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ON THE SUPER REPLICATION PRICE OF
UNBOUNDED CLAIMS
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Università degli Studi di Perugia and Università degli Studi di Firenze

In an incomplete market the price of a claimf in general cannot be
uniquely identified by no arbitrage arguments. However, the “classical” super
replication price is a sensible indicator of the (maximum selling) value of the
claim. Whenf satisfies certain pointwise conditions (e.g.,f is bounded from
below), the super replication price is equal to supQ EQ[f ], whereQ varies
on the whole set of pricing measures. Unfortunately, this price is often too
high: a typical situation is here discussed in the examples.

We thus define the less expensiveweak super replication priceand
we relax the requirements onf by asking just for“enough” integrability
conditions.

By building up a proper duality theory, we show its economic meaning
and its relation with the investor’s preferences. Indeed, it turns out that the
weak super replication price off coincides with supQ∈M�

EQ[f ], where
M� is the class of pricing measures with finite generalized entropy (i.e.,
E[�(

dQ
dP

)] < ∞) and where� is the convex conjugate of the utility function
of the investor.

1. Introduction. We investigate the super replication price of contingent
claims in incomplete markets where gains from trading may take any real value.
For claimsf which are bounded from below, the classical super replication price
is equal to

sup
Q∈M1

EQ[f ],(1)

whereM1 is the set of all pricing measures. For claims which are unbounded
from below, however, the above supremum may be strictly lower than the super
replication price.

One of the main results of the paper is a representation of the supremum (1)
for unbounded claims in terms of a “weak super replication price”f̂�, which
allows variables from a slightly wider class than the usual one of terminal values
from admissible integrands. This natural classC� (see [15]) was first explicitly
introduced by Frittelli (see [8, 9]). The classC� depends on a convex function
� : (0,+∞) → R which normally (see Remark 7) represents the conjugate
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function of a utility functionu. We will assume that� satisfies a growth condition
that is shown to be equivalent to the condition of reasonable asymptotic elasticity
of u in the sense of Schachermayer [19].

We denote byM� � {Q ∈ M1 :E[�(dQ
dP

)] < ∞} the set of pricing measures
with finite generalized entropy. The actual result obtained (see Theorem 5) is that
if �(0) < ∞ and there exists an equivalent pricing measure with finite generalized
entropy, then for claimsf (for which the LHS make sense, but which may be
unbounded from below) we have

sup
Q∈M�

EQ[f ] = inf{x ∈ R|f − x ∈ C�} � f̂�.(2)

The representation of (1) is then a corollary, setting� = id.

We provide an example of an unbounded claim where the weak super replication
price f̂id is strictly less than the classical super replication pricef̂ .

The paper is based on the appropriate selection of the spaces for which the
following duality holds true: if�(0) < ∞ (and there exists an equivalent pricing
measure inM�), then the conesC� andco(M�) are polar to one another.

However, if �(0) is infinite, then co(M�) ⊆ (C�)0 with possibly strict
inclusion. We give an example where indeed the inclusion is strict andco(M�)

is not closed.
Finally, we develop a comparison between the duality relation obtained by

Delbaen and Schachermayer [5] and ours when� = id . It turns out that the super
replication pricef̂w of the claimf , as defined in [5], depends explicitly on an
unbounded weight functionw, which represents the maximum loss the investor is
willing to face. Instead, our weak super replication pricef̂id is equal for all the
agents in the given market.

If one is interested in taking into account the investor’s attitude toward risk, we
suggestf̂� as a suitable super replication price, since it has the advantage of being
explicitly linked to the utility function.

The paper is organized as follows.
Section 1 has three sections: the first contains the general setup and the precise

formulations of our results; in the second we explain how the preferences of the
investors are taken into consideration and the relations betweenu and�; the third
is devoted to two basic examples in which classical duality fails.

In Section 2 we give an abstract duality relation, which is used in the proofs of
the main results, and we also provide a new proof of the representation of the super
replication price forbounded-from-below claims.

In Section 3 we build up a proper dual system, so that we obtain the polarity
betweenC� andco(M�) and we prove (2).

We end with Section 4, which contains the comparison betweenf̂id andf̂w.

1.1. The model and the results.Our starting point is the general semimartin-
gale model of a financial market as defined by Delbaen and Schachermayer [5].
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Let (�,F , (Ft )t∈[0,T ],P ) be a filtered probability space, where we assume that
the filtration satisfies the usual assumptions of right continuity and completeness,
and letP be the class of probability measures equivalent toP .

The Rd -valued càdlàg semimartingaleX = (Xt )t∈[0,T ] represents the (dis-
counted) price process ofd tradeable assets.

An Rd -valued predictable processH = (Ht)t∈[0,T ] is called anadmissible
trading strategy ifH is X-integrable and there exists a constantc ∈ R such that,
for all t ∈ [0, T ], ∫ t

0 Hs · dXs ≥ −c, P -a.s. The financial interpretation ofc is
a finite credit line which the investor must respect in his or her trading. This
bounded-from-below restriction on the stochastic integral traces back to the work
of Harrison and Pliska [13] and it is now a standard assumption in the literature
(see [4]).

We denote byL0 [resp. L∞, L1(P )] the space ofP -a.s. finite (resp.
P -essentially bounded,P -integrable) random variables on(�,F ), with L∞+ (resp.

L1+) the cone ofP -a.s. nonnegative random variables inL∞ (resp.L1), with Lbb

the cone of essentially bounded from below random variables, with�CP the closure
of a setC ⊆ L1(P ) in theL1(P ) norm topology. Define

K �
{∫ T

0
Hs · dXs |H is admissible

}
⊆ Lbb,

C � (K − L0+) ∩ L∞.

K is the cone of all claims that are replicable, at zero initial cost, via admissible
trading strategies. The set

(K − L0+) = {f ∈ L0 :∃g ∈ K s.t.g ≥ f P -a.s.}
is the cone of all claims inL0 that can be dominated by a replicable claim, hence
is the cone of super-replicable claims. ConsequentlyC � (K − L0+) ∩ L∞ is the
cone of bounded super-replicable claims. In Section 3 we will consider the closure
�C of C under a particular topology: then�C is the cone of claims that can be
“approximated” by bounded super-replicable claims.

Define

M1 � {Q 	 P :K ⊆ L1(Q) andEQ[g] ≤ 0 for all g ∈ K},(3)

M � {z ∈ L1(P ) :E[zg] ≤ 0 ∀g ∈ C} ⊆ L1+(P ).(4)

The elements inM1 are calledseparating probability measures. We will often
identify probability measuresQ, absolutely continuous with respect toP , with
their Radon–Nikodym derivativesdQ

dP
∈ L1(P ). Note that (see [2], Lemma 1.1 for

details)

M1 = {Q 	 P :EQ[g] ≤ 0 ∀g ∈ C}
(5)

= {z ∈ M|E[z] = 1}
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and that ifX is bounded (resp. locally bounded), then

M1 = {
Q 	 P :X is a

(
Q,(Ft )t∈[0,T ]

)
martingale (resp. local martingale)

}
,

that is, M1 is the set of P -absolutely continuousmartingale (resp. local
martingale) measures. In general, for possibly unboundedX, M1 is the set of
P -absolutely continuous probabilities such that the admissible stochastic integrals
are supermartingales. What is more (see [5], Proposition 4.7) if M1 ∩ P �= ∅, then
the setMσ of absolutely continuousσ -martingaleprobabilities is not empty and
Mσ is dense inM1 for the total variation topology.

The main topic of this paper is the analysis of thesuper replication pricef̂ of a
claimf ∈ L0, defined by

f̂ � inf{x ∈ R|∃g ∈ K s.t.x + g ≥ f P -a.s.}
= inf{x ∈ R|f − x ∈ (K − L0+)}.

This subject was originally studied by El Karoui and Quenez [7]; see also
Karatzas [15] and the references cited there. We will mainly deal with the results
on this subject provided by Delbaen and Schachermayer [5]. Iff ∈ L1(Q) for all
Q ∈ M1, then

f̂ = inf

{
x ∈ R

∣∣∣f − x ∈ (K − L0+)
⋂

Q∈M1

L1(Q)

}
(6)

= inf

{
x ∈ R

∣∣∣f − x ∈ ⋂
Q∈M1

(
K − L1+(Q)

)}

since, for allQ ∈ M1, (K − L0+) ∩ L1(Q) = (K − L1+(Q)).

If f ∈ Lbb, then

f̂ = inf{x ∈ R|f − x ∈ (K − L0+) ∩ Lbb} = inf{x ∈ R|f − x ∈ Cbb},
where

Cbb � (K − L0+) ∩ Lbb.

It is easy to see that̂f dominates supQ∈M1
EQ[f ].

PROPOSITION1. If M1 �= ∅ and if eitherf ∈ ⋂
Q∈M1

L1(Q) or f ∈ Lbb, then

sup
Q∈M1

EQ[f ] ≤ f̂ .(7)

PROOF. For all x ∈ R such that f − x ∈ (K − L0+) we have 0≥
supQ∈M1

EQ[f − x] = supQ∈M1
EQ[f ] − x. �
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REMARK 2. If N is a convex set of probability measures absolutely con-
tinuous with respect toP and if N ∩ P �= ∅, then it is easy to show that if
f ∈ ⋂

Q∈N L1(Q) or if f ∈ Lbb, then

sup
Q∈N

EQ[f ] = sup
Q∈N∩P

EQ[f ].(8)

In fact, let Q0 ∈ N and Q1 ∈ N ∩ P: take the convex combinationsQx =
(1 − x)Q0 + xQ1, x ∈ [0,1]. If x → 0, then dQx

dP
→ dQ0

dP
in L1(P ) and also

P -almost surely. In casef ∈ Lbb, equality (8) is a simple consequence of Fatou’s
lemma. In casef ∈ ⋂

Q∈N L1(Q), we have|f |dQx

dP
≤ |f |(dQ0

dP
+ dQ1

dP
) and so

the dominated convergence theorem can be applied. Therefore, in what follows
(Theorem 3, Corollary 4, Theorem 5 and Proposition 6) it will be equivalent to
take the supremum over the setsM1 (M�) or overM1 ∩ P (M� ∩ P).

Delbaen and Schachermayer proved ([5], Theorem 5.10) that in (7) equality
holds iff is bounded from below:

THEOREM 3. If M1 ∩ P �= ∅ and iff ∈ Lbb, then

f̂ = sup
Q∈M1

EQ[f ].(9)

A new proof of this result is given in Section 2.1.
If f ∈ ⋂

Q∈M1
L1(Q), (9) does not hold true anymore, whenf̂ is given in (6). To

obtain a correct dual formula, we must replace in (6) the set
⋂

Q∈M1
(K − L1+(Q))

with
⋂

Q∈M1
K − L1+(Q)

Q
� Cid , that is, with the closure ofC under an

appropriate topology (see Theorem 17). As a consequence of Theorem 5 below,
with � = id , we deduce the following.

COROLLARY 4. If M1 ∩ P �= ∅ and if f ∈ ⋂
Q∈M1

L1(Q), then

f̂id � inf

{
x ∈ R

∣∣∣f − x ∈ ⋂
Q∈M1

K − L1+(Q)
Q

}
= sup

Q∈M1

EQ[f ].(10)

We shall call f̂id the weak super replication priceof f . In Example 8 of
Section 1.3 we show that it is possible thatf̂id < f̂ .

The introduction of the convex function� will allow us to present our results
in a more general framework and to link the interpretation of the weak super
replication price with the preferences of an investor represented by his or her utility
function. This analysis is provided in Section 1.2.

Throughout the paper we make the following assumption.
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ASSUMPTION. The function� : (0,+∞) → R is convex and satisfies the
following growth condition:

G(�) :∀ [λ0, λ1] ⊆ (0,+∞) there existα > 0, β > 0 such that

�+(λy) ≤ α�+(y) + β(y + 1) ∀y > 0, ∀λ ∈ [λ0, λ1].
For a detailed discussion of this condition and its relation with the condition,

introduced by Schachermayer [19], ofreasonable asymptotic elasticityof the
utility function we defer to [10]. Set�(0) = limy↓0�(y) and define:

M� �
{
Q ∈ M1 :�

(
dQ

dP

)
∈ L1(P )

}
.

In Example 8, where� is the identity functionid and soM� = M1, we will show
that if f ∈ ⋂

Q∈M�
L1(Q), then it may happen that

inf

{
x ∈ R

∣∣∣f − x ∈ ⋂
Q∈M�

(
K − L1+(Q)

)}
> sup

Q∈M�

EQ[f ].

The examples in Section 1.3 and the next theorem, proved in Section 3, are the
main contributions of the paper. Our aim is exactly that of providing the correct
interpretation and the dual representation of supQ∈M�

EQ[f ], even when it is

strictly less thanf̂ .

THEOREM 5. If �(0) < +∞, M� ∩ P �= ∅ andf ∈ ⋂
Q∈M�

L1(Q), then

f̂� � inf

{
x ∈ R

∣∣∣f − x ∈ ⋂
Q∈M�

K − L1+(Q)
Q

}
= sup

Q∈M�

EQ[f ] ≤ f̂ .(11)

As already mentioned, in Theorem 17 we will show that
⋂

Q∈M�
K − L1+(Q)

Q=
�C = C�, where�C is the closure ofC under an appropriate topology.

As a consequence of Theorem 1.1 of Kabanov and Stricker [14] we also have

PROPOSITION6. If M� ∩ P �= ∅ andf ∈ Lbb, then

f̂ = sup
Q∈M1

EQ[f ] = sup
Q∈M�

EQ[f ] = f̂�.

PROOF. By definition, if f ∈ Lbb, then f̂� ≤ f̂ . As in the proof of
Proposition 1 we also get supQ∈M�

EQ[f ] ≤ f̂�. The growth conditionG(�)

is weaker than the condition used in Corollary 1.4 of [14], sinceG(�) does
not require that�(0) < +∞. Nevertheless, it can be shown, as in the proof of
Corollary 1.4 of [14], that the conditionG(�) and Theorem 1.1 of [14] imply

sup
Q∈M�

EQ[f ] = sup
Q∈M1

EQ[f ] if f ∈ Lbb.(12)
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Hence, from (9), we get̂f = supQ∈M1
EQ[f ] = supQ∈M�

EQ[f ] ≤ f̂� ≤ f̂ . �

In Example 9 we will show that the equalitŷf� = f̂ may not be true for claims
that are not bounded from below.

1.2. Taking preferences into account.In incomplete markets, it may be
useful to take into account the preferences of the investor. This naturally leads
to the specification of a utility functionu, which we assume to be strictly
concave, increasing and finite valued on the wholeR. The related standard utility
maximization problem

sup
g∈K

E[u(x + g)], x ∈ R,

in general does not admit an optimal solution inK (see [19]). In the duality theory
approach to this problem a crucial role is played by the convex conjugate ofu,
which we denote by�:

�(y) � sup
x∈R

{u(x) − xy}, y > 0.

Note that the condition�(0) < +∞ assumed in Theorem 5 is equivalent to the
requirement that the utility function is bounded from above.

REMARK 7. The function� = id is the convex conjugate of the function
u :R → R∪{−∞} defined by

u(x) =
{

0, if x = −1,

−∞, otherwise,

which is not increasing onR. In this case� cannot be interpreted as the conjugate
of a “utility” function.

It was first shown in [2] that if

sup
g∈K

E[u(x + g)] < u(+∞),

then the fundamental duality relation

sup
g∈K

E[u(x + g)] = min
Q∈M�

min
λ>0

λx + E

[
�

(
λ
dQ

dP

)]
holds true, without any further assumption on the utility function. For what con-
cerns economic considerations, Frittelli [9] suggested a clear financial interpre-
tation for the classM� of those separating measures having finitegeneralized
entropy. In fact, fixQ ∈ M1 and consider the problem

UQ(x) � sup{E[u(x + g)]|g ∈ L1(Q), EQ[g] ≤ 0, u−(x + g) ∈ L1(P )}.
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This is precisely the utility maximization problem we would face if we selectedQ

as pricing measure. WhenG(�) is satisfied, then (see [9], Proposition 4)
Q belongs toM� if and only if

UQ(x) < u(+∞) for all x ∈ R.

More explicitly this means that pricing byQ ∈ M� guarantees that the investor
cannot reach his or her maximum possible utility,u(+∞), starting with an
arbitrarily low initial endowmentx. Therefore it makes sense to work withM�, as
the class of pricing measures which makes the model free of this types ofutility
based arbitrage opportunities.

1.3. Examples. In Example 8 we show that̂fid < f̂ and in Example 9 we
show a case wherêf� < f̂ , when� is not the identity function.

EXAMPLE 8. We denote byIn the interval( 1
2n , 1

2n−1 ] and byJ 1
n and byJ 2

n its
two halves( 1

2n , 3
2n+1 ] and( 3

2n+1 ,
1

2n−1 ], respectively.
We consider the following one-period model:(�, (F0,F1),P ), where� is the

interval (0,1], F0 = σ {In|n ∈ N0}, F1 = σ {J i
n|i = 1,2 andn ∈ N0} andP is the

restriction of the Lebesgue measure toF1. The processX is given byX(0) = 0
and

X(1) =
{

n, onJ 1
n ,

−n2, onJ 2
n .

The setK0 will be the set of all stochastic integrals with respect to pre-
dictable processes, with no admissibility restrictions. Here this set is simply
{αX(1)|α F0-measurable} andα is identified by the sequence(αn)n≥1 of its values
on the intervalsIn. The structure of elements inK can now be easily described.
By fixing a credit levelc ∈ R, which we may assume nonnegative, we have, for all
n ∈ N0,

0 ≤ αn ≤ c

n2
if αn ≥ 0,

0 ≤ −αn ≤ c

n
if αn ≤ 0.

Therefore the sequenceαn tends to zero, independently of the sign assumed on
eachIn. SinceX is unbounded, we are not allowed to buy or sell one unit of the
risky investmentX, and henceX(1) is not a replicable claim.

We are now ready to analyzeM1. Every Q ∈ M1 is identified by its density
onJ i

n, denoted byqi(n). From the definition ofM1 in (3) we see that eachQ ∈ M1
is characterized by∑

n≥1

q1(n) + q2(n)

2n+1 = 1 and q1(n) = nq2(n) ∀n ≥ 1,
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which imply in particular that
∑

n≥1
(n+1)q2(n)

2n+1 is finite. For later considerations,
we observe also thatX(1) is not integrable for everyQ ∈ M1. Consider now the
claim

f =
{

1, onJ 1
n ,

−n, onJ 2
n .

It is evident thatf ∈ L1(Q) andEQ[f ] = 0 for anyQ ∈ M1. By using the
duality relation in (10), we see that the weak super replication price off is equal
to zero:f̂id = 0. However,f̂ = 1. Indeed if we try to writef − x asαX(1) − h

with α admissible andh nonnegative, we obtain that, for everyn ≥ 1, the following
must hold:

1 = nαn − h1(n) + x,

−n = −n2αn − h2(n) + x,

wherehi(n) stands for the value ofh on J i
n. Clearly the second equation can be

always satisfied, provided that we chooseh2(n) big enough.
Then analyzing the first one we get

h1(n) = nαn + x − 1 ≥ 0 ∀n,

that is,x ≥ 1− nαn. Now, if (αn)n is definitely negative, we obviously getx ≥ 1.
In caseαn ≥ 0 infinitely many times, for theseαn we have 0≤ αn ≤ c

n2 and so
nαn is infinitesimal, when nonnegative. The consequence is againx ≥ 1. Since
(f − 1) ∈ −L0+, thenf̂ ≤ 1 and thereforef̂ = 1.

The difference between these two super replication prices is due to the fact that
f is equal to(1, 1

2, 1
3, . . . , 1

n
, . . . )X(1), which is in K0 ∩ ⋂

Q∈M1
L1(Q). Under

eachQ ∈ M1, this claim can be arbitrarily wellL1(Q)-approximated by claims in
the form:(1, 1

2, 1
3, . . . , 1

n
,0,0, . . . )X(1), which are inK and have zero cost. When

we require the usual stronger, pointwise conditionf − x = αX(1) − h, we obtain,
due to the “artificial” admissibility requirement, the higher valuef̂ = 1.

The difference between the weak and the classical super replication prices
becomes more evident if we consider the claim(kf ) with k ∈ R positive and
arbitrarily large. Reasoning exactly as before, we get̂(kf ) = k. Selling at such an
expensive price could be difficult, whereas the weak super replication price(̂kf )id
is still zero. The drawback isthat in this case one has to accept the possibility of
only approximating(kf − x) via bounded super-replicable claims inC.

EXAMPLE 9. Consider the same setup as in Example 8 and choose�(y) = y2,
for y ≥ 0. If we takeX(1) as the claim under consideration, it is rather easy to see
thatX̂(1) = +∞, while supQ∈M1

EQ[X(1)] is not even well defined.

In spite of these negative facts, the conditionE[�(dQ
dP

)] < +∞ implies that∑
n≥1

(n2+1)q2
2(n)

2n+1 is finite, thus{nq2(n)2−(n+1)/2}n ∈ l2. By the obvious remark
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{n2−(n+1)/2}n ∈ l2, we get

∑
n≥1

n2q2(n)

2n+1
< +∞,

which, up to a constant, is just theQ-integrability condition onX(1). Therefore,
X(1) is integrable for everyQ ∈ M� and the integral is zero. Summing up, we
have

X̂(1)� = sup
Q∈M�

EQ[X(1)] = 0 < X̂(1) = +∞.

2. Abstract formulation. Recall that a subsetG of a vector space is a convex
cone ifx, y ∈ G implies thatαx + βy ∈ G for all α,β ≥ 0. LetL ⊆ X,L′ ⊆ X′ be
two convex cones in two vector spacesX andX′. Let

〈·, ·〉 :L × L′ → R ∪ {+∞}
be a “positive bilinear” form; that is, both applicationsx → 〈x, x′〉 and x′ →
〈x, x′〉 are additive, positively homogeneous and equal to 0 at 0. We shall set
〈x, x′〉 � x′(x), for x ∈ L and x′ ∈ L′. With respect to(L,L′, 〈·, ·〉) we define
the polarG0 and the bipolarG00 of a convex coneG by

G0 � {z ∈ L′|z(g) ≤ 0 ∀g ∈ G},
G00 � {g ∈ L|z(g) ≤ 0 ∀ z ∈ G0}.

We assume that there exists an element, denoted by1, such that1 ∈ L and
−1 ∈ L.

THEOREM 10. LetG ⊆ L be a convex cone satisfyingG00 = G and−1 ∈ G.

If the setN1 � {z ∈ G0|z(1) = 1} is not empty, then for allf ∈ L we have

f̂ � inf{x ∈ R|f − x1 ∈ G} = sup{z(f )|z ∈ N1}.(13)

In casef̂ < +∞, it is a minimum.

PROOF. First note that since1 ∈ L and −1 ∈ L, then from z(0) = 0 and
the additivity of all z ∈ L′ we deduce that−∞ < z(−1) = −z(1) < +∞ and
z(f − x1) is well defined for allz ∈ L′, f ∈ L andx ∈ R. Hencez(f − x1) =
z(f )−x for all z ∈ N1 andx ∈ R. Givenf ∈ L setf ∗ � sup{z(f )|z ∈ N1} ≤ +∞.

For all x ∈ R such that(f − x1) ∈ G we have 0≥ sup{z(f − x1)|z ∈ N1} =
sup{z(f )|z ∈ N1} − x and hencef ∗ ≤ f̂ .

To prove thatf̂ ≤ f ∗ we may assume thatf ∗ < +∞ and it is sufficient to show
that(f − f ∗1) ∈ G. Define

N � G0 = {z ∈ L′|z(g) ≤ 0 ∀g ∈ G}(14)
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andN0 � {z ∈ N |z(1) = 0}, so thatN = ⋃
λ>0 λN1 ∪ N0.

By definition of f ∗, −∞ < z(f − f ∗1) ≤ 0 for all z ∈ N1. Let z0 ∈ N0 and
note that ifz ∈ N1, then(z + λz0) ∈ N1 for all λ > 0 and

0≥ (z + λz0)(f − f ∗1) = z(f − f ∗1) + λz0(f ) for all λ > 0.

This impliesλz0(f ) ≤ −z(f −f ∗1) < +∞ for all λ > 0 and soz0(f ) ≤ 0. Hence,
z0(f − f ∗1) = z0(f ) ≤ 0 for all z0 ∈ N0. Therefore,z(f − f ∗1) ≤ 0 for all z ∈ N

and we deduce that(f − f ∗1) belongs to the polar ofN ; that is, it belongs to
G00 = G. �

REMARK 11. Note that the assumption thatN1 is not empty excludes that
1 = 0. In our applications of Theorem 10, we will always considerL ⊆ L0,

L′ ⊆ L1(P ), G will always be a convex cone containing−L∞+ , which implies
that N � G0 ⊆ L1+, and the element1 will be the indicator function of�. As a
consequence of these conditions,N0 = {0}.

REMARK 12. If (L,L′) is a dual system of vector spaces and ifτ is any
topology compatible with(L,L′), then the bipolar theorem, applied to the locally
convex topological vector space(L, τ ), guaranteesG00 = G, wheneverG is a
convexτ -closed set.

2.1. Proof of Theorem3.

DEFINITION 13 (see [4, 18]). A subsetC ⊆ L0 is Fatou closed if for every
sequencefn ∈ C that is uniformly bounded from below and that convergesP -a.s.
to f , we havef ∈ C.

We collect in the following theorem some relevant results taken from Delbaen
and Schachermayer (see [4, 5]).

THEOREM 14. (a)If D ⊆ L0 is a convex Fatou closed set, thenD ∩ L∞ is
σ(L∞,L1)-closed([4], Theorem4.2).

(b) If M1 ∩ P �= ∅, then(K − L0+) is Fatou closed([4], Theorem4.2,and [5],
Theorem4.1).

In [3] a bipolar theorem for(L0+,L0+) is shown to hold, provided that the
bilinear form〈·, ·〉 is allowed to take the value+∞. The proof of Theorem 15(a)
is based on the proof of the simpler bipolar theorem for(Lbb,L1+) in [12].

THEOREM 15. (a)If Cbb is Fatou closed, thenCbb = (Cbb)
00.

(b) In particular if M1 ∩ P �= ∅, thenCbb = (Cbb)
00.
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PROOF. By definition, (Cbb)
0 � {z ∈ L1+ :E[zf ] ≤ 0 ∀f ∈ Cbb} and

(Cbb)
00 � {f ∈ Lbb :E[zf ] ≤ 0 ∀ z ∈ (Cbb)

0}.
(a) ClearlyCbb ⊆ (Cbb)

00. To show that(Cbb)
00 ⊆ Cbb suppose by contradic-

tion that there existsf ∈ (Cbb)
00 andf /∈ Cbb. Thenfn � (f ∧n) ∈ (Cbb)

00∩L∞,
fn ↑ f P -a.s. andfn is uniformly bounded from below. SinceCbb is Fatou closed
andf /∈ Cbb, then there existsn0 such thatfn0 /∈ Cbb. Since the setCbb ∩ L∞
is convex andσ(L∞,L1)-closed [see Theorem 14(a)] andfn0 /∈ Cbb ∩ L∞ the
separation theorem in(L∞, σ (L∞,L1)) guarantees the existence ofz ∈ L1 such
that

E[zg] ≤ 0 ∀g ∈ Cbb ∩ L∞ and E
[
zfn0

]
> 0.

Since−L∞+ ⊆ Cbb ∩ L∞ we havez ∈ L1+. We now show thatz ∈ (Cbb)
0, which

is in contradiction withfn0 ∈ (Cbb)
00 andE[zfn0] > 0. For eachg̃ ∈ Cbb we set

gn � (g̃ ∧ n). Thengn ∈ Cbb ∩ L∞, gn ↑ g̃, P -a.s. andgn is uniformly bounded
from below. By Fatou’s lemma,

E[zg̃] ≤ lim E[zgn] ≤ 0 ∀ g̃ ∈ Cbb.

(b) From Theorem 14(b) we know that(K − L0+) is Fatou closed; hence
Cbb = (K − L0+) ∩ Lbb is Fatou closed and (b) follows from (a).�

Now we are ready to give a proof, based on Theorem 10, of Theorem 3.

PROOF OFTHEOREM 3. To prove (9), we apply Theorem 10, withL = Lbb,

L′ = L1+, 1 = 1� andG = Cbb. The positive bilinear form will bex′(x) = E[x′x].
From (14) we getN � (Cbb)

0 = {z ∈ L1+|E[zg] ≤ 0 ∀g ∈ Cbb} andN1 � {z ∈
N |E[z] = 1}. Since

{z ∈ L1+|E[zg] ≤ 0 ∀g ∈ Cbb} = {z ∈ L1+|E[zg] ≤ 0 ∀g ∈ K},
we may identifyN1 with M1. From Theorem 15(b) we see that the assumptions of
Theorem 10 are satisfied. Hence

inf{x ∈ R|f − x ∈ Cbb} = sup{E[zf ]|z ∈ M1}. �

3. The polarity between C� and co(M�). In this section we stick to the
terminology of [11], Chapter 8. Define the linear spaces

L = ⋂
Q∈M�

L1(Q) and L′ = Lin{M�} ⊆ L1(P ),

where we assume thatM� is not empty and we identify eachQ with its Radon–
Nikodym derivative w.r.t.P .

Notice thatC ⊆ L∞(P ) ⊆ L. For all z ∈ L andz′ ∈ L′, we have that(zz′) ∈
L1(P ) and the bilinear formz × z′ → E[zz′] is well defined. Then(L,L′) defines
a dual system.
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DEFINITION 16. We denote byτ a locally convex topology onL compatible
with the duality(L,L′).

Just by definition, endowed with theτ -topology L is a locally convex
topological vector space where the set of continuous linear forms onL is
preciselyL′. We may select any topology compatible with the dual system(L,L′),
since our results depend only on the property that the topological dual ofL is L′.

Note that this topologyτ needs not to be Hausdorff, since generallyL′ does
not separate points inL. Think of the case when we have just one element inM�

(a complete market case, in which the unique equivalent pricing measure has finite
entropy).

Define

C� �
⋂

Q∈M�

(
K − L1+(Q)

)Q
.(15)

The main result of this section is the following theorem. Its proof will be
based on Proposition 19 and Theorem 20, which will also provide a different
representation forC�.

THEOREM 17. Assume that�(0) < +∞ andM� ∩ P �= ∅. With respect to
the topologyτ we have: (a) C� is the closure ofC; (b) C� and the convex cone
co(M�) generated byM� are polar to one another.

As an immediate consequence of Theorems 10 and 17 we prove Theorem 5.

PROOF OF THEOREM 5. SinceM� ⊆ M1, the inequality in (11) is proved
in Proposition 1. Consider the dual system(L,L′) and the topologyτ on L. Set
G = C�. From Theorem 17 we deduceN = (C�)0 = co(M�) andN1 = M�. The
assumptions of Theorem 10 are satisfied and then from (13) we get

inf{x ∈ R|f − x ∈ C�} = sup{EQ[f ]|Q ∈ M�}. �

PROPOSITION 18. Assume that�(0) < +∞. If Q0 	 P , Q1 	 P , x ∈
(0,1), Q = xQ1 + (1− x)Q0, then

E�

(
dQ

dP

)
< +∞ if and only if

E�

(
dQ0

dP

)
< +∞ and E�

(
dQ1

dP

)
< +∞.

PROOF. The convexity of� implies thatE�(
dQ
dP

) < +∞ if E�(
dQi

dP
) < +∞

for i = 0,1. Conversely suppose thatE�(
dQ
dP

) < +∞. For i = 0,1, we have

�−(
dQi

dP
) ∈ L1(P ), since� is convex anddQi

dP
∈ L1(P ). Therefore we only need



WEAK SUPER REPLICATION PRICE 1983

to show the integrability of�+(dQi

dP
), which is trivially true if�(+∞) < +∞. If

�(+∞) = +∞ then�+ is nondecreasing on(y0,+∞) for somey0 > 0. From
Q = xQ1 + (1− x)Q0 we deduce

dQ1

dP
= 1

x

dQ

dP
− 1− x

x

dQ0

dP
≤ 1

x

dQ

dP
, P -a.s.,

E�+
(

dQ1

dP

)
= E

[
�+

(
dQ1

dP

)
1{dQ1/dP≤y0}

]
+ E

[
�+

(
dQ1

dP

)
1{dQ1/dP>y0}

]
≤ max

0≤y≤y0
�+(y) + E

[
�+

(
1

x

dQ

dP

)
1{dQ1/dP>y0}

]
< +∞

since, from the growth conditionG(�), we have�+( 1
x

dQ
dP

) ≤ α�+(
dQ
dP

) +
β(

dQ
dP

+ 1) ∈ L1(P ). Similarly for dQ0
dP

. �

Let �C be the closure ofC with respect to theτ topology. Note that�C is a convex
cone and�C ⊆ L ⊆ L1(Q) for all Q ∈ M�. The polar of�C with respect to theτ
topology is given by

�C 0 � {z′ ∈ L′ :E[zz′] ≤ 0 for all z ∈ �C} ⊆ L1+(P ),

since−L∞+ ⊆ C.

PROPOSITION19. If �(0) < +∞, thenco{M�} = �C 0
.

PROOF. All Q ∈ M� are τ -continuous linear functionals, so that (for a
fixed Q) the set{z ∈ L|EQ[z] ≤ 0} is τ -closed and it containsC. We deduce
that if z ∈ �C, thenEQ[z] ≤ 0 for all Q ∈ M�. SinceM� is convex,L′ admits
the following representation:

L′ = {z′ ∈ L1(P ) : z′ = αz′
1 − βz′

0, α,β ≥ 0, z′
1, z

′
0 ∈ M�}.

We claim thatM� = �C 0
1 � �C 0 ∩ {unit sphere ofL1(P )}. Note that

�C 0
1 = {Q 	 P :Q = (1+ β)Q1 − βQ0, β ≥ 0, Q1,Q0 ∈ M�

and∀ z ∈ �C, EQ[z] ≤ 0}.
ObviouslyM� ⊆ �C 0

1: so we consider the caseβ > 0. If Q ∈ �C 0
1, then∀ z ∈ �C,

EQ[z] ≤ 0 and soQ ∈ M1. It remains only to check that ifQ ∈ �C 0
1, then

E�(
dQ
dP

) < +∞. If Q � (1 + β)Q1 − βQ0, then Q1 = 1
1+β

Q + β
1+β

Q0 =
xQ + (1 − x)Q0, x = 1

1+β
∈ (0,1), and the thesis follows from Proposition 18.

�



1984 S. BIAGINI AND M. FRITTELLI

The following theorem is proved in [9], Theorem 3 adding toG(�) the
assumptions that� is strictly convex and differentiable. But the proof of the
theorem remains unchanged even without these additional assumptions. Let(

co(M�)
)0 � {f ∈ L :EQ[f ] ≤ 0 ∀Q ∈ M�}.

THEOREM 20. If M� ∩ P �= ∅, then

C� = ⋂
Q∈M�

�CQ = (
co(M�)0).

PROOF OFTHEOREM 17. Sinceco{M�} = �C 0
, the bipolar�C 00

of �C is given
by:

�C 00 � {z ∈ L :E[zz′] ≤ 0 for all z′ ∈ �C 0}
= {z ∈ L :EQ[z] ≤ 0 for all Q ∈ M�} = C�,

by Theorem 20. From the bipolar theorem we deduce that�C = �C 00 = C�. From

co{M�} = �C 0
we then get(co{M�})0 = C� and(C�)0 = co{M�}. �

The boundedness of� in a right neighborhood of 0 is essential in Propositions
18 and 19 and in Theorem 17, as the following example shows.

EXAMPLE 21. The context is the same of Example 8. Consider the function
� defined by:

� =
{− ln(y), on 0< y ≤ 1,

y2 − 3y + 2, ony > 1.

Obviously,� is strictly convex and differentiable. The point is that in this model
there exists aQ1 ∈ M1, with Q1 not equivalent toP and with bounded density:
such a measure has infinite generalized entropy, that is,Q1 /∈ M�. For instance,
let dQ1

dP
= 2χI1 = 2χ

( 1
2,1]. Then, pick anyQ0 ∈ M�: for example, takedQ0

dP
equal

to c n
en on J 1

n (and consequently equal toc
en on J 2

n ), wherec is the normalizing
constant. Consider now the convex combinationQx = (1 − x)Q0 + xQ1, x ∈
(0,1). Since the following inequalities hold true

(1− x)Q0 ≤ Qx ≤ (1− x)Q0 + const,

Qx has finite generalized entropy, that is,Qx ∈ M�.
SinceQ1 /∈ M�, to show thatco(M�) � (C�)0 it is sufficient to show that

Q1 ∈ (C�)0. It is obvious thatQ1 ∈ Lin(M�) = L′ and�C ⊆ L1(Q1). Recall that
�C = C� ⊆ �CQ andEQ[f ] ≤ 0 for all Q ∈ M� and f ∈ C�. Since|f |dQx

dP
≤

|f |(dQ0
dP

+ dQ1
dP

) we deduce, iff ∈ C�, EQ1[f ] = limx→1 EQx [f ] ≤ 0.
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REMARK 22. Motivated by the last lines of the previous example, we now
make some extra observations on the duality(L,L′). As we have already noted, the
dual system may not be separated. The consequence is that in general we cannot
put a topologyµ on L′ which is compatible with the duality(L,L′), that is, such
that the dual of(L′,µ) is exactlyL (think again of the case when|M�| = 1).

However, if we define onL the equivalence relation∼,

f ∼ g iff EQ[f ] = EQ[g] for all Q ∈ M�,

and we defineL
∼ to be the quotient ofL w.r.t. the relation∼, then it can be

easily seen thatL∼ is a vector space with the obviously defined sum and scalar
multiplication.

We indicate withτ∼ the quotient topology of(L, τ ) on L
∼ . It is now a simple

exercise proving that, for allξ ∈ L
∼ andz′ ∈ L′, we have thatzz′ ∈ L1(P ) (where

z is a generic element of the equivalence classξ ) and the bilinear formξ × z′ →
≺ ξ, z′ �� E[zz′] is well defined. Then( L

∼ ,L′) is a dual system, it is separating
and the topologyτ∼ on L

∼ is compatible. Now we also can endowL′ with a
topologyν compatible with this new system.

When the condition�(0) < +∞ is satisfied, we have thatco(M�) coincides

with (C�∼ )
0

and therefore isν-closed.
The previous example shows that this is not always the case when�(0) is

infinite. In fact, fix anη ∈ L
∼ . Then, with the same notation used before,≺ η,Qx �

tends to≺ η,Q1 � whenx → 1. Now, lettingη vary arbitrarily in L
∼ we get that

Qx tends toQ1 in theν-topology. Therefore neitherM� nor co(M�) is ν-closed.

4. Comparison with the Delbaen–Schachermayer approach, when � = id .
In their remarkable paper[5], Delbaen and Schachermayer introduced the notions
of feasible weight functionw for the processX and ofw-admissible integrands
for X to get the duality results stated below in Theorem 25. We recall here some
of their definitions and results and we defer to[5], Section 5, for their motivation
and explanation. In the sequel it is always assumed thatM1 ∩ P �= ∅. Note also
that the time horizonT appearing throughout this paper could be finite as well as
+∞: the latter case will be now considered.

DEFINITION 23 ([5], Definition 5.1). Ifw ≥ 1 is a random variable, if there
is Q0 ∈ Mσ ∩ P such thatEQ0[w] < ∞, then we say that the integrandH is
w-admissible if there exists some nonnegative real numberc such that, for each
elementQ ∈ Mσ ∩ P and eacht ≥ 0, we have that(H · X)t ≥ −cEQ[w|Ft ].

DEFINITION 24 ([5], Definition 5.4). A real random variablew ≥ 1 is called
a feasible weight function forX if the following hold:

(a) there is a strictly positive bounded predictable processφ such that the
maximal function of theRd -valued stochastic integralφ ·X satisfies(φ ·X)∗ ≤ w;
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(b) there is an elementQ0 ∈ Mσ ∩ P such thatEQ0[w] < ∞.

As pointed out in the cited article, feasible weight functions do exist. Letw be
a feasible weight function forX and set

Kw � {(H · X)∞|H is w-admissible},
f̂w � inf{x ∈ R|f − x ∈ Kw − L0+},

Mσ,w � {Q ∈ Mσ |EQ[w] < ∞}.

THEOREM 25 ([5], Theorem 5.5). If w is a feasible weight function andf is
a random variable such thatf ≥ −w, then

f̂w = inf{x ∈ R|f − x ∈ Kw − L0+} = sup
Q∈Mσ,w∩P

EQ[f ](16)

and if the quantities are finite, the infimum is a minimum.

We now compare the super replication pricef̂w of f given in (16) with the weak
super replication pricêfid of f given in (10).

The first important remark is that given a claimf ∈ ⋂
Q∈M1

L1(Q) then f̂id

is uniquely defined and is not dependent on the agent. On the contrary, the super
replication pricef̂w, of the same claimf , will in general depend on the different
feasible weight functionsw selected by the investor. Indeed,f̂w depends on how
much one is ready to lose in the trading. By admitting bigger losses, this price
decreases, as we will show in the example in Section 4.1. Only admitting the
knowledge of a feasible weight functionw, the super replication pricêfw of those
claimsf satisfyingf ≥ −w is uniquely defined and (16) may be applied.

If f ∈ ⋂
Q∈M1

L1(Q), then by simply consideringw(f ) � w∨f − (wheref − is
the negative part off ) we obtain a feasible weight function such thatf ≥ −w(f ).
Therefore, for each given claimf ∈ ⋂

Q∈M1
L1(Q) we can always find at least one

suitable feasible weightwf so that we can apply the duality formula (16) to the
couplef, wf to get the particular super replication pricef̂wf

.
From (16), (10) and Remark 2, we get

f ∈ ⋂
Q∈M1

L1(Q) �⇒ f̂id = sup
Q∈M1∩P

EQ[f ] ≥ sup
Q∈Mσ,wf

∩P
EQ[f ] = f̂wf

.

In [5] it is also proved thatMσ ∩ P is dense inM1 ∩ P (Proposition 4.7) and
thatMσ,w ∩ P is dense inMσ ∩ P (Corollary 5.13). Unfortunately, in spite of the
density properties, we cannot apply the dominated convergence theorem, as done
in Remark 2. As shown in Example 26, the weak super replication pricef̂id can
be strictly greater than̂fw(f ) (or thanf̂w with anyw feasible withf ≥ −w).
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4.1. Dependence onw. First recall that for locally bounded processes, as
those we will consider in this section, the setsM1 of separating measures and
Mσ of σ -martingale measures are equal and coincide with the set of local
martingale measures. HenceM1,w � {Q ∈ M1|EQ[w] < ∞} = Mσ,w andM1 may
replaceMσ (and vice versa) in any subsequent formulas.

With the next example we provide evidence of the dependence of the super
replication pricef̂w from the feasible weight functionw and of a situation in which

sup
Q∈Mσ ∩P

EQ[f ] > sup
Q∈Mσ,w∩P

EQ[f ].(17)

Example 5.14 in [5] was exactly intended to prove the previous inequality, but, as
we now explain, it is not correct. The claimf and the feasible weight functionw1,
introduced in the next example, are exactly those considered in Example 5.14
in [5]. However, we will prove in item 5 below [see also (23)] that, contrary to
the assertion (2) made after Example 5.14 in [5], the two suprema in (17) coincide
for suchf andw1. For the validity of the strict inequality in (17) (or in [5], (5.1))
we have to use a different weight function(w2) and to exploit the peculiar feature
(see Lemma 27) of a positive strict local martingaleX underP , which admits a
probability measureQ ∼ P such thatX ∈ H 2(Q).

EXAMPLE 26. On a suitable stochastic basis(�, (Ft )t≥0,P ) there exist:

(a) a continuous processS satisfyingS0 = 0 such thatP ∈ M1∩P, whereM1 is
the set of separating measures forS;

(b) two S-feasible weight functionsw1 andw2;
(c) a claimf ∈ ⋂

Q∈M1
L1(Q) satisfyingf ≥ −w1, f ≥ −w2;

such that:

1. w1 ∈ ⋂
Q∈M1

L1(Q), so thatMσ,w1 = Mσ = M1;
2. S is uniformly bounded from above and is a submartingale for eachQ ∈ M1;
3. S is not a martingale underP andEP [S∞] > 0;
4. ∀R ∈ Mσ,w2, S is anR-uniformly integrable martingale andER[S∞] = 0;
5. f̂id = f̂w1 > f̂w2 = 0.

To demonstrate this example, we need a result based on a slight modification of
the example in [6], Section 2, to which we refer for a detailed construction.

We call

Lt � exp
(
Bt − 1

2t
)

and

N
(a)
t � exp

(
aWt − a2

2
t

)
,(18)
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wherea is a positive real constant and(B,W) is a standard two-dimensional
Brownian motion on a stochastic basis(�, (Ft )0≤t≤+∞,P ). We assume that the
filtration F is the augmentation of the natural one,(F B,W

t )t , induced by(B,W).
BothL andN(a) are positive, strictP -local martingales. Then, define the stopping
times

τ � inf
{
t|Lt = 1

2

}
,(19)

σ (a) � inf
{
t|N(a)

t = 2
}
.(20)

Notice that

τ = inf
{
t|Bt − 1

2t = log 1
2

}
,

σ (a) = inf
{
t|Wt − a

2
t = log 2

a

}
,

so these two stopping times are passage times of Brownian motion with drift.
Now define the stopped processesX(a) � Lτ∧σ (a)

andY (a) � (N(a))τ∧σ (a)
and

the probability measureQ(a) � Y
(a)∞ · P .

The following result is analogous to Theorem 2.1 of [6], but the introduction of
the parametera in (18) allows us to add item (d). Whena = 1, Lemma 27 reduces
to Theorem 2.1 of [6]. However,X(1) is not inH 2(Q(1)).

LEMMA 27. (a) For everya > 0, the processX(a) is a continuous strict
local martingale underP andX

(a)∞ > 0 a.s., X(a)
0 = 1, EP [X(a)∞ ] < 1.

(b) For every a > 0, the processY (a) is a continuous uniformly bounded
integrable martingale, that is strictly positive on[0,+∞].

(c) For everya > 0, the processX(a) is a uniformly integrable martingale
underQ(a).

(d) X(a) belongs toH 2(Q(a)) iff a2 ≥ 8.

PROOF. We only need to prove item (d) since the first three points can be
easily checked as in Theorem 2.1 of [6]. For simplicity of notation the dependence
ona is dropped.

By definition, X is in H 2(Q) iff EQ[〈X〉∞] < +∞. Taking into account the
positivity of the processes, an application of Doob’s optional sampling theorem to
theP -uniformly integrable martingaleNσ leads to

EQ[〈X〉∞] = E[Y∞〈L〉τ∧σ ] = E[Nσ 〈L〉τ∧σ ]
and, thanks to the independence of(L, τ ) andσ , the last term becomes

2
∫

χ{σ<+∞}(ω′)E
[〈L〉τ∧σ(ω′)

]
dP (ω′).(21)
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Let us then analyzeE[〈L〉τ∧t]: it is equal toE[L2
τ∧t ] becauseLt is a square

integrable martingale. By the Girsanov theorem we can write

E[〈L〉τ∧t] = E[L2
τ∧t ] = E[exp{2Bτ∧t − τ ∧ t}] = �E[exp{τ ∧ t}],

where the last expectation is taken under the unique probabilityP on F B,W∞ such
that (�Br)r = (Br − 2r)r is a standard Brownian motion. With such a change of
measure,τ = inf{r|Br + 3

2r = − log 2} and the law ofτ on (0,+∞] under �P is
given by

τ (�P) = |b|√
(2πt3)

exp
[
−(b − µt)2

2t

]
dt + (

1− exp(µb − |µb|))ε{+∞},

whereµ =3
2, b = − log 2; that is, it consists of the sum of two positive measures,

the first a.c. with respect to the Lebesgue measure on(0,+∞) with density

f (t) = |b|√
(2πt3)

exp
[
−(b − µt)2

2t

]
(22)

and the second being an atom in+∞ with mass 1− exp(µb − |µb|) (see [16],
page 196). Then

et ≥ �E[exp{τ ∧ t}] =
∫

es∧tf (s) ds + 7
8et ≥ 7

8et ,

and the quantity in (21) is finite if and only ifE[χ{σ<+∞}eσ ] < ∞. Using the
densityf (t) in (22), withµ = −a

2, b = log 2
a

, of the absolutely continuous part of
the law ofσ underP , we get

E
[
χ{σ<+∞}eσ ] =

∫ +∞
0

et (log 2)/a√
(2πt3)

exp
[
−((log2)/a + (a/2)t)2

2t

]
dt

and the integral is finite iffa2 ≥ 8. �

REMARK 28. Similar results can be obtained by replacing the constant1
2

in (19) with any 0< c1 < 1 and the constant 2 in (20) with anyc2 > 1.

EXAMPLE 26 (Continued). Fix anya > 0 and takeX � X(a), P , Q � Q(a)

as defined before Lemma 27.
We defineS = 1−X. ThenP ∈ M1. We note thatS0 = 0 andS is bounded from

above, so thatH = −1 is a “usual” admissible integrand. Under eachR ∈ M1, −S

is a supermartingale and henceS is a submartingale.
We takef = S∞ as the claim to be evaluated. We are in a continuous context, so

aw ≥ 1 is feasible as soon as there exists a measureR ∈ M1 ∩ P such thatER[w]
is finite.

First we considerw1 = 1 + X∞. Note thatf ≥ −w1 and thatw1 is feasible,
since it is integrable for allR ∈ M1 by construction. Note that whena = 1 this
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setting is precisely the one considered in Example 5.14 of [5]. Then the duality
formula (16) can be applied tof and we have, recalling Remark 2,

f̂id = sup
R∈M1∩P

ER[f ] = sup
R∈Mσ,w1∩P

ER[f ] = f̂w1 ≥ EP [f ] > 0.(23)

As a consequence of the last inequality,H = 1 is NOT w1-admissible. If it
wereS = (1 · S) would become a supermartingale (this implication derives from
Proposition 3.3 in [1] as well as from Theorem 5.3 in [5]) under eachR ∈ M1 and
hence a martingale: this would implyEP [f ] = 0. Another argument is that, using
the duality in (16),f̂ (w1) ≤ 0, a contradiction.

We now considerw2 = (X∗∞)2, whereX∗
t = sup{|Xs | |0≤ s ≤ t} = sup{Xs |0 ≤

s ≤ t}. Now we need to assume thata ≥ 2
√

2.

Thenw2 is certainlyQ-integrable [by the Burkholder–Davis–Gundy inequali-
ties,w2 ∈ L1(Q); it is not in L1(P ), because otherwiseX would be aP -square
integrable martingale]: so,w2 also is feasible and clearlyf ≥ −w2. Now we get

f̂w2 = sup
R∈M1,w2∩P

ER[f ] = 0

because under theseR we obviously have

St = 1− Xt ≥ −ER[w2|Ft ];
that is,H = 1 is w2-admissible and henceforthS is anR-martingale. The crucial
point thatM1,w2 ∩ P �= ∅ was shown in Lemma 27, item 4.
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