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THE STEPPING STONE MODEL. IlI: GENEALOGIES AND
THE INFINITE SITES MODEL

BY ILJIANA ZAHLE,! J. THEODORECOX? AND RICHARD DURRETT
University of Erlangen, Syracuse University and Cornell University

This paper extends earlier work by Cox and Durrett, who studied the
coalescence times for two lineages in the stepping stone model on the two-
dimensional torus. We show that the genealogy of a sample ofnsize
given by a time change of Kingman'’s coalescent. With DNA sequence data in
mind, we investigate mutation patterns under the infinite sites model, which
assumes that each mutation occurs at a new site. Our results suggest that
the spatial structure of the human population contributes to the haplotype
structure and a slower than expected decay of genetic correlation with
distance revealed by recent studies of the human genome.

1. Introduction. Sequencing of the human genome revealed [see Reich et al.
(2001)] a slower dcay of linkage disguilibrium (carelation) with distance along
chromosomes than predicted by earlier theoretical studies [Kruglyak (1999)]. This
correlation is visible in samples as “haplotype structure”: sequences can be divided
into blocks where there are only a small number of overall mutation patterns
(haplotypes); see, for example, Patil et al. (2001). The mapping of genes that cause
disease is often done by whole genome association studies that look for regions
where there is a correlation between the states of genetic markers and the presence
of disease, so it is important to understand the causes of linkage disequilibrium.
For surveys, see Ardlie, Kruglyak and Seielstad (2002), Nordborg and Tavaré
(2002), and Pritchard and Przeworski (2001). Fixation of beneficial mutations
in a population can create haplotype structure [see, e.g., Sabeti et al. (2002)].
However, the use of haplotypes from a chromosome 21 region to distinguish
multiple prehistoric human migratiorjsee Jin et al. (1999)indicates that the
spatial structure of the human population plays a role as well.

In this paper we investigate properties of DNA sequences sampled from a
population that evolves according to the stepping stone model. Following Cox
and Durrett (2002), we represent space as the tanus), which consists of the
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points in(—L/2, L/2]? with integer coordinates, and we suppose that at each point
x € A(L) there is a colony consisting @f diploid or 2N haploid individuals,
labeled 1...,2N. In contrast to the previous work, we suppose that the population
evolves in continuous time, that is, we use the Moran model rather than the one
of Wright and Fisher. In a colony witiv diploid individuals, the &/ copies of
the genetic locus are grouped into pairs that are replaced simultaneously. This
little bit of realism does not change the properties of the model very much, but
adds annoying complications to the proofs, so we follow the common practice of
assuming that individuals are a random union of gametes, that is, we suppose our
colonies consist of ® haploid individuals.

Ignoring mutations for the moment, in the Moran model each of the individuals
in the system is replaced at rate 1. With probability & (v € (0, 1]) it is replaced
by a copy of an individual that is chosen at random from the colony in which
it resides. For convenience we allow the departing individual to be chosen. With
probability v the departing individual from colony is replaced by one chosen
at random from a nearby colony # x with probability ¢g(y — x), where the
differencey — x € A(L) is computed componentwise and modiloLet

px,y)=A-=v)I(x,y)+vg(y —x),

wherel (x, y) = 1if x = y and 0 otherwise. We have separated the kernel into two
parts since we are interested in limits As~> oo in which the migration rate

may converge to 0, but(z) is a fixed displacement kernel. We suppgsge) is an
irreducible probability distribution o&2 with ¢ ((0, 0)) = 0 that has the following
properties.

1. 72 symmetry: q((x1, x2)) = q((—x1, —x2)); q((x1, x2)) = g ((x2, x1)).
2. Finiterange: g ((x1, x2)) =0 if sup |x;| > K for somek < oco.

We suppose thal. > 2K so that we do not get confused when we try to
define the corresponding random walk transition probability on the torus. The
first assumption implies that a single step taken according bas zero mean
and covariance?l, whereo? = Y, ;2 x2q(x) = 3, .72 x3q(x). The finite range
condition impliess 2 < .

To study the behavior of the stepping stone model, we work backwards in time
to define a coalescing random walk. When an individual is replaced, its lineage
jumps to the one it was replaced by. The history of one individual is thus a
random walk. When two lineages come together in one individual they never again
separate, so the collection of lineages is a coalescing random walk. As we work
backward, lep be the amount of time required until the two lineages first reside in
the same colony and lgj be the total amount of time needed for the two lineages
to coalesce to one. We begin by considering a sample of size 2, one chosen at
random from the colony at 0 and the other an independent choice from the colony
atx. Let P, denote the distribution of the genealogy in this case.
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Ouir first result extends Theorem 5 of Cox and Durrett (2002) by giving more
refined information about small times. Fo0§ < 1 andc > 0, letI"(L, ¢, §) =
(L%/logL,cSL%logL).

THEOREM 1. Supposethat 2Nvro?/logL — « € [0, o0) as L — oo, where
N and v depend on L. For any fixed 8o > 0,as L — oo,

L%
Px<to> —)— pra —

sup sup o

Bo<p=<y=1|x|el(L,c,B)

If the number of haploid individuals per colonWw2= 1, v = 1, andg assigns
probability 1/4 to the four nearest neighbors, thea= 0, which is closely related
to a result of Cox and Griffeath (1986) for the voter modelZ#h Indeed their
result extends easily to the torus since at tibf& /2v with y < 1 the particles do
not realize they are not df?.

Let h; = (1 + a)L?logL/(2no?v) and supposex;| € I'(L,c, B). The
behavior for larger times as given by Theorem 5 of Cox and Durrett (2002) is

2

(1.1) Px<to>%+hu>—> f_i_ze_’.

Here we have added the terfti?/2v = o(h;) to the Cox and Durrett result

so that the times covered by the two results are disjoint. Note that there is

a correction to Theorem 5 of Cox and Durrett (2002): In the assumption,

lim; o 2Nmo2v/logL = « has to be replaced by lim, o 4N7o2v/logL = «.

However, in the continuous time model, the first assumption is the correct one.
Ouir first step in studying the genealogies is to suppose that the random sample

is spread out across the torus. Iggt., n, 1) be the set of alk-point sets where

the distance between all points is at leAglog L, that is,

G(L,n,1)={A={x1,...x,}:Vi,x; € A(L),
Vi j,|xi—x;| > L/logL}.

Let £, (A) be the coalescing random walk wi§g= A and letD, be the pure death
process that makes transitions fram- k£ — 1 at rate(’é) with Do = n. In words,
D, gives the number of lineages at timen Kingman’s coalescent.

(1.2)

THEOREM?2. Supposethat 2Nvro?/logL — « € [0, o0) as L — oo, where
N andv dependon L. As L — oo,

sup sup | Pa(
t>0 Ae§(L,n,1)

Shye| = k) — Pu(Dy = k)| — 0.

In the nearest neighbor case wittv2= 1 this is due to Cox (1989). To
express the conclusion in biological terms, we note that in a homogeneously
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mixing population that consists of a total #f diploid or 24 haploid individuals,

the genealogy on time scaleVZ converges to Kingman’'s coalescent. Thus for
samples with one individual taken from a collection of colonies 4(L,n, 1),

our spatial model behaves like a homogeneously mixing population with “effective
population size”

L?logL ~ NL2. 1~|—a.
Aoy 20

In many genetic studies, sampled individuals are not chosen randomly across
the planet. For example, one of the samples in Sabeti et al. (2002) consists of 73
Beni individuals who are civil servants in Benin City, Nigeria. For such a sample,
the setup of Theorem 1 is more appropriate. §éL,n, ¢, §) be the set of all
n-point sets where the distance between all points I(ib, c, ), that is,

G(L,n,c,8) ={A={x1,...x,}:Vi,x; € A(L),
Vi#j|x— x| €T(L.c,8)).

(1.3) Ne=(1+a)

(1.4)

THEOREM3. Supposethat 2Nvro?/logL — « € [0, 00) as L — oo, where
N and v depend on L. For any fixed 8o > 0,as L — oo,

sup sup  [Pa(|¢r2r )| = &) = Pu(Diog((y+a)/(+ay = k)| = O,
Bo<B=<y=<1AeG(L,n,c,pB)

sup  sup  [Pa(|¢r2/@u+n.el = &) = Pu(Diog(a+ay/(p+ap+t = k)| = O.
t>0 AeG(L,n,c,B)

Again, in the nearest neighbor case withi Z 1 the first part is essentially due
to Cox and Griffeath (1986). Our result shows that until tifit¢2v, the particles
behave as if they are di? and then they evolve as predicted by Theorem 2. To
prove this result, it is enough to prove the first conclusion and that the configuration
at time L?/2v satisfies the assumptions of Theorem 2. The proofs of Theorems
2 and 3 show that when there &réineages remaining, a(f;) pairs have an equal
chance to be the next to coalesce, so the partition structure induced by coalescence
is the same as in the homogeneously mixing case.

In Section 2 we use Theorems 1-3 to compute various quantities of interest in
genetics. Our aim there is to argue that in a population that follows the stepping
stone model: (1) genetic correlation decays more slowly with distance along a
chromosome than in a homogeneously mixing population and (2) the unusual time
scaling beford.2/2v can cause haplotype structure. The remainder of the paper is
devoted to proofs. Theorems 1-3 are proved in Sections 3-5, respectively.

2. Applications. In this section we investigate the impact of spatial structure
on the DNA of a sample of: individuals. Since any two humans differ in
about /1000 nucleotides, we use the infinite sites model which assumes that each
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new mutation changes a different nucleotide. Some of the formulas we derive are
somewhat complicated, so it proves useful to have a concrete example to which
to apply our results. The following scenario is motivated by thinking about the
human population before it emerged from Africa 100,000 years ago. Our purpose
here is not to fit the model to existing data,; it is only to show that the stepping
stone model can produce patterns that are qualitatively similar to those found in
the human genome.

Concrete example. Let L = 100 andN = 5, so the total population size
NL? = 50,000. We choose a migration rate= 0.2, which corresponds to an
average ofVv = 1 migrant per generation, and $et= 2. In this case,

_2(5)7(2.0)(0.2)
T 46052

so the effective population size (% + o) /2« = 0.68323 timesVL? or 34,162. To
pick a value ofg, we recall Sabeti et al.'s (2002) sample of civil servants in Benin
city and somewhat arbitrarily sgt= 0.4.

Theorem 3 implies that if we have a random sample ¢(L,n,c, 8) and
change variables

~ 2.7288

L%
z—elog(aig) forg <y <1,
v
2.1) *
L2+(1+ )LZIOgL lo <a+1)+ fors >0
— —5 >
2v « Znazvs g + B s =5

then the genealogy of our sample is that of the ordinary coalescent.
In the example the probability that two lineages do not coalesce byZt#y2v
is
o+ p
o+
which corresponds to time 164)/0.83909 ~ 0.17544 in the coalescent. If we look
at Table 1 in Sabeti et al. (2002), then we see that their sample of 60 Benis produced

seven core haplotypes that gave an allelic partition of 14, 13, 10, 10, 9, 3, 1. To
compare with our model note that (1) the fraction of pairs that have coalesced is

14(13) + 13(12) +10(9) + 10(9) + 9(8) + 3(2) ~ 596
60-59 3540
and (2) the expected time for a sample of size 60 to be reduced to seven lineages is

~ 0.83909=1 - 0.1609]

=0.168

60 60 2 2

-1 2 2
Z(;) _ - Z=C_ = —-025238
k=8 k-1 kT 60
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It is useful to reexpress the time change (2.1) in termg ®f as

t L% logt
—=— forﬂgyslimplies)/zﬁ,
(2.2)
L _ i + 1+ ) ZIOQL impliess = (1 — L?) no”
2 2 e pliess = 1+ a)L2logL’

Thus forL.?? <t < L?,

Y a+p
(2:3) P<to = Z) ~ @ +logt/(2logL)’

while for ¢t > L2,

¢ Ol+,3 7T02
(2.4) P(tozg) a+1eXP< ¢-1L )m)

Recombination. The results above apply to tracing the history of a single
nucleotide. To study the decay of genetic correlation with distance we need to
investigate the relationship between the genetic history of two different nucleotides
separated by a certain distance on a chromosome. To build a mental picture of
the process, think of the copies of the first nucleotide as red balls and of the
second nucleotide as blue balls. Initially we haveed—blue pairs that represent
the initial sample. If we trace back the lineages of the blue balls, then we get a
coalescing random walk in which a lineage jumps froe y when the individual
at x is replaced by an offspring of the one st The same is true for the red
balls, but the genealogies of the two colors are coupled. On a given jump, for a
red—blue pair, both will be inherited from a single parent with probability A
or, with probabilityr, a recombination will occur and the two will be inherited
from independently chosen parents. Our next result gives the probability of no
recombination before coalescence (NRBC) in a sample of size 2Zugt=

BV '029}%/2) A1, wherea v b = maxa, b} anda A b = min{a, b}:

P(NRBC) ¢ ¢~ "L#/v _ g=rL# /v _ p=rL2/v a+p
o+ L(u)

(2.5) (s o2,
(a+1) /(r+m)'

PROOF OF (2.5). If we condition onzy, P(NRBC|tp) = exp(—r(2fg)) =
exp(—(r/v)(2vtp)). Lettingu = r /v we have

(2.6) E exp(—u(2vip)) = /OOO e " PQutg=1t)dt.
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Integrating the above by parts equals
o0
1—/ ue “'P(2vig>t)dt.
0

Using (2.3) and (2.4) and changing variables s + L2 in the second integral, we
have
o0
/ ue "'P(vtg>1)dt
0

2

L
2.7) ~1—exp(—uLl?’) + , ue_“t%dt
L% o+ 2logL
o+ ,3 o 2 % 7T02 )
exp(—u(L expl —s————|d
a+1Jo uexp(—u(L"+5)) S(1+a)LzlogL S
The last integral is easy to evaluate exactly:

a+p ol

—ul®(1Z — ).
SXpL—w )(a + l)u/(u * (1+oz)L2IogL)
The first integral is
~ (exp(—uL??) — exp(—uL?))
(x+B)/(a+1), when uL? — 0,
(a4 B)/(a+ B), when u L% — oo,
log(1/u)
@+p)/(at oot )
Recalling the definition of («), and combining this with (2.6) and (2.7), we have
o+ B
o+ L(u)

2 (a+pB no?
—exp(—uL )(—a+1)u/<u + —(1+a)L2IogL)'

Sinceu = r/v, we have the desired resultl]

otherwise.

P(NRBC) ~ exp(—uL?) — (exp(—uL?) — exp(—uL?))

In our concrete exampld, = 100 andv = 0.2, sog¢L? = 50,000-. Taking
p = 1078 per nucleotide per generation as a typical value of the recombination
rate, we see that the changeover between the second and third terms occurs
when the recombination probability between the two nucleotidesi® x 107°,
which corresponds to a distance of 2000 nucleotides. At the other extreme, when
r/v = L~28 the right-hand side is very close to 0. In our example; 0.4 so this
occurs forr = 0.2/100-%8 = 0.0050, which corresponds to 500,000 nucleotides.
Figure 1 shows? (NRBC) for our example for distances 316—100,000 nucleotides
and compares it with the result for a homogeneously mixing population of\gize
defined in (1.3). Note thaP(NRBC) is much larger in the spatial model than in
the homogeneously mixing case.
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e

PIMRBC)
=
Lh

2z 25 3 35 4 45 5
lvg 1S istmnca)

n |
.

[} s 1

FiG. 1. Decay of the probability of no recombination before coal escence with the base 101ogarithm
of distance in the spatial model and in a homogeneously mixing population of size V.. Thetwo are
close up to 1000nucleotides, but then the spatial model islarger.

Linkage disequilibrium. Consider one locus with allelesanda and a second
with allelesB andb. A commonly used measure of linkage disequilibrium which
is familiar to probabilists is the square of the correlation coefficient

2 :(fAB—fAfB)2
AB fafafBfo

where f. is the frequency of genotype. When allele frequencies are larger
than 10%, Ohta and Kimura (1971) showed that

E(fag— fafe)? 5
E 2~ =0o7.
TABT TR (fafufsfs) Y

In a recent paper, McVean (2002) showed that, in general,

52— Piiii = 2Pij.ik + Pijki
T ET? var(T) + piju’
where T is the coalescence time of a sample of size 2 at one of the loci and

the p’s are correlations between various coalescence times. For exampleis
the correlation of the coalescence time for lineagasd j at locusx with that of
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lineages andk at locusy, andi, j, k are assumed distinct. For a homogeneously
mixing population one can compute [see (12) in McVean (2002)] that
10+ p

22+13p + p?’
This calculation [see also Section 2.1 of Durrett (2002)] depends heavily on the
fact that the coalescence rates remain constant in time, so we have not been able
to calculate this quantity for the stepping stone model. Pritchard and Przeworski
(2001) gave simulation results fof in a homogeneously mixing population and
for population scenarios such as exponential growth and the island model of
populations subdivision.

A second commonly used measure of linkage disequilibriur®’iswhich is
defined to be the covariance divided by its maximum possible value. If we suppose
without loss of generality thats > f5 > 1/2, then

D — (faB — fafB)
fB—fafs

since in this case the numerator is maximized wlign= 0. Data in Reich et al.

(2001) show thatD’ decays roughly linearly in the logarithm of distance for

distances between 5000 and 160,000 nucleotides.

Dawson et al. (2002) studied the decay@fandr? with distance for data on
human chromosome 21. Their Figure 1 gives results for 1504 markers in which the
minor allele frequencies were all greater thad.®s the lower two panels show,
the average values @' andr? do not decay to their limiting values (0 in the case
of r2 and 0.2 in the case aP’) until the distance is about 200,000 nucleotides.

In contrast the upper two panels show that the actual valugs’ afnd 2 for

a given pair of markers fluctuate wildly since the values of these statistics depend
heavily on where the mutations occur on the genealogical trees. For a more detailed
explanation, see Nordborg and Tavaré (2002). Sincandr2 depend on both the
shape of the genealogical tree and the placement of the mutations on it, proving
results about these quantities seems difficult.

2 _
oy =

Pairwise differences. If we two individuals at random from a box with side
length L?, then the average number of places where their DNA sequences differ
is E(2uto), wherep is the mutation rate for the region under consideration and
to is the coalescence time of the two lineages. We see below that

ufa+B\[Q+a)L2logl 1
(2.8) E(2Mto)~;<a+1){ S (1_M)}'

Note that the dominant contribution comes from times aftgf2v, but, ignoring
constants, each successive term is smaller by a fa¢itodlL) = 0.217. In our
example,

E(2uto) ~ 1(0.83901) (136,646+ 48,544) = 155391,
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Assuming thafu = 1078, this is 155 x 103, which is in reasonable agreement
with the rule of thumb which says that roughlyID00 nucleotides differ between
two humans.

PROOF OF(2.8). Using (2.3) and (2.4) i&f (2uto) = [y~ P (2uto > t) dt we

have
Lz
E(Zmo)%ﬁ{Lz’s—%/ atp dt
v 128 a +logt/2logL

(Zii)/ p( (1+a)L2logL) s}'

As in the recombination calculation, the second integral is easy to evaluate exactly.
To approximate the first we can observe that it is at l¢ast— L?#) (o + B)/
(¢ + 1). For a bound in the other direction we change variables L2 to get

(a-l—ﬂ) /‘ a+1 J
— r
a+1 1/12-2 o + 1+ logr/2logL

_ <a + ﬁ) / dr
S \a+1 1122 1+ logr/(2(ae + 1)logL)’
Using 1> (1+ x)(1 — x) now we have that the above is

1
(D)2 o 2 g )
a+1 1/L2-28 2+ 1)logL

%(a—i_ﬂ)Lz(l——l ),
a+1 2(@+1)logL

where in the second step we have used the fact that the antiderivative rof log
is rlogr — r and we have ignored the contribution for the lower limit which
is of order L=21-A), By using the second-order approximatiopi(lL+ x) ~

1 — x + x2 we can see that the error in the lower bound in the previous display
is O(L?/(logL)?). Dropping the smaller termi.?# and combining our formulas
gives the desired resultd

Larger samples. To understand properties of larger samples we use the time
scale on which the genealogy is the ordinary coalescent, but mutations occur at
a time-dependent rate. The first step is to compute the mutation rate. Equations
(2.1) and (2.2) together imply that

[ 2logL
whenL?? <t < L2, ZL — Iog(a +1091/210g );
Y

oa+p

t 1 2
whent > L2, — = Iog<i) +(r— LZ)L.
2v a+p (1+a)L2?logL
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Setting the right-hand side equal #oand solving, we see that if is the time
variable for the coalescent angl = Iog(;‘T*fl;), then

when 0< u < uq, t =exp([(a + B)e" —al(2logL));

a+1)}(1+a)L2IogL
a+p 2 '

whenu > uq, t=L2+{u—|Og<
TO

Differentiating we have
dt
when 0< u < u1, o= t(u)(o + B)e"(2logL);
u

dt  (1+a)L?logL
whenu >uq, d_ — %
u TOo

In the second time interval the mutation rate is constant and has rate

nw (A+a)L?logL

2 mo? ’
The first time interval is the set af, = log((« + y)/(a + B)) with g <y < 1. At
these times we haveu,) = L? and hence mutation rate

Ll
2v

To see what this means, suppose that the mutation rate 55108 per
nucleotide and consider a region with 10,000 nucleotides [roughly the size of the
core haplotypes in the G6PD example in Sabeti et al. (2002)]. Then using the
calculation after (2.8), the mutation rate is

(@ +y)L¥ logL.

136,646
foru>ug,  107%. QT =6.83

1074 (1)

whenu=u,, - 27287+ ¥)10% (4.6051) = (15.71+ 5.75y)10%7 D,

Wheny =1 the rate is 21.46. There is a discontinuity in the rate;adue to the
different ways in which the process is scaledsfer L2/(2v) andr > L2/(2v). The

rate is very large at the end of the first interval, but is large for only a short time.
For a picture, see Figure 2. By calculations after (2.8), for a sample of size 2 from a
region with 10,000 nucleotides, an average of 4.07 mutations occur hafared

an average of 11.46 occur aftey. The previous calculation shows that those that
occur befores, occur close to that time. Since the rate decays exponentially fast as
we move back toward time 0, this suggests that in a large sample, the first mutations
occur after a considerable amount of coalescence has occurred, leading to large
sets of individuals with identical mutation patterns (i.e., haplotype structure in the
data).
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FiG. 2. Mutation ratein the coalescent as a function of time.
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FiG. 3. Probability of no recombination before coalescence compared to the probability that the

coalescence time of the a locus is equal to that of the b locus in the homogeneously mixing case. In
our case there should be a more substantial difference since a recombination will put theaand b loci
which just separated into the same or nearby colonies.
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3. Proof of Theorem 1. Let x; =1 — (2loglogL)/logL and recall that
I'(L,c,8) = (L%/logL,c8L%logL). Our first step is to show that up to time
L% /(2v) = L?/(2v(log L)% the particles do not know that they are on the torus.
We then show that (a) iB < xz, then the probabilityg occurs between times
L% /(2v) and L?/(2v) is small, and (b) ifc; < g < 1, the probabilityrg occurs
before timeL?/(2v) is small.

By rotation invariance we can suppose without loss of generality tkatO
We suppose that our random walkKs on the torus are constructed from a random
walk W; onZ¢ (with kernel p and jump rate 1) so that; = W; mod L. Let P,
denote the probability distribution when the random walk is started. iNote
that the variance op is vo2. Using theL? maximal inequality for martingales,
(a + b)2 < 4(a?+ b?) and|x;| < cBLPlogL, and thens < k., we can estimate
thatforx; e A€ G(L,n,c,3),

P max 14 L
xi(osgLZ/(zv(logLy‘)l > 3)
C
= ﬁExi[|WL2/(2v(|ogL)4)|2]

(3.1) o

A

2
(1xi1? + Ex, | W12/ uogLyt — Xi| )

c?L?(logL)?  o2L?

( (ogLy* <IogL>4)’
which converges to 0 ag — oco. (Here and in similar estimates below the
consztantC may change from line to line.) This means we can study the system
onz-.

We begin with some preliminary results for random walksZfh Many of
these facts and their proofs are standard. We give the details because we need
to know the results are uniform in various parameters. Xgt= W! — W? be
the difference of two independent continuous time random walks with kernel
and jump rate 1. Since is symmetric,X, is a continuous time random walk
with kernel p and jump rate 2. Taking the special form pfinto account, we
defineY; = X,/(ZU), which is a continuous time random walk with kermebnd
jump rate 1. Letlp = inf{r > 0: X, = 0} be the first hitting time of the origin and
let 75 = inf{r > 0:Y; = 0} be the corresponding time faf. Since a trivial time
change separates the two processes, we can study either one. In general we choose
to studyY;, which has the annoying factoreliminated. Recall thaPy denotes the
probability distribution when the random walk is started in 0.Bywe mean that
the starting point is chosen according;to

IA
NSIRN

LEMMA 3.1. Ast — oo,

2n o2

logr

P,(T§ > 1) ~
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PrROOF Decomposing according to the last visit to zero before tinfmore
precisely, the leaving time of the last visit),

t
1=f Po(Yy = 0)P,(T¢ > t — 5)ds + Po(Y; =0).
0

Dropping the—s we have

1 2n 02
Jo Po(Yy =0)ds logt

(3.2) P,(Tg

That last statement can be seen as follows. The local central limit theorem gives
lim (275 Po(Ys = 0) — 1/0?) = 0.
§—>00

Integrating this yield% Po(Y; =0)ds ~ 2o/ logz. A continuous time version
of the local central limit theorem can be found, for instance, in Z&hle [(2002),
Proposition D.2].
For the lower bound we decompose by the last visit to zero before timéog ¢
and compute as before; hence

t+tlogt
We split the integral at timelogz. In the first part we estimate
Py (Ty >t +1tlogt —s) < Py(T§ > 1)
and in the second part we estimate this probability by 1. We end up with

|
- ttl—géjtogt Po(Ys =0)ds — Po(Yr+11ogr = 0)
I .

0% Po(Ys =0)ds

(3.3) Py (T5 > 1) >

Let I(s,t) = f; Po(Y, = 0)dr. Again by the local central limit theorent,(0,
tlogr) ~ logt /202, while

I(tlogt,t +tlogt) ~

= lo (1 + ! ) 0
E— — .
2702 09 logt

This completes the proof.[]

LEMMA 3.2. Given fg, there exists a constant C so that for all L > Lg and
Bo<y =1,

L% ) CloglogL
Pl < <L?) < 207
q(Z(IogL)3/2 =lo= )5 (logL)2
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PROOF Letui= L% /2(logL)¥? andus = L% . By (3.2) and (3.3),

Pq(”l < T(;F <up)
- 1 1— I(uzlogua, uz + uslogus)
~ 1(0,u1) 1(0, uzloguz)

_ 1 (u1, uzloguo) + 1(0, u1)I (uzlogua, uz + uzloguo)
B 1(0,u1)1(0, uzloguy) '

Using the local central limit theorem,

logui1 ylogL
[Q.u1) ~ >3~ 5

TTO TOo

log(uzlogus) ylogL

I1(0,uzlogus) ~ 5

2 o2 o
log(uzlogu2) — logus
2wo?
log(2y log L) + log(2(log L)¥?)  5loglogL
2wo? R

I(ug,uzlogup) ~

I(uzlogua, us +uslogus) — 0.

Plugging these results into the previous formula gives the redult.

Let Rg = 0 and, fork > 1, let Q; be the first time the random walk leaves
colony 0 after timeR;_1 and letR; be the first hitting time of 0 after tim@y, that
is,

Ok =inf{s > Rg—1:Ys #0},
Ry = inf{s > QY= 0},

and letK = min{k > 1:R;y — Qx > L% }. ThenK is geometric with success
probability

9 = P,(T§ > L?).

ConsiderY, as a random walk with jump rate/it and jump kernep and let Ny

be the number of jumps that land in colony O at time$Rp_1, Q). The N, are
independent and are geometric with success probabiliyefine @, to be the
number of jumps that land in colony 0 before tihé” and let@x = Y &_; Ny.
We are interested primarily iy, but Ok is easier to analyze since it is a sum
of independent random variables. The next result shows?hat Ok with high
probability.
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LEMMA 3.3. Given 0 < Bp < 1 fixed, there is a constant C so that for
Bo<y =<landL > Lo,

logL 1 log IogL)

P
0Ok #Or) = C( L2 © JIogL  /logL

PROOF SinceRgx — Qk > L%, it is enough to boundy(Qx > L?). We
decompose

K K-1
(3.4) Ok =Y (Qr— Ric) + Y (R — Qo).
k=1 k=1

Note thatQ; — Ryx_1 is a sum ofN; independent exponential variables with
meanv. HenceEo[ Qr — Ri—1] = 1. For the first sum on the right-hand side of (3.4)
we use Markov’s inequality and Lemma 3.1 to conclude

2)/ 2
PO(Z(Qk —Ri-1) = —) =7z EO|:Z(Qk — Ri— 1)}

k=1
2 ylogL logL
=y =C 2 =
For the second sum in (3.4) note thatkif < (logL)¥2 and G = {Ry — Qx <
L% /(2(logL)%/?) for all k < K}, then

K-1 12

Z(Rk—Qk)<—

k=1

Next, by Markov’s inequality and by Lemma 3.1,
EoK 1 - C
- (IogL)3/2 ¥(logL)3/2 ~ /logL"

Furthermore, sinc&; — Q, < L% for k < K, using Lemma 3.2 gives

Po(K > (logL)*¥/?) <

2
Po(G° N{K < (logL)*¥?}) < (logL)*/?P <2(|L7£)3/2 <Tj < LZV)

- CloglogL
- JlogL -
Combining our estimates gives the indicated resuli.
We are now ready to start to estimate the time for two lineages to coalesce. The

first step is to consider the coalescence time when they start in the same colony.
Then we study the time required to come to the same colony.
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LEMMA 3.4. If2Nno?v/logL — «, thenas L — oo,

sup
Bo<y=«xL

Po(ig > L%) — ﬁ‘ 0.

PrROOFE Since the probability of coalescence when two lineages land in the
same colony is 12N,

1\%
Pyt > L%) = Eo(l— ﬁ) .
Since®, < Ok, we have
1\% 1\%
0< E0<1— ﬁ) — E0<1— ﬁ) < Pp(Op #0k)—0
by Lemma 3.3. Sincé@g is geometric with success probabilify,

1 Ok o0 i1 1 k
Eoll—— = Pv(l—D%v)" 11— —
0( ZN) k§1 V= ( ZN)

B Pv(1—1/2N)
- 9v(d—1/2N) + (1/2N)’

By Lemma 3.1, A9%v — «/y uniformly for fp < y < 1, which completes the
proof. O

LEMMA 3.5. For any fixed p > 0, there exists a constant C,, so that for all x
and u > ug, whereug < oo,

- C,log Iogu'

P, (Y; =0for somes € [u/(logu)”, u)) < log
u

PROOF By considering timeg of the first visit to O after time:/(logu)” we
have

2u 2u 2u—t
/ P, (Y, =0)ds=/ Px(roedt)/ ds Py(Y, = 0).
u/(logu)P u/(logu)P 0

Now we replace the first integral on the right-hand side/Byjqq,)» and then
replace the second integral l§§. This yields the estimate

Py (Y; =0 for somes € [u/(logu)”, u)) - /Ou Po(Y; =0)ds

2u
S/ P.(Y,=0)ds.
u/(logu)?
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The local central limit theorem shows thatdf is the limiting normal density
function, then

suplsPo(Ys =x) — ¢p(x/s?)|—> 0  ass — oo.
xeZ?

From this it follows that ifu > ug, the probability of interest is bounded by
Cfuz/u(logu)ﬂ 1/sds - C, loglogu
logu ~—  logu
which gives the desired result]

LEMMA 3.6. Thereexists

sup sup
Bo<B=y=kL |x|el'(L,c,B)

P(T§ < L%) — (1— é)‘ — 0.
y

PrROOF TheL? maximal inequality for martingales implies that

Py(T3 <1y1/logly]) < Po( max  |v]> |y|) < C/(loglyl).
0<t<|y|2/log|y|
Using this result with Lemma 3.5 far= | y|2(log|y|)® andp = 6 it follows that
C C’loglog|y|
3.5 P, (T¢ < |y]?(og|y))®) <

Recalling that"(L, ¢, B) = (L#/log L, cBLP log L), we have for8p < 8 < 1 and
L large enough

C C’loglogL
sup  Py(Tg <Iyl?(loglyD°®) <
ylel(L.c.p) logL logL

Repeating the reasoning from the proof of Lemmas 3.1 and 3.5 shows that
p* = P (Y, =0 for somes € [L? (logL)°, L% )

2y
- [LLZﬂ(IOgL)S Py (Ys=0)ds
= > .
& Po(Yy =0)ds

In the other direction,
2L
% fLZL/S(k)gL)S P (Y; =0)ds
T Py, =0 ds
The local central limit theorem implies that

sup sup sup ls Py(Ys =0) — 1/276%| — 0.
Bo=B=y=«kr |x|€l'(L,c,B) se[L2F (logL)5,2L%"]
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Combining these estimates we have th@hikk 8 <y <« ande > 0, thenifL is
large,
2ylogL — 28logL — 5loglogL
2y logL
log2+ 2y logL — 28logL — 5loglogL
2y logL

1-e¢)

<p*=<d+e)
and we have the desired resulf]
The final step is to combine Lemmas 3.4-3.6.

PROOF OFTHEOREM 1. Recall thatTyy = inf{r > 0:Y; = 0}, whereY; is a
continuous time random walk di? with kernelg and jump rate 1. That means
Ty is the time two lineages need to come to the same colony but after a time
change with 2 in the system orZ?. Let t5 be the coalescing time after the same
time change in the system @&?. Decomposing according to the valueTf,

Pty > L) = P.(T§ > L% /2,15 > L?) + P.(T§ < L% /2,15 > L%).

For the first term on the right-hand side we note thdtfo > uo, then Lemma 3.5
with p = 1 implies that forBg < 8 <y <« and allx,

2y

0< Px<Tg‘ >—— 15> LZV) — P.(T§ > L?)

- Clog IogL.

L2
= P"<T <Ty = Lzy) = “JogL

For the second term we note thatif’o > ug, then Lemma 3.5 implies
L% L%
0< P, <T0* <16 > L2V> — P, <T0* < 7)Po(t;; > L%)

L2 L2 loglogL
= PX<T°* 3 7)P°<7 <10 = Lzy) = Iogg—Lg :

Using Lemmas 3.4 and 3.6 now it follows that

sup sup ‘Px(t§>L2}’)—(é+(1—é) a )‘—>O,
Bo<B=y=ki x|l (L,c.p) Y y/a+ty
which is the desired result up ig..
It remains to show that (a) iB < x;, =1 — (2loglogL)/logL, then the
probability 7o occurs between times2/(2v(logL)*) and L2/(2v) is small, and
(b) if k. < B < 1, the probabilityrg occurs before time.2/(2v) is small. Let
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X, = X} — X? be the difference random walk of two independent continuous time
random walks on the torus with kerngland jump rate 1 and let, = Xt/(Zv)- Let
To and T be the hitting times of 0 foX, and?,.

LEMMA 3.7. Thereisaconstant C sothat for all L andx € A(L),

Px(Ys=0)§ S/\LZ.
ProOF This is straightforward given the estimates in the Appendix of Cox
and Durrett (2002). First consider< L. In this case one can use a local central
limit theorem from Bhattacharya and Rao (1976) for random walk&%and sum
overzL2 for z € Z2 to prove the result. The result extends t® L2 by noting that
the Markov property implies that the largest valuePpt ¥, = 0) is decreasing in.
O

Using Lemma 3.7 and repeating the proof of Lemma 3.5 shows:

LEMMA 3.8. If L > Lo, then

L? LZD - C,loglogL

P ? :Of )
x( s or SO”ESE[(IOQL)4 |OgL

PROOF By considering the first visit to 0 after time?/(log L)* we have

N L? R
P, (Y; =0 for somes € [LZ/(Iog L)*, LZ]) . Po(Yy, =0)ds
0

212 .

5/ P.(Yy =0)ds.
L2/(logL)*

Lemma 3.7 gives an upper bound on the right-hand side. To get a lower bound on

the integral that involve®,, we stop at timel.2/(log L)*. The estimate in (3.1)

shows that up to this time the random walk does not realize it is n&t%orso

using the local central limit theorem we conclude thak i L, the probability

of interest is bounded by

2
CszzL/(|ogL)4 1/(s A L?) ds _ CploglogL
logL ~  logL

which gives the desired result[]

Lemma 3.8 gives (a). To establish (b) now, we note that arguing as in the proof
of (3.5) but using Lemma 3.5 with = 7 gives
CloglogL

% 2 6
P, (T < |x|°(log|x])°) < logL
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If |x| € I(L,c,B) and B > «z, then |x| > L%L/logL > L?/(logL)®, so if
L > Lo, it follows that|x|%(log|x|)® > L2. This establishes (b) and the proof of
Theorem 1 is complete.[]

4. Proof of Theorem 2. Recall thath; = (14 «)L?logL/(27ro?v) and
G(L,n,D)={A={x1,...,x,}:Vi,x; € A(L),Vi#j,|xi —x;| > L/logL}.

Theorem 5 of Cox and Durrett (2002) gives the asymptotic behavior of the
coalescence time of two particles that are separated. bpgL. The key to
deriving a result for the genealogy is to show that when two particles coalesce,
the others are separated. Recall thas the system of lineages. Nogvis started

in A={x1,...,x4} € (L, n,4). By ¢(x;) we denote the position at timeof the
lineage started in;. Let 7;; be the coalescing time of the two lineages started in
x; andx; and letr be the minimum of;; (i # j).

LEMMA 4.1. Let ¢ be started with four lineages in A = {x1,...,x4}. As
L — oo, uniformlyin A € (L, 4, 1),

&0 L

(4.1) /o P<f =Tt12€ds, [55(x1) — & (x3)| < @) — 0,
&0 L

(4.2) /o P<f =T12€ds, [§5(x3) — {5 (xg)| < @) —0

PrROOF The proof is a modification of the proof of (3.5) of Cox (1989). As
in his paper, we just prove the first result and leave it to the reader to check
that the same proof with small changes gives the second resul¢XLet;));>o,
i=1,...,4, beindependentrandom walks aiL) with kernelp and jump rate 1.
Then

N L
/o P(f =T12€ds, [§s(x1) — L5(x3)| = @)

<P(t=t12=1LhL)
o0
+ > P(tiz2€ds, X;(x1) = y) P(X;(x3) = 2).
LhL y 2t |y—2<L/logL
If 11 =1/logL, the first term on the right-hand side tends to 0 by Theorem 5
in Cox and Durrett (2002); see (1.1) but remove the added ief/2v. By the
estimate in Lemma 3.7, the sum ovean the second term is at most

( L )2 ¢ -0
logL/) L2 '

Y P(rizeds, X,(x1)=y) <1,

trhy y

Since

o0
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the desired result follows.

Recall
G(L,n,c,8) ={A={x1,...,x,}:Vi,x; e A(L),Vi# j,|xi —xj| € (L,c,95)},
wherel' (L, ¢, 8) = (L%/logL, cSL°logL).

LEMMA 4.2. If 2Nvro?/logL — « € [0, 00) as L — oo, where N and v
dependon L, thenas L — oo,

sup  sup |P(|¢n(A)|=n)— exp(—(’é)t)‘ — 0.

t>0 Aeg(L,n,c,2)

PROOF Since the two quantities are monotone decreasing itnsuffices to
prove the result for each fixad The proof is a modification of the proof of (3.1)
in Cox (1989). We need the notatiod; (i, j) = {t;; < hpt}, Fi(i,j) = {t =
7;; <hrt}andg(t) = P(t <hpt). We decomposé/, (i, j):

P(H;(, j))=P(t =1 <hpt)
hpt
(4.3) + Z / - P(t =1y €eds, Tij <hrt).

{k,[}#{i, j}
Thek,! term in the second sum is

hpt
= [ P = e ds Xl = 3. X () = P (G- (1. 2D = D).
¥,z
By Lemma 4.1 we can neglegt z with |y — z| < L/log L. By Theorem 5 in Cox

and Durrett (2002), ify, —z.| > L/logL, then

P(|¢n i—sUyr,zL)| =1) =1—exp(—t + (s/hL)) +eL,
whereey is an error term which depends dn y;z, zz, s, t and which goes to 0
uniformly for |y, — zz| > L/logL ands <t in any finite interval. This error term
may change from line to line. Using this in the previous equation, we have

hpt
P(t =1y €ds, tjj <hrt)

hpt
:/0 (L—exp(—t+ (s/hp)))P(t =t €ds) + er.

Integrating by parts and changing variables, we obtain

hpt
P(‘L’=‘L’k[€ds)(l—exp( t+ )
hr
hpt s
(4.4) —/ - exp(—t + h—)P(r =1y <s)ds
L

:/ e WPt =1y <hpu)du.
0
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Combining (4.3) and (4.4) yields

t
P(H,(i, ) =P(FG, )+ Y. e—’/ e’ P(Fs(k,1))ds +ep.
kD)) 7O

Using Theorem 5 in Cox and Durrett (2002) agalH,(i, j)) — 1 — e~ ' as
L — o0, which yields

t
(45) 1-e¢'=P(FGj)+ Z e_’/ e’ P(Fy(k,1))ds + er.
Ay 70

Summing over all pairg j yields

(g) Q—e=q@)+ [(g) - 1}6” /Ot e'q(s)ds +er.

It follows [see page 365 of Cox and Griffeath (1986) for details] §h@) con-
verges tau(z), the solution of

(3)a-cr-sae[(3)-of [ v

Rearranging we have

elu(t) — (g) (e —1) = —[(g) - 1i| /Ot e‘u(s)ds.

Differentiating gives

eu(t) +e'u'(t) — (’;) el = —K’;) ~ 1]efu(t),

which is equivalent to
W (1) = —(’;) u(t) + (’;) :

Sinceu(0) = 0, solving gives:(r) =1 —exp(—(5)1). O
While the last calculation is fresh in the reader’s mind, we check the claim that
when there are lineages, all;) coalescences are equally likely. To do this we go
back to (4.5). Adding and subtractirRY F; (i, j)) inside the integral,
t
P(F.(, j)) —e—f/ e’ P(Fs(i, j))ds
0
t
=1—e¢1— e_t/ efq(s)ds —ey.
0

It follows that P (F; (i, j)) converges tgf (r), the solution of

1 1
ot s S R s
f@) —e /0 e fs)ds=1—e e /0 e‘u(s)ds.
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Since the limit is independent &f j, it follows that f (1) = u(r) /().

PROOF OFTHEOREM2. Lemma 4.2 gives the result for=n sinceP,(D; =
n) = exp(—(5)1). To prove the result fot < n we use induction on. Theorem 5 of
Cox and Durrett (2002) gives the result foe= 2. Breaking things down according
to the time of the first coalescence, we can writeBog 4(L, n, 1),

P([¢n.(B)| =k)

hpt
:/ P(t €ds,
0

Ehyt(B)| = k)
(4.6)

hpt
:/ > P(reds, ;(B)=A)P(|th—s(A)| =k).
0 A={z1,....2p—1}
By Lemma 4.1 it is enough to consider setss 4(L,n — 1, 1). The induction
hypothesis gives us

P(|§hL(t—s) (A)| = k) = Pn—l(Dt—s = k) +er,

wheree; — 0 uniformly for all A € 4(L,n — 1,1) and 0< s < in any finite
interval. Applying the last result again and a change of variables, the quantity on
the right-hand side of (4.6) becomes

t
fo P(t/hy € ds)Pyy(Dy_y = k) +ev.

By Lemma 4.2 we know that

P(t<hps)=1- exp(— (’21)5) +er.

Sinces — P,_1(D;_g = k) is continuous, we have

P(|2n,(B)| = k) — /Ot (’21) exp(— (’;) s)P,,_l(Dt_s — k) ds.

The right-hand side i®,(D; = k), so the proof of Theorem 2 is complete.]

5. Proof of Theorem 3. In view of Theorem 2, it is enough to prove the result
for timesL2” /2v with 0 < y < 1 and show that the ending configuration satisfies
the hypotheses of Theorem 2. The second conclusion follows from Lemma 3.7.
For the first, it is enough to establish the result up to tiffe(2v(logL)*) =
L% /(2v), wherex; =1 — (2loglogL)/logL, for then Lemma 3.8 implies no
collisions occur iML2/(2v(log L)%, L2].

By rotating the torus we can suppose that @. By the first calculation in
the proof of Theorem 1, we can consider the problenZénSo we redefine the
following sets as subsets @F. Let

G(L.n,c.8)={A={x1,...x,}:Vi,x; €Z° Vi j.|x; —xj| € (L. c,5)},
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wherel'(L, ¢, 8) = (L®/logL,c8L%logL). Let t be the first coalescing time of
any two of then lineages started im, .. ., x, and letr;; be the coalescing time of
the lineages started i) and.x ;. For convenience we let

_ log(2vt) _ log(2vz12)
~ 2logL ’ M2="SlogL

LEMMA 5.1. Let ¢, bestarted with four lineagesin A = {x1, ..., x4}. Thenas
L — oo, uniformlyin A € (L, 4, c, B),

KL
/ﬂ P(n=1m2€ds, X 22 (x1) — X;2/5,(x3)| € T(L, ¢ +1,8)) > 0,

KL
/ﬁ P(n=m2€ds,|X 2,(x3) — X125 5,(xa)| ¢ T (L, c+1,8)) — 0.

PrROOF  We could repeat the proof of Lemma 1 in Cox and Griffeath (1986),
but the following argument is simpler. As in the previous section, we prove only
the first statement, since the proof of the second statement is similar. The law of
the iterated logarithm implies that

P(1X:/20(x;) — x;| > 3tY/2logt for somer > L) — 0.

Sincelx;| < cBLP logL < §tY/?logt for + > L?#, it follows that
c+1 4, 28
P IXy20(xi) — Xij20(x)] > Tr logt for somer > L — 0.

To show that the particles do not end up too close together, we use the approach
of Lemma 4.1. Breaking things down according to the locations of the particles,
we want to estimate

KL
Z P(n12€ds, X125 )2,(x1) = y)P(XLza/ZV (x3) = 2).
P yetiy—al=Lo/logL

By the local central limit theorem, the sum oveis at most

(moz) 15~
logL/) L% = (logL)?’
Since
KL
//3 Y P(m2e€ds, X a,(x1) =y) <1,
y
the desired result follows.d

LEMMA 5.2. ASL — oo,

sup sup — 0.

Bo<B=<y=<kL A€§(L,n,c,B)

RN
o)

Pzl =m — (
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ProOOF The proof is a modification of the proof of Proposition 2 of Cox and
Griffeath (1986). The case= 2 is covered by Theorem 1. We consider now the
casen > 2. We need the notation

Hy (i, j) = {r;j < L% /2v},
Fy (i, j) = {t =1 < L% /2v},
q(y)=P(x < L% /2v).
The estimates in (3.5) and Lemma 3.5 imply that
P(t<L?/20)+ P(L? J4v <17 < L% J2v) <ey,

where here and in what follows is a quantity which depends dn A, 8, y and
which tends to O uniformly foA € §(L,n,c, ) andBo < B <y <«r. Thus we
have

L%
P(Hy (i, j))=eL+ P<T =T = g)

L2 /4y L%

Plt=1yeds,s<t; <—|.

+ Z ) /LZﬂ/zv < kS A5 8= T = 2v )
(kA7)

(5.1)

Lettingy’ =y — (log2)/(2logL) so thatL? /4v = L% /2y, thek, [ term in the
last sum is

y/
P(n=ni €d8, X2 9,(xi) =y, X259, (x}) =2)
(5.2) —//3 sz: L4 /2y L% /20t
X P(|§(L2y_L26)/2U({y,Z})| =1).

By Lemma 5.1 we can suppope— z| € I'(L, ¢ + 1, §). Noting that wher$ < y’
we haveL? — L% > 1?7 /2 and using Theorem 1,

4o
P(|§(L2V—L2")/2u({y’ P=1)=1- y

+eé,
+ L

wheree; — 0 uniformly for |y —z| e I'(L,c+1,8) andg < 8 < y’. Using this
and then replacing the upper limit by y, we conclude that the quantity in (5.2)

is
Y S+a
/ <1— )P(n=nk16d5)+eL-
B Yy +o

Integrating by parts we obtain

/3y J/ +(){P< )d8 J/ +(){ /3VP(F (k l))d(S
= < = , +e .
kl = 2]) L § L
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Using this in (5.1) yields

Y
P(Hy (i, j)) = P(Fy G, ) + /,3 P(Fs(k, D)) ds +er.

iy Y T
Sincelx; —xj| € I'(L, ¢, B), Theorem 1 implies
+a . 1 4
63 1- " pra )+ Y —/ P(Fs(k, 1)) d6 + e
v ta kD)2l ¥ TP

Summing over all pairs, j,

() -2 ()2 oo

It follows thatg (r) converges ta(¢), the solution of

() (220w () o

This leads to

n=1- (52"

From this it follows [see page 365 of Cox and Griffeath (1986) for more details]

that
o)
q(y):1_<ﬁ+“)  ter.
)t

This completes the proof of Lemma 5.2

Again we pause to check the claim that when there ralimeages, all(5)
coalescences are equally likely. We proceed in the same way as in the argument
after the proof of Lemma 4.1. We go back to (5.3) and add and suli«d@si, j))
inside the integral. It follows thal (F,, (i, j)) converges tof (y), the solution of
B+ 1

y
- 8)ds.
Yy toa y+oz,3q()

1 v
fo - [ reras=1-
y +aJg
Since the limit is independent af j, it follows that f () = u(y)/(5)-

PROOF OFTHEOREM 3. Lemma 5.2 gives the result fér=n. To prove the
result fork < n, we use induction on. Theorem 1 gives the result far= 2 since

/g+a)('§)
y+a)

Pu(Diog((y+a)/(p+a)) = 1) = (
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As before,
Pt <L?/20)+ P(L?Y J4v <1 < L% J2v) <e;

is a quantity that tends to O uniformly f& € ¢(L,n,c, ) andBo < B <y <«kpr.
So lettingy’ =y — (log 2)/(2logL) as before, we have

y/
(5.4) P(|§L2V/2u(B)| =k) =eL +//3 P(’I €ds, |§L2y/2U(B)| =k)-

As in the proof of Theorem 2, we can write the integral as

y/
/,3 S P(neds, ¢yus s (B) = A)P(|¢ 21252, (A) = k).
A=

{z1,--zn-1}

By Lemma 5.1 it is enough to consider seis 4(L,n — 1, ¢ + 1, §), for which
we know by the induction hypothesis that

P(|¢ 2y — 125y /20 (A)| = k) = Pu—1(Diog((y+a)/5+ey) =) + e,

wheree; — 0 uniformly for all A € (L,n —1,c+1,8) andp <8 <y’ <
y < k. By Lemma 5.2 we know that

L2 B 4o ®
(=) (112) e

Sinces — P,_1(Diog((y+a)/(5+«)) = k) IS cOntinuous, we obtain

v (B +a)@
Pl =0~ [ G

Changing variable = (8 + «)e® — «, dd = (B + a)e® ds, we see that the above

0Q((y+a)/(B+0) [\ o0
/o (2) e @) Py_1(Diogi(y +a)/(p+an—s = k) ds

= Pu(Diog((y+e)/(p+a)) = k).
which completes the proof of Theorem 3]

1(Diog((y +a)/(5+a)) = k) d8.
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