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We consider random sequential ag#@n processes ere the initially
empty sites of a graph are irreversibly occupied, in random order, either by
monomers which block neighboring sites, or by dimers. We also consider a
process where initially occupied sit@nnihilate their neighbors at random
times.

We verify that these processes are well defined on infinite graphs, and
derive forward equations governing joint vacancy/occupation probabilities.
Using these, we derive exact formulae for occupation probabilities and pair
correlations in Bethe lattices. For the blocking and annihilation processes we
also prove positive correlations between sites an even distance apart, and for
blocking we derive rigorous lower bounéts the site occupation probability
in lattices, including a lower bound of/3 for Z2. We also give normal
approximation results for the number of occupied sites in a large finite graph.

1. Introduction. This article is concerned with certain Markov processes
with state spacg0, 1}V, whereV is the vertex set of a graph, in which the evolution
at each site o¥/ is monotonic in time and the stochastic rate of evolution at a site
is either a constant or zero, depending on the local configuration. Unusually for
interacting particle systems, the focus is not on equilibrium measures (owing to
the irreversibility) but rather on exact computation or estimation of probabilities,
in which more progress than usual can be made because of the simple form of the
interactions.

Two of the processes which we consider are versionsanflom sequential
adsorption (RSA), in which the graph represents an initially “vacant” surface
onto which particles are deposited successively at random, subject to an ex-
cluded volume effect whereby a deposited particle prevents new particles from
being deposited nearby. We considaanomer RSA with nearest-neighbor exclu-
sion/blocking (or blocking RSA for short) anddimer RSA. We also consider two
forms of annihilation process in which sites are initially alive and from time to
time kill their neighbors.

Interest in RSA from the physical sciences community is considerable: see the
1993 survey of Evans [7], and more recently, the series of surveys in Volume 165
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(2000) of the journalColloids and Surfaces A. The principal motivation comes
from the notion of particles being physically deposited onto a surface. Motivation
is discussed further in [19], where qualitative results are given for a class of process
which generalizes those considered here on the integer lattice. Continuum versions
of RSA are also of interest (see, e.g., [18, 20]) but are not considered here. The
annihilation process was introduced by O’Hely and Sudbury in [14], as a model for
the thinning of seedlings, where a plant can grow only by eliminating its neighbors.

In the present paper we consider general graphs (not only lattices). On the
qualitative side, we derive an existence result for these processes on infinite graphs,
forward equations governing the rate of change and a normal approximation
theorem for the sum of the states of the vertices of a large finite graph. On the
guantitative side, we derive explicit formulae for the occupation probability of
sites in regular infinite trees (Bethe lattices) and also for correlations between sites
in such trees. Moreover, we show that in the case of blocking RSA, these formulae
provide good rigorous bounds for occupation probabilities in lattices suzH as
comparing favorably to previously obtained rigorous bounds. The proof of these
results for blocking RSA uses a result on positive correlations between sites an
even distance apart, which is of interest in its own right.

A notable feature of these processes is that they can be interpreted in a
totally discrete manner. For finite graphs, they can be generated via a uniform
probability measure on the possible orderings in which a finite collection of
“events” associated with the vertices or edges of the graph can occur. For infinite
graphs, they may be obtained by taking a limit of finite graphs. Moreover, blocking
RSA and the annihilation process on graphs provide a method of generating
random independent sets of vertices, providing an alternative to the “hard-core”
model which has received recent attention from discrete mathematicians [2, 9, 22].

2. Definitions and main results.

2.1. Definitions for finite graphs. Let V be the vertex set, anél the edge set,
of a graph (we consider only graphs with no loops or multiple edges). We start
by defining our models in the case whéreis finite. Each of them is described
as a continuous-time stochastic procexg, t > 0) taking values in0, 1}V, with
X/ (v) = 1 having the interpretation that sitee V is occupied at time, and
X/ (v) = 0 having the interpretation that is vacant at time. For eachv, the
evolution of (X (v), t > 0) is monotonic, so that the value &f (v) changes at
most once during the entire evolution of the process.

Blocking RSA. Let the random variablegr,, v € V) be independent and
uniformly distributed on(0, 1), with t, representing the arrival time of a particle
at sitev. All sites are initially vacant, and site becomes occupied at timg if
and only if none of its neighbors is already occupied. If sithas one or more
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occupied neighbors at timg, the particle arriving at is rejected (blocked) and
there is no change to the state of the system at tingéhis is the nearest-neighbor
blocking/exclusion effect). Once occupied, a site remains permanently occupied.

Dimer RSA. Suppos€r,, e € E) are independent and uniform ¢@, 1). Here
7, represents the arrival time of a dimer at edgall sites are initially vacant.

Lete = {u, v} € E be an edge of the graph, with endpoint®. If sitesu andv
are both vacant at time,, then the dimer arriving at edgeat that time is accepted
and sites:, v both become occupied at that instant. If sites are not both vacant
at timer,, then the dimer arriving atis rejected, and nothing changes at time
Once occupied, a site remains permanently occupied.

Theannihilation process. Supposéz,, ¢ € E) are independent and uniform on
(0, 1). Herert, represents the time of occurrence of an “attack” along the edge

In this case each site is initially occupied. For each egdgdu, v}, if sitesu, v
are both occupied immediately prior to tinag then at timer, either sitex or site
v (each with probability 12) becomes vacant (i.e., one site “attacks” the other).
If u, v are not both occupied at timg, then there is no change in the state of the
system at that time. Once it becomes vacant, a site remains vacant permanently.

The multiple annihilation process (MAP). All sites are initially occupied,
and (t,, v € V) are independent and uniform a@, 1). At time 1, site v (if
still occupied) annihilates all of its neighbors and makes them all vacant, while
remaining occupied itself. 1o is already vacant at time, there is no change to
the state of the system at timg.

Although defined in terms of annihilations, the MAP is most closely related to
the blocking RSA process. To demonstrate this relationship and aid understanding
of the MAP, we introduce a further proce” , r > 0) with state-spacé0, 1, 2}V,
which we call theundecided site process (or USP for short). Sites in states 0, 1,

2 are interpreted as vacant, occupied and undecided, respectively. In the USP, all
sites are initially undecided (i.e., in state 2). If sitas undecided immediately
prior to timet,, then at that instant site becomes occupied and all neighboring
sites become (or remain) vacant. Otherwise, there is no change attime

With the undecided site process’ defined in this way, forn € V define
coupled{0, 1}V -valued processes, , ¢ > 0) and(Y,V, ¢ > 0) by

1) X ) =v"Vw) =2'w) it Z)(v) € (0,1},
2) X (w)y=1andy, (v)=0 ifz/ (w)=2

In other words, undecided sites count as occupied for the praqcgss: > 0)

and as vacant for the procesg,‘/,t > 0). It is not hard to see that with this
construction, the proce$s’,",t > 0) is a realization of the MAP andY,V,t > 0)

is a realization of the blocking RSA process. At the terminal time 1, there are no
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undecided sites left and therefore the ultimate state of each site is the same for
the coupled MAP and blocking RSA process, that¥g,(v) = ¥, (v) for all v.

In particular, the distribution at time 1 of the MAP and the blocking RSA process
are identical. In view of this similarity, we shall treat the MAP only briefly (in
Section 4.4).

2.2. Remarks. For each of the blocking RSA, dimer RSA and annihilation
processes, the evolution ()X,",t > 0) is determined by the order of occurrence
of the “event times”t, or 1, (together with the directions of “attacks” in
the case of the annihilation process). Since they are assumed independent and
identically distributed (i.i.d.), the “events” (arrivals of monomers, of dimers or
attacks depending on the model) are equally likely to occur in any possible order.
If we took the event times to be i.i.d. with some other nonuniform continuous
distribution functionF, then this would still be the case. In other words, changing
the distribution functionF amounts merely to a reparametrization of time. If
the distribution F were chosen to be exponential, then the time-evolution of
X/ = (X (v),v € V) would be that of a time-homogeneous continuous-time
Markov chain with state-spad®, 1}". However, in fact it turns out to be more
convenient to assume instead tlfais the uniform distribution on the unit interval
(0,1), in which case these processes run as non-time-homogeneous continuous-
time Markov chains.

Note also that while we could allow events to occur repeatedly at the same
location (e.g., monomer arrivals at the times of a Poisson process for each site), in
each model only the first “event” at any given location can possibly have any effect
(e.q., if amonomer arriving at a particular site is blocked, then any later monomers
arriving there are also blocked). Hence, only the time of the first arrival is relevant,
and as just mentioned, we can just as well (and do) take this to be uniformly rather
than exponentially distributed.

Owing to the monotonicity of the evolution, each process ultimately reaches a
jammed state by time 1. For blocking (resp. dimer) RSA, jamming means that no
vertex (edge) is any longer available to accept incoming particles. For annihilation,
jamming means there is no pair of adjacent occupied sites. Both blocking RSA and
annihilation produce a random independent set (in the graph-theoretic sense) of
occupied sites at time 1; for blocking RSA the set of occupied sites is independent
at all times. Of interest are the joint probability distributions of the states of sites
at jamming, and also the states of sites at intermediate times prior to jamming.

2.3. Extension to infinite graphs. Let us now consider our three main
processes on eountably infinite graph. While it is not hard to envisage that the
preceding definitions of our monomer, dimer and annihilation processes should
carry through to the case whelé is countably infinite, we need to check that
these processes remain well defined. Evans ([7], page 1302) appeals to general
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results from Liggett [11] to do this, but we prefer a more direct approach, since the
results in [11] are stated for interacting particle system&®émather than general
graphs, and for time-homogeneous Markov processes rather than inhomogeneous
ones, and in any case the direct approach is simpler here.

A sufficient condition for our processes to be well defined on an infinite graph
is obtained by assuming th&t has bounded degree. In this case, the following
result shows that we can define the blocking, dimer or annihilation procegs on
as a limit of processes on finite subgraphs.

For any sequence of set§V,),-1, we define the limit limin{V,) :=

liozl m;%o:n Vm .

PROPOSITION1. Suppose (V, E) is a countably infinite graph with vertex
set V and edge set E, with uniformly bounded vertex degrees.

(i) Suppose 1,,v € V, are independent and uniformly distributed on [0, 1].
Then, except on an event of probability zero, it is the case that for all v € V and
t € [0, 1] and for any sequence (V,,),,>1 of finite subsetsof V with liminf(V,) =V,
for blocking RSA the limit

3) X @) := lim (X" (v))

exists and does not depend on the choice of (V,,),>1.

(i) Suppose ., e € E, are independent and uniformly distributed on [0, 1].
Then, except on an event of probability zero, it is the case that for all v € V and
t € [0, 1] and for any sequence (V,,),,>1 of finite subsetsof V with liminf(V,)) =V,
for either dimer RSA or the annihilation process the limit (3) exists and does not
depend on the choice of (V,,),,>1.

We use (3) todefine the {0, 1}V-valued processX,,: > 0), for countably
infinite V. The almost sure convergence in (3) implies convergence of finite-
dimensional distributions in the sense that that for any finite set of pairs
(t1, v1), ..., (fx, vx) In [0, 1] x V, and any sequend&,),>1 of finite subsets o¥/
with liminf(V,) =V, it is the case that

. D .
(Xf\;n(vi)’lfffk)*(Xz‘;(vj),lsjsk) asn — oo.

Both in the preceding result and throughout this paper, we are adopting the
following notational conventions. Notation such¥sV, or W strictly speaking
denotes the vertex set of a graph, but often will also be used to denote the graph
itself. We often have occasion to consider one graph embedded in another; when
V ¢ W andW is the vertex set of a graph, then (e.g., for RSAGnwe assume the
graph structure of¥ is that induced by the graph structure ¥h In other words,

two elements oV are adjacent (in the gragh) if and only if they are adjacent in

the graphw.
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Another way to define the procesx),: > 0) on infinite graphs is by a
recursion which we illustrate only for the case of blocking RSA(tf, v € V)
has a local minimum at site, then denote sita) anaccepted site and denote all
neighbors ofw asrejected sites. Remove all accepted and rejected sites ffigm
and repeat. Continue indefinitely to generate a set of accepted sites. For each site
andr > 0, setX)’ (v) =1ifand only ifr > 1, and sitev is accepted; otherwise set
X/ (v) = 0. It can be shown that if is countable with bounded degree, the process
X/ generated this way is identical to that given in Proposition 1. For a continuum
blocking RSA model, a similar approach is used and described in more detail by
Penrose ([18], page 160).

2.4. Forward equations. Given a vertex se¥ of a graph, write dis, w) for
the graph distance between two element® o¥Ve introduce the notation

(4) Ne(v, V) :={w e V:dist(v, w) <k}, k>0,

for neighborhoods of vertices W, and write justV; (v) for M (v, V) if the graph
V is clear in the context.

The key to quantitative results is the fact that we can obtain differential
equations for the probability of vacancy at particular sites. We first give such a
result for blocking RSA.

PrROPOSITION2. Let V be finite or countably infinite with bounded degree.
Let W be afinite subset of V. Thenfor 0 <t < 1, for blocking RSA,

iP[X,V(u) =0,ve W]

) dt

=Y Px" " w)=0,we (WU M@ )\ {v)].
veW

We turn to the corresponding differential equations for dimer RSA and the
annihilation process. Consider first the special case of vertices of degree 1.

PrRoOPOSITION 3. Let V be the finite or countably infinite vertex set of a
connected graph with bounded degree and more than one edge. Let W be a finite
subset of V, and suppose each element of W hasdegree 1. Thenfor 0 <r < 1, for
dimer RSA,

iP[X,V(u) =0,ve W]

©) dr

=— > P\ (w) =0,we (WU M@ )\ (v}]
veW
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FiG. 1. Anexample of the construction of Gy . Here W isthe set of white verticesin the graph G
on the left, and W* isthe set of white vertices in the graph Gy on theright.

and for the annihilation process,

iP[X,V(u) =1l veW]
o
_ 1 3 Px M w) =1, w e (WU N, V) \ {v)].

2veW

The next result shows that the general case can be reduced to the case just
considered, of vertices of degree 1, by considering a modified gsaphwhich is
illustrated in Figure 1.

GivenagraplG = (V, E), and given a vertew € V of degreei (w), enumerate
the vertices inVy(w, V) asni(w), .. ., ngu)(w), and letG ) = (Vi) Eqw)) be
the graph that is obtained frod by replacing the vertexy with d(w) vertices
of degree 1, denoted, ..., vj(w), with v} connected tos; (w) by an edge for
1<i<d(w).

Given a finite subse¥ of V, letGw = (Vw, Ew) be the graph obtained from
by successively replacing each veriedn W by a collection ofd (w) vertices of
degree 1 as described above (the order in which the vertic®s are taken is
immaterial). In other words, defin@w for W C V of cardinality k, inductively
fork=123,..., by

(8) Gwogu (V) = (5W){w}-

For finite W C V, let W* be the set of vertices iﬁw which replace the original
vertices inW, a total of)_, . d(w) vertices. BothGy andW* are illustrated in
Figure 1.

PrROPOSITION4. Let G = (V, E) befinite or countably infinite with bounded
degree. Let W be afinite subset of V. Thenfor 0 < < 1, for dimer RSA,

9) P[X/(w)=0,veW]= P[XYW(U) =0,ve W¥]
and for the annihilation process,

(10) P[XZV(U):].,UEW]:P[XFW(U):]_’UGW*]
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2.5. Summary of exact resultsfor regular trees. Stochastic processes on trees
have been the subject of much activity in the probability community in the last
10-20 years. See, for example, [12, 17]. One reason for looking at such processes
is that they are sometimes more tractable than the equivalent processes on lattices
such aZ?, while providing some insight into the latter processes.

In Section 4 we consider our RSA and annihilation processes otkthel)-
regular tree (Bethe lattice), which we denote Byy This is a countably infinite
connected graph in which each vertex has degreel (k > 1 a fixed integer).

We shall give exact computations of probabilities Gnwhich we summarize as
follows.

For an arbitrary vertex of T, let «(¢) denote the probability that vertaxis
still in its initial state (vacant in the case of blocking or dimer RSATpnoccupied
in the case of annihilation of,) at timez. Let 8(z) be the probability that is
still in its initial state at timer for these processes on a graph obtained fiigm
by removing one branch from (in the case of blocking RSA) or by removing
every branch except one from(in the case of dimer RSA or the annihilation
process). We shall use the forward equations from the preceding section to derive
the following formulae fork > 2 (only the second line needs modification for
k=1):

Blocking RSA Dimer RSA Annihilation
B'(1)=—B)* B (1) = —B(n) B'()=—p)k/2

BO)=[1+ (k-1 YED gy =[14+*k-De]"YV* D (1) =[1+ (k- D)r/2]~ Y/ *-D
o (1) = -kt a()=pn)k+t a(n)=pnk+t

a() =31+ B

yielding the following numerical values for the occupation probability
P[x/*(v) = 1] at timer = 1:

Occupation probabilitiesat time¢ =1 on T

k  Blocking Dimer Annihilation

1 0.432 0.865 0.368
2 0.375 0.875 0.296
3 0.333 0.889 0.250
4 0.302 0.901 0.217
5 0.276 0.911 0.192
10 0.200 0.940 0.124
20 0.135 0.964 0.074
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The formulae above fow(z) have previously been seen in the literature, not
always in this form. In early work, Widom [23] gave an exact formula for the
occupation density for blocking RSA ib but later retracted this [24]. The correct
formulae are given, at least for= 1, by Evans ([5], page 2529) for dimer RSA,
by Fan and Percus ([8], equation (4.8), see also [6]) for blocking RSA and by
O’Hely and Sudbury [14] for the annihilation process. However, the first two of
these derivations are quite involved, and probabilists may find our derivation more
appealing.

We shall also give exact formulae for the covariances between the states of
different sites off, for each model. The formulae are given in Section 4, and in
this summary we just give some of the resulting numerical values of correlations
between two sites at time= 1. Clearly these depend only on the graph distance
between the two sites (and &t

Correlations

Blocking Dimer Annihilation
Distance k=3 k=5 k=3 k=5 k=3 k=5

—0.5000 —-0.3820 —-0.1250 —-0.0982 -—-0.3333 -—-0.2383
0.1760 01003 Q0070 Q0103 Q0758  QO407
—0.0474 —-0.0200 00085 Q0007 —-0.0130 -—0.0054
0.0103 00032 —-0.0041 -0.0005 00018  QO006
—0.0019 -0.0004 Q0012 Q0001 -—-0.0002 —0.0001

aprwnN -

See [16] for previous work on time-evolution of correlations for RSATgnWe
believe that our formulae for correlations1, k > 2, are new.

We note that the blocking and annihilation processes, but not the dimer process,
show a pattern with sites at odd distances being negatively correlated and those at
even distances being positively correlated. Next we note that correlations fall off
extremely fast, since they are truncations of the exponential series (see Section 4).
Also, correlations for the annihilation process are less than those for the blocking
process. This is because for one site to influence another, not only do the “events”
along a path between the two sites have to be in the correct temporal order, in the
case of the annihilation process they have to be in the correct direction as well.
Finally, the correlations fok = 5 are smaller than those fér= 3.

2.6. Bounds for bipartite graphs. A graph isbipartite if its vertex set can be
partitioned into two independent (in the graph-theoretic sense) subsets. The next
result says that for either RSA or the annihilation process, on a bipartite graph, the
states of sites an even graph distance apart are positively correlated and the states
of sites an odd graph distance apart are negatively correlated. This shows, among
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other things, that the pattern of positive and negative covariances for blocking RSA
or the annihilation process, seen in the table from Section 2.5, extends taradl
all distances (since any tree is bipartite).

THEOREM 5. Suppose V is the vertex set of a bipartite graph. For j =0,
1,...,k, suppose W; C V,withv; € W; and ¢; € [0, 1], and define the event E;
by

Ej:= (X, (v)=0}  if dist(v;, vo) iseven,
E;:={X, (=1}  if dist(v;, vo) isodd.

Then for either blocking RSA or the annihilation process,

k k
(12) P|:ﬂEji|zP[Eo]P|:ﬂEji|.
j=0

j=1

In Theorem 5, it is to be understood that the procesxévsf, t > 0) are defined
for all j in terms of thesame set of random arrival time&r,, v € V) (in the case
of RSA) and the same set of random arrival timgsand random directions of
attacks, along each edge (in the case of the annihilation process). The main case of
interest in Theorem 5 is whelir; = V for eachj, but we shall also use the result
in the more general form given.

Let us sayV is abipartite lattice if (i) V is the vertex set of a bipartite graph
and (ii) for anyvs, v2, wy, wo € V with v1 adjacent tovo andws adjacent towo,
there exists a graph isomorphism frdmto itself which sends; to w;, i =1, 2.
Examples include the integer lattiZé€ (with edges between each pair of vertices a
unit Euclidean distance apart), and also the hexagonal lattice (but not the triangular
lattice which is not bipartite). Various finite graphs are also bipartite lattices,
including any lattice torus and also the discreteube.

For a bipartite lattice, every vertex has the same degree. One of our main results
says that for blocking RSA on such a lattice, the exact values given in the table
for vacancy probabilities in the corresponding tree with the same vertex degrees,
provide upper bounds for vacancy probabilities for the bipartite lattice.

THEOREM 6. For blocking RSA on a bipartite lattice with vertices of degree
k + 1 wherek > 2, for any vertex v we have

-0 )
PIX; () =0]=5(1+ (1+ (k — H)n2/*=D )’

In particular,

PIx{(»)=0l< 31+ %%V soP[x){)=1231-k2*7D).
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In the special case of the square lattiZé, we havek = 3 so that by
Theorem 6,P[X/ (v) = 0] < % and the occupation probability at jamming
satisfiesP[Xf(v) = 1] > 1/3. Simulations suggest a value of approximately 0.364
([7], page 1292).

In the case of the hexagonal lattice, we have 2 so that by Theorem 6,
P[Xf(v) = 1] > 3/8, which compares favorably to the lower bound of 0.3596
provided (with a good deal of effort) by Caser and Hilhorst in [3]. Simulations
indicate a value of @79 [6, 7, 23].

For the integer lattice&3 andZ* we havek = 5 andk = 7, respectively, so
that Theorem 6 yields lower bounds faﬂ{Xf(v) = 1] of 0.2764 and (386,
respectively, compared to simulated values [7, 13].80@ and (264, respectively.

REMARK. Our attempts to obtain good rigorous bounds for the annihilation
process on bipartite lattices, using a similar argument to the proof of Theorem 6,
have not been so successful. See the remarks at the end of the proof of Theorem 6.

2.7. Results on normal approximation. The next result is a normal approxi-
mation result for the total number of occupied sites at tirna some (large) finite
setV for one of our processes on a (finite or infinite) graph with vertexiget
satisfyingV € W. We denote this quantity, (V, W), that is, set

(12) SV, Wy =Y X" .

veV

Let ®(-) denote the standard normal distribution function, and let@ardienote
the number of elements (cardinality) of a finite ¥et

THEOREM7. Let D > 2beafinite constant and let ¢ > 0. Then there exists a
finite constant C = C (D, ¢) such that for any finite V, any finite or countable W
such that V € W, and any graph with vertex set W and maximum degree at
most D, and all x € R, we have

‘PKS,(V, W) —ES(V, W))
Var(S;(V, W))

< CVar(S;(V, w))"®? (card v))L+e

< x] —d(x)

(13)

for any of blocking RSA, dimer RSA or the annihilation process.

Suppose we are given a sequence of pdirs W, ),>1, where for each, W, is
the vertex set of a finite or countable graph and< w,,, and cardV,)) — oo
asn — oo. For example,W, could be the same ag, for eachn, or all W,
could be the same infinite vertex s@t, containing all theV,. Under these
circumstances, Theorem 7 gives us a central limit theorem with error bound on
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the rate of convergence, provided thg have uniformly bounded degrees and we
have reasonably fast growth of \@&f(V,,, W,)).

It can be shown that Vas;(V,, W,,)) = O(cardV,,)), and one might expect
Var(S; (V,, W,,)) = ®(cardV,,)) which would be sufficient to guarantee a central
limit theorem from (13) with a rate of convergence datgd®~/2. The next result
guarantees that this is indeed the case forl.

THEOREMS8. Letre(0,1).Let D < oo. Thenfor any V. W with all degrees
in W bounded by D, for blocking RSA,

(14) var(S,(V, W)) = t(1— n)P*1(D + 1)t card V).

If thereare no isolated verticesin V, then for either dimer RSA or the annihilation
process,

(15) Var(s,(V, W)) > (1/2)t(1— H?P~12D — 1)~tcard V).

In the case = 1, certain counterexamples suggest that, at least for blocking
RSA or the annihilation process, there is no very simple condition to ensure
that Vai(S1(V, W))/cardV) is bounded away from zero. These are illustrated by
Figure 2 and described below.

For the first example, suppo%g is an arbitrary finite graph, and is obtained
by starting withVy and adding a “twin” vertex for each vertex W, with each
added vertex connected by an edge only to its twin. Ultimately, for each pair of
twinned sites exactly one of the twins will be occupied, so that the variance of
S1(V, V) is zero, for either blocking RSA or the annihilation process, although
V can be arbitrarily large.

For a second example, suppdggs an arbitrary finite graph, and is obtained
by starting withVy and adding for each vertexe Vy a pair of extra vertices’, v”,
with v" connected by edges only td and tov, andv” connected only t@ and
tov’. In other words, a triangle is appended to each vertex in the original gkgph
and again we conclude that the varianceSefV, V) is zero for either blocking
RSA or the annihilation process.

The first counterexample suggests that we may be in difficulties trying to find
lower bounds for VaiS1(V, V)) if all of V lies near to the boundary (i.e., to the
set of vertices of degree 1) while the second suggests that there can be problems if
V is not bipartite.

To give a sufficient condition for (14) to hold even foe 1, we introduce
further terminology. Let us say that a siten a graphW haspositive entropy if
(i) there exist at least two sites # that are adjacent to but not to each other

N 0 O 0 R VA A A A /A A

FIG. 2. Two graphs for which the ultimate number of particles deposited has zero variance.
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and (ii) there exists an independent subBgbf N3(v, W) \ NMo(v, W) such that
every vertex inN2(v, W) has at least one neighbor B),. We shall later calB, a
blocking set for v.

A sufficient condition forv to have positive entropy is thd¥ be the vertex set
of a bipartite graph and be a graph distance at least 3 from the boundaryof
[one can then takd, = N3(v, W) \ NMo(v, W)].

Denote the set of sites W with positive entropy byw+.

THEOREM9. Let D e N. For any graph W and any V Cc W with all degrees
in W bounded by D, for blocking RSA,
(1/2)D3(1+D)+1

DS(1+ D)2

and likewise there is a constant n > 0 depending only on D such that for the
annihilation process,

(17) Var(S1(V, W)) > ncard Wt nv).

(16) Var(S1(V, W)) > ( ) cardwtnv),

It should be possible to find an analogous result to Theorem 9 for dimer RSA,
but we have not done this.

We can easily deduce the following central limit theorem from the preceding re-
sults. LetV (0, o2) denote the normal distribution with mean zero and variarfce

THEOREM 10. Suppose (W,),>1 is a sequence of finite graphs with uni-
formly bounded degrees, and V,, is a sequence of subgraphs of W, and with
lim,_ . cardV,) =oco. Thenfor 0 <r <1,

St (Vs Wp) — ESi(Vy, Wy) 2 4 0.1)

vvarsS,(Vy,, Wy)
for any of blocking RSA, dimer RSA or the annihilation process. If, in addition, the
sequence of pairs (V,,, W,,) satisfies

liminf (card V,, N W,")/card V,))) > 0,
n—oo

(18)

then (18) also holdsfor ¢ = 1 inthe case of either blocking RSA or the annihilation
process.

Theorem 10 has some overlap with Theorem 2.2 of [19]. However, Theorem 10
addresses processes on general graphs whereas [19] restricts attention to certain
graphs embedded 4. Also, the proof of Theorem 10 provides a bound on the
rate of convergence, unlike the corresponding proofin [19]. On the other hand, [19]
is concerned with a more general class of processes than those considered here, and
provides information on convergence of rescaled variances (for the graphs covered

by [19]).
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Finally, we can give more explicit central limit theorems in the one-dimensional
case. LeZ be endowed with the usual nearest-neighbor graph structure (so that it
is isomorphic toTy from Section 2.5). LeL,, denote the seftl, 2, ..., n}, that is,

a line ofn adjacent sites if.

THEOREM 11. Letr € (0, 1], and let oé,_(t) = rte™ . For blocking RSA, as
n— oo

(19) n~vars,(L,,Z) — o2, (1),

(20) n~IVarS, (L, L,) — o2, (1),

(21) n (S, (L, Z) — ES;(Ly, 2)) 2 N (0,62, (1))
and

(22) n (S (L, L) — ES;(Lu, Lp)) 3 N (0,02, (1)).

Moreover, for dimer RSA and for the annihilation processthe results (19)—(22)still
hold with the limiting variance o2, replaced by o3, and o2, respectively, given
by

o (1) =4t o2 (t):=A+2)e ¥ —e7,

We note that using different methods, (19) was previously obtained, for blocking
RSA only, by Pedersen and Hemmer [16], and the specialicask of (20), for
dimer RSA only, was obtained long ago by Page [15].

3. Proof of existence resultsand forward equations.

Terminology. By a path of verticesin a graph we mean a sequence of distinct
vertices such that any two consecutive vertices in the sequence are connected by
an edge. By gath of edges, we mean a sequence of distinct edges such that any
two consecutive edges in the sequence have an endpoint in common.

PROOF OFPROPOSITIONL. (i) SupposéV c W’ C V, with W andW’ both
finite. Then forv € W, itis the case thax ¥ (v) = XV’ (v) unless there is a path of
verticesuvg, v1, . .., vy, Starting avg = v and ending at some verteyx € W \ W,
such thatr,, > 7,, > --- > 1, Since the only way that the effect of a vertex in
W’ \ W can propagate to is along such a path in reverse order.

Therefore, for infiniteV, a sufficient condition for the existence of the limit (3)
for v € V is the existence of a finite random varial®év) such that there is no path
(vo, V1, ..., V) IN V With vg = v, m > R(v), and witht,, > 7, > --- > 1, Since
in that case, the value of)" (v) will be the same for all finitéh ¢ V containing
all vertices within graph distanc®(v) of v.
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Let v € V. Since degrees are assumed bounded by a constant which we
denoteD, the number of distinct self-avoiding paths starting aif lengthm is
bounded byD™. For any such undirected pathy, v1, ..., v,), we have

Pltyy> Ty, >+ >1y,] =1/(m + 1)!

since any ordering of the times,;, 0 < j < m, is equally likely. Hence, the
probability that there is a path of lengith starting fromv with associated arrival
times in decreasing order is bounded®¥ /(m + 1)!, and by the Borel-Cantelli
lemma, the total number of paths starting frerwith associated arrival times in
decreasing order is almost surely finite; we can t&ke) to be the maximum of
the lengths of such paths. This goes for any V, and the existence of the limit
in (3) for all v, r follows.

(i) Given W ¢ W c vV, with W and W’ finite, and giverv € W, it is the case
that the value ofX,W(v) = XtW/(v) for dimer RSA, unless there exists a path of
edgese, ea, ..., e, that starts ab and ends at some vertex Wi’ \ W, such that
Tog > Toy > 00 > Tppe

We assert that there exists almost surely a random variRt{® such that
there is no path of length greater th&\v), starting atv, with all edge arrival
times along the path in decreasing order. The proof of this is the same as for the
corresponding assertion in the proof of part (i).

Then X,W(v) will be the same for all finiteW C V with W containing all
vertices a graph distance at magtv) from v. Hence, (3) holds for the dimer
process.

Next consider the annihilation process. Withw, W' as before, this time we
haveX (v) = X' (v) unless there exists a path of edgesey. .. ., ¢, that starts
atv and ends at some vertex Wi’ \ W, such thatr,, > 7., > --- > 7., and in
addition all “attacks” along the edges are in the direction of the path towards
Hence withR’(v) as defined for dimers, the annihilation proca’%(v) will be
the same for all finited C V with W containing all vertices a graph distance at
mostR’(v) from v. Hence, (3) holds for the annihilation process]

PROOF OF PROPOSITION2. SupposéV is finite or countably infinite with
bounded degree, arldl is a finite subseto’. Forve W and O<t <t +h < 1,
we have

P{X/w)=0,we W}n{X/),w) =1}]
= P[{ty e (t,t + R N {X) (w) =0, w € (WU N )\ {v}}] + o(h)
=hP[X) (w)=0,we (WUN®W)\ {v}|t, € (¢, +h]] + o(h)
=nP[X" " w) =0, we (WUNMW)\ {v}]+ o).
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Summing ovew € V we obtain

[{X%)_Owew (U{X,+h<v> })}

(23) veW

:h( > Px P w) =0,w e (WU N®@)\ {v}]) +o(h).
veW
Similarly, forO< h < ¢,

P[{Xtv_h(w) =0,weW}n ( U X = 1})}

veW

(24) = h( Z P[X V) =0, w e (WU N () \ {v}]) +o(h)

veW

- h( Y Px M w) =0,w e (WU N®©)\ {v}]) +o(h),

veW

where the last line follows from left-continuity in of P[X,V\{“}(w) =0,we
(WU N1(v)) \ {v}], which is easily seen. The result (5) follows from (23) and (24).
O

PROOF OFPROPOSITION3. LetV be the finite or countably infinite vertex
set of a connected graph with bounded degree and more than one ed@ebeet
finite subset ofV, and suppose each elementithas degree 1. Late W. Then
MN1(v) consists of a single vertex, denotedwhich is not itself inW (otherwise,

G would either be disconnected or have only a single edge). Then for dimer RSA,
writing e for the edggu, v}, we have

P[{X/ (w)=0,we W}n{X/, ) =1}]
(25) =P[{to € (t.t + h]} N {X) (w) =0, w € (WU M)\ {v}}] + o(h)

=nP[X, " (w) =0, we (WUNM®W)\ {v}]+ o).
Summing ovew € W, we obtain

P[{X,V(w) =0,weW}n ( U (Xin(v) = 1})}

(26) veW

=hn Y PIX M w)=0,w e (WUNMW)\ (v}] +oh),
veW

and by arguing as for (24) we also have a similar expression to (26) for

P[{ L pw)=0,we W} (U{X,(v) 1})]

veW
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Thus, we obtain (6) for dimer RSA.

For the annihilation process, given the event of an attack occurring along edge
{u, v} between times andr + h, this attack has contilbnal probability %2 of
being in the direction fromx to v, so that instead of (25) we obtain

P[{X) w)=LweW}n{X},) =0}]

= (h/2)P[x," " (w) =1, w e (WU M)\ {v}] + o(h).

The rest of the derivation of (7) for the annihilation process is the same as the
derivation of (6) for dimer RSA. O

PROOF OFPROPOSITION4. LetW be afinite subsetdf. There is an obvious
canonical bijection between the edgestbind the edges af y (see Figure 1),
and using this bijection, for either the dimer RSA or annihilation process there
is a coupling between a realization of the procesg,s > 0) and the process

(XIVW,t > 0) where we take the arrival time, to be the same for edgeof G
and for the corresponding edge@iy (and in the annihilation model, we take the
direction of attacks to be the same in both processes).

With this coupling, the state of each vertex V for the proces« is the same

as the state of the corresponding vertex or verticdgjirfor the procesé(,vw, up
to the instant when some sites W first changes state, at which point one may see
a difference between the coupled processes because only some of the Eijtes in
change their state.

Thus, with this coupling of processes, the first instant at which some sité in
changes its state in the procésg’) is the same as the first instant at which some

site in W* changes its state in the proce(s;svw), and therefore, regardless of the
coupling, the first instant at which some siteWhchanges its state in the process

(X)) hasthe same distribution as the firstinstant at which some si¥¢ ichanges

its state in the process(,vw). This is true for both dimer RSA and the annihilation
process, so that (9) and (10) hold]

4. Analysisof thek-tree. This section is concerned with deriving the results
for the case wherd is the vertex set of thé + 1)-regular treeT}, which were
summarized in Section 2.5.

It is clear that for each of the processes under consideration, for vertiaes
of T} the covariance oX,T"(v) andX,T"(w) depends omw, w only via dis(v, w).
We shall use the notation

(27)  Covim,1,Ty) := Cov(X,*(v), X[*(w)) if dist(v, w) =m.

Naturally Covm,t, T;) will also depend on whether we are considering the
blocking RSA, dimer, annihilation or multiple annihilation process.

Let 7 be the rootedk + 1)-tree, that is, the graph with a single vertex (the
root, denotedy) of degreek and all others of degree+ 1.
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4.1. Blocking RSA on T.

THEOREM12. For blocking RSA on Ty, it isthe casethat for arbitrary v € T,

(28) PIX[ () = 0] = 3(1+ (P[X,* (vp) = 0])?),
with
. . —1/(k—1)
(29) P[X,Tk (vo) = 0] — { (J;j' (k 1)t) ) > <,
e !, k=1.

In particular,

FA+,7HED) k> 2,
(30) P[X{ (v) =0] = 2 )

3(1+e7?), k=1.

PROOF Fix k, and defing3(¢) anda(¢) (for an arbitrary vertex € T;) by

(31) B(1)=P[X* () =0],  a():=P[X[()=0]

(clearly the second probability does not depend on the choiog dhe subgraph
of 7;* induced by removingy consists ofk unconnected copies df*, so by
Proposition 2,

(32) B () =—B1)"
with initial condition 8(0) = 1, together giving ug(z) = ¢~ for k = 1, and
%(ﬂ(t)l_k) =k—-1 = BOYF=1+k-Dr, k=2

and (29) follows.
In a similar manner to (32), we obtain

o (1) = =B
(33)

— BB (1) = %(ﬁ (;)2)

with «(0) = B(0) = 1, so thata(r) — 1 = (B(1)2 — 1)/2 and hencex(r) =
(B(1)2 +1)/2, that is, (28) holds. O

We now turn our attention to correlations between the states of two sifgs in
Recall the definition (27).

THEOREM 13. Letk > 1beaninteger, and consider blocking RSA on Tj. Set
B(t) := P[X,* (vo) = O]. Thenfor 0 < < 1, and for integer m > 1,

B(1)? & (2logB(r))ym 1t

4 T) = —
(34) Covim, 1, Ty,) 5 HXZ% 1]
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REMARK. In the casek = 1, using (29) we see that this agrees with the
formula of Pedersen and Hemmer [16] (our time parameteorresponds to
1 — ¢~ in their parametrization of time; see our remarks in Section 2.2).

REMARK. Inthe case where diat, w) = 1, our formula for the covariance in
Theorem 13 simplifies te-(1 — «(1))2, with «(¢) given in (31). This can be seen
directly since for monomer RSA on any gragh,X/ (v) = X (w) = 1] = 0 for
adjacent sites, w.

PROOF OFTHEOREM 13. Again definex(z) andg(¢) by (31). Set

u(r) = 2log(B(1)).

If k> 2, let T* denote an infinite tree in which a single vertex (the root,
denotedyg) has degreé — 1 and all the other vertices have degkeg 1. If k =1,
let 7;** consist of a single isolated vertex. Set

T**
y(@):=P[X,* (vo)=0].
Then by Proposition 2 and (32),

(35) y'(t)=-B0)t=u'(0)/2.
Sincey (0) = 1 andu (0) = 0, we obtain
(36) y()=14u()/2.

For integerm > 1, let 7%}, denote an infinite tree in which two vertices
(denoteduvg, v1) have degreé and all other vertices have degreer 1, and in
which dis(vg, v1) = m. Set

am (1) := P[X*(v) = 0 andX/* (w) = 0], v,we Ty, dist(v, w) =m,
Bu(®) = P[X]¥ (v) =0 andX,* w)=0],  we T}, dist(vo, w) =m,
T** T**
Ym () = P[X,;*" (vo) = 0 andX,"“" (v1) = 0].
Also setag(t) = a(?), Bo(t) = B(t), yo(t) = v (). Then form > 1, Proposition 2
followed by (35) yields

_ d
YL () = =280 Yym_a() = % = V1.

with y,,(0) = 1 andu (0) = 0, and withyg(t) = 1+ u(z) /2 by (36). This system of
eqguations has solution

1 um+1 m _.n

u
(37) szém-i-Zm,
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so thaty,, (1) — B(t)% asm — oo, as would be expected.
Now consides,, (¢). By Proposition 2 and (35), we have far> 1 that

B (@) = =B B_1(t) — BO Y1)

d 1
- 4bm = Z(Bm_1+€""*ym_1),
du 2

with 8,,(0) = 1 andu(0) = 0. This system of equations has solution
1 "out
=1 - u/2
o3 2

and asn — oo we haves,, — %(1+ B(1)2)B(t) = a(r)B(t), as expected.
Similarly for «,, (¢), by Proposition 2 and (35) we have

doty,
(38) ol (1) = —2B() Bu_1(t) = ;—u=e“/2ﬁm_1,

with &, (0) = 1 andu(0) = 0, giving us

14 (=)™ et Lm—1)/2] um—1—2n
PRSI T I
4 2 0 (m—1-2n)!

Hence,

u

: 1 :
lim o, = > + %(1+ sinhu)

m—0o0
2u u u
et 42" +1 e .
= = 5 (L+cosh) = M a1
so that lim,_, o0 @ (f) = a(1)2, as one would expect. This implies the covariance
between sites a distangeapatrt is

o0 um+1+2n

Covim, t, Ty) = am(t) — a(t)® = L >

20~ (m+1+2n)!

which implies the asserted formula (34)]
4.2. Dimer RSA on T;. In this section we derive the results for dimer
RSA analogous to Theorems 12 and 13 from the preceding section, namely,

(39) and (45) below fok > 2, and (40) and (46) fot = 1.
For dimer RSA oril, and for an arbitrary vertex of Ty, set

Tk Tkl
at) = P[X,*(v) =0], Bt) = P[X,* (vo) =0,
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whereTk1 has vertexvg of degree 1, all other vertices of degree- 1. Then the
graph(ﬁ){v} described at (8) hak + 1 components, each of them isomorphic
to 7;1. By Propositions 4 and 3,

a()=pO*, B0 =-p0),
and the solution to these [wilB(0) = 1] is
Bty =1+ (k—1yr) /Y,

(39)
a(t) = (1+ (k — 1r) " EFD/ED g s o
(40) By=e', a@t)=e ¥, k=1
Set

an () = P[X*(v)=0andX/*(w)=0],  v,we T, distv, w)=m
DeflneT1 to be the tree with verticesy, v1 of degree 1, with digtg, v1) =
and all other vertices of degréet 1. By Propositions 3 and 4 we haug, (t) =
B(1)* B (t), where
Tklm Tklm
Bm(t) = P[X,"" (vo) = X,"" (v1) =0].
Thenpg1(r) = 1 —t, and by Propositions 4 and 3,

(41) B () = =28 T B1(0).
To solve these, set(r) := 2logB(¢). Thenv/(r) = —2(1)* 1 and
dBm _ Bu(t)
(42) v Bm-1, m=>2,
with 8,,(0) = 1 and with
k oV (1-K)/2
ﬁ1=1—t=k_l— P k> 2.

For any constants, b, ¢, with ¢ £ 0, the solution to the system of equations (42)
with B1(v) =a — be'/¢ is

-1 m— 2 j 00
_av” me1 (v/c)’
(43) Pn= i T 2% — bc ,%:1 :

In the present case (fok > 2) we havea = k/(k — 1), b =1/(k — 1) and
c=2/(1—k) sothat

m—1 m—2 j
By (t) = k(2logB (1)) + ( 3 (2 |09/3(t))’>

m—-Dk-1 "\ Z !

1( 2 )m $~ (@=klogs)!

+ :
2\1—k i1 J!
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and hence fok > 2,
)Cov(m, t, Ty)

= (1) —a()? = BOHF (Bu(1) — B(1)?)

o[ k@logBn)" 1
=A ((m — Dtk —1)

(44

(49)

B % ((zlogﬂ(t»f_}( 2 )’"((1—k)logﬂ(r>>f)
j! 2\1—«k j! '

j=m-—1

For k = 1 we still have (41) with81(t) = 1 — ¢, but now we haved(r) = e, so
that3(¢) (for dimer RSA onTy) equalsy,,—1(¢) (for monomer RSA oy, as given
in Section 4.1), because they satisfy the same equations and agree-fbr Thus

120 -2y
Bn(t) = 5—— +>

n=0

’

n!
and hence, since (44) still holds foe= 1,
1(-20)" X (=2
(46) Cov(m,t, Ty) = —e X —% + Z ( 't) .
2 m! et !
By (45) and (46), for allk we have Covl, 1, Ty) = —«(1)2 which can also be

seen directly since for adjacent sites we haveP[XY(u) = Xf(v) = 0] =0 for
dimer RSA.

4.3. The annihilation process on 7. In this section we derive results for the
annihilation process analogous to Theorems 12 and 13, namely, (47) and (49)
below fork > 2, (48) and (50) foik = 1. For the annihilation process, wiﬂ)(1
as defined in the preceding section, let

Tk Tkl
a(t) = P[X;*(v) =1], B(®) = P[X;" (vo) = 1].

Then Proposition 4 gives us(r) = A(r)*™1, and Propositions 3 and 4 give us
B'(t) = —B(1)*/2. Also, B(0) = 1. Hence,

B(t) = (1+ (k — Dr/2) /D,

a(t) = (L+ (k — Dr/2)HDED 1 g> 2,
(48) Bny=e?  any=e, k=1
Let Tk{m be as described in the preceding section, and let

(47)

(1) == P[X ) =X w)=1],  dist(v, w) =m,

1

1
Bun(0) = P[X,“" (vo) = X, (v1) = 1.
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Thena,, (1) = B(1)% B (1), B1(t) = 1 —t, and by Propositions 3 and 4,

B () =—BO)* 1 Bu_at), m=2.
Letv(r) = 2logB(r). Thenv'(r) = —B(r)*~1. Hence,

d
dﬁm —ﬁm 1,
with
k+1 2 (1-k)v/2
pry=1—r1=""=_ % k=2

k—1 k—1

Using the general solution (43) with= (k + 1) /(k — 1) andb = 2/(k — 1), and
c=2/(1—k), for k > 2 we obtain

(k+1)logBt)"t ("2 (2logB(1))!
(m — DIk — 1) +<Z )

2 \" & (@- k)logﬁ(t))’
+(1—k> Zl J!

lgm(t) =

=

j=m—
so that fork > 2,
Cov(m, t, Ty)
= (1) — a()? = BO* (Bu(t) — B(1)?)

(k+1)(2logB(r))" 1
(m— D!k —1)

_ E: ((Zbgﬂanf (1fk)m(ds—kﬂpgﬁ0»f)).

|
j=m-—1 J:

(49) =ﬂ®%<

Inthe cas& = 1, we haveg,, (t) = —B,—1(t) with 1(t) = 1—r andg,,(0) =1
so that

B (1) = Z
and hence
ot —_J
(50) Cov(m, t, T1) = B(t) (ﬂm(l) — ﬂ(t) e’ Z ( jt,)
j=m+1 :

Whenm =t =1, (49) and (50) yield Caid, 1, Ty) = —«(1)2 for all k > 1. This
can also be seen directly since for adjacent sites in any graph, we have
P[X{ (u) = X{ (v) = 1] = 0 for the annihilation process.
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4.4. The multiple annihilation processon T, k > 2. In this section we derive
results for the multiple annihilation process (MAP)7j analogous to Theorems
12 and 13 from Section 4.1, namely, (58) and (63). We consider only the case with
k> 2.

We shall utilize the coupled construction of a realization of the MAP denoted
(X,V, t > 0) and a realization of the blocking RSA process denme‘él, t>0)in
terms of an undecided site process (USPJ,t > 0) with state spac¢0, 1, 2}V,
as described in Section 2.1. For any vertioes) € V, the identities (1) and (2)
give us

(51) P[z) (v) €{0,2}] = P[Y,” (v) =0],

(52) P[{z) () e{0,2}}n{z) (w)e{0,2})}]=P[Y, (v) =Y, (w)=0]
and

(53) P[z}/ (v) €{1,2}] = P[X} (v) = 1],

(64) P[{z) ) e{1,2)}n{z) (w)e{1,2}}] = P[X) (v) = X (w) =1].

With 7 defined in Section 4.1, we use the following notation. Fer{0, 1, 2},
define

Bty =Pz  wo)=i],  aG.0):=P[Z] ) =i].
The tilde indicates probabilities which refer to the USP. By (51),

(55) BO.0) + f2.1) = P[¥ (v) = 0] = B(1),
(56) &(0,1) +a(2.1) = P[Y,*(vo) = 0] = a (1),

whereg(t) anda(z) are as defined in Section 4.1 (and refer to the blocking RSA
process).

To remain “undecided” (i.e., in state 2) at timea sitev must haver, > ¢t and
must have all of its neighbors in state 0 or 2 at timeo that by (55),

@(2,0=1-0(B0,1)+B21)
Thus by (53) and (56), we have

k1 (ke

(57) PxXFw=1=a@n+ald,)=A-DBO* +1—a).

Substituting the formulae fo(r) and«(¢) derived in Section 4.1 into (57), we
obtain the following formula for the probability that a site is occupied for the MAP
in Ty, k> 2:

(58) Plxfw)=1= A - )1+ (k — 1) /D
58
+11- @+ k- )7,
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In order to calculate covariances, letw be vertices off}, with dist(v, w) =m.
Fori, j € {0, 1, 2}, define
& (i, j. 1) == P[Z[*(v) =i and Z/* (w) = j].

For v and w to remain undecided (i.e., in state 2) at timeequirest, > ¢,
7, >t and all neighbors in state 0 or 2 at timeHence by (51) and (52),

(59) @n(2,2,1) = (L —12B(1)* y_2(1),

wherey,, (t), m > 0, is as defined in Section 4.1, and sois given by (37), and where
we sety_1(¢r) = 1.
Next, we use elementary probability followed by (51) and (52) to obtain

&n(L,1,1)=1— P[Z/*(v) €{0,2)] — P[Z/*(w) € {0, 2}]
(60) + P[{z]*(v) € (0,2} N {Z[*(w) € {0, 2}}]
=1-—2a() + a,(t),

with «(z) anda,, (r) given in Section 4.1.
We obtainy,, (1, 2, ¢) indirectly, via a forward equation fa;, (1, 1, 7). Ash | O,
we have

PUZ50) = 25,0 = Y\ 2 ) = 2 (w) = 1]]
=2P[{Z/*w) =1} n{Z/*(w) =2} N{t <1, <1+ h}]+o(h)
=2n(1—n~tP[{z/ () =1} N {Z(w) = 2}] + o(h),
the last line arising because the conditional distributiorr,of given that event

{Z,T"(v) =1}N {ZtT"(w) =2} occurs, is uniform over the intervél, 1]. Thus,

%&m(l, 1,1 =2a,1,21)/1d-1).

Rearranging this identity and using (60) followed by (33) and (38), we obtain

an(l,2,t) = <¥)(—Zo/(t) +a, (1))
(61)
=1-0(BO T — BB Bru-1(1)),

with 8(¢) andg,, (¢) given in Section 4.1.
Combining (54), (59), (60) and (61), we obtain

PI{X/ () =1} N {x/* (w) = 1}]
=& (L1, 1)+ 20, (1,2,1) + @n(2,2,1)
=1—20(t) + om(t) + 21— D BOF (BE) — Bu-1(1))
+ (1A= D2BO Ym—2(®).

(62)
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Let Cowap(m,t, T) and Cowsa(m, t, T;) be defined as at (27), with respect
to the MAP and to blocking RSA, respectively. In particular, ReMim, ¢, Ty) =
am (1) — a(1)?. Using (62) and (57), we obtain

Cowmap(m, 1, Ty)
= P[{x"* ) =1} n {x/*(w) =1}] — (P[X[* (v) = 1])?
= Covrsa(m. 1, Ti) + 2(1— ) B () B(t) — Bu—1(1))
+ A= 02BD* (Ym—20) — B®)?).
In particular, Coyap(m, 1, T;) = Covrsa(m, 1, Ty), which is as it should be.

(63)

5. Proof of boundsfor bipartite graphs.

PROOF OFTHEOREMS5. First we consider the blocking RSA process. Define
the independerit’ (0, 1) variablesU,, v € V, by
Ty, if dist(v, vg) is even

Uv = . . .
1-1,, if dist(v, vg) is odd

We assert that forj = 0,1,...,k, the indicator of the evenEt;, defined by
E; = (X, (v;) = 0} if dist(vo, v;) is even, and byE; := {X,’ (v) = 1} if
dist(vo, v;) is 0dd, is an increasing function of the variablgs v € V. To see this

chooseany € V, let0<u < u’ <1 and fix numbers,, € [0, 1] forw € V \ {v}.
We assert that if

(64) {Up=u}n () {Up=uw) implies E; occurs
weV\{v}

then

(65) {Uy=u'} [ {Un=uw) implies E; occurs
weV\{v}

To see this, first suppose distvg) is even. Consider the effect of increasing
the value ofU, (and hence ofr,) from u to u’ while leaving the values of

Uy, w € V \ {v}, unchanged. This can change the valueX&f (v), If at all, by
changing it from 1 to 0. It can also directly affect sitesneighboringv, if at
all, by changingX,Wj (w) from 0 to 1. These sites, in turn, can affect some of the
sitesw at a distance 2 from» by changingXth(w) from 1 to O. In general, for
any w, t, the effect of changind@/,, from u to «’ on the value oT)(,Wf(w), if any,
can only be to decrease it if dist w) is even and can only be to increase it if
dist(v, w) is odd. The assertion that (64) implies (65) follows.

The argument is similar when dist vp) is odd. In this case, increasing the
value ofU, is equivalent to decreasing the valuergf and this can only increase
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the value ofX,Wf(w) when distv, w) is even and can only decrease the value
of X,Wj(w) when distv, w) is odd. Since digv, w) is even if and only if
dist(vg, w) is odd, we may conclude once again that (64) implies (65). This justifies
our initial assertion that the indicator of eveiy is increasing in the variablds,,

for each;.

The result (11) for the blocking process now follows from the Harris—
FKG inequality. The usual version of this result (see, e.g., [10]) gives positive
correlations of events which are increasing in a familyf@fl}-valued variables,
but the proof in [10] is easily adapted to the present case {Gii]-valued
variablesU;.

Now consider the annihilation process. We first consider a modified version
of this process, whereby for any pair of neighboring sites there is a random
timet,, uniform on[0, 1] at whichu annihilatew (if both sites were still occupied
immediately before time,,). It is clear that only the event at the minimum of
., tyu CaAN be effective. Therefore, this modified annihilation process is equivalent
to the one we originally defined, except that for each edge thedirisedistributed
as the minimum of two independent uniform variables(0yl), rather than as a
uniform variable on(0, 1). However, this, in turn, is equivalent to a time-change
of the original annihilation process, as explained in Section 2.2, and therefore it
suffices to prove the result for this modified annihilation process.

Let the uniform random variabld$, , be defined for each pair of neighboring
sitesu, v, by

Ly, if dist(u, vg) is even
1— 1,0, if dist(u, vg) is odd.

By the same argument as for blocking RSA, for eache indicator of evenk; is
an increasing function of the variabl&g,, and the proof of (11) for blocking RSA
carries through to the annihilation procesgl

qu =

PROOF OFTHEOREM 6. Supposé is a bipartite lattice and each vertex has
degreek + 1. Let vg be some arbitrary specified vertex @t let the neighbors
of vgp be denotedv, ..., 11 and let the neighbors af; (other thanvg) be
denotedws, ..., w;. Let V* denote the graplv \ {vo}, and letV** denote the
graphV \ {vg, v1}.

For the blocking RSA process, define

B(t) == P[X}" (v1) =0],
5(t) = P[X) (w) =X " (wp)=--:= X" (wp)=0],
() = P[X) (v) =X (v2) ==X, (n11) =0].

If we let & denote the event that, ..., w; are all unoccupied at timg, then
8(t) is the probability of eveng for blocking RSA onV \ {v1} with the value ofr,,



880 M. D. PENROSE AND A. SUDBURY

set to be (say) 2. Sinck; is increasing inr,,, 6(1) > P[€&] for blocking RSA on
V'\ {v1} without any condition on,,. Then by positive correlations between sites
at an even graph distance (Theorem 5), we have

8(1) = P[€]= B(1)*
so that by the forward equation (Proposition 2),
(66) (1) =—8(t) < —p0),
with 8(0) = 1. Hence,

d 1 1
i) =ik = =i

= PO mnres

(67)

Next, we assert that

(68) n(t) = 8(®p(1).

To see this, note that(r) is the probability of the intersection of evertsn B,
where we se#t := (X" (v41) = 0} and

B := {Xtv*(vl) = X,V*(vz) =...= X,V*(Uk) = O},
B — {XtV*\{vk+1}(vl) _ XtV*\{vk+1}(v2) L XtV*\{vk+1}(vk) =0}.

ThenP[B']1=4().

It is to be understood that, B, B’ are all defined in terms of the same set of
random arrival timesz,, v € V}. In effect, B’ is the event that for RSA ol *, if
we increase the value af, ,, to 2 (say) but leave,, v € V*\ {v11}, the same,
then we have sites, ..., v; vacant at time. Then we have the event equality

ANB=ANDRB,

since if A occurs, then increasing the valuewf, , to 2 does not have any effect
on the acceptances or rejections up to timat sites other thamg, 1 (since the
arrival at sitev; 1 was rejected even with the original valuemf ., at least if that
value was at most). EventsA and B’ are positively associated by Theorem 5, so
(68) follows.

Settinga(t) = P[X, (vo) = 0], by the forward equation (Proposition 2), along
with (68) and (66), we have

o' (1) =—n@t) < =8)BE) =B OB®).
Sincex (0) = (0) = 1, we then have

t t
() — 1= fo o () ds < /O B(s)B'(s)ds = 1(B(1)* - 1).
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so that by (67),

=51+ < 5(1+ - )
=2 2T Ar k- D@D ) O
REMARK. Forthe annihilation process, the argument up to a point is the same
as for the blocking RSA process. We have

]1/(k—1)

k+1 / _} k [7
=0 PO =-zp0° = 0= 2+ (k-1

Unfortunately, the two inequalities apar to be in opposite directions. In fact,

on square lattices simulations suggest th@) > the value on the tree (0.252 as
opposed to 0.25). This may make this approach difficult.

6. Proof of resultsrelating to normal approximation. To prove Theorem 7,
we shall use the following theorem on normal approximation of sums of locally
dependent random variables, which is a special case of Theorem 2.4 of Chen and
Shao [4].

LEMMA 14 ([4]). Suppose V is a finite set and {&,, v € V} is a collection
of random variables, each with mean zero and finite variance. For A C V set
Ea =) ,ca Xy, and suppose that Var(¢y) = 1. Let « be a constant.

Suppose that for each v € V there exist subsets A, € B, € C, of V such
that &, is independent of &y 4,, £4, is independent of &y g, &3, is independent
of &y\c, and cardC,) < «. Thenfor all x e R,

sup| P&y <x]1—®(x)| <752 Y E[|&,[%].

xeR veV

PROOF OF THEOREM 7. The argument is related to that used in [1] and
elsewhere for various geometrical central limit theorems, but here has no geometric
content.

Setm = cardV), and set

=41 ith § := .
r ogm Wi 12logD

Forv e V, setN, (v) := N, (v, W) [as defined at (4)], and set
Si=SWV, =Y x"w, 5= x""w),
veV veV
o = Var(s;), & :=+/Var(s)).

We start by observing that provided we takeéD, ¢) > 1, the estimate (13) will
trivially hold if o < 1. Therefore, in the sequel we may assume with no loss of
generality that > 1.
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For any two subset#/, U’ of V, it is the case thad_, .y X,N’(”)(v) and
Y v X;N’(")(v) are independent if the graph distance betwéénand U’
exceeds 2, because by definition the value H’;N’(”)(v) is determined by{t,, :
w € N, (v)} so thaty, .y X' (v) is determined by the variables,, w within
distance- of U, and likewise forl’.

Forv e V, setA, := Ny, (v), By, := Ny (v) andCy, := Ng, (v). Also, set

£, =5 1XYW — EX}P@)).
Then the conditions for Lemma 14 hold, with

«=maxcardCy)) < (1+ D + D?+...4+ D%) < por+l
ve

andE[|&,|3] < 6 ~2. Applying Lemma 14 gives us

sugP[(671(S; — ES))) < x] — ®(x)| < 75D*%+2%6=3m
(69) R
< 75D’m*+¢5 73,
We need to comparg to S; ando to &. By the proof of Proposition 1, for any
v e V we have

Px)Y ) #X" Y w)] <D /r!

(this holds for any of blocking RSA, dimer RSA or the annihilation process).
Hence

(70) P[S; # S < El|S, — S;[1<mD"/r! < K}/r!

for K1 := 3 D. Also, if we sett; (v) = (X;""" (v) — X}V (v)) we haveY, (v)| < 1
with P[Y,(v) # 0] < D’ /r! so that
<2m?D"/r! < 2K} /r!,

|Cov(S. S — Sl =D > Coux” (v), ¥, (w))

veV weV

where we seK» := ¢%° D, and similarly

IVar(S; — Spl =Y. > Cov(Y;(v), Y, (w))| < 2m®D"/r! < 2K5/r!.

veVweV

Hence,
162 — 02 =|2CoUS;, S; — ;) + Var(S, — S,)| < 6K5/r!,

so that

& 2
‘(-) = 1‘ <60 72K5/r!.
o
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By the mean value theorem, fare R there exists" = C(«) such that

~ o
(71) <z) — 1’ S ma)<(|(1+60—2K£/r!)a/2 _ 1|’ |(1_ 60'_2K£/r!)0’/2 - 1|)
o
ECO‘_ZKé/r!,

Now consider arbitrary € R and sely := xo /6. Then by the mean value theorem,
with ¢ denoting the standard normal probability density function, we have

[P () — ()] < |y — x|p(min(x], [yD)
= (max(|x|, [y]) — min(|x], [yD)#(min(|x], [y])

- max(i 1,2 - 1) minlx]. |y (min(xl. [y])

o3
=257 /.
<Co “K,/r!,

where we have used (71) and the fact that jafu¢(u)} < 1. Using
(69) and (71), we then obtain

|Plo~(S, — ES)) <x]— ®(x)]
<|P[G7HS, — ES) <yl = @(3)| 4+ D () — D(x)]
<75D’m™ 631+ Co 2K} /r!) + Co 2K}/ r!

< C'mites—3,

(72)

where in the last line we have used the assumptiondhatl and the (easily
proved) fact that < m.
Next, forx € R we use (70) and (72) and the fact tlaak m to obtain

|Plo™1(8 — ES;) < x]— ® ()]
<|®(x+0"HES, — ES))) — ®(x)|
+|Plo7Y(S, — ES) <x+0 HES, — ES)]
—®(x + 0 YES, — ES)))|
< (@K /r) 4+ 'm0 =mo3(C'm® + (K} /r))o?/m)
<mo3(C'm® +mK}/r!) =mo~3(C'm® + K5/r)),

since K> = K1eY/%. Hence, (72) remains valid witlES, in the left-hand side
replaced byES; (and also with a change of constant). Finally, by (70) and the
fact thato <m,

m~ o3| Plo 1S, — ES;) <x] — Plo ™S, — ES;) < x]|
<m 3PS, # 51 < C'(K5/r)
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(with K3 := ¢%° D) which is also bounded. Hence, having repladgs] by ES;
in (72), we can also replac® by S;, completing the proof. [

PROOF OFTHEOREMS8. LetO<r < 1,letW be the vertex set of a graph with
degrees bounded by and letV C W be finite; sein = card'V).

First consider blocking RSA. Choose an independent 9atV with at least
m/(D + 1) elements; this is possible by a greedy algorithm.

For v € I, let Y, denote the indicator of the event thaj > ¢ for w ¢
N1(v, W)\ {v}. Then

(73) EY Y, > (DLH)(l—z)D.

vel

Let # be theo -field generated by the values Bf, v € I along with the values of
T w € W\( U wl(v))).
{vel: Y,=1}
Then, settings, := S, (V, W), we have
Var(S;) = Var(E[S;|¥ 1) + E[Var(S;|F)]
> E[Var(S;|F)].

(74)

If we are given the values of,, v € I, along with the values ot,, for w €
WA\ (Uper: v,=1;(N1(v))), then the remaining variability of; comes only from
the values ofX, (v) for v € I with Y,, = 1. For suchv, sitev contributes 1 td; if
7, <t and contributes 0 t6; if t, > . Hence,

var(S;| ) :Var(Bin(Z Yv,t)> =1(1—-0)) Yy

vel vel

so that by (73) and (74),
Var(S) > t(1—0EY Y, >t(1—0m@1—-n"/(D+1),

vel

which completes the proof of (14) for blocking RSA.

The argument is similar for dimer RSA. Choose an independeiit sétdges,
each incident to at least one elementigfwith at leastn/(2D) elements ofl’,
using a greedy algorithm and the assumption that there are no isolated vertices
in V. For each edge € I, let Y, be the indicator of the event that > ¢ for all
edgesf adjacent tee. The rest of the argument proceeds much as before.

A similar argument applies for the annihilation process. The factgiM) is
included in the right-hand side of (15) because edgek might have only one
endpoint inV. We do not give details for this casel]



DEPOSITION PROCESSES ON GRAPHS 885

PROOF OF THEOREM 9. SupposeV C W, whereV is finite and W is
the finite or countable vertex set of a graph with all degrees at mosthen
card N5(v, W)) < DS for all v € V. Recall thatW+ denotes the set of sites I
with positive entropy. Using a greedy algorithm and the bound on degrees, choose
a collectionJ of sites inV N W, all lying a graph distance at least 6 from one
other, and satisfying

cardVNw™)
D6 '
Forv € J, let Z, be the indicator of the event that for all sitesn the associated

blocking setB, (see the definition of positive entropy in Section 2.7), we have
Ty < 1/2,andt, > 1/2 for x € (N (w, W)) \ {w}. Then

(75) cardJ) >

(76) P[Z,=1]> (%)DS(“D).

Let £’ be theo -field generated by the values®f, v € J, along with the values
of

tw,weW\< U (,Nl(v)U{v}))

(veld: Z,=1}
Then, as at (74), settingy := S1(V, W) we have
(77) Var(S1) > E[Var(S1|F)].

If we are given the values of,, v € J, along with the values ot,, for w €

WA (Upes: z,=1;(M1(v) U {v})), then the remaining variability of; comes only
from the values of X,,, w € N1(v, W)} with v € JandZ, = 1. For suchv, pick
u, u’ adjacent ta but not to each other. The collection of sit&s(v) contributes 1
to S1 if 7, < MiNyen )\ (v} Tw [@n event of probability at least/1D + 1)], and
contributes at least 2 t§1 if max(z,, 7)) < min{r,:y € N1(v) \ {u,u’}} [an

event of probability at least(® + 1)~2]. For any random variabl& we have
Var(X) > (1/4 min(P[X > 2], P[X = 1]). Hence,

Var($1|#) = 3(D+ 172y 7,

velJ

so that by (75) and (76),

(1/2)D3(1+D)+1 cardV N W+)
D8(D +1)2 ’

1
var($y) > E(D + 1)—21%; E[Z,] >

which completes the proof of (16) for blocking RSA. The proof of (17) for the
annihilation process is similar.[]

PROOF OF THEOREM 11. By Theorem 7, it suffices for us to prove the
convergence of variances (19) and (20) for blocking RSA, along with the
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corresponding convergence of variances for dimer RSA and for the annihilation
process.

We first show the equivalence of (19) and (20). hét:= Xf” @ — XtZ (i). Then
|A?| <1 and by the argument in the proof of Proposition 1, for any of blocking or
dimer RSA or the annihilation process we have

P[A} #£0] < 1 + 1

n+1-0)
Since|A| <1, we have

|Cow(A], A)| < E|AT A%+ E|A]|E|AT| < 2min(P[A] # 0], P[A'} #0)).

Hence Vap_7_; A? = O(1) since

n
vard Al = Z Z Cov(A}, A)
i=1

i=1j=1

1 1 1
<23 (G G i )

i=1j=1

<8 Z Z mm( )

i=1 j=1

Hence, if (19) holds, then by the Cauchy—Schwarz inequality

n
Cov( > AL Si(Ly, Z)) =0@m?
i=1

and sinceS; (L, L,) = S;(L,, Z) + >_7_, A", we obtain

VarS;(L,, L,) —VarS;(L,, Z)

n n
(78) =Var) A} +2Cov > A7, Si(Ly, Z))
i=1 i=1
= O(nl/z),

so that (19), if true, implies (20). Similarly (20), if true, implies (19).
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Define Co\m,t) := Cov(m,t,T1) as given by (27), with Cad,r) =
VarX,Z(O). Then by translation invariance,

nVar(Si(Ly, 2)) = n71Y "> Cowi — jI, 1)

i=1j=1
n—1

(79) = COWOJ)+2n_1§:Or—m)COWm,0
m=1

o
— Cov(0,1) +2 ) Cov(m, 1),
m=1
where the last line follows from the dominated convergence theorem.
In the case of blocking RSA, using Theorem 13 along with the éasel
of (29), and collecting terms, we obtain

o0 _Zz oo 00 2t r+1+2n
> Cov(r,1) = — (=21)

N e

o Z B9 )

evenm>0 oddm>0

e—Zl‘

=- (—2te™% — sinh(—2r)).

Also, by Theorem 12, Ca®,¢) is the variance of a Bernoulli variable with
parametefl + ¢~%)/2, so that

1—e ¥

1 _
Com0, 1) = (1 + e Hl—e?)= —
and combining this with (80), we see that the limit in (79) equals¥, which
gives us (19) as required for monomer RSA.
In the case of dimer RSA, by using (40) and (46), and some routine algebra
which we omit, we obtain

=e¢ % sinh2t)/2,

0
Cov(0,1) +2 ) Cov(m, t) = 4te™™

m=1

so that by (79)0|§| = 4re~* as asserted. In fact, this can also be derived from the
blocking RSA result by a duality argument; dimer RSA on a row: afertices is
equivalent to blocking RSA on a row af — 1 vertices, where each site for the
blocking process corresponds to a bond (edge) for the dimer process, and hence
an occupied site in the blocking process counts as a pair of occupied sites in the
dimer process, so that(L,, L,) for the dimer process has the same distribution

as 25,(L,—1, L,—1) for the blocking process, and hengg (1) = 403, (1).
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For the annihilation process, using (48) and (50) along with (79) we have

3 = o (=)
opn (1) =Cov0, 1) +2 ) Covm, N =e'(1—e) =27 ) !
m=1 m=1 jom+1 Jj!

e e —2e—’( > > o)

il |
m=1j=m J: m=1 m:

—e !l _ o2 + 27! (e_t —-1- 3 ﬂ)

= (-

:e—zt _e—t -{-2[6_2[,

as asserted.(d
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