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A THEORY OF BOND PORTFOLIOS

BY IVAR EKELAND AND ERIK TAFLIN

University of British Columbia and EISTI

We introduce a bond portfolio management theory based on foundations
similar to those of stock portfolio management. A general continuous-time
zero-coupon market is considered. The problem of optimal portfolios of zero-
coupon bonds is solved for general utility functions, under a condition of no-
arbitrage in the zero-coupon market. A mutual fund theorem is proved, in
the case of deterministic volatilities. Explicit expressions are given for the
optimal solutions for several utility functions.

1. Introduction. This paper is a first step toward a unified theory of portfolio
management, including both stocks and bonds. There is a gap between the
traditional approaches to manage bond portfolios and stock portfolios. Managing
bond portfolios relies on concepts such as duration, sensibility and convexity,
while managing stock portfolios relies on optimization of expected utility. We
give two results toward bridging this gap. First, we set up and solve the problem
of managing a bond portfolio by optimizing (over all self-financing trading
strategies for a given initial capital) the expected utility of the final wealth. Second,
we express the solution of this problem as portfolios of self-financing trading
strategies which include naturally stocks and bonds.

The well-established theory of portfolio management, initiated in the seminal
papers [13–15], [20] and further developed by many, see [12], [17] and references
therein, does not apply as it stands to bond portfolios. The difficulty here is that
stocks and bonds differ in many ways, the most important of which is the fact that
bonds mature at a prescribed date (time of maturity) after which they disappear
from the market, whereas the characteristics of a stock do not change, except in
reaction to business news or management decisions. Another difference is that
in an unconstrained market, the time of maturity can take an infinity of values,
so there is an infinity of different bonds. As a first consequence, the price of a
stock depends only on the risks it carries (market risk, idiosyncratic risk), whereas
the price of a bond depends both on the risks it carries (interest rate risk, credit
risk) and on time to maturity. Mathematically, this is expressed by the fact that the
stochastic differential equations used to model stock prices are usually autonomous
(meaning that the coefficients are time-independent functions of the prices, as in
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geometric Brownian motion or mean-reverting processes), whereas any model for
bond prices must incorporate the fact that the volatility goes to zero when time to
maturity goes to zero. So the mathematical analysis of a portfolio including stocks
and bonds is complicated by the fact that the prices for each type of assets evolve
according to different rules, even in the most elementary case. An added difficulty,
due to the maturity dependence, is that certain strategies which are possible for
stocks are no longer allowable for bonds: a simple buy-and-hold strategy, for
instance, results in converting bonds to cash on maturity. The particular case of
strategies involving only a finite number of bonds, all with maturities exceeding the
portfolio management horizon, is similar to the case of a pure stock market (with
stochastic interest rate). Optimal portfolios for such cases were obtained in [10].
An optimal portfolio problem in a truly maturity-dependent context of reinsurance
contracts was solved in [21] for discrete time.

Our suggestion is to work in a “moving frame,” that is, to consider time to
maturity, instead of maturity, as the basic variable on which the zero-coupon
depends at each time. At timet , there will be a curveS → pt(S), S ≥ 0, where
pt(S) is the price of a standard zero-coupon maturing at timet + S. HereS is
time to maturity andT = t + S is time of maturity. Such a parameterization was
introduced in [16]. Whent changes, so does the curvept , and a bond portfolio
then is simply a linear functional operating on the space of such curves. Now
from the financial point of view, this can be seen in different perspectives: (1) The
static point of view, say, is to consider the portfolio at timet simply as a linear
combination (possibly infinite) of standard zero-coupons, each of which has a
fixed time of maturityT ≥ t. Such a portfolio has to be rebalanced each time a
zero-coupon in the portfolio comes to maturity. (2) The dynamic point of view
is to consider the portfolio at timet as a linear combination of self-financing
instruments, each one with a fixed time to maturityS ≥ 0. We term such an
instrument a Roll-Over and it is simply a certaint-dependent multiple of a zero-
coupon with time to maturityS, independent oft (see Remark 2.7). Its price has
a simple expression, given by (2.33). Such instruments were introduced earlier
in [19] under the name “rolling-horizon bond.” Roll-Overs behave like stocks, in
the sense that their time to maturity is constant through time, so that their price
depends only on the risk they carry. One can then envision a program where
portfolios are expressed as combinations of stocks and Roll-Overs, which are
treated in a uniform fashion.

However, it is well known that this program entails mathematical difficulties.
The first one is that rewriting the equations for bond prices in the moving frame
introduces the operator∂

∂S
, which has to make sense as an unbounded operator in

the spaceH of curvespt chosen to describe zero-coupon prices. The second one
is that this spaceH has to be contained in the space of all continuous functions
onR

+, so that its dualH ∗ contains the Dirac massesδT −t , corresponding at timet
to one zero-coupon of maturityT , but should not be too small, otherwiseH ∗ will
contain many more objects which cannot easily be interpreted as bond portfolios.
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In this paper we chooseH to be a standard Sobolev space, which in particular is a
Hilbert space. Bond portfolios are then simply elements of the Hilbert spaceH ∗.
Reference [1] introduced portfolios being signed finite Borel measures. They also
are elements ofH ∗. The analysis is in our case simplified by the fact thatH andH ∗
are Hilbert spaces. In a different context, Hilbert spaces of forward rates were
considered in [3] and [6]. The image of these spaces, under the nonlinear map of
forward rates to zero-coupons prices, is locally included inH.

We believe that this abstract, Hilbertian approach opens up many possibilities.
In this paper, as mentioned above we explore one, namely portfolio management.
We give existence theorems for very general utility functions and forH -valued
price processes driven by a cylindrical Wiener process, that is, in our case by a
countable number of independent Brownian motions. We give explicit solutions,
taking advantage of the Hilbertian setting. These solutions are expressed in
terms of (nonunique) combinations of classical zero-coupon bonds [i.e., financial
interpretation (1) above], but the optimal strategy can readily be translated in
terms of Roll-Overs, which may not be marketed, although they are self-financing
[i.e., financial interpretation (2) above]. If the price of bonds depends on a
d-dimensional Brownian motion, then the optimal strategy can be expressed as
a linear combination ofd bonds and in certain cases these can be anyd marketed
bonds, with time of maturity exceeding the time horizon of the optimal portfolio
problem.

The outline of the paper is as follows. We begin by setting up the appropriate
framework in Section 2, where bond portfolios are defined as elements of a
certain Hilbert spaceH ∗. Bond dynamics are prescribed in (2.11) according to
the HJM methodology [7] and a self-financing portfolio is defined (cf. [1]) by
formulas (2.27) and (2.28). An arbitrage-free market is prescribed according to
Condition A and we introduce certain self-financing trading strategies with fixed
time to maturity, which we call Roll-Overs (Remark 2.7). The optimal portfolio
problem is set up in Section 3, and solved in two special cases, the first being when
the underlying Brownian motion is finite-dimensional (Theorem 3.6), the second
being when it is infinite-dimensional, but the market price of risk is a deterministic
function of time (Theorem 3.8). Examples of closed-form solutions are then given
in Section 4. All our portfolios are functions of the market price of risk, similar
to those giving the Merton portfolio in the case of stocks. This indicates that our
treatment indeed unifies bond and stock portfolio management.

Mathematical proofs are provided in Section 5 and the Appendix. In the
Appendix we state and prove some existence results and estimates for infinite-
dimensional processes with stochastic volatility that we have not found in standard
references such as [4] or [9]. We note that the appropriate mathematical framework
for the study of infinite-dimensional (cylindrical) processes is the theory of
Hilbert–Schmidt operators, to which we appeal in the proofs, although we have
avoided it in the statement of the results.
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Several remarks of a mathematical nature are made in Section 5. Remark 5.1
justifies our market condition (Condition A), in Remark 5.4 it is shown that our
results apply to certain incomplete markets and in Remark 5.5 a Hamilton–Jacobi–
Bellman approach is considered. We note, in Remark 5.6, that our existence result
for certain utility functions with asymptotic elasticity equal to 1 stands in apparent
contrast with the earlier result of [11] and [12] for stock portfolios. This is because
we have used a narrower definition (Condition A) of arbitrage-free prices for
bonds.

2. The bond market. We consider a continuous-time bond market and
without restriction we can assume that only zero-coupon bonds are available. The
time horizon in our model is some finite dateT̄ > 0. At any datet ∈ T = [0, T̄ ],
one can trade zero-coupon bonds with maturitys ∈ [t,∞[. Bonds with maturity
s = t at time t will be assimilated to money in a current account (see (ii) of
Example 2.6 and cf. [2]).

Uncertainty is modeled by a filtered probability space(�,P,F ,A); here
A = {Ft |0 ≤ t ≤ T̄ } is a filtration of theσ -algebraF . The random sources are
given by independent Brownian motionsWi, i ∈ I. The index setI can be finite,
I = {1, . . . , m̄}, or infinite, I = N

∗ = N − {0}. The filtrationA is generated by
theWi, i ∈ I.

2.1. Zero-coupons and state space. As usual, we denote byB(t, s) the price
at timet of a zero-coupon bond yielding one unit of account at times, 0 ≤ t < s,
so thatB(t, t) = 1. It is anFt -measurable random variable. In order to introduce
interest rates let us assume that, almost surely, the functions �→ B(t, s) is strictly
positive andC1. We denote byr(t) the spot interest rate att and byft (S) the
instantaneous forward rate contracted att ∈ T for time to maturityS:

r(t) = ft (0) and ft (S) = − 1

B(t, t + S)

∂B

∂S
(t, t + S),(2.1)

which is allowed to be negative.̄B(t, s) denotes the price discounted to time 0:

B̄(t, s) = B(t, s)exp
(
−

∫ t

0
r(τ ) dτ

)
.(2.2)

It will be convenient to characterize zero-coupon bonds by their time to maturity.
For this reason we introduce theA-adaptedC1([0,∞[)-valued processesp andp̄

defined by

pt(S) = B(t, t + S) and p̄t (S) = B̄(t, t + S),(2.3)

wheret ∈ T andS ≥ 0. This parameterization was introduced in [16]. One should
here take care thatS is the time to maturity and not the maturity itself. Note that
pt(0) = 1. We shall callpt (resp.p̄t ) the zero-coupon bond (resp. discounted zero-
coupon bond) state at timet. For simplicity we will also use zero-coupon bond
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state or just state for both cases. The state at timet can thus be thought of as the
curve: zero-coupon bonds price at the instantt as function of time to maturity.
Obviously

B(t, s) = pt(s − t) and B̄(t, s) = p̄t (s − t),(2.4)

wheret ∈ T ands − t ≥ 0.

More generally we will assume the processesp andp̄ to take values in a certain
Sobolev spaceH, the zero-coupon bond state space. Our choice ofH is motivated
by the following considerations:

(a) H is a space of continuous functions going to zero at infinity, because zero-
coupon bond prices are continuous with respect to time to maturity and they tend
to zero as time to maturity tends to infinity.

(b) H should be a Hilbert space, because it is the simplest possible infinite-
dimensional topological vector space.

Conditions (a) and (b) leave us little choice, except to takeH to be a Sobolev space
such asHs(]0,∞[), with s > 1/2 (see below). Note that further conditions should
be required for the model to be completely realistic:

(c) pt(S) must be differentiable with respect toS at S = 0, so that the spot
interest rate is well defined.

(d) pt(S) should be positive for allS > 0 andpt(0) = 1.

(e) pt(S) should be decreasing with respect toS.

Conditions (c) and (d) will be satisfied as a result of our model. However, to
include simple Gaussian interest rate models, we will not impose condition (e).
The state space of portfolios at each timeH ∗, which is the dual of the zero-
coupon bond state space, will contain measures as it shall. If wanted, we can now
chooseH such that portfolios have certain regularity properties, for example, such
that derivatives of measures are not elements ofH ∗. We next defineH and recall
certain elementary facts concerning Sobolev spaces.

For s ∈ R, let Hs = Hs(R) (cf. Section 7.9 of [8]) be the usual Sobolev space
of real tempered distributionsf onR such that the functionx �→ (1+|x|2)s/2f̂ (x)

is an element ofL2(R), where f̂ is the Fourier transform [inRn we denote
x · y = ∑

1≤i≤n xiyi, x, y ∈ R
n, and we define the Fourier transform̂f of f by

f̂ (y) = (2π)−n/2 ∫
Rn exp(−iy · x)f (x) dx] of f, endowed with the norm:

‖f ‖Hs =
(∫

(1+ |x|2)s |f̂ (x)|2 dx

)1/2

.

All the Hs are Hilbert spaces. Clearly,H 0 = L2 andHs ⊂ Hs′
for s ≥ s′ and in

particularHs ⊂ L2 ⊂ H−s, for s ≥ 0. If f is Cn, n ∈ N, and if f together with
its n first derivatives belong toL2, thenf ∈ Hn. For everys, the spaceC∞

0 (R)

of C∞ functions with compact support is dense inHs. For everys > 1/2, by the
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Sobolev embedding theorems, we haveHs ⊂ C0∩L∞. In additionHs is a Banach
algebra fors > 1/2: if f ∈ Hs andg ∈ Hs , thenfg ∈ Hs and the multiplication
is continuous. Also, ifs > 1/2, f ∈ Hs andg ∈ H−s , thenfg ∈ H−s and the
multiplication is continuous also here.

We define, fors ∈ R, a continuous bilinear form onH−s × Hs by

〈f,g〉 =
∫ (

f̂ (x)
)
ĝ(x) dx,(2.5)

wherez is the complex conjugate ofz. Any continuous linear formf → u(f )

on Hs is of the formu(f ) = 〈g,f 〉 for someg ∈ H−s, with ‖g‖H−s = ‖u‖(Hs)∗ ,
so that henceforth we shall identify the dual(Hs)∗ of Hs with H−s .

Fix somes > 1/2. We then haveHs ⊂ C0 ∩ L∞, so thatH−s contains all
bounded Radon measures onR. In Hs, consider the setHs− of functions with
support in]−∞,0], so thatf ∈ Hs− if and only if f (t) = 0 for all t > 0. It is a
closed subspace ofHs , so that the quotient spaceHs/Hs− is a Hilbert space as
well. This is the space we want:

H = Hs/Hs−.(2.6)

To sum up, a real-valued functionf on [0,∞[ belongs toH if and only if it is
the restriction to[0,∞[ of some function inHs , that is, if there is some function
f̃ ∈ Hs (and hence defined on the whole real line) such thatf̃ (t) = f (t) for all
t ≥ 0. The norm onH is given by

‖f ‖H = inf{‖f̃ ‖Hs |f̃ ∈ Hs, f̃ (t) = f (t) ∀ t ≥ 0}
and the dual spaceH ∗ by

H ∗ = {g ∈ H−s |〈f̃ , g〉 = 0 ∀ f̃ ∈ Hs−}.
It follows that H ∗ is the set of all distributions inH−s with support in[0,∞[
and in particular, it contains all bounded Radon measures with support in[0,∞[.
H inherits the property of being a Banach algebra fromHs.

2.2. Bond dynamics. From now on, it will be assumed thatpt and p̄t take
values inH , so that the processesp andp̄ areA-adapted andH -valued. Moreover,
it will be assumed thatp and p̄ are A-progressively measurable. As in the
finite-dimensional case, ifp (resp.p̄) is A-adapted and measurable, then it has
an A-progressively measurable modification. The reader who wants to avoid
progressive measurability can therefore think ofp (resp. p̄) as anA-adapted
measurable process.

We shall denote byL : [0,∞[×H → H the semigroup of left translations inH :

(Laf )(s) = f (a + s),(2.7)

where a ≥ 0, s ≥ 0 and f ∈ H. This is well defined since bothHs and Hs−
in (2.6) are invariant under left translations. One readily verifies thatL is
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a strongly continuous contraction semigroup inH. Therefore (cf. Section 3,
Chapter IX of [22]), it has an infinitesimal generator which we shall denote by∂,

with dense and invariant domain [the domain consists of allf ∈ H such that
limε↓0 ε−1(Lεf − f ) exists inH and for suchf the limit is equal to∂f ], denoted
by D(∂). D(∂) is a Hilbert space with norm

‖f ‖D(∂) = (‖f ‖2
H + ‖∂f ‖2

H )1/2.(2.8)

Volatilities are assumed to take values in the Hilbert spaceH̃0 of all real-valued
functionsF on [0,∞[ such thatF = a + f, for somea ∈ R andf ∈ H. The norm
is given by

‖F‖
H̃0

= (a2 + ‖f ‖2
H )1/2,(2.9)

which is well defined since the decomposition ofF = a + f, a ∈ R andf ∈ H , is
unique.H̃0 is a subset of continuous multiplication operators onH. In fact, since
H is a Banach algebra it follows that‖Fh‖H = C‖F‖

H̃0
‖h‖H , whereC > 0

is independent ofF ∈ H̃0 andh ∈ H. We also introduce a Hilbert spacẽH1 of
continuous multiplication operators onD(∂). H̃1 is the subspace of elements
F ∈ H̃0 with finite norm

‖F‖
H̃1

= (
a2 + ‖f ‖2

D(∂)

)1/2
,(2.10)

whereF = a + f, a ∈ R andf ∈ D(∂). Finally let us define the left translation
in H̃0 by (LaF )(s) = F(a + s), whereF ∈ H̃0, a ≥ 0, s ≥ 0. H̃1 is the domain of
the generator ofL, which we also denote∂.

We shall assume that the bond dynamics are given by an equation of the
following type. (Letf1, . . . , fn ∈ H̃0 (resp.H̃1). Thenf1 · · ·fn ∈ H̃0 (resp.H̃1)
and when there is no risk for confusion, we shall also writeLaf1 · · ·fn instead
of La(f1 · · ·fn). If moreover onefi ∈ H [resp. D(∂)], then f1 · · ·fn ∈ H

[resp.D(∂)].)

p̄t = Lt p̄0 +
∫ t

0
Lt−s(msp̄s) ds +

∫ t

0

∑
i∈I

Lt−s(σ
i
s p̄s) dWi

s ,(2.11)

for t ∈ T, whereσ i
t , i ∈ I, and mt are A-progressively measurablẽH0-valued

processes and theWi, i ∈ I, are the already introduced standard Brownian
motions. One must also take into account the boundary conditionB(t, t) = 1,
which in this context becomes

p̄t (0) = exp
(
−

∫ t

0
r(s) ds

)
.(2.12)

This can only be satisfied in general if

σ i
t (0) = 0 for i ∈ I(2.13)
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and

mt(0) = 0.(2.14)

When I is finite, then (2.11) gives the usual HJM equation (equation (9) of [7])
for B.

In this paper, the process̄p is given. So formula (2.11), which then definesσ

andm, can be considered as the decomposition of the real-valued semimartingale
t �→ p̄t (T − t) = B̄(t, T ), describing the value of the zero-coupon bond with
maturity T , for each fixed value ofT . Alternatively, one may want to takeσ i

t

andmt as the parameters in the model, and derivep̄ as the solution of a stochastic
differential equation inH . Proceeding formally, (2.11) gives after differentiation

p̄t = p̄0 +
∫ t

0
(∂p̄s + p̄sms) ds +

∫ t

0
p̄s

∑
i∈I

σ i
s dWi

s .(2.15)

A mild solution (cf. [4], Chapter 6, Section 1 for the case of deterministicσ )
of (2.15) is anA-progressively measurableH -valued process̄p satisfying the
condition ∫ T̄

0

(
‖p̄t‖H + ‖p̄tmt‖H + ∑

i∈I

‖p̄tσ
i
t ‖2

H

)
dt < ∞ a.s.(2.16)

and which satisfies (2.11). AnA-progressively measurableH -valued process̄p is
a strong solution of (2.15) if condition (2.16) is satisfied and if̄pt ∈ D(∂) a.s. for
eacht ∈ T and ∫ T̄

0
‖∂p̄t‖H dt < ∞ a.s.(2.17)

We note that a strong solution of (2.15) is a semimartingale and it satisfies the
evolution equation (2.11). However, the last term on the right-hand side of (2.11)
is not in general the local martingale part. The aim of the following theorem is to
ensure consistency in our model between the properties ofp̄ and those ofσ andm.

THEOREM 2.1. If σ i, i ∈ I, and m are given A-progressively measurable
H̃1-valued processes, such that (2.13)and (2.14)are satisfied and such that∫ T̄

0

∑
i∈I

‖σ i
t ‖2

H̃1
dt < ∞ a.s.(2.18)

and ∫ T̄

0
‖mt‖H̃1

dt < ∞ a.s.(2.19)

and if p̄0 ∈ H is given and satisfies [we use obvious functional notation such as
f > 0 for f ∈ H, meaning ∀ s > 0 f (s) > 0]

p̄0 ∈ D(∂), p̄0(0) = 1, p̄0 > 0,(2.20)
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then (2.11) has, in the set of mild solutions of (2.15),a unique solution p̄. This
solution has the following properties: p̄ is a strong solution of (2.15),p̄ is strictly
positive (i.e., ∀ t ∈ T, p̄t > 0), t �→ ∂p̄t ∈ H is continuous a.s., the boundary
condition

p̄t (0) = exp
(∫ t

0

(∂p̄s)(0)

p̄s(0)
ds

)
(2.21)

is satisfied for each t ∈ T and an explicit expression of the solution is given by

p̄t = exp

(∫ t

0
Lt−s

((
ms − 1

2

∑
i∈I

(σ i
s )

2

)
ds + ∑

i∈I

σ i
s dWi

s

))
Lt p̄0.(2.22)

In particular p̄t ∈ C1([0,∞[) a.s.

So, given appropriateσ i, i ∈ I, andm, the mixed initial value and boundary
value problem (2.11), (2.12) has a unique solution for any initial curve of zero-
coupon bond prices satisfying (2.20). The proof of Theorem 2.1 is given in
Section 5.

Under additional conditions onσ i, i ∈ I, and m, we are able to prove
Lp-estimates of̄p.

THEOREM 2.2. If σ i, i ∈ I, and m in Theorem 2.1 satisfy the following
supplementary conditions: for each a ∈ [1,∞[,

E

((∫ T̄

0

∑
i∈I

‖σ i
t ‖2

H̃1
dt

)a

+ exp

(
a

∫ T̄

0

∑
i∈I

‖σ i
t ‖2

H̃0
dt

))
< ∞(2.23)

and

E

((∫ T̄

0
‖mt‖H̃1

dt

)a

+ exp
(
a

∫ T̄

0
‖mt‖H̃0

dt

))
< ∞,(2.24)

then the solution p̄ in Theorem 2.1 has the following property: If u ∈ [1,∞[,
q(t) = pt/Ltp0 and q̄(t) = p̄t /Lt p̄0, then p, p̄ ∈ Lu(�,P,L∞(T,D(∂))) and
q, q̄,1/q,1/q̄ ∈ Lu(�,P,L∞(T, H̃1)).

We remind that, under the hypotheses of Theorem 2.1,p̄t (0) satisfies (2.21), so
it is the discount factor (2.12). Theorem 2.1 has the

COROLLARY 2.3. Under the hypotheses of Theorem 2.2, if α ∈ R, then the
discount factor satisfies

E

(
sup
t∈T

(
p̄t (0)

)α)
< ∞.



A THEORY OF BOND PORTFOLIOS 1269

2.3. Portfolios. The linear functionals inH ∗ will be interpreted as bond port-
folios. More precisely, a portfolio is anH ∗-valuedA-progressively measurable
processθ defined onT. Its value at timet is

V (t, θ) = 〈θt ,pt 〉(2.25)

and its discounted value is

V̄ (t, θ) = 〈θt , p̄t 〉.(2.26)

EXAMPLE 2.4. (i) A portfolio consisting of one single zero-coupon bond with
a fixed time of maturity T , T ≥ T̄ , is represented byθ, whereθt = δT −t ∈ H ∗,
the Dirac mass with support atT − t, wheret ∈ R. Note that whent increases
its support moves to the left toward the origin, which also can be expressed by
θt (s) = θ0(s + t), for s ≥ 0. Its value at timet is pt(T − t).

(ii) A portfolio θ consisting of one single zero-coupon bond with a fixedtime
of maturity T , 0 ≤ T < T̄ . Then θt = δT −t ∈ H ∗, for t ≤ T and θt = 0, for
T < t ≤ T̄ . Its value at timet ≤ T is pt(T − t) and its value at timet > T is
zero.

(iii) θ given byθt = δS ∈ H ∗, the Dirac mass with fixed support atS, represents
a portfolio which consists at any time of a single zero-coupon bond withtime to
maturity S; note that it has to be constantly readjusted to keep the time to maturity
constant, and that its value at timet is pt(S).

As usual, a portfolio will be calledself-financing if at any time, the change in
its value is due to changes in market prices, and not to any redistribution of the
portfolio, that is,

V̄ (t, θ) = V̄ (0, θ) + Ḡ(t, θ),(2.27)

whereḠ(t, θ) represents the discounted gains in the time interval[0, t[. We shall
find the expression of̄G(t, θ). We remind that the subspace of elementsf of H ∗
with support not containing 0 is dense inH ∗. Suppose that the portfolio is already
defined up to timet and thatθt contains no zero-coupon bonds of time to maturity
smaller than someA > 0, that is,θt has no support in[0,A[. At t let the portfolio
evolve itself without any trading untilt + ε, where 0< ε < A. Thenθt+ε is given
by θt+ε(s) = θt (s + ε), for s ≥ 0. At t + ε, the discounted value of the portfolio
is V̄ (t + ε, θ) = 〈θt+ε, p̄t+ε〉 = ∫ ∞

A θt (s)p̄t+ε(s − ε) ds. We can now differentiate
in ε. Using (2.11) and (2.27) and taking the limitsε → 0 and thenA → 0 we
obtain:

dḠ(t, θ) = 〈θt , p̄tmt 〉dt + ∑
i∈I

〈θt , p̄tσ
i
t 〉dWi

t .(2.28)

We now takeḠ(0, θ) = 0 and this expression, in case it makes sense, as the
definition of the discounted gains for an arbitrary portfolioθ.
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To formalize this idea, we need to define appropriately the space of admissible
portfolios. Given the process̄p, an admissible portfolio is an H ∗-valued
A-progressively measurable processθ such that

‖θ‖2
P = E

(∫ T̄

0
(‖θt‖2

H ∗ + ‖σ ∗
t θt p̄t‖2

H ∗) dt

(2.29)

+
(∫ T̄

0
|〈θt , p̄tmt 〉|dt

)2)
< ∞,

where we have used thenotation

‖σ ∗
t θt p̄t‖2

H ∗ = ∑
i∈I

(〈θt , p̄tσ
i
t 〉)2.(2.30)

For the mathematically minded reader this notation will be given a meaning in
Section 5. The set of all admissible portfolios is Banach spaceP and the subset
of all admissible self-financing portfolios is denoted byPsf. The discounted gains
process for a portfolio inP is a continuous square-integrable process:

PROPOSITION2.5. Assume that p̄0, m and σ are as in Theorem 2.1.If θ ∈ P,

then Ḡ(·, θ) is continuous a.s. and E(supt∈T(Ḡ(t, θ))2) < ∞.

EXAMPLE 2.6. (i) The portfolio of Example 2.4(i) is self-financing and the
portfolios of Example 2.4(ii) and (iii) are not self-financing.

(ii) We define a self-financing portfolioθ of zero-coupon bonds with constant
time to maturity S. Let θ be given byθt = x(t)δS, where

x(t) = x(0)exp
(∫ t

0
fs(S) ds

)
(2.31)

and ft (S) is given by (2.1). Thatθ is self-financing is readily established by
observing that in this casex(t)p̄t (S) = V̄ (t, θ), V̄ (t, θ) = V̄ (0, θ) + ∫ t

0 V̄ (s, θ) ×
(ms(S) ds + ∑

i∈I σ i
s (S) dWi

s ) and by applying Itô’s lemma tox(t) = V̄ (t, θ)/

p̄t (S); cf. [19].
We note thatx(t) = V (t, θ)/pt (S) is the wealth at timet expressed in units of

zero-coupon bonds of time to maturityS. According to (2.31), the self-financing
portfolio θ is then given by the initial numberx(0) of bonds and by the growth
ratef (S) of x. So this is as a money account, except that here we count in zero-
coupon bonds of time to maturityS.

In particular, ifS = 0, then the equalityx(t) = V (t, θ), the definition (2.1) ofr
and the definition (2.31) show thatθ can be assimilated to money at a usual bank
account with spot rater, see [2].

REMARK 2.7 (Roll-Overs). (i) LetS ≥ 0, x(0) = 1 and the portfolioθ be
as in (ii) of Example 2.6. Of courseX = V (T̄ , θ) is then an attainable interest
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rate derivative, for whichθ is a replicating portfolio. We name this derivative a
Roll-Over or more precisely anS-Roll-Over to specify the time to maturity of the
underlying zero-coupon bond. Letp̃t (S) be the discounted price of anS-Roll-Over
at timet. Thenp̃0(S) = p0(S) by definition and the price dynamics of Roll-Overs
is simply given by

p̃t = p0 +
∫ t

0
p̃sms ds +

∫ t

0
p̃s

∑
i∈I

σ i
s dWi

s ,(2.32)

t ∈ T, which solutionp̃ is given by

p̃t (S) = p̄t (S)exp
(∫ t

0
fs(S) ds

)
, S ≥ 0.(2.33)

An S-Roll-Over can be denounced at timet, with a notice ofS time units and it
will then payx(t) units of account at timet + S.

(ii) Zero-coupon bonds do not in general permit self-financing buy-and-hold
portfolios, that is, constant portfolios. However, Roll-Overs do, since a constant
portfolio of Roll-Overs is always self-financing. Mathematically, this can be
thought of as changing from a fixed frame to a moving frame for expressing a self-
financed discounted wealth process in terms of coordinates, that is the portfolio. To
be more precise let us consider a technically simple case. Letσ be nondegenerated
in the sense that the linear span of the set{σ i

t |i ∈ I} is dense a.s. inH̃0 for every
t ∈ T. Let the initial price satisfy supt∈T sups≥0 p0(s)/p0(t + s) < ∞ and let the
hypotheses of Theorem 2.2 be satisfied. Then a self-financing portfolioθ ∈ Psf
is the unique replicating portfolio inθ ∈ Psf of V (T̄ , θ). Moreover, there is a
uniqueη ∈ P such that〈θt , p̄t 〉 = 〈ηt , p̃t 〉, for all t ∈ T. The coordinates of the
self-financed discounted wealth processV (·, θ) with respect to the moving frame
is η. In particular, anS-Roll-Over is given by the constant portfolioη, where
ηt = δS.

We next set up an arbitrage-free market by postulating a market-price of risk
relation betweenm andσ .

CONDITION A. There exists a family {�i |i ∈ I} of real-valued A-progressively
measurable processes such that

mt + ∑
i∈I

�i
t σ

i
t = 0(2.34)

and

E

(
exp

(
a

∫ T̄

0

∑
i∈I

|�i
t |2 dt

))
< ∞ ∀a ≥ 0.(2.35)
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Condition (2.34) is similar to a standard no-arbitrage condition in finite
dimension and we refer to Remark 5.1 for further motivation in the infinite-
dimensional case. Inequality (2.35) permits the use of Novikov’s criteria (cf. [18],
Chapter VIII, Proposition 1.15). When Condition A is satisfied, (2.28) for the
discounted gains of a portfolioθ becomes

dḠ(t, θ) = ∑
i∈I

〈θt , p̄tσ
i
t 〉(−�i

t dt + dWi
t ).(2.36)

The following result shows how to obtain a martingale measure in the general case
of Condition A. Introduce the notation

ξt = exp

(
−1

2

∫ t

0

∑
i∈I

(�i
s)

2 ds +
∫ t

0

∑
i∈I

�i
s dWi

s

)
,(2.37)

wheret ∈ T.

THEOREM 2.8. If (2.35) is satisfied, then ξ is a martingale with respect to
(P,A) and supt∈T ξα

t ∈ L1(�,P ) for each α ∈ R. The measure Q, defined by

dQ = ξT̄ dP,

is equivalent to P on FT̄ and t �→ W̄ i
t = Wi

t − ∫ t
0 �i

s ds, t ∈ T, i ∈ I, are
independent Wiener process with respect to (Q,A). (The Girsanov formula holds.)

The expected value of a random variableX with respect toQ is denotedEQ(X)

andEQ(X) = E(ξT̄ X).

Proposition 2.5 and Theorem 2.8 have the

COROLLARY 2.9. Assume that p̄0 and σ are as in Theorem 2.1 and assume
that Condition A is satisfied. Then all conditions of Theorem 2.1are satisfied and
if θ ∈ P, then Ḡ(·, θ) is continuous a.s., E(supt∈T(Ḡ(t, θ))2) < ∞ and Ḡ(·, θ) is
a (Q,A)-martingale.

By an arbitrage-free market, we mean as usually, that there does not exist a
self-financing dynamical portfolioθ ∈ Psf such thatV (0, θ) = 0, V (T̄ , θ) ≥ 0 and
P(V (T̄ , θ) > 0) > 0. The following result shows that the market is arbitrage-free:

COROLLARY 2.10. Assume that p̄0 and σ are as in Theorem 2.1and assume
that Condition A is satisfied. If θ ∈ Psf, its discounted price V̄ (·, θ) is a (Q,A)-
martingale and E(supt∈T(V̄ (t, θ))2) < ∞. In particular the market is arbitrage-
free.
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3. The optimal portfolio problem. The investor is characterized by his
utility u(w̄T̄ ), wherew̄T̄ is terminal wealth, discounted tot = 0. Given the initial
wealthx, denote byC(x) the set of all admissible self-financing portfolios starting
from x:

C(x) = {θ ∈ Psf|V̄ (0, θ) = x}.
The investor’s optimization problem is, for a given initial wealthK0, to find a
solutionθ̂ ∈ C(K0) of

E
(
u
(
V̄ (T̄ , θ̂ )

)) = sup
θ∈C(K0)

E
(
u
(
V̄ (T̄ , θ)

))
.(3.1)

In the following, the utility function is allowed to take the value−∞, so
u :R → R ∪ {−∞}. Throughout this section, we make the following Inada-type
assumptions:

CONDITION B.

(a) u :R → R ∪ {−∞} is strictly concave, upper semi-continuous and finite on
an interval ]x,∞[, with x ≤ 0 (the value x = −∞ is allowed ).

(b) u is C1 on ]x,∞[ and u′(x) → ∞ when x → x in ]x,∞[.
(c) There exists some q > 0 such that

lim inf
x↓x

(1+ |x|)−qu′(x) > 0(3.2)

and such that, if u′ > 0 on ]x,∞[, then

lim sup
x→∞

xqu′(x) < ∞(3.3)

and if u′ takes the value zero, then

lim sup
x→∞

x−qu′(x) < 0.(3.4)

REMARK 3.1. (i) If u satisfies Condition B, thenv obtained by an affine
transformation,v(x) = αu(ax + b) − β, α, a > 0, β ∈ R, b ≥ x, also satisfies
Condition B. Usual utility functions, such as exponentialu(x) = −e−x , quadratic
u(x) = −x2/2, poweru(x) = xa/a, x > 0, a < 1 anda �= 0 and logarithmic
u(x) = lnx, x > 0, satisfy Condition B. Others, like HARA, are obtained by affine
transformations.

(ii) Strictly negative wealth is admitted whenx < 0 and additional constraints
such as positivity are not included in the present theory. However, positivity of
wealth is obviously satisfied for all utility functions withx = 0, such asu(x) =
xa/a, a < 1 anda �= 0 and logarithmicu(x) = lnx.

It follows that u′ restricted to]x,∞[ has a strictly decreasing continuous
inverseϕ, that is, a map such that(ϕ ◦ u′)(x) = x for x ∈]x,∞[. The domain
of ϕ is I = u′(]x,∞[). Condition B has an equivalent formulation in terms ofϕ:
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LEMMA 3.2. If u satisfies Condition B, then:

(i) If u′ > 0 on ]x,∞[, then I =]0,∞[ and for some C,p > 0,

|ϕ(x)| ≤ C(xp + x−p),(3.5)

for all x > 0.
(ii) If u′ takes the value zero in ]x,∞[, then I = R and for some C,p > 0,

|ϕ(x)| ≤ C(1+ |x|)p,(3.6)

for all x ∈ R.

Conversely, if I =]0,∞[ (resp. I = R), x ∈ [−∞,0], and ϕ : I →]x,∞[
satisfying (3.5) [resp. (3.6)] is a strictly decreasing continuous surjection with
inverse g, a ∈ R, x0 ∈]x,∞[ and if u(x) = a + ∫ x

x0
g(y) dy, for x ∈]x,∞[,

u(x) = limx↓x u(x), u(x) = −∞, for x < x, then u satisfies Condition B.

We shall next give existence results of optimal portfolios. In order to construct
solutions of the optimization problem (3.1), we first solve a related problem
of optimal terminal discounted wealth at timēT , which gives candidates of
optimal terminal discounted wealths, and second, we construct, for certain of these
candidates, a hedging portfolio, which then is a solution of the optimal portfolio
problem (3.1). The construction of terminal discounted wealths is general and only
requires that Conditions A and B are satisfied. For the construction of hedging
portfolios, we separate the case of a finite number of random sources, that is,
I = {1, . . . , m̄} (Theorem 3.6) and the case of infinitely many random sources
I = N

∗ (Theorem 3.8). In the case ofI finite, general stochastic volatilities being
nondegenerated according to a certain condition are considered. In the case ofI

infinite, we only give results for deterministicσ , but which can be degenerated.
If X is the terminal discounted wealth for a self-financing strategy inC(K0),

then due to Corollary 2.9K0 = E(ξT̄ X). We shall employ dual techniques to find
candidates of the optimalX; cf. [17].

THEOREM 3.3. Let u satisfy Condition B and let � satisfy condition (2.35).If
K0 ∈]x,∞[, then there exists a unique X̂ ∈ L2(�,P,FT̄ ) such that K0 = E(ξT̄ X̂)

and

E
(
u(X̂)

) = sup
K0=E(ξT̄ X)

E(u(X)).(3.7)

Moreover, X̂ ∈ Lp(�,P ) for each p ∈ [1,∞[ and there is a unique λ ∈ I such
that X̂ = ϕ(λξT̄ ).

Now, if θ̂ hedgesX̂, thenθ̂ is an optimal portfolio. More precisely, we have:
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COROLLARY 3.4. Let m and σ satisfy the hypotheses of Theorem 2.1and also
be such that there exists a � with the following properties: � satisfies Condition A
and X̂, given by Theorem 3.3,satisfies X̂ = V̄ (T̄ , θ̂ ) for some θ̂ ∈ Psf. Then θ̂ is a
solution of the optimal portfolio problem (3.1).

REMARK 3.5. Instead of optimizing in (3.1) the expected utility of the
discounted terminal wealth̄V (T̄ , θ), one can choose to optimize that of the
terminal wealthV (T̄ , θ). This leads to a similar result as that of Theorem 3.3.
Using thatp̄t (0) is the discount factor, we obtain that the optimal terminal wealth
is Ẑ = ϕ(p̄T̄ (0)λξT̄ ) and thatλ is given byE(ξT̄ p̄T̄ (0)Ẑ) = K0.

3.1. The case I = {1, . . . , m̄}. Here we assume that a.s. the set of volatili-
ties {σ 1

t , . . . , σ m̄
t } is linearly independent iñH0 for eacht ∈ T. Sincep0 > 0 and

p0 ∈H , this is equivalent to the a.s. linear independence of{σ 1
t Ltp0, . . . , σ

m̄
t Ltp0}

in H, for eacht. Consider them̄ × m̄ matrixA(t) with elements

A(t)ij = (σ i
t Ltp0, σ

j
t Ltp0)H

(beware that we are using the scalar product inH and not inL2):

THEOREM 3.6. Let p0 ∈ D(∂), p0(0) = 1 and p0 > 0, let σ �= 0 satisfy
conditions (2.13) and (2.23) and let Conditions A and B be satisfied. Assume
that there exists an adapted process k > 0, such that for each q ≥ 1 we have
E(supt∈T k

q
t ) < ∞ and, for each x ∈ R

m̄ and t ∈ T:

(
x,A(t)x

)
Rm̄kt ≥

(∑
i∈I

‖σ i
t Ltp0‖2

H

)1/2

‖x‖2
Rm̄ a.s.(3.8)

If K0 ∈]x,∞[, then problem (3.1)has a solution θ̂ .

We note that condition (3.8) only involves prices at time 0 and the volatilities.
We also note that the optimal portfolio is never unique since one can always add
a nontrivial portfolioθ ′ such that the linear span of the set{σ 1

t p̄t , . . . , σ
m̄
t p̄t } is in

the kernel ofθ ′
t .

REMARK 3.7. Due to the nonuniqueness of the optimal portfolioθ̂ in Theo-
rem 3.6, it can be realized using different numbers of bonds:

1. One can always choose an optimal portfolioθ̂ such that θ̂t consists of
at most 1+ m̄ zero-coupon bonds at every timet. This can be seen
by a heuristic argument. Since, for everyt ≥ 0, the set of continuous
functions{σ 1

t p̄t , . . . , σ
m̄
t p̄t } is linearly independent a.s., there exists positive

Ft -measurable finite random variablesS
j
t such that 0< S1

t < · · · < Sm̄
t and
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such that the vectorsvj
t = (σ 1

t (S
j
t )p̄t (S

j
t ), . . . , σ m̄

t (S
j
t )p̄t (S

j
t )), 1 ≤ j ≤ m̄,

are linearly independent a.s. Letθt = ∑
1≤j≤m̄ a

j
t δ

S
j
t
, where a

j
t are real

Ft -measurable random variables. The equations〈θt , p̄tσ
i
t 〉 = yi(t), 1≤ i ≤ m̄,

whereyi(t) is given by (5.31), then have a unique solutionat . So at timet it is
enough to use bonds with time to maturity 0= S0

t < S1
t < · · · < Sm̄

t to realize
an optimal portfolioθ̂ . The number of bonds with time to maturity 0= S0

t is
adjusted to obtain a self-financing portfolio.

2. Alternatively to zero-coupon bonds, one can also usem̄ + 1 coupon bonds or
Roll-Overs to realize an optimal portfolio.

3. For certain volatility structures, one can even use anym̄ given Roll-Overs or
m̄ given marketed coupon bonds (supposed to have distinct times of maturity,
each exceedinḡT ) to realize an optimal portfolio. In particular, this is the case
if the above vectorsvj

t , 1≤ j ≤ m̄, are linearly independent for every sequence
0< S1

t < · · · < Sm̄
t .

3.2. The case of deterministic σ and � . Condition (3.8) cannot hold in the

infinite case,I = N
∗. In fact this is a consequence of that

∫ T̄
0

∑
i∈I ‖σ i

t ‖2
H̃0

dt < ∞
a.s., as explained in Remark 5.3. Whenσ and� are deterministic, we can give
another, weaker condition, which only involvesσ , � and the zero-coupon bond
prices at time zerōp0. This will give us a result which will hold for the infinite
case as well. Properties of the inverseϕ of the derivative of the utility functionu,

satisfying Condition B, were given in Lemma 3.2. For simplicity we shall need one
more property, which we impose directly as a condition onϕ. We keep in mind that
ϕ′ < 0, sinceu is strictly concave.

CONDITION C. Let Condition B be satisfied, assume that u is C2 on ]x,∞[
and assume that there exist C,p > 0 such that:

(a) If u′ > 0 on ]x,∞[, then

|xϕ′(x)| ≤ C(xp + x−p),(3.9)

for all x > 0.
(b) If u′ takes the value zero in ]x,∞[, then

|xϕ′(x)| ≤ C(1+ |x|)p,(3.10)

for all x ∈ R.

We note that Condition B implies Condition C ifu′ is homogeneous. Condi-
tion C is satisfied for the utility functions in Remark 3.1.

THEOREM 3.8. Let σ and m be deterministic, while I is finite or infinite.
Let p0 ∈ D(∂), p0(0) = 1 and p0 > 0, let σ satisfy conditions (2.13)and (2.18)
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and let Conditions A and C be satisfied. Assume that there exists a (deterministic)
H ∗-valued function γ ∈ L2(T,H ∗) such that

〈γt , σ
i
t Ltp0〉 = �i

t ,(3.11)

for each i ∈ I and t ∈ T. If K0 ∈]x,∞[, then problem (3.1)has a solution θ̂ .

As explained in Remark 5.4, condition (3.11) can be satisfied in highly
incomplete markets. In the situation of Theorem 3.8, we can derive an explicit
expression of an optimal portfolio. We use the notationq̄(t) = p̄t /Lt p̄0 of
Theorem 2.2.

COROLLARY 3.9. Under the hypotheses of Theorem 3.8,an optimal portfolio
is given by θ̂ = θ0 + θ1, where θ0, θ1 ∈ P, θ0 = atδ0, θ1

t = bt (q̄(t))−1γt . The
coefficients a and b are real-valued A-progressively measurable processes given
by

bt = EQ

(
λξT̄ ϕ′(λξT̄ )|Ft

)
(3.12)

and

at = (p̄t (0))−1(Y(t) − bt 〈γt ,Ltp0〉),(3.13)

t ∈ T, where Y(t) = EQ(ϕ(λξT̄ )|Ft ) and λ ∈ I is unique. The discounted price of
the portfolio θ̂ is given by V̄ (t, θ̂ ) = Y(t), t ∈ T. Moreover, 〈θ0, σ i

t p̄t 〉 = 0 and

〈θ1, σ i
t p̄t 〉 = EQ

(
λξT̄ ϕ′(λξT̄ )|Ft

)
�i

t ,(3.14)

i ∈ I and t ∈ T.

The proofs of Theorem 3.8 and Corollary 3.9 are based on a Clark–Ocone
like representation of the optimal terminal discounted wealth (see Lemma A.5).
Alternatively, the explicit expressions in Corollary 3.9 can be obtained by a
Hamilton–Jacobi–Bellman approach (see Remark 5.5). This corollary has an
important consequence, since it leads directly to mutual fund theorems. We shall
state a version only involving self-financing portfolios.

THEOREM 3.10. Under the hypotheses of Theorem 3.8, there exists a self-
financing portfolio � ∈ Psf, with the following properties:

(i) The initial value of � is 1 euro, that is, 〈�0, p̄0〉 = 1 and the value at each
time t ∈ T is strictly positive, that is, 〈�t, p̄t 〉 > 0.

(ii) For each given utility function u satisfying Condition C and each initial
wealth K0 ∈]x,∞[, there exist two real-valued processes x and y such that if
θ̂t = xtδ0 + yt�t , then θ̂ is an optimal self financing portfolio for u, that is a
solution of problem (3.1).
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4. Examples of closed-form solutions. In this section we shall give, in the
situation of Corollary 3.9, examples of solutions of problem (3.1), for certain
utility functions u. In particular, condition (3.11) is satisfied, soσ and � are
deterministic.

According to Corollary 3.9, the final optimal wealth isY(T̄ ) = ϕ(λξT̄ ) and
the optimal discounted wealth processY is given byY(t) = EQ(ϕ(λξT̄ )|Ft ). The
initial wealth Y(0) = K0 determinesλ. We introduce the optimal utilityU as a
function of discounted wealthw at timet ∈ T,

U(t,w) = E
(
u
(
Y(T̄ )

)|Y(t) = w
)
.(4.1)

We recall that(p̄t )
−1Lt p̄0 ∈ H̃1 a.s. and(p̄t (0))−1 ∈ R a.s. which is a particular

case of Theorem 2.2 and Corollary 2.3.

EXAMPLE 4.1. Quadratic utility. The utility function is

u(x) = µx − x2/2,(4.2)

whereµ ∈ R is given. Condition B is satisfied withx = −∞ and 0< q < 1.

We have I = R and ϕ(x) = −x + µ and Condition C is satisfied with
p ≥ 2. The P -martingaleξ can be writtenξt = ηt exp(

∫ t
0

∑
i∈I(�

i
s)

2 ds), where
ηt = exp(−1

2

∫ t
0

∑
i∈I(�

i
s)

2 ds + ∫ t
0

∑
i∈I �i

s dW̄ i
s ) defines aQ-martingaleη (see

Theorem 2.8). Since

K0 = EQ

(
ϕ(λξT̄ )

) = −λEQ(ξT̄ ) + µ = −λexp

(∫ T̄

0

∑
i∈I

(�i
s)

2ds

)
+ µ,

it follows that

λ = (µ − K0)exp

(
−

∫ T̄

0

∑
i∈I

(�i
s)

2 ds

)
.(4.3)

The optimal discounted wealth processY is then given byY(t) = EQ(ϕ(λξT̄ )|
Ft ) = −λexp(

∫ T̄
0

∑
i∈I(�

i
s)

2 ds)EQ(ηT̄ |Ft ) + µ, so

Y(t) = µ + (K0 − µ)exp

(∫ t

0

∑
i∈I

(
�i

s dW̄ i
s − 1

2(�i
s)

2 ds
))

.(4.4)

For givenµ,w ∈ R andt ∈ T, formula (4.1) leads to the optimal utility

U(t,w) = (−1
2w2 + µw

)
exp

(
−

∫ T̄

t

∑
i∈I

(�i
s)

2 ds

)

(4.5)
+ 1

2µ2

(
1− exp

(
−

∫ T̄

t

∑
i∈I

(�i
s)

2 ds

))
.

One finds firstbt = Y(t) − µ and then

at = (
p̄t (0)

)−1(
Y(t) − (

Y(t) − µ
)〈γt ,Ltp0〉).(4.6)
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An optimal portfolio is given bŷθ = θ0 + θ1, whereθ0
t = atδ0 and

θ1
t = (

Y(t) − µ
)
γt (p̄t )

−1Ltp0.(4.7)

We see that the discounted wealth invested inθ0 is Y(t) − (Y (t) − µ)〈γt ,Ltp0〉
and inθ1 it is (Y (t) − µ)〈γt ,Ltp0〉. If we want a certain expected return over the
periodT, then this will of course fixµ in formula (4.4).

EXAMPLE 4.2. Exponential utility. The utility function is

u(x) = −exp(−µx),(4.8)

whereµ > 0 is given andx ∈ R. Determination ofλ gives

− 1

µ
ln

λ

µ
= K0 + 1

2µ

∫ T̄

0

∑
i∈I

(�i
s)

2 ds.(4.9)

The optimal discounted wealth processY, for initial wealthK0 ∈ R, is given by

Y(t) = K0 − 1

µ

∫ t

0

∑
i∈I

�i
s dW̄ i

s .(4.10)

The optimal utility is given by

U(t,w) = −exp

(
−µw − 1

2

∫ T̄

t

∑
i∈I

(�i
s)

2 ds

)
,(4.11)

wherew ∈ R andt ∈ T. For an optimal portfolio we getbt = −1/µ,

at = (
p̄t (0)

)−1
(
Y(t) + 1

µ
〈γt ,Ltp0〉

)
(4.12)

andθ̂ = θ0 + θ1, whereθ0
t = atδ0 and

θ1
t = − 1

µ
γt(p̄t )

−1Ltp0.(4.13)

So in this case the discounted wealth invested in the risky zero-coupon bond of
time to maturityS is θ1

t (S)p̄t (S) = − 1
µ
γt (S)p0(S + t), which is deterministic.

However, the portfolioθ0
t , that is, the numberat of zero-coupon bonds of time

to maturity 0 is random through its dependence on the discounted wealthY(t).

The discounted wealth invested inθ0 is Y(t) + 1
µ
〈γt ,Ltp0〉 and in θ1 it is

− 1
µ
〈γt ,Ltp0〉. Expressed in Roll-Overs the portfolio becomesη̂ = η0 + η1,

η0
t (S) = Y(t) + 1

µ
〈γt ,Ltp0〉δ(S),(4.14)

η1
t (S) = − 1

µ
exp

(∫ t

0

(
rs − fs(S)

)
ds

)
p0(t + S)

pt (S)
γt (S),(4.15)

whereS ≥ 0 andδ = δ0.
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EXAMPLE 4.3. Homogeneous utility. The utility function is

u(x) = xµ,(4.16)

where 0< µ < 1 is given andx > 0. Determination ofλ gives

(
µ

λ

)1/(1−µ)

= K0 exp

(
− µ

2(1− µ)2

∫ T̄

0

∑
i∈I

(�i
s)

2 ds

)
.(4.17)

The optimal discounted wealth processY, for initial wealthK0 > 0, is given by

Y(t) = K0 exp

(∫ t

0

∑
i∈I

(
− 1

1− µ
�i

s dW̄ i
s − 1

2

(
1

1− µ
�i

s

)2

ds

))
.(4.18)

The optimal utility is given by

U(t,w) = wµ exp

(
µ

2(1− µ)

∫ T̄

t

∑
i∈I

(�i
s)

2 ds

)
, w > 0.(4.19)

The optimal portfolioθ̂ is given by

bt = − 1

1− µ
Y(t)(4.20)

and

at = (
p̄t (0)

)−1
(

1+ 1

1− µ
〈γt ,Ltp0〉

)
Y(t),(4.21)

so bothθ0 andθ1 are proportional to the wealth. The fractionθ1
t (S)p̄t (S)/Y (t)

= −γt (S)p0(S + t)/(1 − µ), invested in the risky zero-coupon bond of time to
maturityS, is deterministic.

REMARK 4.4. If, instead of maximizing expected utility of discounted termi-
nal wealth, we maximize expected utility of terminal wealth (see Remark 3.5), we
find, in the case of a homogeneous utility function (4.16), that the optimal portfo-
lio ε̂ satisfies

ε1
t (S)pt (S)

V (t, ε̂)
= −1

1− µ
p0(t + S)γt (S) + −µ

1− µ
δT̄ −t (S),

for time to maturityS > 0. The fraction invested in the risky zero-coupon bond
of time to maturityS > 0 is thus deterministic. In the particular case when the
portfolio is restricted to a current account and a zero-coupon bond of maturity
exceeding the portfolio management horizonT̄ , a similar formula was obtained
in [10]. It refers to the first term as the Merton result, and to the second as the
correction term.
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5. Mathematical complements and proofs. In the sequel it will be conve-
nient to use a more compact mathematical formalism, which we now introduce.
The dual ofH̃0 is identified withH̃ ∗

0 = R ⊕ H ∗ by extending the bilinear form,
defined in (2.5), toH̃ ∗

0 × H̃0:

〈F,G〉 = ab + 〈f,g〉,(5.1)

whereF = a + f ∈ H̃ ∗
0 , G = b + g ∈ H̃0, a, b ∈ R, f ∈ H ∗ andg ∈ H. {ei}i∈N∗

is an orthonormal basis iñH0. For i ∈ N
∗, the elemente′

i ∈ H̃ ∗
0 is given by

〈e′
i , f 〉 = (ei, f )

H̃0
, for everyf ∈ H̃0. The map [L(E,F ) denotes the space of

linear continuous mappings fromE into F, L(E) = L(E,E)] S ∈ L(H̃0, H̃
∗
0 ) is

defined bySf = ∑
i≥1〈e′

i , f 〉e′
i . The adjointS∗ ∈ L(H̃ ∗

0 , H̃0) is given byS∗f =∑
i≥1〈ei, f 〉ei . Moreover,(f, g)

H̃0
= 〈Sf,g〉 for f,g ∈ H̃0, (f, g)

H̃ ∗
0

= 〈f,S∗g〉
for f,g ∈ H̃ ∗

0 andS is unitary. For a given orthonormal basis{e′
i}i∈I in H̃ ∗

0 we
define theL(H̃0)-valued process{σt }t∈T by

σtf = ∑
i∈I

〈e′
i , f 〉σ i

t ,(5.2)

for f ∈ H̃0. We note that if
∑

i≥1 ‖σ i
t ‖2

H̃0
< ∞ a.s., thenσt is a.s. a Hilbert–

Schmidt operator-valued process, with Schmidt norm

‖σt‖H−S =
(∑

i≥1

‖σ i
t ‖2

H̃0

)1/2

.(5.3)

The adjoint is given by

σ ∗
t f = ∑

i∈I

〈f,σ i
t 〉e′

i ,(5.4)

for f ∈ H̃ ∗
0 .

We define a cylindrical Wiener processW on H̃0; cf. Section 4.3.1 of [4]:
Wt = ∑

i∈I Wi
t ei . We also define�t = ∑∞

i=1 �i
t ei, which is an element ofH̃0 a.s.

if
∑∞

i=1(�
i
t )

2 < ∞ a.s. Equation (2.11) now reads

p̄t = Lt p̄0 +
∫ t

0
Lt−sp̄sms ds +

∫ t

0
Lt−sp̄sσs dWs,(5.5)

its differential

dp̄t = (mt p̄t + ∂p̄t ) dt + p̄tσt dWt ,(5.6)

equation (2.28)

dḠ(t, θ) = 〈θt , p̄tmt 〉dt + 〈σ ∗
t p̄t θt , dWt 〉,(5.7)
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relation (2.34)

mt + σt�t = 0(5.8)

and equation (2.36)

dḠ(t, θ) = −〈σ ∗
t p̄t θt ,�t 〉dt + 〈σ ∗

t p̄t θt , dWt 〉,(5.9)

wheret ∈ T.

The quadratic variation for a processM is, when defined, denoted〈〈M,M〉〉.

REMARK 5.1. In order to justify condition (5.8), we note (omitting the a.s.)
that if θ ′ is a self-financing strategy such thatθ ′

t ∈ H ∗ is in the annihilator
{p̄tσ

i
t |i ∈ I}⊥ ⊂ H ∗ of the set{p̄tσ

i
t |i ∈ I} ⊂ H, then (2.28) givesdḠ(t, θ ′) =

〈θ ′
t ,mt p̄t 〉dt. θ ′ is therefore a riskless self-financing strategy. Since the interest

rate of the discounted bank account is zero, in an arbitrage-free market we must
have〈θ ′

t ,mt p̄t 〉 = 0. This shows thatmtp̄t ∈ ({p̄tσ
i
t |i ∈ I}⊥)⊥, that is,mtp̄t is an

element of the closed linear span of{p̄tσ
i
t |i ∈ I}. Sincep̄t > 0, we choosemt to

be an element of the closed linear spanF of {σ i
t |i ∈ I} in H̃0.

When (also omitting the a.s.) the linear span of{σ i
t |i ∈ I} has infinite dimension,

then condition (5.8) is slightly stronger thanm ∈ F, sinceσt must be a compact
operator inH̃0. This phenomenon, which is purely due to the infinite dimension
of the state spaceH, is not present in the case of a market with a finite number of
assets.

REMARK 5.2. The conditions involvingm are redundant when equality (5.8)
is satisfied. For example, conditions (2.23) and (2.35) imply condition (2.24). In
fact, ‖mt‖H̃0

≤ (
∑

i∈I ‖σ i
t ‖2

H̃0
)1/2(

∑
i∈I |�i

t |2)1/2 ≤ 1/2(
∑

i∈I ‖σ i
t ‖2

H̃0
+∑

i∈I |�i
t |2). By the Schwarz inequality,E(exp(a

∫ T̄
0

∑
i∈I ‖mt‖H̃0

dt)) ≤
(E(exp(2a

∫ T̄
0

∑
i∈I ‖σ i

t ‖2
H̃0

dt)))1/2(E(exp(2a
∫ T̄
0

∑
i∈I |�i

t |2 dt)))1/2.

REMARK 5.3. When the number of random sources is infinite, that is,I = N
∗,

then the straightforward generalization of condition (3.8) fromx ∈ R
m̄ to x ∈ l2

cannot be satisfied, sinceσt is a.s. a compact operator iñH0. In fact, in this case the
left-hand side of (3.8) reads(x,A(t)x)l2. Let lt = Ltp0. By the definition ofA(t)

and by the canonical isomorphism betweenl2 and H̃0 we obtain(x,A(t)x)l2 =
‖∑

i∈I xiσ
i
t lt‖2

H̃0
= ‖ltσtf ‖2

H̃0
, wherexi = (ei, f )

H̃0
. Condition (3.8) then reads

‖ltσtf ‖2
H̃0

kt ≥ ‖ltσt‖H−S‖f ‖2
H̃0

. Sinceσt is a.s. compact, which then also is the

case forltσt , it follows that inf‖f ‖
H̃0

=1 ‖ltσtf ‖
H̃0

= 0. This is in contradiction
with kt finite a.s. andltσt �= 0 a.s.

REMARK 5.4. Concerning condition (3.11):
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(i) � is unique or more precisely: Givenσ andm such that the hypotheses
of Theorem 3.8 are satisfied, then there is a unique� satisfying Condition A and
satisfying condition (3.11) for someγ. To establish this fact letσ ′

t be the usual
adjoint operator inH̃0, with respect to the scalar product iñH0, of the operatorσt .

Condition (3.11) can then be writtenσ ′
t δt = �t , whereδt = S∗lt γt andlt = Ltp0.

δt ∈ H̃0, since‖δt‖H̃0
= ‖lt γt‖H̃ ∗

0
≤ C‖lt‖H̃0

‖γt‖H̃ ∗
0

< ∞. This shows that�t is

in the orthogonal complement, with respect to the scalar product inH̃0, of Kerσt .

There cannot be more than one solution�t of (5.8) with this property.
(ii) Condition (3.11) can be satisfied for arbitrary (included degenerated)

volatilities σ , resulting in incomplete markets. An example is obtained by, for
givenσ , choosing aγ and then defining� andm by (3.11) and (5.8), respectively.

REMARK 5.5. Whenmt andσt are given functions of̄pt , for every t ∈ T,

then the optimal portfolio problem (3.1) can be considered within a Hamilton–
Jacobi–Bellman approach. We illustrate this in the simplest case, whenmt andσt

are deterministic. The optimal value functionU then only depends on timet ∈ T

and on the value on the discounted wealthw at timet :

U(t,w) = sup
{
E

(
u
(
V̄ (T̄ , θ)

)|V̄ (t, θ) = w
)|θ ∈ Psf

}
(5.10)

[here E(Y |X = x) is the conditional expectation ofY under the condition that
X = x]. One is then led to the HJB equation

∂U

∂t
(t,w) + sup

f ∈H ∗

{
−〈σ ∗

t f,�t 〉
∂U

∂w
(t,w)

(5.11)

+ 1

2
‖σ ∗

t f ‖2
H ∗

∂2U

∂w2 (t,w)

}
= 0

with boundary condition

U(T̄ ,w) = u(w).(5.12)

Equation (5.11) gives

∂U

∂t

∂2U

∂w2 = 1

2
‖�t‖2

H

(
∂U

∂w

)2

.(5.13)

Each self-financing zero-coupon bond strategyθ̂ ∈ Psf, such that

〈θ̂t , p̄tσ
i
t 〉 = �i

t ∂U/∂w

∂2U/∂w2 , i ∈ I,(5.14)

if V̄ (t, θ̂ ) = w, is then a solution of problem (3.1). In particular, the solution of
Corollary 3.9 satisfies (5.14). Whenmt andσt are functions of the pricēp, then
the HJB equation contains supplementary terms involving Frechét derivatives with
respect top̄. The solution of such HJB equations is to our knowledge an open
problem.
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REMARK 5.6. Asymptotic elasticity. We can prove that there exist utility
functions satisfying Condition B with asymptotic elasticity lim supx→∞ xu′(x)/

u(x) = 1. For suchu, in the situation of Theorems 3.6 and 3.8 there exist optimal
portfolios in Psf. This is in contrast to the situation considered in [11], where for
suchu andK0 sufficiently large, there is for certain complete financial markets no
solutionX̂ of (3.7) (see Proposition 5.2 of [11]). This remark will be developed in
a forthcoming work.

PROOF OF THEOREM 2.1. Existence, uniqueness and continuity ofp̄ and
∂p̄ follow from Lemma A.1. It then follows from (A.22) of Lemma A.2, with
Y(t) = Lt p̄0, that the solution is given by (2.22). This shows that it is positive.

Finally we prove that condition (2.21) is satisfied. Formula (5.6) and conditions
(2.13) and (2.14) gived(p̄t (0)) = (∂p̄t )(0) dt. Sincep̄0(0) = 1, (2.21) follows by
integration. �

PROOF OFTHEOREM 2.2. It follows from the explicit expression (2.22) of
p̄ and (A.20) thatq̄ = Ẽ(L), whereL(t) = ∫ t

0(ms ds + ∑
i∈I σ i

s dWi
s ). Let α = 1

or α = −1 and letJα = ∫ t
0((αms + α(α − 1)/2

∑
i∈I(σ

i
s )

2) ds + ∑
i∈I ασ i

s dWi
s ).

Then(q̄)α = Ẽ(Jα). According to conditions (2.23) and (2.24), hypotheses (i)–(iv)
of Lemma A.4 (withJα instead ofL) are satisfied. We now apply estimate (A.40)
of Lemma A.4 toX = (q̄)α, which proves that(q̄)α ∈ Lu(�,P,L∞(T, H̃1)), for
α = ±1. Sincep̄t = q̄(t)Ltp0, L is a contraction semigroup and̃H0 is a Banach
algebra, we have‖p̄t‖2

H + ‖∂p̄t‖2
H ≤ C(‖p̄0‖2

H + ‖∂p̄0‖2
H )‖q̄(t)‖2

H̃1
, for some

constantC given byH. This proves the statement of the lemma in the casep̄.

To prove the case ofq we note thatq̄(t) = q(t)p̄t (0). Using that the case
of (q̄)α is already proved and Hölder’s inequality, it is enough to prove thatg ∈
Lu(�,P,L∞(T,R)), whereg(t) = (p̄t (0))−α. Sincep̄t (0) = (Lt p̄0)(0)(q̄(t))(0)

= p̄0(t)(q̄(t))(0), it follows that 0≤ g(t) = (p̄0(t))
−α((q̄(t))(0))−α. By Sobolev

embedding,p̄0 is a continuous real-valued function on[0,∞[ and it is also
strictly positive, so(p̄0)

−α is bounded onT. Once more by Sobolev embedding,
((q̄(t))(0))−α ≤ C‖(q̄(t))−α‖

H̃0
. The result now follows, since we have already

proved the case of(q̄)α. The case ofp is so similar to the previous cases that we
omit it. �

PROOF OFCOROLLARY 2.3. The second part of the proof of Theorem 2.2
gives the result. �

PROOF OFPROPOSITION2.5. Letθ ∈ P and introduceX = supt∈T |Ḡ(t, θ)|,
Y (t) = ∫ t

0〈θs, p̄sms〉ds and Z(t) = ∫ t
0〈σ ∗

s p̄sθs, dWs〉. Ḡ(t, θ) = Y(t) + Z(t),

according to formula (5.7). Let̄p be given by Theorem 2.1, of which the
hypotheses are satisfied.
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We shall give estimates forY andZ. By the definition (2.29) ofP,

E

(
sup
t∈T

(Y (t))2
)

≤ E

((∫ T̄

0
|〈θs, p̄sms〉|ds

)2)
≤ ‖θ‖2

P.(5.15)

By isometry we obtain

E
(
Z(t)2) = E

(∫ t

0

〈
θsp̄s

∑
i∈I

σ i
s dWi

s

〉)2

= E

(∫ t

0

∑
i∈I

(〈θs, p̄sσ
i
s 〉)2 ds

)
(5.16)

≤ E

(∫ T̄

0
‖σ ∗

s θsp̄s‖2
H ∗ ds

)
≤ ‖θ‖2

P.

Doob’s L2 inequality and inequality (5.16) giveE(supt∈T Z(t)2) ≤ 4‖θ‖2
P.

Inequality (5.15) then givesE(X2) ≤ 10‖θ‖2
P, which proves the proposition.�

PROOF OFTHEOREM 2.8. As we will see, the strong condition (2.35) on�

introduced in (2.34) assures the existence of a martingale measureQ equivalent
to P, with Radon–Nikodym derivative inLu(�,P ), for eachu ∈ [1,∞[.

LEMMA 5.7. If (2.35) is satisfied, then (ξt )t∈T is a (P,A)-martingale and
supt∈T(ξt )

α ∈ L1(�,P ) for each α ∈ R.

PROOF. Let M(t) = ∫ t
0

∑
i∈I �i

s dWi
s . Then 〈〈M,M〉〉(t) = ∫ t

0
∑

i∈I(�
i
s)

2 ds

and according to condition (2.35)E(exp(a〈〈M,M〉〉(T̄ )) < ∞, for eacha ≥ 0. By
choosinga = 1/2, Novikov’s criterion (cf. [18], Chapter VIII, Proposition 1.15),
shows thatξ is a martingale. Letb ≥ 0. It then follows from the same reference,
by choosinga = 2b2, thatE(exp(b supt∈T |M(t)|)) < ∞.

Let α ∈ R and letc(t) = ∫ t
0

∑
i∈I(�

i
s)

2 ds. Thenξα
t = exp(αM(t) − α/2c(t)),

so

sup
t∈T

(ξt )
α ≤ sup

t∈T

exp
(|α|M(t) + c(T̄ )|α|/2

)

≤ exp
(
α sup

t∈T

|M(t)| + c(T̄ )|α|/2
)
.

This and the Schwarz inequality show that(
E

(
sup
t∈T

ξα
t

))2

≤ E

(
exp

(
2|α|sup

t∈T

|M(t)|
))

E
(
exp

(|α|c(T̄ )
))

.

The first factor on the right-hand side of this inequality is finite as is seen by
choosingb = 2|α|, and the second is finite due to condition (2.35).�
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The next corollary is a direct application of Girsanov’s theorem.

COROLLARY 5.8. Let (2.35)be satisfied. The measure Q, defined by dQ =
ξT̄ dP, is equivalent to P on FT̄ and t �→ W̄t = Wt − ∫ t

0 �s ds, t ∈ T, is a
cylindrical H -Wiener process with respect to (Q,A).

PROOF. According to Lemma 5.7,ξ is a martingale with respect to(P,A).

Theorem 10.14 of [4] then gives the result.�

Corollary 5.8 and (2.22) and (5.9) give

p̄t = exp

(∫ t

0
Lt−s

( ∑
i∈Iσ i

s

dW̄ i
s − 1

2

∑
i∈I

(σ i
s )

2 ds

))
Lt p̄0(5.17)

and

dḠ(t, θ) = 〈σ ∗
t p̄t θt , dW̄t 〉.(5.18)

To finish the proof of Theorem 2.8, we note that its first part is a restatement of
Lemma 5.7 and that its second part is a restatement of Corollary 5.8.�

PROOF OF COROLLARY 2.9. Let X = supt∈T |Ḡ(t, θ)|. That conditions
(2.14) and (2.19) are satisfied follows as in Remark 5.2. The hypotheses of
Theorem 2.1 are therefore satisfied andp̄ given by Theorem 2.1 is well
defined. The square integrability property follows from Proposition 2.5. Finally
we have to prove the martingale property. According to hypotheses, (2.35) is
satisfied, so Lemma 5.7, Proposition 2.5 and Schwarz inequality give(EQ(X))2 ≤
E(ξ2

T̄
)E(X2) < ∞. This shows thatX ∈ L1(�,Q) and sinceḠ(·, θ) is a local

Q-martingale according to (5.18) it follows that it is aQ-martingale (cf. comment
after Theorem 4.1 of [18]). �

PROOF OF COROLLARY 2.10. V̄ (t, θ) is given by (2.27), sinceθ ∈ Psf.

According to Corollary 2.9,Ḡ(·, θ) is aQ-martingale, so this is also the case for
V̄ (·, θ). The estimate also follows from Corollary 2.9. We note that ifV̄ (T̄ , θ) ≥ 0
and EQ(V̄ (T̄ , θ)) > 0, then the martingale property gives̄V (0, θ) > 0, so the
market is arbitrage-free.�

PROOF OFLEMMA 3.2. First suppose thatu satisfies Condition B. According
to condition (3.2) there exists a sufficiently smallx′ ∈ ]x,∞[ , C > 0 andq > 0
such that for eachx ∈ ]x, x′[

u′(x) ≥ C(1+ |x|)q .(5.19)

With x = ϕ(y) we then have for someC′ > 0 and for eachy = u′(x) > 0

|ϕ(y)| ≤ C′y1/q .(5.20)
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Consider case (i). According to condition (3.3) there existC > 0 andx′′ > 0,

such that for eachx ∈]x′′,∞[
u′(x) ≤ Cx−q.(5.21)

Then u′(]x,∞[) =]0,∞[, sinceu′ > 0 and according to Condition B(b). With
x = ϕ(y), for someC′ > 0 and for eachy ∈]0, u′(x′′)[

|ϕ(y)| ≤ C′y−1/q .(5.22)

The continuity ofu′ and inequalities (5.20) and (5.22) then prove statement (i)
with p = 1/q.

Consider the case (ii). There exists a uniquex0 ∈]x,∞[ such thatu′(x0) = 0.

Thenu′(x) < 0 on ]x0,∞[. According to condition (3.4) limx→∞ u′(x) = −∞,

so using Condition B(b) we getu′(]x,∞[) = R. Also by (3.4), for someC > 0
and q > 0, for eachx ∈]x0,∞[∩]0,∞[, −u′(x) ≥ Cxq. We then obtain 0≤
ϕ(y) ≤ C′|y|1/q, for someC′ and fory < 0. This inequality, the continuity ofu′
and inequality (5.20) then prove statement (ii).

Second, the proof of the converse statement is so similar to the first part of the
proof that we omit it.We only note that the definition ofu(x) guarantees thatu is
u.s.c. �

PROOF OFTHEOREM 3.3. We recall thatI =]0,∞[ if u′ > 0 on ]x,∞[ and
I = R if u′ takes the value zero in]x,∞[, according to Lemma 3.2. We first prove
the following lemma:

LEMMA 5.9. Let u satisfy Condition B and let � satisfy condition (2.35).
Then ϕ(λξT̄ ) ∈ Lp(�,P ) for each p ∈ [1,∞[, λ ∈ I , and λ �→ E(ξT̄ ϕ(λξT̄ ))

defines a strictly decreasing homeomorphism from I onto ]x,∞[. In particular,
if K0 ∈]x,∞[, then there exists a unique x ∈ I such that K0 = E(ξT̄ ϕ(xξT̄ )) and
x is continuous and strictly decreasing as a function of K0.

PROOF. Letλ ∈ I andgλ = ξT̄ ϕ(λξT̄ ). Lemma 5.7, inequalities (3.5) and (3.6)
of Lemma 3.2 and Hölder’s inequality show thatϕ(λξT̄ ) ∈ Lp(�,P ) for each
p ∈ [1,∞[. This result and Hölder’s inequality givegλ ∈ L1(�,P ). It follows
thatf (λ) = E(gλ) is well defined.

We show thatf is continuous. Let{λn}n∈N∗ be a sequence inI converging
to λ. There existsλ̄ ∈ I such thatλ̄ ≤ λ and λ̄ ≤ λn, for n ≥ 1. Since ϕ is
decreasing and continuous according to Lemma 3.2, we have|gλn − gλ| ≤ 2gλ̄

andgλn − gλ → 0, a.e. asn → ∞. gλ̄ ∈ L1(�,P ), so by Lebesgue’s dominated
convergencef (λn) − f (λ) = E(gλn − gλ) → 0, as n → ∞, which proves the
continuity.

The functionf is decreasing, sinceϕ is decreasing. Ifλ1, λ2 ∈ I are such that
f (λ1) = f (λ2), thengλ1 = gλ2 a.e. sinceξT̄ > 0 a.e.ϕ is strictly decreasing, so
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it follows that λ1ξT̄ = λ2ξT̄ . This givesλ1 = λ2, which proves thatf is strictly
decreasing.

The functionϕ : I →]x,∞[ is a strictly decreasing bijection, so ify → inf I
in I, thenϕ(y) → ∞ and ify → ∞, thenϕ(y) → x. By Fatou’s lemma it follows
that

lim inf
n→∞ f (λn) ≥ E

(
lim inf
n→∞ gλn

)
= ∞,(5.23)

if λn → inf I in I. Let λn → ∞ in I. Chooseλ̄ ∈ I such that̄λ ≤ inf{λn|n ≥ 1}.
Thengλ̄−gλn ≥ 0, sinceϕ is decreasing. Application of Fatou’s lemma togλ̄−gλn

gives

E

(
lim sup
n→∞

gλn

)
≥ lim sup

n→∞
E

(
gλn

)
.(5.24)

If x is finite, then (5.24) and, according to Lemma 5.7,E(ξT̄ ) = 1 give x ≥
lim supn→∞ E(gλn). Sincegλn ≥ ξT̄ x it follows that

x = lim sup
n→∞

E
(
gλn

)
,(5.25)

if x is finite. Inequality (5.24) gives

−∞ = lim sup
n→∞

E
(
gλn

)
(5.26)

if x = −∞. Sincef is decreasing it follows from (5.23), (5.25) and (5.26) thatf

is onto]x,∞[ and therefore a homeomorphism ofI to ]x,∞[. This completes the
proof. �

Now we finish the proof of Theorem 3.3. LetC′(K0) = {X ∈ L2(�,P,FT̄ )|
K0 = E(ξT̄ X)} and let

v(x) = sup
y∈]x,∞[

(
xy + u(y)

)
,(5.27)

x ∈ R. Here v is the Legendre–Fenchel transform of−u. It follows from
Condition B thatv :R →]−∞,∞] is l.s.c. and strictly convex; cf. [5]. LetI =
]0,∞[ if u′ > 0 on ]x,∞[ andI = R if u′ takes the value zero on]x,∞[. Since
−u is C1 and strictly convex

v(x) = xϕ(−x) + u
(
ϕ(−x)

)
,(5.28)

for −x ∈ I, which are the elements of the interior of the domain ofv.

If µ ∈ I, then ϕ(µξT̄ ) ∈ Lp(�,P ) for each p ∈ [1,∞[, according to
Lemma 5.9. Letλ be the unique element inI, according to Lemma 5.9, such that
ϕ(λξT̄ ) ∈ C′(K0). Let Y = ϕ(λξT̄ ). GivenX ∈ C′(K0). By definitionE(u(X)) =
E(u(X)) − µ(E(ξT̄ X) − K0). It then follows from (5.27) that

E(u(X)) = E
(
u(X) − λξT̄ X

) + λK0 ≤ E
(
v(−λξT̄ )

) + λK0.(5.29)
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Formula (5.28) gives thatE(v(−λξT̄ )) = E(u(Y ))−λE(ξT̄ Y ). SinceY ∈ C′(K0),

it follows from (5.29) that

E(u(X)) ≤ E(u(Y )).(5.30)

ThereforeX̂ = Y is a solution of problem (3.7). This solution is unique sinceu is
strictly concave, which completes the proof.�

PROOF OFCOROLLARY 3.4. It follows from Corollary 2.10 that{V̄ (T̄ , θ)|
θ ∈ C(K0)} ⊂ C′(K0), where C′(K0) is given before (5.27). According to
Corollary 2.10,V̄ (·, θ̂ ) is aQ-martingale, so Theorem 3.3 shows thatV̄ (0, θ̂ ) =
K0 and thereforêθ ∈ C(K0). This and Theorem 3.3 give

sup
θ∈C(K0)

E
(
u
(
V̄ (T̄ , θ)

)) ≤ sup
X∈C′(K0)

E(u(X)) = E
(
u(X̂)

) = E
(
u
(
V̄ (T̄ , θ̂ )

))
,

which proves that̂θ is a solution of problem (3.1).�

PROOF OFTHEOREM 3.6. HereI is a finite set andK0 ∈]x,∞[. We shall
construct a portfolioθ̂ ∈ C(K0) such thatV̄ (T̄ , θ̂ ) = X̂, where X̂ is given by
Theorem 3.3.

SinceξT̄ , X̂ ∈ Lp(�,P ) for eachp ∈ [1,∞[, according to Lemma 5.7 and
Theorem 3.3, it follows by Hölder’s inequality thatξT̄ X̂ ∈ Lp(�,P ), that is,X̂ ∈
Lp(�,Q), for eachp ∈ [1,∞[. In particularX̂ ∈ L2(�,Q), so by Corollary 5.8
and by the representation of a square integrable random variable as a stochastic
integral, there exist progressively measurable real-valued processesyi, i ∈ I, such

thatEQ(
∫ T̄
0

∑
i∈I yi(t)

2 dt) < ∞ and such that̂X = Y(T̄ ), where

Y(t) = K0 + ∑
i∈I

∫ t

0
yi(s) dW̄ i

s ,(5.31)

for t ∈ T. We definey(t) = ∑
i∈I yi(t)e

′
i . Theny(t) ∈ H ∗ a.s. since

‖y(t)‖2
H ∗ = ∑

i∈I

yi(t)
2.(5.32)

Let Z = supt∈T |Y(t)| and letp ≥ 2. By Doob’s inequality,EQ(Zp) ≤ (
p

1−p
)p ×

supt∈T EQ(|Y(t)|p). Now |Y |p is a Q-submartingale, soEQ(|Y(t)|p) ≤
EQ(|Y(T̄ )|p) = EQ(|X̂|p), which gives

EQ(Zp) < ∞.(5.33)

By the Burkholder–Davis–Gundy inequalities, by equality (5.32) and inequal-
ity (5.33) one obtains

EQ

((∫ T̄

0
‖y(t)‖2

H ∗ dt

)p/2)
< ∞,(5.34)
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for p ≥ 2. Since E(·) = EQ(ξ−1
T̄

·), it follows from this inequality and from
Lemma 5.7 that

E

((∫ T̄

0
‖y(t)‖2

H ∗ dt

)p/2)
< ∞,(5.35)

for p ≥ 2. We also note that similarly

E(Zp) < ∞,(5.36)

for p ≥ 2.

According to inequality (3.8),A(t) is invertible a.s.; we setA(t)−1 = 0, when
A(t) is not invertible andA(t)−1

ij are the matrix elements ofA(t)−1. We then obtain

‖l(t)σt‖H−S‖A(t)−1‖L(Rm̄) ≤ Ck(t),(5.37)

where l(t) = Ltp0. Condition (3.8), Schwarz’s inequality and inequality (5.37)
give

E

((
sup
t∈T

‖l(t)σt‖H−S‖A(t)−1‖L(Rm̄)

)p)
< ∞,(5.38)

for p ∈ [1,∞[.
We define

η(t) =
m̄∑

i,j=1

A(t)−1
ij l(t)σ i

t yj (t).(5.39)

It follows from (5.32) that

‖η(t)‖H ≤ ‖A(t)−1‖L(Rm̄)‖y(t)‖H ∗‖l(t)σt‖H−S,(5.40)

for t ∈ T. This inequality and inequalities (5.35) and (5.38) give

E

((∫ T̄

0
‖η(t)‖2

H dt

)p/2)
< ∞,(5.41)

for p ≥ 2. By construction,η(t) satisfies(
η(t), l(t)σ i

t

)
H = yi(t),(5.42)

for t ∈ T andi ∈ I. Defining θ̃1
t = Sη(t), we obtain a solution of the equation

σ ∗
t θ̃1

t l(t) = y(t),(5.43)

for t ∈ T. Let q̄(t) = p̄t / l(t) and θ1
t = (q̄(t))−1θ̃1

t . We obtain ‖θ1
t ‖H ∗ ≤

C‖(q̄(t))−1‖
H̃0

‖η(t)‖H , where we have used that‖θ̃1
t ‖H ∗ = ‖η(t)‖H . Theo-

rem 2.2 and inequality (5.41) then give

E

((∫ T̄

0
‖θ1

t ‖2
H ∗ dt

)p/2)
< ∞,(5.44)
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for p ≥ 2. Equation (5.43) shows thatθ1 satisfies the equation

σ ∗
t θ1

t p̄t = y(t),(5.45)

for t ∈ T. This equality, expression (5.18) of the discounted gains and the
martingale representation (5.31), show that

Y(t) = K0 + Ḡ(t, θ1),(5.46)

for t ∈ T.

We next prove thatθ1 ∈ P. By the hypotheses of the theorem it follows that

E((
∫ T̄
0

∑
i∈I |�i

t |2 dt)p/2) < ∞, for p ≥ 2. This inequality, definition (2.29) of the
portfolio norm, inequality (5.44) and Schwarz inequality give‖θ1‖P < ∞, which
proves the statement.

Finally we shall construct the announced self-financing strategyθ̂ . Let us define
the portfolioθ̂ by θ̂ = θ0 + θ1, whereθ0

t = a(t)δ0 and

a(t) = (
(p̄t )(0)

)−1(
Y(t) − 〈θ1

t , p̄t 〉)(5.47)

for 0≤ t ≤ T̄ .

We have to prove that̂θ ∈ C(K0). To this end it is enough to prove thatθ0 ∈ P,

sinceθ1 ∈ P. By definition, we have

‖θ0
t ‖H ∗ = sup

‖f ‖H ≤1
|〈θ0

t , f 〉| ≤ sup
‖f ‖H ≤1

(|a(t)||f (0)|) ≤ C|a(t)|,

where the constant is given by Sobolev embedding. Letb(t) = a(t)p̄t (0). By the
definition ofZ and Schwarz inequality it follows that(

E

((∫ T̄

0
|b(t)|2 dt

)p/2))1/p

≤ T̄
(
E(Zp)

)1/p +
(
E

((∫ T̄

0
‖θ1

t ‖2
H ∗ dt

)p/2(
sup
t∈T

‖p̄t‖p
H

)))1/p

,

p ≥ 1. The first term on the right-hand side of this inequality is finite due to (5.36)
and the second term is finite due to Theorem 2.2, (5.44) and Schwarz’s inequality.
Using Corollary 2.3, we obtain now

E

((∫ T̄

0
|a(t)|2 dt

)p/2)
< ∞,

p ≥ 1. This proves in particular that

E

(∫ T̄

0
‖θ0

t ‖2
H ∗ dt

)
< ∞.(5.48)

Since(σt )(0) = 0 according to (2.13),mt(0) = 0 according to (2.14) and by the
definition of the norm inH ∗, we have that‖σ ∗

t θ0
t p̄t‖H ∗ = 0 and〈θ0

t , p̄tmt 〉 = 0.
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This proves, together with inequality (5.48) and the definition (2.29) of the
portfolio norm, thatθ0 ∈ P.

We note that by the definition of̂θ, it follows that V̄ (t, θ̂ ) = 〈θ̂ (t), p̄t 〉 = Y(t),

for t ∈ T. Moreover, since(σt )(0) = 0, it follows from formula (2.28) that
Ḡ(t, θ0) = 0, for eacht ∈ T. So by (5.46),Y(·) = K0 + Ḡ(·, θ̂ ), which proves
that θ̂ is self-financing with initial valueK0. �

PROOF OFTHEOREM 3.8. This proof is, with some exceptions, so similar to
the proof of Theorem 3.6 that we only develop the points which are different. Here
I = N

∗ or I = {1, . . . , m̄}.
According to Theorem 3.3, there is a uniqueλ ∈ I such thatX̂ = ϕ(λξT̄ ). Let

M(t) = ∫ t
0

∑
i∈I �i

s dW̄ i
s , t ∈ T. Then 〈〈M,M〉〉 is deterministic and according

to (2.37) and Corollary 5.8,ξt = exp(M(t) + 1
2〈〈M,M〉〉(t)). Let

F(x) = ϕ
(
λexp

(
x + 1

2〈〈M,M〉〉(T̄ )
))

,

x ∈ R. Then F(M(T̄ )) = X̂. We now apply Lemma A.5 toF. This gives an
integral representation, as in (5.31), with

yi(t) = EQ

(
λξT̄ ϕ′(λξT̄ )|Ft

)
�i

t ,(5.49)

i ∈ I andt ∈ T.

Using that ϕ′ satisfies conditions (3.9) and (3.10) we obtain also here
inequalities (5.33) to (5.36).

Let z(t) = EQ(λξT̄ ϕ′(λξT̄ )|Ft ) and letγ be given by (3.11). We definẽθ1 = zγ.

By condition (3.11), (5.43) is satisfied.
The remaining part of the proof is the same as for Theorem 3.6. For later

reference we observe thatθ1 = (l/p̄)zγ. �

PROOF OF COROLLARY 3.9. The observation in the end of the proof of
Theorem 3.8 and expression (5.47) give the stated explicit expression of the
optimal portfolio. �

PROOF OF THEOREM 3.10. We first choose a utility functionu satisfying
Condition C,u′ > 0 andx = 0. This is possible as seen by choosingu(x) = x1/2,
for example. We define� ∈ Psf to be the optimal portfolio given by Corollary 3.9
for K0 = 1. Let �t = a1

t δ0 + b1
t γt (p̄t )

−1Ltp0, where a1 and b1 are the
coefficients defined by (3.12) and (3.13), respectively. Sinceu′ > 0, it follows
from Theorem 3.3 and Corollary 3.4 thatλ > 0. It follows from λ �= 0, ϕ′ < 0 and
formula (3.12) thatb1

t �= 0, after a possible redefinition on a set of measure zero.
Since x = 0, it follows by the definition of ϕ that ϕ > 0 and then by

Theorem 3.3 and Corollary 3.4 thatV̄ (t,�) = EQ(V̄ (T̄ ,�)|Ft ) > 0. This shows
that statement (i) is satisfied.
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Let us now consider a generalu satisfying Condition C. The solution̂θ given
by Corollary 3.9, for a generalK0 ∈]x,∞[, can now be written

θ̂t = (at − a1
t bt /b

1
t )δ0 + (bt/b

1
t )�t ,

which definesx andy in statement (ii) of the theorem.�

APPENDIX

A.1. SDEs and Lp estimates. In this appendix, we state and prove results,
used in the article, concerning existence of solutions of some SDEs andLp

estimates of these solutions. Through the Appendixm and σ i, i ∈ I, are
A-progressively measurablẽH0-valued processes satisfying

∫ T̄

0

(
‖mt‖H̃0

+ ∑
i∈I

‖σ i
t ‖2

H̃0

)
dt < ∞ a.s.(A.1)

TheH̃0-valued semimartingaleL is given by

L(t) =
∫ t

0

(
ms ds + ∑

i∈I

σ i
s dWi

s

)
if 0 ≤ t ≤ T̄ ,(A.2)

and byL(t) = L(T̄ ), if t > T̄ . We introduce, fort ≥ 0, the random variable

µ(t) = t +
∫ t

0

(
‖ms‖H̃0

+ ∑
i∈I

‖σ i
s ‖2

H̃0

)
ds if 0 ≤ t ≤ T̄ ,(A.3)

and µ(t) = t − T̄ + µ(T̄ ) if t > T̄ . µ is a.s. strictly increasing, absolutely
continuous and onto[0,∞[. The inverseτ of µ also has these properties and
τ(t) ≤ t. For a continuousH̃0-valued processY on [0, T̄ ] we introduce

ρt (Y ) =
(
E

(
sup

s∈[0,t]
‖Y(τ(s))‖2

H̃0

))1/2

,(A.4)

for t ∈ [0,∞[, where we have definedY(t) for t > T̄ by Y(t) = Y(T̄ ). We note
thatρt (Y ) ≤ (E(sups∈[0,t] ‖Y(s)‖2

H̃0
))1/2, sinceτ(t) ≤ t.

We will use certain supplementary properties of the Sobolev spacesHs (cf.
Section 7.9 of [8]) and the spaceH. Let s ≥ 0. There is a normNs equivalent to
‖ · ‖Hs , given by

(
Ns(f )

)2 = ∑
0≤k≤n

∫
R

∣∣f (k)(x)
∣∣2 dx + cs

∫
R2

|f (n)(x) − f (n)(y)|2
|x − y|1+2s′ dx dy,(A.5)

wheref (k)(x) = (d/dx)kf (x), s = n + s′, 0 ≤ s′ < 1, n ∈ N, cs′ ≥ 0 andc0 = 0.

For f ∈ Hs, let (κf )(x) = f (x), x ≥ 0. The mappingκ :Hs → Hs/Hs− is
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continuous and surjective, whereHs− is the closed subspace ofHs of functions
with support in]−∞,0]. Let ι :Hs/Hs− → Hs be a continuous linear injective
mapping such thatκι is the identity mapping onHs/Hs−. To give explicitly such a
mappingι, let g ∈ Hs/Hs−. Forx ≥ 0, h is defined byh(x) = g(x). Forx < 0 and
k = 0, . . . , n − 1, let hn(x) = (∂ng)(−x) andhk(x) = (∂kg)(0) + ∫ x

0 hk+1(y) dy.

Now, for x < 0, let hk(x) = h0(x). Let φ be a C∞ positive function onR,

satisfying φ(x) = 1 if x ≥ −1 and φ(x) = 0 if x ≤ −2. Then f = hφ ∈ Hs

and κf = g. The mappingιg = f has the desired properties. In fact it follows
using (A.5) and the definition of the norm inHs/Hs− thatNs(f ) ≤ Cs‖g‖H , for
some constantCs. Let R � t �→ L′

t be theC0 unitary group of left translations
in Hs, that is,(L′

t f )(x) = f (x + t), for f ∈ Hs andt, x ∈ R.

Let now s be the given numbers > 1/2, in (2.6) definingH. The mapκ is
extended toκ :R ⊕ Hs → H̃0 by κ(a + f ) = a + κf, wherea ∈ R andf ∈ H̃0.

The mapι is extended toι : H̃0 → R ⊕ Hs by ι(a + f ) = a + ιf, wherea ∈ R and
f ∈ H. L′ is extended to aC0 unitary group inR ⊕ Hs by L′

t (a + f ) = a + L′
t f,

wheret ∈ R, a ∈ R andf ∈ H. One easily establishes that with this extendedL′

Lt κ = κL′
t ,(A.6)

for all t ≥ 0.

LEMMA A.1. If condition (A.1) is satisfied and if Y is an A-progressively
measurable H̃0-valued continuous process on [0, T̄ ], satisfying ρt (Y ) < ∞, for
all t ≥ 0, then the equation

X(t) = Y(t) +
∫ t

0
Lt−sX(s)

(
ms ds + ∑

i∈I

σ i
s dWi

s

)
,(A.7)

t ∈ [0, T̄ ], has a unique solution X, in the set of A-progressively measurable
H̃0-valued continuous processes satisfying∫ T̄

0

(
‖X(t)‖

H̃0
+ ‖X(t)mt‖H̃0

+ ∑
i∈I

‖X(t)σ i
t ‖2

H̃0

)
dt < ∞ a.s.(A.8)

Moreover, this solution satisfies:

(i) If
∫ T̄
0 (‖mt‖H̃1

+ ∑
i∈I ‖σ i

t ‖2
H̃1

) dt < ∞ and Y is a continuous H̃1-valued

process with ρt (∂Y ) < ∞, for all t ≥ 0, then X is a continuous H̃1-valued process.
(ii) If (i) is satisfied and if Y is a semimartingale, then X is a semimartingale.
(iii) If Y is H -valued, then X is H -valued.

PROOF. The given continuous processY is extended tot > T̄ by Y(t) =
Y(T̄ ). For anA-progressively measurablẽH0-valued processX on [0,∞[, which
satisfies (A.8), let

(AX)(t) =
∫ t

0
Lt−sX(s) dL(s),(A.9)
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0 ≤ t. AX is then a continuous process and ifX is a solution of (A.7), thenX
must be a continuous process. It is therefore sufficient to consider existence and
uniqueness for continuous processX. A is a linear operator from the space of
continuousH̃0-valued processes into itself, sincẽH0 is a Banach algebra,t �→ Lt

is aC0 semigroup inH̃0 andµ(T̄ ) < ∞ a.s. We note that(AX)(t) is constant for
t ≥ T̄ .

It is enough to prove that the equation

X = Y + AX(A.10)

has a unique solutionX being a continuous process. Its restriction to[0, T̄ ] is then
the unique solution of the lemma.

In order to introduce the time-transformed equation of (A.10) with respect
to τ let X′(t) = X(τ(t)), Y ′(t) = Y(τ(t)), (A′X′)(t) = (AX)(τ(t)) andρ′

t (X
′) =

(E(sups∈[0,t] ‖X′(s)‖2
H̃0

))1/2. Let alsoA′ = (Fτ(t))t≥0 be the time-transformed

filtration. Equation (A.10) has a continuous solution if and only if the time-
transformed equation

X′ = Y ′ + A′X′(A.11)

has a continuous solutionX′.
For givenT > 0 let F be the Banach space ofA′-progressively measurable

H̃0-valued continuous a.s. processesZ on [0, T ], with finite norm‖Z‖F = ρ′
T (Z).

We denote, for 0≤ t ≤ T , K1(t) = ∫ τ(t)∧T̄
0 Lτ(t)−sX

′(µ(s))ms ds andK2(t) =∫ τ(t)∧T̄
0 Lτ(t)−sX

′(µ(s))
∑

i∈I σ i
s dWi

s , wherea ∧ b = min{a, b}. SinceH̃0 is an
algebra,L is aC0 contraction semigroup,‖mt‖H̃0

≤ dµ(t)/dt andτ is the inverse
of µ, it follows from Schwarz’s inequality that

(
ρ′

t (K1)
)2 ≤ CE

((∫ τ(t)

0
‖X′(µ(s))‖

H̃0
‖ms‖H̃0

ds

)2)

≤ CE

((∫ τ(t)

0
‖X′(µ(s))‖

H̃0
dµ(s)

)2)

≤ CE

((∫ τ(t)

0
dµ(s)

)(∫ τ(t)

0
‖X′(µ(s))‖2

H̃0
dµ(s)

))
(A.12)

≤ CtE

(∫ t

0
‖X′(s)‖2

H̃0
ds

)

≤ CtE

(∫ t

0
sup

s′∈[0,s]
‖X′(s′)‖2

H̃0
ds

)
≤ Ct

∫ t

0

(
ρ′

s(X
′)

)2
ds,

for someC ≥ 0.

To establish an estimate ofK2, we shall use the property (A.6) of the left
translation. Sinceκ and ι are continuous linear operators andκι is the identity
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operator onH̃0, it follows from (A.6) that

K2(t) = κL′
τ(t)

∫ τ(t)∧T̄

0
L′−s ιX

′(µ(s))
∑
i∈I

σ i
s dWi

s ,(A.13)

for all t ≥ 0. Let K ′′
2 (t) = ∫ τ(t)∧T̄

0 L′−s ιX
′(µ(s))

∑
i∈I σ i

s dWi
s , for t ≥ 0. Then

K ′′
2 is anR ⊕ Hs -valued square integrable martingale, with respect to the time-

transformed filtrationA′. In fact, we obtain by isometry, the unitarity ofL′ and as
in the case ofK1, that

E
(‖K ′′

2 (t)‖2
R⊕Hs

) ≤ E

(∫ τ(t)

0

∥∥∥∥∥L′−uιX(u)
∑
i∈I

σ i
u

∥∥∥∥∥
2

R⊕Hs

du

)

≤ CE

(∫ τ(t)

0
‖X′(µ(u))‖2

H̃0

∑
i∈I

‖σ i
u‖2

H̃0
du

)

(A.14)
≤ CE

(∫ t

0
sup

u′∈[0,u]
∥∥X′(µ(u′)

)∥∥2
H̃0

dµ(u)

)

≤ C

∫ t

0

(
ρ′

u(X
′)

)2
du,

for someC > 0 and for all t ≥ 0. Since L′
t is unitary and aκ is continu-

ous with norm equal to 1, it follows from (A.13) that(ρ′
t (K2))

2 ≤ E(supu∈[0,t]
‖K ′′

2 (u)‖2
R⊕Hs ). By Doob’s inequality (cf. Theorem 3.8 of [4]) we haveE(supu∈[0,t]

‖K ′′
2 (u)‖2

R⊕Hs ) ≤ 4supu∈[0,t] E(‖K ′′
2 (u)‖2

R⊕Hs ). This gives, together with in-
equality (A.14), that

(
ρ′

t (K2)
)2 ≤ C

∫ t

0

(
ρ′

s(X
′)

)2
ds,(A.15)

for t ≥ 0, whereC chosen sufficiently big is independent oft. Formula (A.9) and
inequalities (A.12) and (A.15) show that fort ∈ [0, T ],

(
ρ′

t (A
′X′)

)2 ≤ C′2(1+ t)

∫ t

0

(
ρ′

s(X
′)

)2
ds,(A.16)

whereC′ is a constant independent ofT . In particular,

ρ′
t (A

′X′) ≤ C′(1+ t)1/2t1/2ρ′
t (X

′),(A.17)

t ∈ [0, T ].
If T > 0 is sufficiently small, then (A.17) gives that‖A′X′‖F ≤ a‖X′‖F ,

where 0≤ a < 1. Therefore A′ ∈ L(F) and I + A′ has bounded inverse.
Equation (A.11) has then a unique solutionX′ ∈ F. Let h(t) = ∫ t

0(ρ′
s(X

′))2 ds and
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a(t) = ∫ t
0(ρ′

s(Y
′))2 ds. Equation (A.11) and inequality (A.16) show that a solution

X′ ∈ F satisfies

h(t) ≤ 2a(t) + 2C′2
∫ t

0
(1+ s)h(s) ds,(A.18)

for t ∈ [0, T ]. Grönwall’s inequality givesh(t) ≤ 2a(t)exp(C′2t (2 + t)). Equa-
tion (A.11) and inequality (A.16) then show that there exists a finite constantC′′

T

for everyT > 0 independent ofX′, such that‖X′‖2
F = (ρ′

T (X′))2 ≤ C′′
T (ρ′

T (Y ′))2.

It follows that the solution can be extended to allT > 0 and this extended solution
is unique. This proves the statement of the lemma concerning the existence and
uniqueness of añH0-valued continuous solution of (A.7).

We next prove the supplementary statements (i), (ii) and (iii):

(i) We have just to replace, in the above proof, the spaceH̃0 by H̃1 and
redefine appropriately the mapsι andκ.

(ii) If Y is a semimartingale, then Itô’s lemma and the fact that∂X is a
continuous process give

dX(t) = dY (t) + ∂
(
X(t) − Y(t)

)
dt + X(t) dL(t).(A.19)

This shows thatX is a semimartingale.
(iii) H is a closed subspace of̃H0 and if X is H -valued, thenAX is also

H -valued. This shows that the unique solution of (A.10) isH -valued. �

The solution of (A.7) can be given explicitly, which we shall use to derive
estimates of the solution. Let

(
Ẽ(L)

)
(t) = exp

(∫ t

0
Lt−s

((
ms − 1

2

∑
i∈I

(σ i
s )

2

)
ds + ∑

i∈I

σ i
s dWi

s

))
,(A.20)

for t ∈ T.

LEMMA A.2. Let condition (A.1) be satisfied. Then Ẽ(L) is the unique
H̃0-valued continuous a.s. solution of

(
Ẽ(L)

)
(t) = 1+

∫ t

0
Lt−s

(
Ẽ(L)

)
(s) dL(s),(A.21)

for t ∈ T. Let also L′(t) = ∫ t
0

∑
i∈I(σ

i
s )

2 ds − L(t). Then the unique solution X

of (A.7) in Lemma A.1 is given by

X(t) = Y(t) − (
Ẽ(L)

)
(t)

∫ t

0
Lt−sY (s)

(
Ẽ(L′)

)
(s) dL′(s),(A.22)

for t ∈ T.
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PROOF. Let lT (t) = ∫ t
0 LT −s(ms +∑

i∈I σ i
s dWi

s ), letnT (t) = ∫ t
0 LT −s((ms −

1
2

∑
i∈I(σ

i
s )

2) ds + ∑
i∈I σ i

s dWi
s ), for 0 ≤ t ≤ T ≤ T̄ and letN(t) = nt (t), for

t ∈ T. ThenN is an H̃0-valued continuous process, according to the hypothesis
on m andσ and sinceH̃0 is a Banach algebra. This is then also the case ofẼ(L),

since‖(Ẽ(L))(t)‖
H̃0

≤ exp(‖N(t)‖
H̃0

). We note thatdlT (t) = LT −t dL(t) and

thatLT −t (Ẽ(L))(t) = exp(nT (t)). Integration gives∫ t

0
Lt−s

(
Ẽ(L)

)
(s) dL(s) =

∫ t

0
exp

(
nt (s)

)
dlt (s)

(A.23) = exp
(
nt (t)

) − 1= Ẽ(L)(t) − 1.

This proves thatẼ(L) is a solution of (A.21). The uniqueness follows from
Lemma A.1.

To prove (A.22), letl′T (t) = ∫ t
0 LT −s

∑
i∈I(σ

i
s )

2 ds − lT (t), for 0 ≤ t ≤ T ≤ T̄ .

Then

d exp
(
nT (t)

) = exp
(
nT (t)

)
dlT (t) and

(A.24)
d exp

(−nT (t)
) = exp

(−nT (t)
)
dl′T (t).

Let alsoyT (t) = LT −sY (t) andzT (t) = LT −s(X(t) − Y(t))/(Ẽ(L))(t), for 0 ≤
t ≤ T ≤ T̄ . Let X be the unique solution given by Lemma A.1. Equation (A.7)
then readsX(t) = Y(t) + ∫ t

0 Lt−sX(s) dL(s), for t ∈ T. Applying LT −t , with
0≤ t ≤ T ≤ T̄ , on both sides we obtain

zT (t) = exp
(−nT (t)

) ∫ t

0

(
yT (s) + zT (s)exp

(
nT (s)

))
dlT (s).(A.25)

Itô’s lemma and formulas (A.24), (A.25),zT (0) = 0 give

zT (t) =
∫ t

0
exp

(−nT (s)
)(

yT (s) + zT (s)exp
(
nT (s)

))
dlT (s)

+
∫ t

0
zT (s) dl′T (s) −

∫ t

0
LT −s

∑
i∈I

(σ i
s )

2(exp
(−nT (s)

)
yT (s) + zT (s)

)
ds,

for 0≤ t ≤ T ≤ T̄ . Rewriting this formula we obtain

zT (t) =
∫ t

0
zT (s)

(
dlT (s) + dl′T (s) − LT −s

∑
i∈I

(σ i
s )

2 ds

)

+
∫ t

0
yT (s)exp

(−nT (s)
)(

dlT (s) − LT −s

∑
i∈I

(σ i
s )

2 ds

)
.

The definitions ofl andl′ then give

zT (t) = −
∫ t

0
yT (s)exp

(−nT (s)
)
d ′lT (s),(A.26)
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for 0 ≤ t ≤ T ≤ T̄ . ChoosingT = t, we now obtain equation (A.22) since
yT (s)exp(−nT (s)) d ′lT (s) = LT −sY (s)(Ẽ(L′))(s) dL′(s), for 0 ≤ s ≤ T ≤ T̄ .

�
The next technical lemma collects estimates of norms of certainH̃0-valued

processes that we need later.

LEMMA A.3. Let

‖(m,σ )‖j =
∫ T̄

0

∑
0≤k≤j

‖∂kmt‖H̃0
dt +

(∫ T̄

0

∑
0≤k≤j

‖∂kσt‖2
H−S dt

)1/2

,

j ∈ N, and let Z(t) = ∫ t
0 Lt−s dL(s), t ∈ T. Let F : [0,∞[→ [0,∞[ be a function

which is continuous together with its first two derivatives and which has F ′ ≥ 0.

(i) If ‖(m,σ )‖0 < ∞, then

F
(‖Z(t)‖2

H̃0

) ≤ F(0) +
∫ t

0

(
a(s) ds + ∑

i∈I

bi(s) dWi
s

)
,(A.27)

where a and bi, i ∈ I, are progressively measurable processes satisfying

|a(t)| ≤ F ′(‖Z(t)‖2
H̃0

)(
2‖Z(t)‖

H̃0
‖mt‖H̃0

+ ‖σt‖2
H−S

)
(A.28) + 2

∣∣F ′′(‖Z(t)‖2
H̃0

)∣∣‖Z(t)‖2
H̃0

‖σt‖2
H−S

and

bi(t) = 2F ′(‖Z(t)‖2
H̃0

)(
Z(t), σ i

t

)
H̃0

,(A.29)

t ∈ T.

(ii) Moreover, if ‖(m,σ )‖1 < ∞, then

F
(‖Z(t)‖2

H̃0

) = F(0) +
∫ t

0

((−v(s)F ′(‖Z(s)‖2
H̃0

) + a(s)
)
ds

(A.30)

+ ∑
i∈I

bi(s) dWi
s

)
,

where

v(t) = −2
(
Z(s), ∂Z(s)

)
H̃0

≥ 0,(A.31)

with t ∈ T.

PROOF. Suppose first that‖(m,σ )‖j < ∞ , for eachj ∈ N. We remember
that the setD∞ of all f ∈ H̃0, such that∂jf ∈ H̃0 for eachj ∈ N, is dense inH̃0.

ThenZ(t) ∈ D∞ a.s. Itô’s lemma gives

‖Z(t)‖2
H̃0

=
∫ t

0

((
2
(
Z(s), ∂Z(s)

)
H̃0

+ a(1)(s)
)
ds + ∑

i∈I

b
(1)
i (s) dWi

s

)
,(A.32)
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where

a(1)(t) = 2
(
Z(t),mt

)
H̃0

+ ‖σt‖2
H−S(A.33)

and

b
(1)
i (t) = 2

(
Z(t), σ i

t

)
H̃0

.(A.34)

We note that |a(1)(t)| ≤ 2‖Z(t)‖
H̃0

‖mt‖H̃0
+ ‖σt‖2

H−S and that |b(1)
i (t)| ≤

2‖Z(t)‖
H̃0

‖σ i
t ‖H̃0

. Once more, by Itô’s lemma we obtain

F
(‖Z(t)‖2

H̃0

) = F(0)

+
∫ t

0

((
2
(
Z(s), ∂Z(s)

)
H̃0

F ′(‖Z(s)‖2
H̃0

) + a(s)
)
ds(A.35)

+ ∑
i∈I

bi(s) dWi
s

)
,

where

a(t) = F ′(‖Z(t)‖2
H̃0

)
a(1)(t) + 1

2F ′′(‖Z(t)‖2
H̃0

)∑
i∈I

(
b

(1)
i (t)

)2(A.36)

and

bi(t) = F ′(‖Z(t)‖2
H̃0

)
b

(1)
i (t).(A.37)

Inequality (A.28) of the lemma follows from the noted estimates fora(1)(t)

and b
(1)
i (t), from (A.36) and fromF ′ ≥ 0. Formula (A.29) of the lemma

follows from (A.34) and (A.37). Inequality (A.27) of the lemma follows from
equality (A.30) of the lemma. Equality (A.30) follows from equality (A.35) and
the definition ofv in (A.31).Z(t) ∈ D∞ and∂ is the generator of aC0 contraction
semigroup, in a real Hilbert space, which give the inequality in (A.31).

We have now proved all statements of the lemma under the supplementary
hypothesis that‖(m,σ )‖j < ∞, for eachj ∈ N. The general case is now obtained
by continuity. �

In the next lemma we establish that the solution of (A.7) is inLp, p ∈ [0,∞[.

LEMMA A.4. Let condition (A.1) be satisfied and let (i) E(exp(p
∫ T̄
0 (‖mt‖H̃0

+∑
i∈I ‖σ i

t ‖2
H̃0

) dt)) < ∞, for each p ∈ [1,∞[. Suppose that Y in Lemma A.1 sat-

isfies (ii) E(supt∈T ‖Y(t)‖p

H̃0
) < ∞, for each p ∈ [1,∞[. Then the unique solu-

tion X of (A.7) in Lemma A.1 satisfies

E

(
sup
t∈T

‖X(t)‖p

H̃0

)
< ∞,(A.38)
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for each p ∈ [1,∞[. In particular, if Ẽ(L) is as in Lemma A.2, then

E

(
sup
t∈T

‖Ẽ(L)‖p

H̃0

)
< ∞,(A.39)

for each p ∈ [1,∞[. Moreover, if (iii) E((
∫ T̄
0 (‖mt‖H̃1

+ ∑
i∈I ‖σ i

t ‖2
H̃1

) dt)p) < ∞
and (iv) E(supt∈T ‖Y(t)‖p

H̃1
) < ∞, for each p ∈ [1,∞[, then also

E

(
sup
t∈T

‖X(t)‖p

H̃1

)
< ∞,(A.40)

for each p ∈ [1,∞[.

PROOF. Suppose that conditions (i) and (ii) are satisfied.
We first prove inequality (A.39). LetN(t) = ∫ t

0 Lt−s((ms − 1
2

∑
i∈I(σ

i
s )

2) ds +∑
i∈I σ i

s dWi
s ), for t ∈ T. ThenẼ(L) = exp(N(t)) according to (A.20). SincẽH0

is a Banach algebra it follows that∥∥(
Ẽ(L)

)
(t)

∥∥
H̃0

≤ exp
(
C‖N(t)‖

H̃0

) ≤ exp
(
C

(
1+ ‖N(t)‖2

H̃0

)1/2)
,(A.41)

for a constantC given byH̃0.

We use Lemma A.3 to find a bound of the right-hand side of (A.41). Leta andbi

be given by Lemma A.3, withF(x) = (1 + x)1/2, let A(t) = ∫ t
0 |a(s)|ds and let

M(t) = ∫ t
0

∑
i∈I bi(s) dWi

s . Then inequality (A.27) gives
(
1+ ‖N(t)‖2

H̃0

)1/2 ≤ 1+ A(t) + M(t),(A.42)

inequality (A.28) gives

|a(t)| ≤ ‖mt‖H̃0
+ 3

2C‖σt‖2
H−S(A.43)

and (A.29) gives

bi(t) = (
1+ ‖N(t)‖2

H̃0

)−1/2(
N(t), σ i

t

)
H̃0

,(A.44)

where i ∈ I and t ∈ T. Obviously |bi(t)| ≤ ‖σ i
t ‖H̃0

and the quadratic variation

〈〈M,M〉〉(t) ≤ ∫ t
0 ‖σs‖2

H−S ds.

By the hypothesis of the lemma and (A.43) it follows that

E
(
exp

(
pA(T̄ ) + p〈〈M,M〉〉(T̄ )

))
< ∞(A.45)

for eachp ∈ [1,∞[. Novikov’s criteria (cf. [18], Chapter VIII, Proposition 1.15)
and inequality (A.45) give

E

(
exp

(
p sup

t∈T

|M(t)|
))

< ∞(A.46)
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for eachp ∈ [1,∞[. Inequality (A.42) gives

E
(
exp

(
q
(
1+ ‖N(t)‖2

H̃0

)1/2)) ≤ E

(
exp

(
q

(
1+ A(T̄ ) + sup

t∈T

|M(t)|
)))

(A.47)

for eachq ∈ [0,∞[. It follows from Schwarz’s inequality and inequalities (A.45),
(A.46) and (A.47) that

E
(
exp

(
q
(
1+ ‖N(t)‖2

H̃0

)1/2))
< ∞(A.48)

for eachq ∈ [0,∞[. Statement (A.39) now follows from inequalities (A.41) and
(A.48) by choosingq = p C.

We use the explicit expression (A.22) forX to prove (A.38). LetZ(t) =∫ t
0Lt−s dV (s), whereV (t) = ∫ t

0 Y(s)(Ẽ(L′))(s) dL′(s) andL′ is as in Lemma A.2.
Explicitly

V (t) =
∫ t

0

(
α(s) ds + ∑

i∈I

βi(s) dWi
s

)
,

whereα(t) = Y(t)(Ẽ(L′))(t)((∑i∈I σ i
t )

2 − mt) andβi(t) = −Y(t)(Ẽ(L′))(t)σ i
t .

Since we have proved (A.39), by Schwarz’s inequality it is enough to prove

E

(
sup
t∈T

‖Z(t)‖p

H̃0

)
< ∞,(A.49)

for eachp ∈ [1,∞[, to establish (A.38). We proceed as we did earlier in this proof
to obtain (A.42). We now obtain using Lemma A.3(

1+ ‖Z(t)‖2
H̃0

)1/2 ≤ 1+ A1(t) + M1(t),(A.50)

whereA1(t) = ∫ t
0 |a1(s)|ds, M1(t) = ∫ t

0
∑

i∈I b1i (s) dWi
s ,

|a1(t)| ≤ C′‖Y(t)‖
H̃0

∥∥(
Ẽ(L′)

)
(t)

∥∥
H̃0

(A.51) × (‖mt‖H̃0
+ (

1+ ‖Y(t)‖
H̃0

∥∥(
Ẽ(L′)

)
(t)

∥∥
H̃0

)‖σt‖2
H−S

)
,

with C′ given byH and

b1i (t) = −(
1+ ‖Z(t)‖2

H̃0

)−1/2(
Z(t), Y (t)

(
Ẽ(L′)

)
(t)σ i

t

)
H̃0

.(A.52)

Choosing the constantC′ sufficiently big, (A.52) gives

〈〈M1,M1〉〉(t) ≤ C′
∫ t

0
‖Y(s)‖2

H̃0

∥∥(
Ẽ(L′)

)
(s)

∥∥2
H̃0

‖σs‖2
H−S ds.(A.53)

Hölder’s inequality, inequalities (A.42) and (A.51) and the hypotheses of the
lemma give

E

(
sup
t∈T

(
A1(t)

)p)
< ∞,(A.54)
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for eachp ∈ [1,∞[. Similarly, using
∫ t
0 ‖Y(s)‖2

H̃0
‖(Ẽ(L′))(s)‖2

H̃0
‖σs‖2

H−S ds ≤
(sups∈T ‖Y(s)‖2

H̃0
)(sups∈T ‖(Ẽ(L′))(s)‖2

H̃0
)
∫ t
0 ‖σs‖2

H−S ds, (A.53) gives

E
((〈〈M1,M1〉〉(T̄ )

)p/2)
< ∞,(A.55)

for eachp ∈ [1,∞[. The BDG inequality then gives

E

(
sup
t∈T

(
M1(t)

)p)
< ∞,(A.56)

for eachp ∈ [1,∞[. Now inequalities (A.50), (A.54) and (A.56) prove (A.49).
Finally, to prove inequality (A.40), we suppose also that conditions (iii) and (iv)

are satisfied.
The solutionX of (A.7) is, according to Lemma A.1, in the domain of∂, that is,

X(t) ∈ H̃1. Since∂ is continuous fromH̃1 to H̃0, we have∂
∫ t
0 Lt−sX(s) dL(s) =∫ t

0 Lt−s∂X(s) dL(s). Application of∂ on both sides of (A.7) then gives

X1(t) = Y1(t) +
∫ t

0
Lt−sX1(s) dL(s),(A.57)

where X1(t) = ∂X(t), Y1(t) = ∂Y (t) + ∫ t
0 Lt−sX(s) dL1(s), with L1(t) =∫ t

0(∂ms ds + ∑
i∈I ∂σ i

s dWi
s ). We can now use inequality (A.38) forX1, since

in the context of (A.57) hypotheses (i) and (ii) are satisfied. This proves
inequality (A.40). �

For completeness we prove, for the case of an infinite number of random
sources, a representation result. The measureQ and the cylindrical Wiener
processW̄ are as in Corollary 5.8.

LEMMA A.5. Let � be deterministic and satisfy condition∫ T̄

0

∑
i∈I

|�i
t |2 dt < ∞ a.s.(A.58)

and let M(t) = ∫ t
0

∑
i∈I �i

s dW̄ i
s , t ∈ T. If F ∈ C(R) is absolutely continuous, with

derivative F ′, and EQ(F(M(T̄ ))2 + F ′(M(T̄ ))2) < ∞, then

F
(
M(T̄ )

) = EQ

(
F

(
M(T̄ )

)) +
∫ T̄

0
EQ

(
F ′(M(T̄ )

)|Ft

)
dM(t),(A.59)

for each t ∈ T.

PROOF. We have〈〈M,M〉〉(t) = ∫ t
0

∑
i∈I(�

i
s)

2 ds < ∞ according to condi-
tion (A.58) and the quadratic variation〈〈M,M〉〉 is deterministic. Letnµ,t (x) =
exp(ixµ + µ2

2 〈〈M,M〉〉(t)), µ ∈ R, and letn′
µ,t (x) be the derivative with re-

spect tox of nµ,t (x). Then T � t �→ nµ,t (M(t)) is a complexQ-martingale
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and nµ,T̄ (M(T̄ )) = 1 + ∫ T̄
0 n′

µ,t (M(t)) dM(t). Since alsot �→ n′
µ,t (M(t)) is a

Q-martingale it follows that

nµ,T̄

(
M(T̄ )

) = 1+
∫ T̄

0
EQ

(
n′

µ,T̄

(
M(T̄ )

)|Ft

)
dM(t).(A.60)

Let g ∈ C∞
0 (R) be real-valued with Fourier transform̂g. Multiplication of both

sides of equality (A.60) with the complex number

c(µ) = 1√
2π

e(−µ2/2)〈〈M,M〉〉(T̄ )ĝ(µ)

gives

c(µ)nµ,T̄

(
M(T̄ )

) = c(µ) +
∫ T̄

0
EQ

(
c(µ)n′

µ,T̄

(
M(T̄ )

)|Ft

)
dM(t).

Integration inµ and the stochastic Fubini theorem then give

g
(
M(T̄ )

) =
∫

R

c(µ)dµ +
∫ T̄

0
EQ

(
g′(M(T̄ )

)|Ft

)
dM(t).(A.61)

Since(EQ(g′(M(T̄ ))|F·))2 is a submartingale it follows that

EQ

(∫ T̄

0

(
EQ

(
g′(M(T̄ )

)|Ft

))2
d〈〈M,M〉〉(t)

)

≤ EQ

((
g′(M(T̄ )

))2)〈〈M,M〉〉(T̄ ),

which is finite. Therefore
∫
R

c(µ)dµ = E(g(M(T̄ ))), so (A.61) proves the
representation formula (A.59) forF ∈ C∞

0 (R). The general case now follows by
dominated convergence sinceF in the lemma is the limit, in the topology defined
by the normG �→ (EQ(F (M(T̄ ))2 + F ′(M(T̄ ))2))1/2, of a sequence inC∞

0 (R).

�
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