur(s))) dir ().
[t6’s lemma and formulas (A.24), (A.25)7 (0) = 0 give

(A.24)

t
1) = fo exp(—n7(5)) (vr(s) -+ 27.(s) explnr (5))) diz (s)

t t .
+ [ar@diyo) = [ Lros YDA exp=nr(s)yr(s) +zr()ds.

iel
for 0<t < T < T. Rewriting this formula we obtain

t .
zr (1) =/0 zr(S)<le(S)+dl}(S)—£T—sZ(0;)2dS>

iel

t .
+ /o yr(s) exp(—nr(s)) (le(S) — L1 Z(Gsl)zds)-

iel

The definitions of and!’ then give

(A.26) () = — /0 Vr(s) exp(—nz(s)) d'lz (s),
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for0<t<T<T. ChoosingT =1, we now obtain equation (A.22) since
yr(s)exp(—nr () d'lr(s) = LT_sY(s)(E(L')(s)dL'(s), for 0<s <T <T.
O

The next technical lemma collects estimates of norms of cef&ivalued
processes that we need later.

LEMMA A.3. Let
7 7 1/2
[CRIEY S ||akmt||g0dz+</ > ||a"ot||§1_sdt) ,
0 o<k 0 o<k<j

jeN,andlet Z(t) = [§ Li—sdL(s), t € T. Let F : [0, oo[ — [0, oo[ bea function
which is continuous together with its first two derivatives and which has F’ > 0.

@) If||(m,o0)]lo < oo, then
t .
(A.27) F(IIZ(t)IIIZ%) < F(0) +/0 (a(s)ds + Zbi(s)dWsl),
iel
wherea and b;, i € I, are progressively measurable processes satisfying
la)] < F'(1ZON1 ) IZO g llmel gy + llo, 1—s)

(A-28) +2F 2O IZ01Z, 0,1
and

(A.29) bi(t) =2F (IZW)15 )(Z(®). 0]) -
teT.

(i) Moreover, if ||(m, o)]1 < oo, then

t
F(1Z0I5) = FO) + fo ((—v<s)F/(||Z<s>||§;o) +a(s)) ds

(A.30)
+Zbl~(s)dwj>,
iel
where
(A.31) v(t) = —2(Z(s),0Z(5)) g, = O,
withr e T.

PROOF.  Suppose first thaft(m,o)||; < oo , for eachj € N. We remember

that the setD, of all f € Ho, such that’ f € Hy for eachj € N, is dense inHp.
ThenZ(t) € Do a.s. I1td’s lemma gives

t .
(A.32) ||Z(t)||20=/0 ((Z(Z(s),BZ(s))ﬁ0+a(1)(s))ds+Z[gl_(l)(s)dWsl)

iel
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where

(A.33) a(6)=2(Z(t).m:) g, + o1
and

(A.34) bP (1) =2Z(1). o)) ..

1
We note thgt|a<1>(t)| < 2120l g, Imill g, + lloyI3,_g and that |p{” (1)] <
2||Z(t)||ﬁ0||a; Il - Once more, by Ité’s lemma we obtain

F(I1Z0I) = F ()

t
(A.35) + /0 ((Z(Z(s), 8Z(s))ﬁ0F/(||Z(s)||12L~IO) +a(s))ds

+Zb,~(s)dWSi),

iel
where
(A36) a(®)=F'(1Z0I5 )a® O+ 5F"(1Z011%) X];(bfl) 0)?
and
(A.37) bi()) = F'(1Z015 )b ().

Inequality (A.28) of the lemma follows from the noted estimates 46¥ (¢)
and bfl)(t), from (A.36) and from F’ > 0. Formula (A.29) of the lemma
follows from (A.34) and (A.37). Inequality (A.27) of the lemma follows from
equality (A.30) of the lemma. Equality (A.30) follows from equality (A.35) and
the definition ofv in (A.31). Z(r) € D+, andd is the generator of €° contraction
semigroup, in a real Hilbert space, which give the inequality in (A.31).

We have now proved all statements of the lemma under the supplementary
hypothesis thaff(m, o )|l j < oo, for eachj € N. The general case is now obtained
by continuity. O

In the next lemma we establish that the solution of (A.7) i&f p € [0, ool.

LEMMA A.4. Letcondition (A.1) besatisfied and let (i) E(exp(pfoT(||m,||g0+
Yiel ||ati||§~10)dt)) < o0, for each p € [1, oo[. Suppose that Y in Lemma A.1 sat-
isfies (ii) E(super ”Y(t)”%o) < 00, for each p € [1, oo[. Then the unique solu-
tion X of (A.7)in Lemma A.1 satisfies

(A.38) E(suan(t)n”~ ) < 00,
teT Ho
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for each p € [1, oo[. In particular, if é(L) isasin Lemma A.2, then

(A.39) E(supné(L)ng ) < 00,
teT 0

for each p € [1, oo[. Moreover, if (i) E((fof(”mf”ﬁl +Xierllof 13, dn?) < 00
and (iv) E(SUpcr ||Y(t)||i~11) < oo, for each p € [1, oo, then also

(A.40) E(supllX(z)ll’i ) < 00,
teT Hy
for each p € [1, oo[.

PROOF Suppose that conditions (i) and (ii) are satisfied.

We first prove inequality (A.39). LeN (1) = J§ £i—s((ms — 5 3 ic1(0)?) ds +
SicroldWi), fort € T. Then& (L) = exp(N (1)) according to (A.20). Sincély
is a Banach algebra it follows that

(A41) [(EW)D] 4, = XPCINDI z,) < XL+ INDIE) ™).

for a constant given by Ho.

We use Lemma A.3 to find a bound of the right-hand side of (A.41)alagtdb;
be given by Lemma A.3, with (x) = (1 + x)¥/?, let A(t) = [{ |a(s)|ds and let
M(t) = [§ X icrbi(s) dWi. Then inequality (A.27) gives

(A42) L+INOIZ)" =1+ A0 + M),
inequality (A.28) gives

(A.43) la@)] < Imell g, + 3Clo 11 s

and (A.29) gives

(A.44) bi(h) = (1+ INOIZ) (N, of) g,

wherei e I andt € T. Obviously |b;(t)| < |0} I 2, and the quadratic variation

(M, M) @) < J§ lloglI3,_gds.
By the hypothesis of the lemma and (A.43) it follows that

(A.45) E(exp(pA(T) + p(M, M))(T))) < oo

for eachp € [1, oo[. Novikov’s criteria (cf. [18], Chapter VIII, Proposition 1.15)
and inequality (A.45) give

(A.46) E(exp<p tsequ|M(t) |>) <00
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for eachp € [1, oo[. Inequality (A.42) gives

(A.47)  E(explg(1+ IN (1) ||§~,0)1/2)) < E<exp<q (1 +A(T) + Squ|M(t)|)>>
te
for eachg € [0, oo[. It follows from Schwarz's inequality and inequalities (A.45),
(A.46) and (A.47) that
(A.48) E(explg(1+ INDIF)™%) < oo

for eachg € [0, co[. Statement (A.39) now follows from inequalities (A.41) and
(A.48) by choosing; = p C.

We use the explicit expression (A.22) fof to prove (A.38). LetZ(r) =
JoLi—s dV (s), whereV (t) = [§ Y (s)(E(L)))(s)dL'(s) andL’ is asin LemmaA.2.
Explicitly

V() = /0, <a(s)ds + Zﬁ,-(s)dwj),
iel

wherea(1) = Y (1) (E (L) (1)(Xie10/)? — my) and B; (1) = =Y (1)) (E(L) (1) .
Since we have proved (A.39), by Schwarz’'s inequality it is enough to prove

(A.49) E(sup||Z(z)||P ) < 00,

Ho

teT

for eachp € [1, oo, to establish (A.38). We proceed as we did earlier in this proof
to obtain (A.42). We now obtain using Lemma A.3

(A.50) L+ 1ZO13) 7% < 1+ A1) + Ma(0),
whereA1(t) = [glar(s)|ds, M1(1) = fo ¥iepbri(s) dW,
la1()] < C'IY D) g, [ (E L) D] g,

x (llmll g, + (L4 1Y Ol g [EXH) D g ) o 15 -s)-
with C’ given by H and
(A52) by =—(1+1ZONI%) 220, YOELH)D)o]) 5,

(A.51)

Choosing the constait’ sufficiently big, (A.52) gives

t ~
(A53) (2 M) ) <€ [ YOI NELN©IF oyl sds

Holder’s inequality, inequalities (A.42) and (A.51) and the hypotheses of the
lemma give

(A.54) E(sup(Al(z))”> < 00,

teT
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for eachp € [1, oo[. Similarly, using /{ ||Y(s)||12L?0||(§(L/))(s)||§~[0||os||§{_Sds <
(SUR et IIY(s)Ilgo)(supseqr II(é(L/))(s)Ilzo) Jo llogli3,_sds. (A.53) gives

(A.55) E(((M1. M)(T))"'?) < oo,

for eachp € [1, oo[. The BDG inequality then gives

(A.56) E(sup(Ml(t))”> < 00,
teT

for eachp € [1, oo[. Now inequalities (A.50), (A.54) and (A.56) prove (A.49).
Finally, to prove inequality (A.40), we suppose also that conditions (iii) and (iv)
are satisfied.
The solutionX of (A.7) is, according to Lemma A.1, in the domainadfthat is,
X (1) € Hy. Sinced is continuous fronH; to Hy, we haved fo L X(s)dL(s) =
fo L;_;0X(s)dL(s). Application ofd on both sides of (A.7) then gives

t
(A.57) X1(t) = Y1(1) + / Lo_y X1(s)dL(s),

where X1(¢) = X (1), Y1(r) = oY (1) + fo Lr_sX(s)dL1(s), with L1(¢) =
fo(ams ds + ) ;crdo; dW!). We can now use inequality (A.38) faX, since

in the context of (A 57) hypotheses (i) and (ii) are satisfied. This proves
inequality (A.40). O

For completeness we prove, for the case of an infinite humber of random
sources, a representation result. The meagdrand the cylindrical Wiener
processW are as in Corollary 5.8.

LEMMA A.5. LetT" bedeterministic and satisfy condition

(A.58) / Y MifPdt <co  as.

iel

andlet M(t) = [{ ;i TidWE, t € T. If F € C(R) isabsolutely continuous, with
derivative F’, and E o (F(M(T))? + F'(M(T))?) < oo, then
_ _ T _
(A59)  F(M(T) = Eo(F(M(D) + [ Eq(F/(M(T)|F)aM (),
for eachr € T.

PROOFE We have({(M, M) (t) = fé Zieﬂ(ré)zds < oo according to condi-
tion (A.58) and the quadratic variatiof/, M)) is deterministic. Let,, ,(x) =

expixpu + "“22 (M, M)»()), n € R, and Ietn (x) be the derivative with re-
spect tox of n,;(x). ThenT > ¢ n,“(M(t)) is a complexQ-martingale
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and nﬂj(M(T)) =1+ fOT n), (M(t))dM(t). Since alsor — n), ,(M(1)) is a
Q-martingale it follows that

_ 7 _
(A60)  n, (M) =1+ /0 Eo(n!, 7(M(T))| %) dM ().

Let g € C5°(R) be real-valued with Fourier transforgh Multiplication of both
sides of equality (A.60) with the complex number
o(—HZ /(M M) (T)

() = —=— g(w)

2

gives

, T _
c(wn, 7(M(T)) = c(p) + /0 Eg(c(wn, #(M(T))|F:)dM (1)

Integration inu and the stochastic Fubini theorem then give

_ T _
(A6 g(M(D) = [ ctodu+ [ Eole'(M(T))IF)dm ).

Since(EQ(g/(M(T))|5L‘.))2 is a submartingale it follows that

T
’ - ~\\2
Eg( /0 (Eg(g' (M(T))|F:)) d (M, M)) <r>)

< Eo((g'(M(T)))?) (M, M)(T),

which is finite. Thereforefy c(n)du = E(g(M(T))), so (A.61) proves the
representation formula (A.59) far € C§°(R). The general case now follows by
dominated convergence sinéein the lemma is the limit, in the topology defined
by the normG — (Eo(F(M(T))? + F'(M(T))?)Y?2, of a sequence i€§° (R).
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