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In an incomplete market the price of a claifnin general cannot be
uniquely identified by no arbitrage arguments. However, the “classical” super
replication price is a sensible indicator of the (maximum selling) value of the
claim. Wheny satisfies certain pointwise conditions (e gis bounded from
below), the super replication price is equal to gubg[ f1, whereQ varies
on the whole set of pricing measures. Unfortunately, this price is often too
high: a typical situation is here discussed in the examples.

We thus define the less expensiweak super replication pricend
we relax the requirements ofi by asking just for‘enough” inteyrability
conditions.

By building up a proper duality theg we show its economic meaning
and its relation with the investor’s preferences. Indeed, it turns out that the
weak super replication price of coincides with sugcy, Eglf], where
Mg is the class of pricing measures with finite generalized entropy (i.e.,
E[@(Z—%)] < oo) and whereb is the convex conjugate of the utility function
of the investor.

1. Introduction. We investigate the super replication price of contingent
claims in incomplete markets where gains from trading may take any real value.
For claimsf which are bounded from below, the classical super replication price
is equal to

@ sup Eolf],

QeM;
where M is the set of all pricing measures. For claims which are unbounded
from below, however, the above supremum may be strictly lower than the super
replication price.

One of the main results of the paper is a representation of the supremum (1)
for unbounded claims in terms of a “weak super replication prigg” which
allows variables from a slightly wider class than the usual one of terminal values
from admissible integrands. This natural cla&s (see [15]) was first explicitly
introduced by Frittelli (see [8, 9]). The clags; depends on a convex function
®:(0,+00) — R which normally (see Remark 7) represents the conjugate
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function of a utility functionz. We will assume tha® satisfies a growth condition
that is shown to be equivalent to the condition of reasonable asymptotic elasticity
of u in the sense of Schachermayer [19].

We denote byMq £ {Q € M1:E[<I>(%)] < oo} the set of pricing measures
with finite generalized entropy. The actual result obtained (see Theorem 5) is that
if ®(0) < oo and there exists an equivalent pricing measure with finite generalized
entropy, then for claimg’ (for which the LHS make sense, but which may be
unbounded from below) we have

2) sup Eglfl=inf{x eR|f —x € Co} 2 fo.
0eMy
The representation of (1) is then a corollary, setting- id.

We provide an example of an unbounded claim where the weak super replication
price fiq is strictly less than the classical super replication price

The paper is based on the appropriate selection of the spaces for which the
following duality holds true: if® (0) < oo (and there exists an equivalent pricing
measure inV{g), then the cone€'¢ andco(My) are polar to one another.

However, if ®(0) is infinite, then co(Me) C (Ce)° with possibly strict
inclusion. We give an example where indeed the inclusion is strictcatf¢)
is not closed.

Finally, we develop a comparison between the duality relation obtained by
Delbaen and Schachermayer [5] and ours wiker id. It turns out that the super
replication pricef,, of the claim f, as defined in [5], depends explicitly on an
unbounded weight functiow, which represents the maximum loss the investor is
willing to face. Instead, our weakiger replication pricef;; is equal for all the
agents in the given market.

If one is interested in taking into account the investor’s attitude toward risk, we
suggestfe as a suitable super replication price, since it has the advantage of being
explicitly linked to the utility function.

The paper is organized as follows.

Section 1 has three sections: the first contains the general setup and the precise
formulations of our results; in the second we explain how the preferences of the
investors are taken into consideration and the relations betwaad ®; the third
is devoted to two basic examples in which classical duality fails.

In Section 2 we give an abstract duality relation, which is used in the proofs of
the main results, and we also provide a new proof of the representation of the super
replication price foboundedfrom-below claims.

In Section 3 we build up a proper dual system, so that we obtain the polarity
betweenC¢ andco(M¢) and we prove (2).

We end with Section 4, which contains the comparison betweerand f,,.

1.1. The model and the resultsQur starting point is the general semimartin-
gale model of a financial market as defined by Delbaen and Schachermayer [5].
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Let (2, F, (F1):ef0,17, P) be afiltered probability space, where we assume that
the filtration satisfies the usual assumptions of right continuity and completeness,
and letP be the class of probability measures equivalentto

The R?-valued cadlag semimartingal€ = (X,);c[0.7] represents the (dis-
counted) price process dftradeable assets.

An R¢-valued predictable procesd = (H)iero,77 1s called anadmissible
trading strategy ifH is X-integrable and there exists a constamtR such that,
for all r € [0, T], fé H; - dX; > —c, P-a.s. The financial interpretation ofis
a finite credit line which the investor must respect in his or her trading. This
boundedfrom-below restrition on the stochastic inggal traces back to the work
of Harrison and Pliska [13] and it is now a standard assumption in the literature
(see [4]).

We denote byL® [resp. L, L1(P)] the space ofP-a.s. finite (resp.
P-essentially bounded’-integrable) random variables o2, #), with L° (resp.

L1) the cone ofP-a.s. nonnegative random variablediff (resp.L?t), with L%

the cone of essentially bounded from below random variables @fitthe closure
of asetC < L1(P) in the L1(P) norm topology. Define

T
K2 {/ H, - dX,|H is admissible} c L
0

C2(k—-LYNL™.
K is the cone of all claims that are replicable, at zero initial cost, via admissible
trading strategies. The set
(K—-L%={fel®3gecKstg>f P-as)

is the cone of all claims itL.? that can be dominated by a replicable claim, hence
is the cone of super-replicable claims. Consequefitfy (K — L9r) N L is the
cone of bounded super-replicable claims. In Section 3 we will consider the closure
C of C under a particular topology: thefi is the cone of claims that can be
“approximated” by bounded super-replicable claims.

Define

(3) Mi12{Q <« P:KcLYQ)andEg[g] <Oforallg e K},
(4) M2 {ze LY (P):E[zg] <0Vge C} C LL(P).

The elements iV, are calledseparating probability measure$Ve will often
identify probability measure®, absolutely continuous with respect By with
their Radon-Nikodym derivatives2 € L1(P). Note that (see [2], Lemma 1.1 for
details)

M1={0Q < P:Eglg]<0VgeC(C}
={ze M|E[z]=1}

®)
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and that ifX is bounded (resp. locally bounded), then
M1={Q < P:Xisa(Q, (F)e0,r)) Martingale (resp. local martingale)

that is, M1 is the set of P-absolutely continuougmartingale (resp. local
martingale measures. In general, for possibly unboundgdM; is the set of
P-absolutely continuous probabilities such that the admissible stochastic integrals
are supermartingales. What is more (see [5], PropositiohidM1 NP £ &, then
the setM, of absolutely continuous -martingaleprobabilities is not empty and
M, is dense inM for the total variation topology.

The main topic of this paper is the analysis of super replication pricef of a
claim f e L?, defined by

fLinflxeRAge K stx+g> f P-as)
=inflx eR|f —x € (K — L)}

This subject was originally studied by El Karoui and Quenez [7]; see also
Karatzas [15] and the references cited there. We will mainly deal with the results
on this subject provided by Delbaen and Schachermayer [3]dfL1(Q) for all

Q € M1, then

f:inf{xeR‘f—xe(K—Lg) m Ll(Q)}
QeM;

(6)
:inf[x eR‘f—x e N (K —Li(Q))}

QeM;

since, forallQ € M1, (K — L) NLY(Q) = (K — L1 (Q)).
If fe L, then

f=inflx eR|f —x e (K — LY NLP}=inflx e RIf —x € Cpp),
where
Cpp 2 (K — L) N L.

It is easy to see thaf dominates SUPe, Eolf].

PrOPOSITIONL. If M1 +# @ and if eitherf € Mycpy, L1(Q) or f € LY, then

7) sup Eolf]< f.
QeM;

PrRoOOF For all x € R such thatf — x € (K — L9r) we have 0>
SURpen, Eolf —x1=sumpep, Eolf1—x. O
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REMARK 2. If N is a convex set of probability measures absolutely con-
tinuous with respect taP and if N NP # &, then it is easy to show that if
f €Ngen LYQ) orif f € LP, then

(8) SUpEg[fl= sup Eplf].

QeN QeNNP
In fact, let Qg € N and Q1 € N N P: take the convex combination@* =
(1—x)Q0+x0Q1, x €[0,1]. If x— 0, then4Z — 200 in L(P) and also
P-almost surely. In casg¢ € L??, equality (8) is a simple consequence of Fatou’s
lemma. In casef € Npey L1(Q), we havelflddQ < Ifl(dQO d%l) and so
the dominated convergence theorem can be applied. Therefore, in what follows
(Theorem 3, Corollary 4, Theorem 5 and Proposition 6) it will be equivalent to
take the supremum over the séfs (Mq) or overMy NP (Mgp NP).

Delbaen and Schachermayer proved ([5], Theorem 5.10) that in (7) equality
holds if f is bounded from below:

THEOREM3. If MNP+ @ andif f € L, then

9) f = sup Eglfl.

QeM;

A new proof of this result is given in Section 2.1. A
If f€Ngem, L1(0), (9) does not hold true anymore, whéris given in (6) To
obtain a correct dual formula we must replace in (6) th¢®gt , (K — L1 1(Q)

with MNpep, K — Li(Q) £ (;4, that is, with the closure ofC under an
appropriate topology (see Theorem 17). As a consequence of Theorem 5 below,
with ® =id, we deduce the following.

COROLLARY 4. If M1NP# @ andif f € Npep, L1(Q), then

(10) f,d_lnf[xeR‘f—xe (N kK-L} (Q) = sup Eglf].

QeMy QeM;

We shall call f;; the weak super replication pricef f. In Example 8 of
Section 1.3 we show that it is possible that < £.

The introduction of the convex functiod will allow us to present our results
in a more general framework and to link the interpretation of the weak super
replication price with the preferences of an investor represented by his or her utility
function. This analysis is provided in Section 1.2.

Throughout the paper we make the following assumption.
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ASSUMPTION The function®: (0, +00) — R is convex and satisfies the
following growth condition:

G (D) :V[ro, A1] C (0, +00) there existr > 0, 8 > 0 such that
PT(Ay) <adT(y)+B(y+1) Vy>0, Vie[Ao, A1l

For a detailed discussion of this condition and its relation with the condition,
introduced by Schachermayer [19], sfasonable asymptotic elasticitf the
utility function we defer to [10]. Se® (0) =lim o ®(y) and define:

Mg 2 {Q € M1:¢<Z—IQ)) Ll(P)}.

In Example 8, wher@ is the identity functionid and soM¢ = M1, we will show
that if £ € Npeu, L1(Q), then it may happen that

inf[x € R‘f —xe [) (K- Li(Q))} > sup Eglf].
QMo QeMy
The examples in Section 1.3 and the next theorem, proved in Section 3, are the
main contributions of the paper. Our aim is exactly that of providing the correct
interpretation and the dual representation onSéMD Eolf], even when it is

strictly less thanf .

THEOREM5. If ®(0) < +00, Mo NP # @ and f € Npeu, L1(Q), then

(11) f¢éinf[xeR‘f—xe N K—L}r(Q)Q = sup Eolfl1< /.

0eMy QeMo

. . . P N 4
As already mentioned, in Theorem 17 we will show thgjc s, K — Li(Q) =

C = Cg, WhereC is the closure of® under an appropriate topology.
As a consequence of Theorem 1.1 of Kabanov and Stricker [14] we also have

PROPOSITIONG. If Mo NP @ and f € LP?, then
f=sup Eg[f1= sup Eolf1= fo.

QGM]_ QGM(D

PROOF By definition, if f € L?, then fo < f. As in the proof of
Proposition 1 we also get sypy,, Eolf] < fo. The growth conditionG (&)
is weaker than the condition used in Corollary 1.4 of [14], siki&@b) does
not require thatb (0) < +oco. Nevertheless, it can be shown, as in the proof of
Corollary 1.4 of [14], that the conditio6 (®) and Theorem 1.1 of [14] imply

(12) sup Eglfl= sup Eolf] if felL".
OeMyp QeM;
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Hence, from (9), we gef = supycy, Eolf1=SUyey, Eolf1< fo < f. O

In Example 9 we will show that the equalifit = f may not be true for claims
that are not bounded from below.

1.2. Taking preferences into accountln incomplete markets, it may be
useful to take into account the preferences of the investor. This naturally leads
to the specification of a utility functiomn:, which we assume to be strictly
concave, increasing and finite valued on the whld he related standard utility
maximization problem

SUpE[u(x + g)1, x € R,

gek
in general does not admit an optimal solutiorkinsee [19]). In the duality theory
approach to this problem a crucial role is played by the convex conjugate of
which we denote byb:

®(y) =supu(x) —xy},  y>0.
xeR

Note that the conditior (0) < 400 assumed in Theorem 5 is equivalent to the
requirement that the utilityunction is bounded from above.

REMARK 7. The function® = id is the convex conjugate of the function

u:R— RU{—o0} defined by
0, if x =-1,
—00, otherwise,

u(x):{

which is not increasing oR. In this caseb cannot be interpreted as the conjugate
of a “utility” function.

It was first shown in [2] that if

SUPE[u(x + g)] < u(+00),
gek

then the fundamental duality relation

. . do
SUpE = min mini E|d|l 11—
gel? o)l QeMo 2>0 *r |: ( dp)}

holds true, without any further assumption on the utility function. For what con-
cerns economic considerations, Frittelli [9] suggested a clear financial interpre-
tation for the classV ¢ of those separating measures having figeneralized
entropy In fact, fix Q0 € My and consider the problem

Uo(x) 2 sudE[u(x + g)llg € LY(Q), Eolgl <0, u™(x +g) € L*(P)).
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This is precisely the utility maximization problem we would face if we sele@ed
as pricing measure. Whe (®) is satisfied, then (see [9], Proposition 4)
0 belongs toM if and only if

Ug(x) < u(400) for all x e R.

More explicitly this means that pricing b9 € M4 guarantees that the investor
cannot reach his or her maximum possible utiliiy(+oc), starting with an
arbitrarily low initial endowment. Therefore it makes sense to work withy,, as
the class of pricing measures which makes the model free of this typasgiof
based arbitrage opportunities

1.3. Examples. In Example 8 we show thaf; < f and in Example 9 we
show a case whergy < f, when® is not the identity function.

EXAMPLE 8. We denote by,, the interval(4 = ~L.]and byJt and byJ? its
two halves(zn, 2n+1] and(so+ T —L1.1, respectively.

We consider the foIIowmg one-period mode&R2, (Fo, 1), P), whereQ is the
interval (0, 1], Fo = o {I,|n € No}, F1=0{J!|i =1,2 andn € No} and P is the
restriction of the Lebesgue measurefip. The proces« is given by X (0) =
and

n onJ}!
X 1 — 9 n 9
@ —n?, onJ2.

The setk© will be the set of all stochastic integrals with respect to pre-
dictable processes, with no admissibility restrictions. Here this set is simply
{a X (1)|a Fo-measurableand« is identified by the sequence,,),,>1 of its values
on the intervald,,. The structure of elements iK can now be easily described.
By fixing a credit levek € R, which we may assume nonnegative, we have, for all
n € Np,

0

if o, >0,

IA
R

<
n —=
n2

—ay < < if o, <0.
n

Therefore the sequencg tends to zero, independently of the sign assumed on
eachr,. SinceX is unbounded, we are not allowed to buy or sell one unit of the
risky investmentX, and henceX (1) is not a replicable claim.

We are now ready to analyzé,. Every Q € M, is identified by its density
on J,;', denoted by; (n). From the definition oM, in (3) we see that eaol € M
is characterized by

0

IA

Z q1(n) + q2(n)

on+1 =1 and gi(n) =ngz(n) VYn>1,

n>1
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which imply in particular thafy",,.; “£2920) is finite. For later considerations,
we observe also thal (1) is not integrable for every € M;. Consider now the

claim

1, onJ},
—n, onJ2.

f:

It is evident thatf € L1(Q) and Eolf]1=0 for any Q € M;. By using the
duality relation in (10), we see that the weak super replication prlgelefequal
to zero: fig = 0. However,f = 1. Indeed if we try to writef — x asaX (1) —
with « admissible and nonnegative, we obtain that, for every 1, the foIIowmg
must hold:

l=na, — hi1(n) +=x,
—n = —n?a, — ha(n) + x,

whereh; (n) stands for the value df on J!. Clearly the second equation can be
always satisfied, provided that we cho@sén) big enough.
Then analyzing the first one we get

hin)=na, +x—-1>0 Vn,

thatis,x > 1 — na,. Now, if («,), is definitely negative, we obviously get> 1.
In casew, > 0 infinitely many times, for these, we have 0< «,, < # and so
na, is infinitesimal, when nonnegative. The consequence is agairl. Since
(f =1 e—-LY, thenf <1 and thereforef = 1.

The difference between these two super replication prices is due to the fact that
fisequalto(l, 3, 3..... 1, ..)X(2), which is in K° N N pep, L1(Q). Under
eachQ e M, this claim can be arbitrarily well1(Q)-approximated by claims in
the form:(1, 3. 3,...,1,0,0,...)X (1), which are ink and have zero cost. When
we require the usual stronger pointwise conditfor x = « X (1) — h, we obtain,
due to the “artificial” admissibility requirement, the higher valie- 1.

The difference between the weak and the classical super replication prices
becomes more evident if we consider the claifif) with k € R positive and
arbitrarily large. Reasoning exactly as before, we(@g) = k. Selling at such an
expensive price could be difficult, whereas the weak super replication@ﬁ(),e,
is still zero. The drawback ighat in this case one has to accept the possibility of

only approximatingkf — x) via bounded super-replicable claimsa@n

EXAMPLE 9. Consider the same setup as in Example 8 and chboge= y2,
for y > 0. If we takeX (1) as the claim under consideration, it is rather easy to see
thatf(T) +00, while sugyc, Eo[X (1] is not even well defined.

In spite of these negative facts, the COﬂdItIE[FD( )] < +o0 implies that

(n?+1)g3(n)
Zn>1 —

S s finite, thus{nga(n)2~"+/2}, ¢ 12, By the obvious remark
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{n2-"+D/2y 12 we get

2
Z n“q(n) < +o0,

= 2n+l
which, up to a constant, is just th@-integrability condition onX (1). Therefore,
X (1) is integrable for evenyQ € Mg and the integral is zero. Summing up, we
have

X(D)g = sup Eo[X(1)]=0< X(1) = +c0.
OeMy

2. Abstract formulation. Recall that a subsé&t of a vector space is a convex
cone ifx, y € G implies thatwx + 8y € G forallo, 8 > 0. LetL C X, L' C X' be
two convex cones in two vector spacésand X'. Let

(,):L x L' - RU {+o0}

be a “positive bilinear” form; that is, both applications— (x,x’) andx’ —
(x,x’) are additive, positively homogeneous and equal to 0 at 0. We shall set
(x,x') £ x'(x), for x e L andx’ € L'. With respect to(L, L', (-, -)) we define

the polarG® and the bipolaG% of a convex coné by

G2 {zeL'lz(g) <0Vg e G},
GP2(geLlz(g) <0VzeGY).

We assume that there exists an element, denotedi fsyich thatl € L and
—1lel.

THEOREM10. LetG C L be a convex cone satisfyi@°= G and—1 € G.
If the setN1 2 {z € G%z(1) = 1} is not emptythen for all f € L we have

(13) f2inf{x eR|f —x1e G} =supz(f)|z € N1}.

In casef < 400, it is a minimum

PrROOF First note that sincd € L and -1 € L, then fromz(0) = 0 and
the additivity of allz € L’ we deduce that-oco < z(—1) = —z(1) < +00 and
z(f — x1) is well defined for allz € L', f € L andx € R. Hencez(f — x1) =
z2(f)—x forall z € Ny andx e R. Givenf € L setf* 2 supz(f)|z € N1} < +o0.

For all x € R such that(f — x1) € G we have 0> sugdz(f — x1)|z € N1} =
supz(f)|z € N1} — x and hencef* < f.

To prove thatf < f* we may assume that* < +oo and it is sufficient to show
that(f — f*1) € G. Define

(14) N2G%={zeL'|z2(g) <0Vg € G}
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andNg £ {z € N|z(1) = 0}, so thatN = (J,gAN1 U No.
By definition of f*, —oco < z(f — f*1) <0 for all z € N;. Let z0 € Ng and
note that ifz € N1, then(z 4+ Azg) € N1 forall » > 0 and

0> (z+rz0)(f — D) =z(f — f*1) + rz0(f) forall » > 0.

Thisimpliesizo(f) < —z(f — f*1) < +oo forall A > 0 and sao(f) < 0. Hence,
z0(f — f*1) =zo(f) <Oforallzo € Ng. Thereforez(f — f*1) <Oforallze N
and we deduce thatf — f*1) belongs to the polar oiV; that is, it belongs to
GP=G. O

REMARK 11. Note that the assumption thaly is not empty excludes that
1=0. In our applications of Theorem 10, we will always consideiC L0
L' C LY(P), G will always be a convex cone containirgL$®, which implies
that N £ G® C L1, and the elemert will be the indicator function of2. As a
consequence of these conditiong,= {0}.

REMARK 12. If (L, L) is a dual system of vector spaces and ifs any
topology compatible witiL, L'), then the bipolar theorem, applied to the locally
convex topological vector spadé, r), guarantees;%° = G, wheneverG is a
convexr-closed set.

2.1. Proof of Theoren3.

DEFINITION 13 (see [4, 18]). A subsat C LY is Fatou closed if for every
sequence, € C that is uniformly bounded from below and that convergea.s.
to f, we havef € C.

We collect in the following theorem some relevant results taken from Delbaen
and Schachermayer (see [4, 5]).

THEOREM 14. (a)lf D < LY is a convex Fatou closed séhen D N L™ is
o (L>®, LY)-closed([4], Theoren#.2).

(b) If M1 NP +# &, then(K — L9r) is Fatou closed[4], Theorem4.2,and [5],
Theoren4.1).

In [3] a bipolar theorem for(L2, L%) is shown to hold, provided that the
bilinear form ., -) is allowed to take the valug¢oco. The proof of Theorem 15(a)
is based on the proof of the simpler bipolar theorem(iot’, Li) in [12].

THEOREM15. (a)lf Cyp is Fatou closedthenCy;, = (Cpp)%.
(b) In particular if M1 NP # @, thenCpp = (Cpp)°°.
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PROOF By definition, (C,)° £ {z € LY :E[zf]1 <0 Vf € Cp} and
(Cop)0 2 {f € LY 1 E[zf]1<0Vz € (Cp)°).

(a) ClearlyCyp;, € (Cpp)°°. To show that(Cy,)%° C Cy;, suppose by contradic-
tion that there existg e (Cp,)°°andf ¢ Cpy. Thenf, £ (f An) € (Cpp)?°NL>®,
fn 1 f P-a.s. andf;, is uniformly bounded from below. Sina&,; is Fatou closed
and f ¢ Cyp, then there existsg such thatf,, ¢ Cy,. Since the seCp, N L™
is convex and (L™, LY)-closed [see Theorem 14(a)] anfd, ¢ Cpp N L™ the
separation theorem i(L°°, o (L*°, Ll)) guarantees the existencené L such
that

E[zg]l <0 VgeCpNL® and E[zfy]>0.

Since—LS° € Cpp N L™ we haver € Li. We now show that € (Cpp,)°, which

is in contradiction withf,,, € (Cp,)°° and E[zf,,] > 0. For eachg € Cp,;, we set
gn 2 (g An). Theng, € Cp,p, N L™, g, 1 &, P-a.s. andg, is uniformly bounded
from below. By Fatou’s lemma,

E[zg] <lim E[zg,] <0 VgeCp.

(b) From Theorem 14(b) we know thak — Lg) is Fatou closed; hence
Cpp = (K — L%) N L is Fatou closed and (b) follows from (a)C)

Now we are ready to give a proof, based on Theorem 10, of Theorem 3.

PROOF OFTHEOREM 3. To prove (9), we apply Theorem 10, with= L??,
L = L_L 1=1g andG = Cpp. The positive bilinear form will be’(x) = E[x'x].

From (14) we getV £ (Cpp)° = {z € L1 |E[zg] <0V g € Cpp} andN1 2 (z €
N|E[z] =1}. Since

{ze LY |E[zg1 <0V g e Cpp} =1{z€ L} |E[zg] <0V g e K},

we may identifyN, with M1. From Theorem 15(b) we see that the assumptions of
Theorem 10 are satisfied. Hence

inf{x € R|f — x € Cpp) = SUNE[zf ]|z € M1). O

3. The polarity between C¢ and co(Mg). In this section we stick to the
terminology of [11], Chapter 8. Define the linear spaces

L= () L*Q) and L' =Lin{Me}< L (P),
OeMy
where we assume thaf g is not empty and we identify eaah with its Radon—
Nikodym derivative w.r.t.P.
Notice thatC € L*°(P) C L. Forallz € L andz’ € L', we have thatzz') €
L1(P) and the bilinear form x z’ — E[zz] is well defined. TheriL, L) defines
a dual system.
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DEFINITION 16. We denote by a locally convex topology o compatible
with the duality(L, L’).

Just by definition, endowed with the-topology L is a locally convex
topological vector space where the set of continuous linear formd. as
preciselyL’. We may select any topology compatible with the dual systend.’),
since our results depend only on the property that the topological ddaisof.’.

Note that this topology needs not to be Hausdorff, since generdllydoes
not separate points ih. Think of the case when we have just one elememin
(a complete market case, in which the unique equivalent pricing measure has finite
entropy).

Define

a9
(15) Co= () (K—LL(Q) .
0eMy
The main result of this section is the following theorem. Its proof will be
based on Proposition 19 and Theorem 20, which will also provide a different
representation fo€¢.

THEOREM 17. Assume thatb (0) < +oo and Mg NP £ &. With respect to
the topologyr we have (a) C is the closure of”; (b) Co and the convex cone
co(Mg) generated byl are polar to one another

As an immediate consequence of Theorems 10 and 17 we prove Theorem 5.

PROOF OF THEOREM 5. SinceM¢ C M3, the inequality in (11) is proved
in Proposition 1. Consider the dual systém L’) and the topology on L. Set
G = C¢. From Theorem 17 we dedude= (C¢)° = co(M¢) andN1 = M. The
assumptions of Theorem 10 are satisfied and then from (13) we get

inf{x € R|f — x € Co} =SUPEQLf1|Q € Mo). O

ProPOSITION 18. Assume thatb(0) < +oo. If Qo< P, Q1 K P, x €
(0,1), 0 =xQ01+ (1 —x)Qo, then

d : :
Ed)(d—IQ)) < +oo ifandonly if
d d
Ed)(&) < +o0 and Ed)(&) < +00.
dP dP
PROOF  The convexity ofb implies thatE®(%4) < +oo if E® (44 < +00
for i = 0, 1. Conversely suppose thﬂd)(fi—g) < 4o00. Fori = 0,1, we have

o~ (485) e LY(P), sinced is convex andi% e L1(P). Therefore we only need
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to show the integrability oﬂ>+(%), which is trivially true if ® (+00) < +o0. If
® (+00) = +oo thend* is nondecreasing ofyg, +oo) for someyg > 0. From
0 =x01+ (1—x)0Qp we deduce

d01 _1dQ 1-xdQo _1dQ

dP  xdP x dP ~xdP’

dQl dQl dQl
Eq)+< dpP ) E[CD+< dP )ﬂ{dQl/"’P<>’0}] T E|:(D+<d—P)]l{dQ1/dP>yo}:|

P-a.s,

< max &T( )+E[d>+<}d—Q> ]<+oo
omax. y < ap ) tdo/dr=yol

since from the growth conditio(®), we have ®+(298) < ¢ o+ (49) +
B(44 + 1) e LY(P). Similarly for 492, [

LetC be the closure of with respect to the topology. Note thaC is a convex
cone andC C L € L1(Q) for all Q € Mg. The polar ofC with respect to the

topology is given by
C°L( el Elzz1<0forallzeC}c LE(P),
since—L° C C.

PrROPOSITION19. If ®(0) < +o0, thenco{Mg} = (_70.

PROOE All Q € Mg are t-continuous linear functionals, so that (for a
fixed Q) the set{z € L|Eg[z] < 0} is r-closed and it containg. We deduce
that if z € C, then Eplz] <0 for all 0 € My. Since Mq is convex,L’ admits
the following representation:

L'={ e LYP):Z =az}) — Bz, @, B 20, 24,20 € Mo)}.

We claim thatMe = C 02 (_7 N {unit sphere of.1(P)}. Note that

Cl= {0« P:Q=1+p)01—BQ0 B >0, 01. 00 Mo
andvz e C, Eplz] <0}

Obviously Mg C (_72: so we consider the cage> 0. If Q € 52, thenvz e C,
EQ[Z] <0 and soQ € M1 It remains only to check that D e 52, then
E®(%2) < +o0. If Q2 (14 B)Q1 — BQo, then Q1 = 1+,3Q + 1+,3Q0 =

xO+ 1 —x)0p, x = 1+,3 € (0, 1), and the thesis follows from Proposition 18.
O
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The following theorem is proved in [9], Theorem 3 adding &®) the
assumptions tha® is strictly convex and differentiable. But the proof of the
theorem remains unchanged even without these additional assumptions. Let

(co(M))° 2 {f € L:Eg[f1<0YQ € Mo).

THEOREM20. If My NP # &, then
) C¢=(co(Ms)°).

0eMy

PROOF OFTHEOREM17. Sinceco{Mq¢} = the blpolarC %0t Cis given
by:

Ooﬁ{ elL: E[zz/]§OfOI’a||z/EEo}

={zeL:EQ[z]§OforaIIQeM¢}:C¢,

by Theorem 20 From the bipolar theorem we deduce@atC *° = Co. From
co{Mg) = C° we then getco{Me))° = Co and(Ce)° = co{Mg). [

The boundedness df in a right neighborhood of 0 is essential in Propositions
18 and 19 and in Theorem 17, as the following example shows.

ExAMPLE 21. The context is the same of Example 8. Consider the function
@ defined by:

(D_{—In(y), onO0<y<1,
T y2-3y+2, ony> 1.

Obviously, @ is strictly convex and differentiable. The point is that in this model
there exists 821 € M1, with Q1 not equivalent toP and with bounded density:
such a measure has infinite generalized entropy, th&@1sz M¢. For instance,
let 49 = 2y, = 2x3,4)- Then, pick anyQo € Mo: for example, také/20 equal

to ¢ on 11 (and consequently equal t§ on JZ) wherec is the normallzmg
constant Con5|der now the convex comblnat@ﬁ 1—-x)00+x01, x €

(0, 1). Since the following inequalities hold true

(1—x)Q0< 0" <(1—x)Qo+const

O~ has finite generalized entropy, that @' € M.

Since Q1 ¢ Mo, to show thatco(Me) & (Co)Y it is sufficient to show that
Q1 € (Co)°. Itis obvious thatQ; € Lin(Mq¢) = L' andC € LY(Q1). Recall that
C=CoCC? andEp[f]<0forall Qe My andf € Co. Slnce|f| 0"

|FI(5% + 4% we deduce, iff € Co, Eg,[f]1=1im,1Eq:[f]<0.
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REMARK 22. Motivated by the last lines of the previous example, we now
make some extra observations on the duadilityL”). As we have already noted, the
dual system may not be separated. The consequence is that in general we cannot
put a topology on L’ which is compatible with the dualityZ, L’), that is, such
that the dual of L', 1) is exactlyL (think again of the case whéM | = 1).

However, if we define orl. the equivalence relatiof,

f’vg iff EQ[f]=EQ[g] foraIIQeM¢,

and we definek to be the quotient of. w.r.t. the relation~, then it can be

easily seen thaf is a vector space with the obviously defined sum and scalar
multiplication.
We indicate withr.. the quotient topology ofL, 7) on £. It is now a simple

exercise proving that, for afl € £ andz’ € L', we have thatz’ € L1(P) (where
z is a generic element of the equivalence clgsand the bilinear forn§ x 7/ —
< &,7 =2 E[z7'] is well defined. TherZ, L) is a dual system, it is separating
and the topologyr~ on £ is compatible. Now we also can endaw with a
topologyv compatible with this new system.

When the conditiord (0) < +oo is satisfied, we have thab(Mg) coincides

with (%’)o and therefore is-closed.
The previous example shows that this is not always the case Wiénis
infinite. In fact, fix am e é. Then, with the same notation used befete;, O >

tends to< 7, Q1 > whenx — 1. Now, lettingy vary arbitrarily in £ we get that
Q* tends toQ? in the v-topology. Therefore neitheé¥ s nor co(Mg) is v-closed.

4. Comparison with the Delbaen—Schacher mayer approach, when ® =id.
In their remarkable pap¢b], Delbaen and Schachermayer introduced the notions
of feasible weight functionw for the processt and of w-admissible integrands
for X to get the duality results stated below in Theorem 25. We recall here some
of their definitions and results and we defe(5, Section 5, for their motivation
and explanation. In the sequel it is always assumeddhath P # @. Note also
that the time horizo appearing throughout this paper could be finite as well as
+o0: the latter case will be now considered.

DEFINITION 23 ([5], Definition 5.1). Ifw > 1 is a random variable, if there
IS Qo € My NP such thatEg,[w] < oo, then we say that the integrand is
w-admissible if there exists some nhonnegative real numtserch that, for each
elementQ € M, NP and each > 0, we have thatH - X); > —cEg[w|#:].

DEFINITION 24 ([5], Definition 5.4). A real random variable > 1 is called
a feasible weight function foX if the following hold:

(a) there is a strictly positive bounded predictable proggssuch that the
maximal function of thék?-valued stochastic integral- X satisfieg¢ - X)* < w;
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(b) there is an eleme®o € M, NP such thatE g, [w] < co.

As pointed out in the cited article, feasible weight functions do existulbe
a feasible weight function fok and set

Ky 2 {(H - X)s|H is w-admissiblé,
fw2inflxeR|f —xe K, — LY},
Ma,w £ {Q € MU|EQ[w] < OO}

THEOREM 25 ([5], Theorem 5.5). If w is a feasible weight function anfl is
a random variable such thgt > —w, then

(16) fo=inflxeR|f—xe K, L2} = sup Egl[f]
QeMy ,NP

and if the quantities are finitehe infimum is a minimum

We now compare the super replication pri¢eof f given in (16) with the weak
super replication pricgi; of f givenin (10).

The first important remark is that given a claifie Mpep, L(Q) then fiy
is uniguely defined and is not dependent on the agent. On the contrary, the super
replication pricef,,, of the same clainy, will in general depend on the different
feasible weight functions selected by the investor. Indeefl, depends on how
much one is ready to lose in the trading. By admitting bigger losses, this price
decreases, as we will show in the example in Section 4.1. Only admitting the
knowledge of a feasible weight functiamn the super replication pricﬁw of those
claims f satisfying f > —w is uniquely defined and (16) may be applied.

If f €Noem, L1(Q), then by simply considering(f) £ wv f~ (wheref~ is
the negative part of ) we obtain a feasible weight function such thfat —w(f).
Therefore, for each given claith e Mpep, L1(Q) we can always find at least one
suitable feasible weight r so that we can apply the duality formula (16) to the
couplef, wy to get the particular super replication priﬁ.@f.

From (16), (10) and Remark 2, we get

fe N LYNQ) = fu= sup Eglfl= sup Eglfl= fu,

OeMy QeM1NP QeMg,wfﬂIP’

In [5] it is also proved thatM, N P is dense inM1 N P (Proposition 4.7) and
that M, ,, NP is dense inM, NP (Corollary 5.13). Unfortunately, in spite of the
density properties, we cannot apply the dominated convergence theorem, as done
in Remark 2. As shown in Example 26, the weak super replication gficean

be strictly greater thai,,( s (or than f,, with anyw feasible withf > —w).
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4.1. Dependence omw. First recall that for locally bounded processes, as
those we will consider in this section, the sétfg of separating measures and
M, of o-martingale measures are equal and coincide with the set of local
martingale measures. Hentg , = {Q ¢ Mi|Eglw] < 00} = M, ,, andM1 may
replaceM, (and vice versa) in any subsequent formulas.

With the next example we provide evidence of the dependence of the super
replication pricef,, from the feasible weight functiom and of a situation in which

17) sup Eglfl> sup Eglfl.

QeM;NP QeMy NP
Example 5.14 in [5] was exactly intended to prove the previous inequality, but, as
we now explain, it is not correct. The claighand the feasible weight functiany,
introduced in the next example, are exactly those considered in Example 5.14
in [5]. However, we will prove in item 5 below [see also (23)] that, contrary to
the assertion (2) made after Example 5.14 in [5], the two suprema in (17) coincide
for suchf andws. For the validity of the strict inequality in (17) (or in [5], (5.1))
we have to use a different weight functiom2) and to exploit the peculiar feature
(see Lemma 27) of a positive strict local martingXleunder P, which admits a
probability measure ~ P such thatX € H2(Q).

EXAMPLE 26. On a suitable stochastic ba&is, (#;);>0, P) there exist:

(&) acontinuous processsatisfyingSg = 0 such thatP € M1 NP, whereM1 is
the set of separating measures $or

(b) two S-feasible weight functions); andwo;

(c) aclaimf € Ngew, L1(Q) satisfyingf > —w1, f > —wy;
such that:

w1 € Noem, L1(Q), so thatM, , = My = My;

S is uniformly bounded from above and is a submartingale for gaehiM;
S is not a martingale unde? andE p[So] > O;

VR e M, SisanR-uniformly integrable martingale anBlz[So] = 0;

fia = fuy > fu, =0.

aprwpdpE

To demonstrate this example, we need a result based on a slight modification of
the example in [6], Section 2, to which we refer for a detailed construction.
We call

L, 2 exp(B; — 5t)

and

2
(18) N® 2 exp(a W, — %I),
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wherea is a positive real constant and, W) is a standard two-dimensional
Brownian motion on a stochastic basi®, (¥;)o</<+c0, P). We assume that the
filtration ¥ is the augmentation of the natural ori&,>"),, induced by(B, W).
Both L andN @ are positive, stricP-local martingales. Then, define the stopping
times

(19) T 2inf{t|L, = 3},
(20) 0@ Linf{r| N =2},
Notice that

r =inf{t|B, — 3t =log 3},

log 2
a(“):inf{ﬂW,—gt: g }
2 a

so these two stopping times are passage times of Brownian motion with drift.
Now define the stopped processes) £ 1747 andy@ 2 (N@)tre@ gng
the probability measur@@ 2 y@ . p.
The following result is analogous to Theorem 2.1 of [6], but the introduction of
the parametet in (18) allows us to add item (d). When= 1, Lemma 27 reduces
to Theorem 2.1 of [6]. HoweveX @ is not in H2(QD).

LEMMA 27. (a) For everya > 0, the processx® is a continuous strict
local martingale under andXé‘é) >0as, Xé“) =1, Ep[Xé‘é)] < 1.

(b) For everya > 0, the processt @ is a continuous uniformly bounded
integrable martingalethat is strictly positive ori0, 4+-oc].

(c) For everya > 0, the processx@ is a uniformly integrable martingale
underQ @,

(d) X@ belongs toH?(Q@) iff a® > 8.

PrROOF We only need to prove item (d) since the first three points can be
easily checked as in Theorem 2.1 of [6]. For simplicity of notation the dependence
ona is dropped.

By definition, X is in H2(Q) iff Epl{X)o] < +00. Taking into account the
positivity of the processes, an application of Doob’s optional sampling theorem to
the P-uniformly integrable martingal&/? leads to

EQ[<X>00] = E[Yoo<L>t/\a] = E[Na <L>‘L'/\O‘]

and, thanks to the independencd bf ) ando, the last term becomes

(21) 2 f Yo <+00 @V E[(L) e no(@n] d P(@).
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Let us then analyze&[{L).A;]: it is equal toE[LEM] becausel’ is a square

integrable martingale. By the Girsanov theorem we can write
E[(L)enil = EILZ,,] = E[€XP2Br s — T A1)] = Elexplr A1}],

AL

where the last expectation is taken under the unique probabiliay F2-W such
that (B,), = (B, — 2r), is a standard Brownian motion. With such a change of

measurer = inf{r|B, + %r = —log 2} and the law ofr on (0, +occ] underP is
given by
- |b| [ (b — m)z}
P)= exp| ———— |dt + (1 — exp(ub — |ub ,
T(P) NS p > + ( P(ib — | ubl))e(+o0)
wherepu =%, b = —log2; that is, it consists of the sum of two positive measures,

the first a.c. with respect to the Lebesgue measur@®oroo) with density
LI [_ <b—m>2}
V(2rt3) 2t

and the second being an atom-wo with mass 1— exp(ub — |ubl) (see [16],
page 196). Then

(22) f@)=

e’ > E[explt At)] = / N f(s)ds + %et > %et,

and the quantity in (21) is finite if and only €[ x,; <+00}e” ] < 00. Using the
density f (1) in (22), withp = -5, b = 'Oaiz, of the absolutely continuous part of
the law ofo underP, we get
+0 . (log2)/a [ ((log2)/a + <a/2)r>2}
E[Xio<1001€” ] = e —Z—exp|— dt
[X(o<+ocpe’ ] A ) >

and the integral is finite ifi2 > 8. O

REMARK 28. Similar results can be obtained by replacing the cons}ant
in (19) with any O< ¢1 < 1 and the constant 2 in (20) with any > 1.

EXAMPLE 26 (Continued). Fix any > 0 and takeX £ X@, 6 p, 0 £ Q@
as defined before Lemma 27.

We defineS = 1— X. ThenP € M1. We note thaSg = 0 andS is bounded from
above, so thall = —1 is a “usual” admissible integrand. Under edthk M1, —S
is a supermartingale and hengés a submartingale.

We takef = S as the claim to be evaluated. We are in a continuous context, so
aw > 1 is feasible as soon as there exists a meaBuré/1 N [P such thatE z[w]
is finite.

First we consideiw; = 1 + X,. Note thatf > —wj and thatw; is feasible,
since it is integrable for alR € M1 by construction. Note that when= 1 this
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setting is precisely the one considered in Example 5.14 of [5]. Then the duality
formula (16) can be applied tband we have, recalling Remark 2,

(23)  fia= sup Eg[fl= sup Egr[fl= fu, = Ep[f]1>0.

ReM1NP ReMmu,lﬂIP’

As a consequence of the last inequalify,= 1 is NOT wi-admissible. If it
wereS = (1- S) would become a supermartingale (this implication derives from
Proposition 3.3 in [1] as well as from Theorem 5.3 in [5]) under eRehM; and
hence a martingale: this would impEp[ 1= 0. Another argument is that, using
the duality in (16),f (w1) <0, a contradiction.

We now considetvy = (X;O)Z, whereX; = suf{| Xs||0 <s <t} =supX,|0 <
s <t}. Now we need to assume that- 2/2.

Thenws is certainly Q-integrable [by the Burkholder—Davis—Gundy inequali-
ties, wo € L1(Q); it is not in L1(P), because otherwis& would be aP-square
integrable martingale]: say, also is feasible and clearly > —w». Now we get

fu,= sup Eg[f]1=0

ReMl,wsz
because under thegwe obviously have
S: =1-X; > —Eg[w2| F];

that is,H = 1 is wo-admissible and henceforthis an R-martingale. The crucial
point thatMy ,,, NP # @ was shown in Lemma 27, item 4.
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