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We prove a strong law of large numbers for the location of the second
class particle in a totally asymmetric exclusion process when the process is
started initially from a decreasing shock. This completes a study initiated
in Ferrari and Kipnis Ann. Inst. H. Poincaré Probab. Statist3 (1995)
143-154].

1. Introduction. The totally asymmetric exclusion process (or TASEP) is an
interacting system of indistinguishable particles on the one-dimensional lAttice
Each element of the lattice is callecs#e Initially particles are distributed oA
according to theexclusion rulethat prohibits multi-occupancy of sites (i.e., each
site is at most occupied by one particle). Particles attempt to move one step (to
their neighboring site) in a unique given direction (say to the right) independently
at random times (exponential law with mean 1) provided this does not violate the
exclusion rule. Two classic physical interpretations of the TASEP are in use: (i) as
a moving interface on the plane (space—time); and (ii) as a toy model for traffic
on a single-lane highway. The former gives a powerful tool to analyze the process
in terms of a last passage percolation. This approach will be fully commented
and developed throughout the paper. However, we postpone this to the following
sections since we believe the second interpretation gives a more pleasant way to
understand the result for the nonspecialist. We will thus begin to expose the results
in this setting in an intuitive way.

1.1. The traffic model. We interpret particles as cars on a single-lane high-
way (Z) with no possibility of passing (exclusion rule). For each car moving times
are modeled by independent Poisson processes with mean 1. Due to the nonpass-
ing rule, a car at positiom that attempts to move needs free space in front of it to
occupy positiont + 1; otherwise the car just stays.abeginning to jam, and so
on....

Now suppose we look to this highway from far away, say from a helicopter
(macroscopic level As the mean velocity (jump rate of the process) is the same
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1228 T. MOUNTFORD AND H. GUIOL

for all cars, the classical results about exclusion processes (see [9]) show that any
given traffic density on the full highway is preserved over time.

Now typically if one starts with two different densities (which we call an initial
shock conditioly saya to the left of the origin ang to the right, then two kinds of
situations are possible. if < p, cars from the left are entering in a more jammed
zone with densityo. And what we see from our helicopter is that the jam front
is moving to the left (which is called theropagation of the shogkWheni > p,
then the jammed zone is to the left and what we observe in between is a resorption
(i.e., rarefaction fanor rarefaction wave) of this jam into the (more) fluid region.
Those facts are rigorously proved by the study of tigdrodynamidoehavior of
the TASEP (see, e.g., [12]).

Some natural questions then arise:

(a) In the first case. < p: Is the shock sharp? That is, is there a microscopic
identifier of the shock? The answer is yes. It has been proved by Ferrari, Kipnis
and Saada [5] and then by Ferrari [3] that #ezond class particl@entifies the
shock (we refer to the previous articles for a rigorous statement of these facts). At
the intuitive level the description of a second class patrticle is the following: It is a
special particle that obeys all the rules described before except that other particles
are insensitive to it; that is, if it stands just in front of a (regular) particle that tries
to move, then it has to exchange its position with the moving particle. As one can
see, a second class particle might move back, which is impossible for the other
particles in this totally asymmetric context.

(b) In the second cask > p: What is the microscopical counterpart of the
resorption of the jam (rarefaction fan)? Ferrari and Kipnis [4] proved, first, that the
position of the second class particle converges in distribution to a uniform law in
the rarefaction fan, and second, that the second class particle, once having chosen
an allowable velocity in the wedge (the rarefaction fan), remains close to it forever
in probability. It was an open question to prove whether or not the above mentioned
convergence holds more strongly. We prove indeed in the following that it is the
case as a strong law of large numbers.

From now on we will abandon the traffic interpretation and switch to the
interface model. To do so we start with the formal statement of the result and
the mathematical description of the TASEP. We will then make the connection
between the TASEP and the interface model and discuss some key ideas of the
proof. We postpone the plan of the paper to the end of the next section.

1.2. The interface settings.

1.2.1. Theresult. We consider the positioK (¢) at timer > 0 of a second class
particle initially at the origin, that isXo = 0, for a TASEP(»;),>0 for which at
time O, particles are independently present at sitase Z\ {0}, with probability A
for x < 0 and probabilityp for x > 0.
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We address (following [4]) the case> p, that is to say, an initial decreasing
shock. The case. < p has already been completely resolved by the above
mentioned papers [3] and [5]; see also [11] and [16] for similar results for more
general processes.

The starting point is the result of Ferrari and Kipnis [4] that

X p

Q) ast — oo = U(1-2r,1-2p)),

whereU (I) denotes the uniform distribution on intervgland

X(t/e) _X(s/e) pr
t/e s/e

2 forO<s <t fixedase — 0 0.

Given this result it is natural to conjecture the following result, which will be
proven in Section 4.

THEOREM 1. For (X (t));>0 as above there exists a uniform random vari-
ableU on[1—2x,1— 2p] so that

X ag

ast — oo U.

For us the key ingredients afeeppaldinets variational formulafor TASEP
(see[14] and (7) below) armbncentration inequalitiesriginating with Talagrand;
see, for example, [1]. We do not need to use the exciting new results on last passage
percolation of Johansson [6].

1.2.2. The TASEP and its hydrodynamicstlhe TASEP is an interacting
particle system ofi0, 1} with generator on cylinder functiong

L=y n@[1-nx+DIf0 = f()

XEZ

where

nx,x+1(y) — 7)()’) for y 75 xorx—+1,
nx,x+1(x) — n(x + 1) and nx,x+1(x + 1) = n(x)

We interpretn, (x) = 1 to mean that for the configuratiop there is a particle at

site x [or for the process;) >0 there is a particle at site at timer]. Particles

try to move at exponential times to the site one to the right of their present site but
moves to sites already occupied by another particle are suppressed. For details of
more general exclusion processes see [9]; for details on Seppéalainen’s description
see [14, 15].
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It is well known (see [10] and [12]) that the TASEP has the following scaling
property. Let(n™),>0 for N € N be a sequence of TASEPs such that for any finite
interval7 Cc R

1 r
— Z név(x) — / uo(r)dr 2 0,
N iNer 1

whereug is a measurable function dhsuch that O< ug(x) < 1. Thenforallr > 0

1
N Z n%t(x)—/;u,(r)dr E)O,

x/Nel
whereu, (r) is theentropy solutior(see, e.g., [8]) of the scalar conservation law
u 0G(u)
3 — =0
3) dt + ar

with flux function G (u) = u(1 — u) and initial conditiorug.
In particular, whenug(x) = A1,<0 + pli~0 With A > p the entropy solution
produces a rarefaction fan

A, if x<@-20r1,
us(x)=1 (@ —x)/2t, if (1—20t <x<(1-2p)t,
0, if x > (1—2p)t.

Another way of having a look at this is to consider the (integrateanilton—
Jacobi problentsee, e.g., [2])
aU aU
+ G( ) =0

ot or
with Uy satisfying, for allx < y,

y
Uo(y) — Up(x) = / uo(r) dr.

X
Then the unigue viscosity solutidi (x) of this problem is given by thelopf—Lax
formula
x [e—
(4) i) = suplUo() —1g(* ).

yeR
whereg is the nonincreasing, nonnegative convex function such that &j0, 1]

G (u) = inf{ur + g(r)},

that is,g is the Legendre convex conjugate of the flixNote that the supremum
in (4) is indeed achieved at somes [x — 7, x +¢].

The solutionU; is related to the entropy solution to the original equation (3) by
the relation

y
V>0, Vx<yeR Ut(y)—U,(x)=/ u;(w)dw.

X

Here and subsequentiy(x) = (1 — x)?/4.
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1.2.3. Seppaladinets variational formula. Seppéldinen’s formula gives a mi-
croscopic equivalent of (4) for the TASEP. We will now describe that formula; all
the details can be found in [14].

We need first to introduce @ol processrom which the TASEP can easily be
retrieved. Let(z,),>0 be a server process @, wherez, (i) represents the position
of theith server of a system at timeWe impose the following exclusion rule:

(5) 0<z(G+1—z(>0) <1

that is, two consecutive servers cannot overpass each other nor be too far (two sites
or more apart).

The construction of the; process is achieved by a system of independent
Poisson processes. L&tP;i(7));>o0}icz be a collection of mutually independent
Poisson processes with rate 1]0noo[ , and call it aHarris systemAt any epoch
of (£i(1))s>0, z¢ (i) will be reduced by one unit provided this does not violate (5),
in which case nothing happens to the system.

Given such a Harris system and an (independent) initial distribution Z”
that satisfies (5) on the same probability space we can construgt phecess at
any timer > 0. The exclusion process is then retrieved via

ne(x) = z¢(x) — z;(x — 1).
So the condition (5) is seen to be simply equivalent to the conditiontiiaj €
{0, 1}.
Now we need to define a familf(w’),>0:k € Z} of auxiliary processes, on

the same probability space, such that eacj‘l),zo is a server process like;);>0
satisfying the exclusion rule (5). Initially we define

zo(k) +1, if i <0,

that is, all the servers with nonnegative label occupy the same positibnand
the others are put at distance 1 from their neighbors; dynamically

w (i) attempts to jump ta* (i) — 1 at the epochs afP; 4(1)),,.
The utility of the wk processes comes from the followingriational coupling
formula:
LEMMA 2 ([14], Lemma 4.1). Forall i € Z andt > 0O,
(6) z(i) =supwk(i —k)  as
keZ

The r.v.’s{wf(i)}{_oo<i<oo} can be visualized as the height of an interface over
the sites. In order to start initially from level zero and obtain a growing surface,
the family of interface processc{a@,")tio k € Z} is defined by

R (i) = z0(k) — wk (i) forieZ,t>0;



1232 T. MOUNTFORD AND H. GUIOL

then
i 0, if i >0,
5“”:{—L if i <0,
and the variational formula (6) gives Seppélainen’s variational formula
(7 2 (i) = supzo(k) — EF (i — k)}.
keZ

Observe that as the processdoes not depend on the initiad(k), and depends
on k only through a translation of the indexing @?; (¢));>o0}, dynamically

£%(i) jumps tog* (i) + 1 at epochs o

provided the inequalitie§* (i) < £¥(i — 1) and £%(i) < €¥(i + 1) + 1 are not
violated. Seppaldinen’s variational formula is our key tool in the sense that it
permits us to (see especially the proof of Proposition 19) trace the position of
the second class particle.

1.2.4. Strategy of the proof. Loosely speaking, the strategy of the proof is
the following: Keeping in mind Ferrari—Kipnis weak law (1), we want to take
advantage of the idea contained in their other result (2), that is, once chosen a
given velocity in the rarefaction fan the second class particle keeps following it.

To do so we analyze the trajectory of the second class patrticle by chopping it
off into a sequence of increasing time intervals of or@p,,cy. On each of these
intervals we control the deviations from the original direction taken by the second
class particle. This analysis is performed in Section 4 thanks to:

(a) Large deviation bounds obtained from a related last passage percolation
problem described below (see Corollary 12 in Section 2), where the key tools are
the above mentioned concentration inequalities and a trick from [7].

(b) A nice approximation of the server process by the solution of the Hamilton—
Jacobi problem related with the hydrodynamic limit of the TASEP (Proposition 16
in Section 3). For this part the key tools are Hopf—-Lax and Seppéldinen formulas.

Once obtained the almost sure convergenck @j/¢ the weak law (1) suffices
to conclude.

1.2.5. The last passage percolation problentollowing Seppéldinen [15] we
now recall how formula (7) can be analyzed in terms of a last passage percolation
problem.

We need first to introduce some notation. Definevtleelgeof admissible lattice
paths denoted by

L={G, jHel? j>1i>—j+1},
with boundaryd . = {(i,0):i > 0} U {(i, —i):i < 0}.
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For(i, j) e LUJL let
®%(, j) =inf{t > 0:£() > j}
be the first time the interfacg’ reaches levej at sitei. The previous rules give
Ok, j)=0  for(i,j)e oL
and for(i, j) e £
0%, j)=maxe i -1, /), 0", j - 1), 0" + 1, j - D} + B,

whereﬁk is an exponential, mean 1, waiting time independent of the qﬁ,h?r
Now conS|der the following last passage model: kgt;: (i, j) € L} be a
collection of i.i.d. exponential rate 1 random variables. Definepdesage times

{T,j)} by
T j)=0 for (i, j) € 0L
and

8 TG, j)= max t for (i, j) e L
(8) (i, J) el ) Z m, L (i, J)
(m,0)emr

whereTl(i, j) is the set oadmissible lattice paths
7 ={(0,1) = (i1, j1), (2, j2), - -, (ip, jp) = (i, J)}

Let

@ =min{j:(G,j+DeL, TE j+1 >t}

with &(j) =0 for j > 0 andé&g(j) = —j for j < 0. Then from [14]the process
£.(-) has the same distribution as the procé&s) of (7).
Furthermore, Seppalainen [13] obtained

_ 2
L (i) B tg ey =1 22207

1
Jim =7 ([nx], [ny) =T, ) = (V5 + V3 F3)

for —r<x <t,

here and in the sequpl] denotes the integer part @fc R. The limiting “shape’g
for £.(-) satisfied"(x, g(x)) = 1 for all |x| < 1, meaning it is a curve level af.
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1.3. Organization of the paper. The paper is organized as follows: in Section 2
we use a last passage percolation argument to obtain some simple, nonoptimal,
large deviation bounds. In Section 3 these bounds are employed to show that for
all r € [2"/2,2-2"], n, will be 2" “close” to the hydrodynamic limit outside
probability exg—2"1=®)) for « close to 1 but strictly below it. In the final section
an argument is given to show that aX§¢)/r converges.

In the sequel we will use the following notatioN:= {1, 2, ...} denotes the set
of positive integersZt = NU{0} denotes the set of nonnegative integersjand[
(resp.[u, v[ or Ju, v]) will denote the open interval (resp. semi-open intervals) with
endpoints: andv.

2. Large deviation bounds. In analyzing{T (i, j + 1) < ¢} or the a.s. equal
event that, (i) > j we consider the “longest” admissible path[in the sense of
the passage times of (8)] frod, 0) to (i, j + 1) that passes through the lattice
point (0, 1) where(i, j +1) € L ={(k, £) € Z?:k+£>1, ¢ > 1}.

In this section we will consider a collection; ;: (i, j) € Z* x Z*} of i.i.d.,
exponential mean 1, random variables and last passageTtimeg) for (i, j) €
7+ x 7+ will be redefined as

itj-1
10 T(,j)= max T for (i, j)eZ™ x 7T,
(10) @ J) L max 1;, 7(v) (i, J)

wherell (i, j) is the set olup-right admissible pathsom (0, 0) to (i, j) [starting
at(0,0)]; thatis, if r € I1 (i, j), then

7 =(n0)=(0,0),7Q),....7(+j)=(,)))

wherer (v +1) — 7 (v) € {(1, 0), (0, 1)} for v > 1.

To relate this to the previous section [and indeed the previous definition of
T(i, j)], we are just making use of the isomorphigm y) € £ +— (x + y —
1,y —1) e€Z" x Z*. It will be easy to obtain results for the originali, j) and
therefore the object§’ (x — y) from bounds on the redefineti(i, j)'s. From (9)
for 6 € (0, 1) fixed,

jm @O =OD _ (5 yTmg)

n—00 n

LetV, :={(, j) € ZT x Z" :i + j = n}. The object of this section is to prove

PrROPOSITION3. There exists > 0 so that for alln large and(i, j) € V,,
P(|7 (. j) — n(v/0 + vVI—0)% = n'%) < exp(—n®),

wherei = [n0] (and soj =n — [r6]).
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Our approach is to first obtain via concentration inequalities bounds on

7 (i, j) —ET (i, j) and then to consideET (i, j) — n(~/6 + /1 —8)32, forn =
i + j large. Our first result is:

PROPOSITION4. Let(i, j)eV,.Foranyx >4
P(|T (i, j) — ET (i, j)| = 3v/nlog(n?)x)

< 2(2 exp(— > _44)2> +e exp(—Zﬁlog(nz)x)).

PrROOF  First, following Kesten [7], consider the quantity
V, = Y (ke —log(n®)*.
(k,£)€[0,n[2N7Z2

Sincery ¢ are i.i.d.&xp(1) random variables we have fox 1

2
1 1\ t
senit) = (1+ 57 ) <e()

And so for anyy > 0,

P(V, > y) < inf exp(——ty) Y.

O<t<1

Now consider7”’(i, j) derived from7 (i, j) with 7, replaced by the bounded
FV. Tr ) A 2 Iogn
Obviously7'(i, )) <T (i, j)) <TG, j) + Vy.
We analyzer' (i, j) using pages 62—64 of [1]. L&, be the median of (i, j).
Let A ={w:7'(i, j)(w) < M,}. Supposer is such that

T'(i, ) (@) > M}, + log(n?)/nx;

then there exists an admissible up-right pathfrom (1,1) to (i, j) [starting
at (0, 0)] such that

n—1
3" ey (@) Alog(n?) = M, + log(n?)v/nx.
i=0

Then for anyw € A we have

n < Z‘(tﬂ(l)(w) ) (Tn(i)(a)) A 1)‘

log(n?) log(n?)

n—1

= Z 1Tn(i)(w)#fn(i)(w)'
i=0
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Then withg, =1//n, k=0, ...,n — 1, it follows that

-1
gA, )= sup inf > Bile @)t =X,
BBy eeA g v

where|| 8|2 means the Euclidean norm gfe R". Thus applying Corollary 2.4.31
of [1] to R(A) =P(T'(i, j) < M)) > 1/2, whereR is the restriction ofP on
¥ =]0,2 |Ogn]"2, while

P(T'(, j) > M), +log(n®)v/nx) < R({w : g(A, @) > x})

we get
2
P(T/(i, J)= M,; + |Og(n2)\/ﬁx) < 23XF<—XZ).
Similarly
2
P(T'(i. j) < M;, — log(n?)/nx) <2 ex;(-%)_
Thus
00 x2
ET'(i, j) < M, + «/ﬁ|0g(n2)2/ exp(_z) dx
0
< M! +2/mnlog(n?).
And similarly

ET'(i, j) = M) — 2/mnlog(n?).
Thus we have
P(T'(i, j) = BT (i, j) + ~/nlog(n®)x)
<P(7'G, j) = M) + /nlog(n?)(x — 2J/))

and since/r <2, forx >4, < 2exg—#).
Thus sinceET (i, j) <ET (i, j) <ET'(, j) + e, we have
P(T (i, j) = BT (i, j) + 3/nlog(n?)x)
<P(7'(, j) = BT (i, j) + vnlog(n®)x) + P(V, > 2{/nlog(n®)x)

—4)2
< 2exp(— (x n ) ) + exp(1 — 2¢/nlog(n?)x)

and get a similar bound f@(7 (i, j) <ET7 (i, j) — 3/nlog(n?)x). O

Next we concentrate on getting a useful bound|BfF (i, j) — (Vi + /7)2?|.
We first assemble some elementary lemmas.
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LEMMA 5. Consider the random variable

W= sup Ta,,j).
(i./)EV

There exists a finit& so that for anyc > K and all n sufficiently large for an
event A, of probabilityexp(—cn/(logn)?)

cn
P(W > cn|A) < eXp(_Z)'

PROOF For an up-right path of lengtth starting at(0, 0) there are 2 possible
choices. For such a path, saythe probability that

n—1
D Ty = cn
i=0

is <exp(—cn/2)V" whereV :=Eexp(X/2) andX ~ &xp(1) so

P(W > cn|A) < exp<L>2”V” exp(—%> < eXp(_ﬂ)
(logn)? 2 4

for ¢ sufficiently large. O

LEMMA 6. For all positivex, y and positive integet,
ET ([nx], [ny]) < n(vx + /7).

PROOF  Suppos&T ([nx], [ny]) > n(/x + ﬁ)z. For each integef.
[Lnx]> L[nx] and [Lny]> L[ny];

and so7 ([Lnx], [Lny]) > T (L[nx], L{ny]).

But the longest path fron, 0) to (L[nx], L[ny]) is longer than the longest
path from(0, 0) to (L[nx], L[ny]) which goes through point&[nx], £[ny]) for
0 < ¢ < L. This second quantity is equal to

L
> Z
=1
whereZ,, are i.i.d. r.v.'s with
EZy =ET ([nx], [ny]).

Thus by the strong law of large numbers we have a.s.

iminf T ([Lnx], [Lny])

L—o0 n

>EZ1 > (VX +3)%
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But we have from [13]
T ([Lnx], [Lny])

= (Ve

whenL — oo and this gives a contradiction and the lemma followisl

We also record a simple result that will be needed later.

LEMMA 7. Forall 0€10,1/2[,0 >6>0,if x; €10 — 5,6 + §[¢ for i =
1,2,...,nandfor} a; =1,0; > 0,> a;x; =6, then

Zai(\/x_i+\/1—xi)2§(«/5+\/1—9)—282.
PROOF.  For f(x) = (v/x + v/I—x)?

//()__ 1 _} 1_x_} X < -4
PO==m A= "2\ 8 2ya_oi- "

F) < FO) + fO)(x —0) — 2(x — 0)°. 0

SO

ProOPOSITION 8. If ¢ > 0 is sufficiently smallthen for all n sufficiently
large it is the case that for each < [0, 1] there exist(x, y) € V, such that
I(x,y) — (n6,n(1—0))| <n*®and

ET (x,y) zn(x/g+s/1—9)2 —nte,

PROOF.  First if 8 < n=Y/10 (or by symmetryd > 1 — n~10) then we can
consider any deterministic path: (0, 0) — ([n6], n — [n6]). Thus we can take,
for example x = [n6]. We have

n—1
ET ([n6],n — [n0]) = E ) 7y =n
i=0

=n(v0+V1—0)°—2nV/0/1—0
2n(«/§+\/1—9)2—n1_8

for ¢ < 1/20 andn large enough. Hence it is enough to consiéler]n /10, 1 —
n~Y10[ . We fix £ to be small. We assume there exis® and an: for which the
condition fails and obtain a contradictionvifis sufficiently large (and has been
fixed to be sufficiently small).

Fix a relevant “direction®. We suppose tha > 1/2 without loss of generality
and that for all(x, y) € 'V, such that|(x, y) — (n8, n(1— 6))| < n*®, we have

(11) E’J‘(x,y)<n(«/5+\/1—9)2—nl_8.
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Now by Proposition 4 we have if (11) holds, then for@ll y) € 'V,

P(T (x,y) > n(v0 +v1—0)% = nl"¢/2)
(12) 200 L1
= 2ex _%&mmmJ::Mmf:M

and, also by Proposition 4 and Lemma 6, for @l y) € vV, [not necessarily
“close” to (n6, n(1— 6))] we have

2K
P(T (x,y) > (VX + /7)) +nK) < 2ex -——————)
(13) X 2188n(logn)2
“Naw) N
for K > 1/2.

A suitable value forK will be chosen later but for the moment we assume that
1/2 < K < 1— ¢ and that: is sufficiently large to ensure thaf > N.

For each(m,r) € Z x Z* we say the blockB(m,r) := {(u,v) € V,,:u €
[nr/24+n(m — 1/2),nr/2 4+ n(m + 1/2)[} is bad (otherwise we say it igood)
if there existqu, v) € B(m, r) such that (at least) one large deviation event of type
(12) or (13) holds for the system translated(byv).

The probability that a block is good is at least

2
1-2%
N

We are now in a position to sketch our approach to the proof.

For any pathz from (0,0) to V./(N/2)(#,1 — 6), we will consider it
in subsegments of length. Without loss of generality we may assume that
J(N/2)/n is an integer. We follow [7] and use the concentration inequalities to
show that over all pathg the contribution to the “length” ofr from n-segments
of the path with great deviations is very small. This is summarized in Lemma 10
below. This will leave us two sorts af-length path segments: those (type 2: see
Figure 1) whose increment is “within?¥/° of n(6, 1— 6) and those (type 1) which
are not. For the first collection and our assumption on the relevant expectations
the average contribution should be less thar/6 + +/1—6)2. For the latter
segments we will only have Lemma 6 as a bound on the expectations but Lemma 7
will enable us again to conclude that the average contribution will fall short. The
limit (9) will then be invoked to give a contradiction.

For calculation purposes let us by randomization have r.v.'s

1, with probability 2:2/N,
0,  with probability 1—2n2/N,

so that{B(i, j)isnotgood C {v; ; = 1} and for (i1, j1), (i2, j2), ..., (ir, jr),
i1 <ip <--- <ir, {¥i, jJ1<k< are independent.

Vi j=



1240 T. MOUNTFORD AND H. GUIOL

Hed hinck
e (el Bheck ol ype |
— Gond] block of repe 2

WM 1-E

Fic. 1. Representation of a path from (0,0) to V/(N/2)(0,1—6).

Now we renormalize by considering hyperbloaksi, j) [see Figure 2 where
we have chosew = 812 for illustration purpose; note that in the sequel we will
take N of order expgn®), with « > 0] which are the union of

U B(¢, 7).
iJINJD/n <t <(i+1)JN2)/n
JNINTD/n<r < (j+DJIN/2)/n
The rv.X%(, j)is

> We Ve,
iVINJ2)/n<t<(i+1DJN/2)/n
JININ/D/n<r<(j+DJ(N/2/n
where

n—1
W, =Sup} > T : over pathsr starting inB(¢,r) ¢.
i=0

Then we have by independence and Lemma 5 that:
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* e 2
« LNELIT]) ™

‘i
1]
-fl{ \T)
L

B(2.r)

- {t—!j n

FIG. 2. BlocksB(¢, r) and hyperblock&: (i, j) (hereN = 8n2).

LEMMA 9. Forall i, j

XG ..
Eexp(ﬂ) < H
9n

for constantH not depending on, j or n.

PROOF  We write X (i, j) as the sunX ¢ (i, j) + X9 (i, j) where

X9, j)= > Wer Ve
ivINJ2)/n <t < (i+DJIND/n

JVWN//n<r<(j+DJ(N/2)/n
¢ odd
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The reason for the introduction of these supplementary random variables is that
all the terms in the sum defining? (i, j) or X9, j) are independent, which is
not the case foX ¢ (i, j). By Cauchy—Schwarz one has
X9, j>> _ IEexp(X"G(i’ )+ X7, j))
9n 9n

- (ren(2500) o502

The lemma now follows from the claimed independence and Lemmals.

E exp(

Thus for any pathr from (0,0) to vy + vo = V/(N/2)(6,1 — 0) there is
a correspondings-level pathz¢:(0,0) — (1, j1) = (2, jo) = --- — (V, jy).
There are ¥ such paths and for all path® we have an r.v.
V-1
Z@% =Y X%, j».
i=0
By independence and the previous result

}Eexp(z(;;G)> <HY

2
P(Z(xC) >n3V) < HY exp(—‘%),

SO

and so
G 3 VoV Vn?
P{supZ(z™) >n’V | <H"2" exp| ———
7TG 9
whichis< 2=V if Vv > V.
We can in a similar (and easier) way redo this analysis with random variable
X%, j) replaced by
Z Wi,r-

iINID/n << (i +1JN/2/n
JNIN/2)/n<r <(j+DJ(N/2)/n

We have shown more than the following.

LEMMA 10. With probability tending tol, as V — oo for all paths
from (0,0) to V/(N/2)(0,1—0)
VJ(N/2)/n—-1 (i+Dn—-1

Z I{z(in) is in a bad block Z Tr(k) < vnd
i=0 k=in
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and the number of bad blocks covered occurring in such a path is similarly
bounded

PROOF Let us denote by = A(V) the event that for all paths from (0, 0) to
VJ/(N/2)(@,1—0) the above mentioned bounds hold.

Now fix a pathzr and let vectore (i) = (e(i)1, e(i)2) := n(in) — (i — L)n),
i=12...,V/(N/2)/n. Let V1 = collection ofi so thatz((i — 1)n) is in a
good block and|e(i) — (n0,n(1— 0))| > n*>. Let V> = collection ofi so that
7((i — Dn) isin a good block angle(i) — (n8, n(1— 0))| < n*>.

By definition on the event for every pathr,

Z Tr,s  I{(r.5) is in a bad block < Vi3,

(r,s)em
thus
VJ(N/2)-1 in in
(14) Z Tn(i) < Vns + Z Z Tn(k) + Z Z T (k)-
i=0 ieVik=(G{—-1n+1 ieVok=({—-Dn+1

The sum ovel; is bounded above by

1-¢

as)  WVa(n(vE+VIZ8) " )Z'VZ'(”f(Q)‘nj)

by definition of V, andgoodnesswhere f (x) = (v/x + +/1— x)?, while, again
using the definition o1 andgoodnessthe sum ovel; is bounded above by

(16) S (nf ) + n¥)

ieVy

wherev; = n~te(i)1.

Since the sum oé(i) over alli must equalV/(N/2)(0,1— 0) we have, from
the second part of Lemma 10, that the sum of the term (i) over V1 and V>
must be withinVn3 of n=1V/(N/2)(#,1 — 6) on eventA. Furthermore by
definition, the average of the sum ofle(i) over V> must be withinn=1/° of
@, (1 — 0)). From these two facts we have that the average obtter i € V1
must equab + r where, first,

n74+@< 1, VO )
VN2 —nt (V| \n?5 " /(N]2) —n*

and, second, fat large enough angV1| > | V>|, it must be the case that

Irl <

17) "= 5 1710
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We also note that under our hypothesis fiotarge andi € V>, providede was
picked sufficiently small

nl—s
(18) nf(vi) =nf (@) — 6
From (14), (15), (16) and (18) the sum over variables associated torpstisfies
VJ(N/2)-1
Y e VR4 Y nf) + | Valn®
i=0 ieVq
nl—e
(19) + > nf(v)— |Vl
ieVp
nl—s
= Vel 3 nf i)+ 1Valn® — Vol

ieViUVs

But under eventA(V) the average,|Vi| + |V2|)_lzievluvznvi, is within
n3//(N/2) of 6 and so by concavity of and elementary bounds on functigin

3/2
nf(v;) <(Vi| + |V (n 9+Ln7),
Z_EV%VZ f @) = (Val+1V2D (nf O + L s
whereL does not depend on N andé. Therefore using (19) the sum over path
satisfies
VJ/(N/2)-1
Y. T =V +VJ(N/Df6)
i=0

20 nl—s
(20) + Lt PN/ 4 Valn® — Vol =

I’lK
=VyWN/2fO) = V{(N/D—

provided |V»|/| V1| > 4nK /n1=%, 1/2 < K <1 — ¢ andn is sufficiently large
uniformly onz.
It remains to deal withr so that|V»|/| V1| < 4nX /n1¢. In this case the average
of the v; overi € V4 must be withinn*°/(2n) of # and we have by Lemma 7
(with 8 = n~1/5/2) and using (17) and the inequalify(d +r) < f () + Cn/19r|,
whereC does not depend oN, n or 6, that
2(4/5-1)+1

| V2
+ CVa|——n¥10 L n|va| £ (6)

>_nf@) = —Vil——— Vi

ieVqy
n/® 9/10
=—IVil=- + C|Vo|n¥ 0 4 nva| £(6).
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From this and, once more (14), (15) and (16), we have

VJWN/2)—1
Y o Va4V (N/DFO)
i=0

3/5 _pl-e
4 +1’1K>+|V2|<T+Cn9/10>

whichis<V/(N/2)f(0)— V. (N/2n"¢/5if3/5> K >1/2and 1—¢ > 9/10
andn is sufficiently large. In either of these two cases we have, on evéwhose
probability tends to 1 a® tends to infinity), for all admissible paths

+|V1|<

1 VJIN]2-1 n—¢
W ; i) < f(0) — 5

That is, on evenfA

T(AVV(N/2OL, [V/(N/2)(1-0)]) 2 n°
VJN/2) <(VO+VI=0)" - 5
and so T ([V/(N/2)0],[V/(N/2)(1 — 0)])/(V/(N/2)) does not tend in

probability to (+v/6 + +/1—6)2. This contradiction establishes the desired result.
O

The proof of Proposition 8 is now completel]
The next result extends the preceding technical result to a more useful one.

COROLLARY 11. There exist® < g9 < 1/8 so that forn sufficiently large and
for all x, y € N such thatr + y =n,

ET (x,y) > (Vx + /y)> = nt%0,

PROOFE Fix g1 so small that Proposition 8 applies for all> ng with ¢ = ¢1.
Furthermore suppose thal: > ng + 2.

There are two cases to considera y < n1~¢1 andx A y > n17¢1,

We start with the second hypothesiss y > n1=¢1 (sincex + y = n, this implies
thate; > 2/ logn, but this will not be a problem for large enough without loss
of generality we suppose that < 1/50. Takex; = [x/4/n] andy1 = [y//n];
then obviously,/n —2 < x1 + y1 < /n. As

PR S nttt 1 Y2,

T xit+n n N
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thus > n~110 in the chosen range for; providedng was fixed sufficiently
large. By Proposition 8 there exiéty, y2) € N x N with x2 + y» = x1 + y1 and
I(x2, y2) — (x1, yDII < (x1 4+ y1)¥° < n?> such that

2
. X1 1 _
ET (x2, y2) > (x1+ y1) + Y — (1 +ypte

X1+ y1 X1+ y1

> (Va1 + Vy1)? =0/,

Now consider the set of paths frof@, 0) to (x, y) that pass through
(XZ, )72)» (2x2’ 2)’2)» sy ([\/E(l - n_(gl_l/S)/Z)]xz’

[V (1—n=Em972)]y)) < (x, y).
The expectation of the maximum of such paths is at least

\/ﬁ(l _ n—(1/10—81/2))ET(x2, yZ)
> ﬁ(l_ ”_(1/10_81/2))(\/X_1+ M)Z _ p-en)/2
> (Vx4 /y)° —nteo

if eo was fixed sufficiently small.

We now treat the second caser y < nl=#1. We suppose without loss of
generality thate < n'~*1. In this case(y/x + /)% < (Vnlf1 4+ /3)2 <y +
211, We now consider the path fro0, 0) to (0, y) and reason as in the start of
Lemma 10. O

This result together with Lemma 6 through Proposition 4 gives Proposition 3.
We finish the section by making the link to Seppaldinen’s representation
explicit.

COROLLARY 12. For ¢ < gg, given in Corollary 11, and (x,y) € £ =
{(G,j)€Z?:j>1i>—j+ 1 witht = (Jx+y +/¥)? (i.e, in our notation
y=tg(x/t)andx € [~1,1]),

P(|&w ([nx]) — [ny]] > [tn]'"%) < 3exp(—(n1)°).
PROOF  Without loss of generality we suppose that)—¢ is an integer.

The event{¢,; ([nx]) > [ny] + (nt)1¢} is equal to the event7 ([nx] + [ny] +
()¢ — 1, [ny] + (n)1=¢ — 1) < nr}. Therefore

P (& ([nx]) > [ny] +n'~*)
=P(7 ([nx] + [ny] + )Y = 1, [ny] + ()¢ — 1) <nt).

Observe that the longest path fra® 0) to (z + k, w + k), k, w, z € N, would be
bigger than the sum of the longest path frédn0) to (z, w) and the passage time
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of the given patly = ((z, w), z+ L w),...,z+k,w), c+k,w+1),...,(z+
k,w+k)). Thus

P(£ ([nx1) > [ny] +n'~%)
< P(7 ([nx] + [ny], [ny]) < nt — (nt)*~%)

(nn)l—e-1
‘HP)( Z Tnx]+[nyl+i,[ny]
i=1

(nn)t*-1
1-¢
+ Z Tyl +(mn) ¢ 11, [nyl+j = (1) )
=1

By Proposition 3, forn sufficiently large the first probability is bounded by
exp(—(tn)?), while by elementary large deviation bounds the second is bounded

by

exp(—(n)*)

K exp(—c(tn) %) < 5

for n large.
Arguing similarly

P(& ([nx]) < [ny] — (nt)*~%)
<P(7 ([nx] + [ny] — ()% — 1, [ny] — (n1)*~° — 1) > n)
< P(7 ([nx] + [ny], [ny]) > nt + (n1)*~%)

(nr)l—e—1
+P ( D Tarltnyl— (i, Iyl ()
i=1

(nt)l—¢—1
1-¢
+ Z Tlnxl+Inyl.Inyl—(nt—s+j < (11) )
Jj=1

And we obtain similar bounds for the probability of a large valu€,ef(nx]). O

REMARK. Givent, the above result immediately gives a probabilistic bound
oné&, ([nx]) for x where there exists such that = (,/x + y + /y)?, that s, for
x € [—t, t]. The usual bounds on Poisson processes allow us to deal with deviations
of &,;([nx]) for otherx. For instance, ift < —¢ one has

P(|&u ([nx]) + [nx]] = n'¢) < P(&y ([—nt —n' ™)) > L4 [—nr — n174))

which can be bounded by the probability that a Poisson random variable of
parametenr exceedgnr + nl~¢].
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3. Hydrodynamic consequences at particle level. For a configuration)” e
{0, 1}Z indexed by integer and a measurable function taking values ir0, 1],
we say

M,v
n 9
n- ~ uo

if for every x € [—Mn, Mn],

il x/n
n"(y) —n uo(r)dr

The main result of this section is:

<.

PrOPOSITION 13. Let M > 8, r €]1/4,4[ and ¢ < ¢g, the constant of
1-¢
Corollary 11.For (,);>0 an exclusion process wit, M ug andn sufficiently

large outside probabilitexp(—(nt)®/?),
nt

where (u5)s>0 IS the unique entropic solution to the scalar conservation (8v
with initial data ug.

M/2,6nl7¢

Before beginning the proof of this result we give a simple lemma which enables
us to reduce the analysis of general exclusion processes to that of finite systems.

LEMMA 14. Let(n:);>0 be an exclusion process and fore Z, let (nf)rzo
be the exclusion process generated by the same Harris system)as) and
satisfyingns (x) = no(x)ljxj<k, Vx € Z. For M > 2,3¢ = c¢(M) > 0 so that

P(nM"(x) = s (x) ¥ |x| < Mn/2,0<s <n)>1—e "

PrOOF Let (ntL)zzo [resp.(ntR),Zo] be exclusion processes (resp. reversed
dynamics exclusion processes, i.e5 I = 1: total asymmetry to the left) run
by the same Harris system ég);>o So that a point € P, represents a potential
jump from sitex + 1 tox for processnX),>0 and with initial configurations given
by n& (x) = 8x,—(mnj+1) andn&(x) = 8y (mn1+1, Where as beforg] denotes the
integer part and is the Kronecker delta function. Then the event

M (x) =ny(x) YV |x| < Mn/2,0<s <n)
is contained in the event

{ > n,%(x)>0}U{ 3 n,’f(x)>0}.

x>—Mn/2 x<Mn/2

But the probability of these latter two events is simply equal to that of a Poisson
random variable of parameterexceedingiMn] + 1 — [Mn/2] and the lemma
follows. O
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REMARK. This corresponds to a property of entropy solutions.

PrRoOF OFPROPOSITION13. We first assume that = 0 outside[— M, M]
and thatng(x) = 0 for x ¢ [-Mn, Mn]. Our condition gives that fory(x) =
> S wn M0(Y) = 23— oo Mo (¥) @ndUo(x) = [, uo(r) dr = [~ uo(r)dr,

n X
Zo(X) — l’lUO —
n

We have by the Hopf-Lax formula th& (s) = [*  u;(r) dr satisfies

o = supfue)—1s(* )|

and by Seppaldinen’s formula ferc Z,

2 (x) = supzo(y) — &, (D)}
VEZ

< nl—s.

(22) Vx

Let us for the moment fix € [—Mn/2, Mn/2]. From the observation after (4) we
can choose* € [—(M + 8)/2, (M + 8)/2] so that

X X —nr x —nr*
(%) =supfvotr) — rg ()} = Uotr) — g ().
n reR nt nt

Takey to be the integer part ofr*. It is immediate from Seppalainen’s formula
and (21) that

20 (0) 2 2003) = 6 = ) =l 2 ) =l = &, (x = ).
By Corollary 12 outside of probability 3 exp(nt)¢ for n large, we have that
En(x—y) < ntg<u) +nlf
nt
and so

Zne(X) > nUo(X) — 20t — nlg(u)
n nt

I
> nUo(r*) — 3nt~% — ntg(x n )

nt
=nU; <£) — 3nle

n

by the Lipschitz properties ot/op and ¢ and our choice of-*. Thus for all
X €[—Mn/2, Mn/2]

(22) P(z,,,(x) < nU; (f) — 3nl‘5> < 3exp—(nt)®.
n
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The argument for the converse is similar: By the finiteness assumptig§ on

Zne (x) = suplzo(y) — & (x — y)} = sup {zo(y) — & (x — M)}

YEL ly|<Mn

So the evenfz,, (x) > nU,(x/n) + 3n17¢} is the union,y<mn{zo(y) — £).(x —
y) > nU;(x/n) + 3n1~¢} and consequently

(Zm(x) > nU,< ) + 30l 8)

<> <ZO()’)—€m(X—y)>nUt< >+3n1 s)

ly|<Mn

We fix integery in the relevant range:

P(Zo(y) £ (x — >>nUt( )+3n1 )

= P(S)f_y(m) < nU0<%) - nUt(;—C> — 2n1—8>
< (g0 <mg() ~201),

by the Hopf-Lax identity. But, having recourse once more to Corollary 12 and the
remark following it, we bound this latter probability by 3 exjinr)® if n is large.
After summing overy we find that

<Zm(x) > nU,( ) +3nl- 8) < (3exp—(n1)®)(2nM + 1).

Summing this and (22) ovex in the relevant range, we have that outside
probability (bounded by) exp (n1)¢/2, if n is sufficiently large,

v |<Mn
=7

The proof of the proposition is completed by appealing to Lemma 14 for the
general case.[]

2 () — nUf<’—C)\ <3l
n

In the following lemma and subsequent propositiorUgtr) be the (integrated)
solution to the Hamilton—Jacobi problem starting from the initial condition

| px, forx > 0,
Uo(x) = {Ax, for x <O,

and let(z; (x)).ez be the server process associatethtd; o, the exclusion process
beginning as product measuypse for x > 0, product measurgx for x < 0 with

z0(0) =
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LEMMA 15. For &g < 1/8, zo and Up as above outside probabiligxp—2"/4
(for n large)

2n(l—€o)
10 °

zo(x) — 2"%(%)‘ <

forall |x] <8-2".

PROOF We fix x positive and< 8- 2" without loss of generality. Denoting
Bin(n, p) a binomial random variable with parameterand p
zo(x) 2 Bin(x,p) +1 (resp. 0

depending on whether we are considering first class particles only or first and
second class together. In either case

X 2n(1—eo) ] 2”(1—50)
P(zo<x>—Uo(—)2" o )sP(|Bm<x,p>—xp| > 1
< exq_zn(l—&?o))

2" 10 10
for n large by standard bounds on binomial random variables (and using the bound
g0 < 1/8). Similar bounds hold far negative and the result follows by summing.
O

This lemma and Proposition 13 immediately give:

PROPOSITION16. Let(z(i))iez.>0 be the server process associated to the
TASEP(1;);>0 defined in the IntroductiariLet U, (x) be the(integrated) solution
to the Hamilton—Jacobi problem starting from the initial conditigg(x) = px for
x > 0;andAx for x < 0. We suppose that

20(0) =0, Uo(0) =0;

then fore1 < gg as defined in Corollargt1 or Propositionl3andVv s €12"/2,2-2"]
and eachy e [—4-2",4.2"]

2z (y) — tUt(%)‘ = e

outside probabilityk exp—z41/2, providedn is sufficiently large

4. Theas. convergence. In this section we wish to assemble the established
results to prove Theorem 1.

Given Ferrari and Kipnis [4] it suffices to show thXt(z)/¢ converges a.s.,
from (1) the distribution of the limit random variable will follow immediately.
This will be accomplished if we can show that & 0 arbitrarily small

Iimsup& — liminf & )
f— 00 t—o00 t
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with probability at least 1 5. We fix § > 0 and take integer (a power of 2) so
that 1/m < 6/10. Forn positive and =0, 1, 2, ...m, we use/ to denote the time

2"(1+i/m) (soforalln, 1) = t6’+1). The following elementary result will enable
us to restrict attention t& (¢) for r equal tor" for somen, i.

LEMMA 17. For (X(t));>0 andt! as previously defingd.s.
X0 X@hH|_2

1)
limsup su su < — <=
p p p 7S m < 5

n—=00 O<is<m-lg'<t<t]' ,

ProoOF For the second class particle we associate two rate-1 Poisson
processesN, which contains if and only if t € £x—) (i.e., ¢ corresponds to
a forward jump time of the second class particle) ahd which containst if
and only ift € Px;—y—1 (i.e., t corresponds to a backward jump time of the
second class particle). The eve{sUg;:StStﬁlX(t) - X" > 1+e)2"/m}is
contained in the everiV, (' ) — N+ (¢') > (1+¢)2"/m} which has probability
bounded byK exp(—c2"¢) by elementary large deviations for Poisson random
variables. A similar situation holds for the eve{rwgfi,i,th(t{‘) - X@) >
(14 ¢)2"/m}. Thus we have by the Borel-Cantelli lemma that for eachO a.s.,
SURr <1<, |IX(t) — X (1) < (1+¢)2"/m for all n large and any. The result
now follows from easy manipulations[]

Fix 8 andey > 0 so that O< 2(1 — B) < ¢1 ande1 < &g for g the constant of
Corollary 11 (so that Proposition 16 appliesstoand to 1— B).

A difficulty in dealing with a second class particle is in keeping track of its
immediate environment. However, in considering how, say, a second class particle
at sitex at timez;' behaves in time intervdlt?, ¢, 1], we will be able to deal with
the of-order-2 relevant sites at the same time.

Forx/t"e]l—20+8,1—2p—8[ andi =0,1,2,...,m — 1, let A% (x) be
the event that at timg' there is no first class particle occupying sitand that

gl
(23) XMy _ X s on-p

n n —_
lita I

where (Xx’fi"(s))sz,;a denotes the position at time of a (unique) second class
particle at sitex at timer;".

Before analyzing the deviations of these random processes we need a calculus
result.

LEMMA 18. For 1/m < §/10,8 <1/10,x €]1— 21+ 68,1 —2p — §[ and
se[l+1/(2m),1+1/m] and
A, if y<1-—2a,
U)()=1A-y)/2, ifl-2a<y<1-2p,



MOTION OF A SECOND CLASS PARTICLE 1253

then the following supremum

X§s —v
Ustxs) = sup Ua0) — s~ Dg( =)}

veR
is achieved ab = x and for|v — sx| < 2(s — 1),

Xs — v

Us(v) — (5 — 1>g( ) < Uy(xs) — (v —x)2.

s—1

PROOFE For anyx ands as in the statement, by the definition of functign
and the Lipschitz property df,

XS — 0V
Usxs)=  sup {U1<v> . 1)g( )}

lv—xs|<(s—1) s—1

Sup {U( )+ 1—xs w2 s—l(l+ w >2}
= 1(sx w - — =
|w\<(s—1) 2 4 4 S—l

=Ui(xs)+ sup V(w),

[w|<(s—1)
where
V(w) = %((2(1— %5) — w)w — (s — 1)<1+ S_L1>2>
V/(w) = %(2(1 _xs) — 2w — 2<1+ s%))

=5 (v ) =5+ )
o\ W )T\ Ty )

Thus, as is easily seeVi(w) is maximized atwg = —x(s — 1) or equivalently
Ur(v) — (s — Dg((xs —v)/(s — 1)) is maximized abg = x5 — x(s — 1) = x.

The second derivative of, V" (w) = —s/(2(s — 1)), which under the condition
ons entails thatV” (w) < —m + 1/2 < —2. Thus we obtain [ofw| < 2(s — 1)]

V(w) < V(wo) — (wo — w)?;

and onjv — sx| < 2(s — 1):

Xs —

Ur(v) — (s — 1)g( 1” ) < Us(xs) + V(wo) — (wo — w)?

s —

=Us(xs) — (x — v)2. ]
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PROPOSITION 19. For 0 < &1 < &g, eventA’ (x) and t as in (23) and
x/t€ll—20+68,1—2p -4,

" n\ €1/3
P(A% (x)) < exp(—(;) >

provided that: is sufficiently large

PROOF Considerr, as demanded, fixed and assume without loss of generality
that the sitex is not occupied by a first class particle at tinje We apply
Proposition 16 first to the motion of first class particles (so that for this motion
at time the sitex is vacant). Let the associated server process Q9:

m+i+1 )17 m+i+1
(—————m»—?%)=sgﬂwmw—sé”ﬁ(—————%x—2w>—y)}
ye

g . _ ;
m+1 i+17 m+i

i+1

whereg”- (w) is £(w) derived from the Poisson processes shifted spatially by
and temporally by;". By the definition of supremum we have

m+i+1 B npy  px—2Ban (x =2
(" w20 zae-2h g (),
By Proposition 16, using that-2"1=¢0 > 20+ D(d=e1) > gnyl=e

n
Lty

x — 2"
1

Zn(x =2y = 4f U1< ) — 2. 20

[outside of probability k exp(—2€1/2) > kexp(—(#")*/2)], while by Corol-
lary 12 (withnr = 2*/m and[nx] = (x — 2"#)/(m + i)) outside of probability
3exp— (2" /m)"1)

x—2 ¢ <x _ 2nﬁ> on (x — onp

n <—
2" /m m—+i =t 2" /m

) + 2. 2n(l—81)

and so (fom large)

Zrle(TH(x -2 )>

_onp __onp
zt,”(U1<x n2 >— ! .g(x ,12 ))—4-2"“‘81)
t; m—+1 1!

1 1

m+i+1 x—znﬂ)_4‘2n(l_8l)
m-+i th ’

1

=t U((m-l—i—‘rl)/(m—i-i))(

where the last equality holds by Lemma 18 applied with v = (x — Z”ﬁ)/tf and
s=(m+i+1)/(m+i).
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Now for y > x consider
i+ 1
e P!
m-+1

By Proposition 13 (and Lemma 15), outside probability 4ex@.")?1/?)

b
20 =57

i+17 %

Zm (y) < tt"lU:L(tln) +6- 271(1781)’

1

while by Corollary 12, for ally such that

M gy <2
m+1i m
we have
y’t.n I’I’L+l+1 )
(M _onpy _
SZ/m< m—+i (X ) 4
2 (((m+i+1)/(m+i))(x—2”’3)—y)_2n<1—sl)

outside probability 8" exp(— (2" /m)*1/2); thus outside probability exp-22"¢1/5)
for n large,

it (m4i+1 "
2 = &3 (M- 20— y)
57'2}’1(1—81)
\ y 1 (m+i+D/m+i)x—2"%)—y
BK (Ul(i)_mwg( D) ))

But by Lemma 18 [withv = y/¢!, s —1=1/m +i andx = (x — Z”ﬂ)/t;’ SO
v—x=(y—x—2%)/1" > 2"¢-D sincey > x by hypothesis; observe also that
condition|v — sx| < 2(s — 1) is fulfilled] the last term is majorized by

m+i—+1x—2" 12
ff(U((m+i+1)/(m+i))( PASTRER— ) - (2'%7h) )

1

Thus we obtain, for large [outside probability exp-22'¢1/%) + exp(—c2"~1/m)]

that
m+i+1 ypt(m—+i+1
P ) e (P )]
( mLi (x ) >yzx Zti()’) Sz/m mri (x )=y

Now consider the exclusion process including the second class particle at site
Let the height process for this process be dengfexb that

n
Lty

, [z (u), for u < x,
Z () = Zp)+1,  for u>wx.
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The above calculations ensure that outside the same probability

m+i+1 "
()

m +
= ?lj}[e){z;’n ) — f;nl/tm (%(x -2 - y)}
= fgf{zﬁ" ) — Szyf/:;(%(x By Y)}
=z ("t 0 2)

This implies that the second class particle must be strictly to the right of site
(m+i+1)/m+i)x—2"¥) at timer” ;. In a similar way we obtain outside

probability 10 exjp—22¢1/5)

+ 1
(P )
i+1 m-+1
m+i+1 .
= (" wr2)
y,l‘fl + +1 nB )}
=supz;n(y) —éon /| ——————(x +2) —
supfzy () — 63 (Mo 27)

v, m+i—+1 nB )}
su n —&, | ————— &« +27) —
>y>f{zt, ) =6 /m< mLi (x )

and that the second class particle must be to the lefoft-i + 1)/(m +i)) (x +
2"y at times;’_;. From this the proposition follows easily[]

ProPOSITION 20. With probability 1 for n sufficiently large and for all
xel(1—2x1+25)2", (1— 2p — 26)2"[ which are vacant at tim@" for first class
particles

<Y m2"=F  vjandN >n.

r=n

‘XXZ(IN) X

ty

PROOF Let D™ be the event

A r

XM oy
r tr
i+1

then we have by Proposition 19 that (far< o andr sufficiently large)

or €1/3
P(D")<2- 2rexp< ( ) )

m

{Ely ell-22+82",(1-2p—-827,

S or(l- /3)}
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and so

(UG zampzenl-(3)")

r>n i=0 r=n

which tends to zero asbecomes large. So we have a.s./A@ufficiently large

e
U yDo does not occur

r>n j=0
and also
S m2rAh <,
r=n

Now notice that if forr >n andi € {0,1, 2, ..., m — 1},

X5 x
o

]

r—1
<Y m2 kAP 4 jprAp),

then by our choice ofi, (X*2'(¢/))/t/ €]1— 2A + 8,1 — 2p — 8] and so we
may apply Proposition 19 to the proce€¥*% (s)),s, = (XX"2 g ()17

and conclude that on eve®’)¢,

'Xx i (i)  x

r—1
= | = ZmZ_k(l_'B) + (i +1271P),

i+1

So we have, on the eve{U,>n U D”}C by induction orr andi, thatVr > n

and foreachi €{0,1,2,...,m — 1}

|Xx’2" 1) x
t o

]

Z””z kA=p) 4 jp—r(1=P)

<Z (27KA-P)) < 5. .

PROOF OF THEOREM 1. From the preceding result we have that a.s.nfor
large for everyx € 1(1 — 21 + 26)2", (1 —2p — 26)2"[

XREEy XE)
limsup———— — liminf ——— < 2§.
r—00 l‘; r—00 tjr-

From Lemma 17 we conclude that a.s. there ismago that for everyx e
11— 20+ 28)2", (1 — 2p — 26)2"|

X521 X521

limsup — liminf

t—00 t t—00

—6<38
5
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Therefore we conclude that the probability that

lim sup& — liminf X® > 35

t—>00 t i—oo  f

is bounded by
Iinnliorlf P(X(2")¢1(1—20+25)2", (1—2p —25)2"[) <48/(X — p).

Sinceé is arbitrary, we conclude that

. X(@) .
U= lim —= exists a.s.
t—oco t

and, sinceX(¢)/t converges in distribution td/[0, 1], we easily obtainU ~
Ulo,1]. O
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