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NORMAL APPROXIMATION FOR HIERARCHICAL STRUCTURES

BY LARRY GOLDSTEIN

University of Southern California

GivenF : [a, b]k → [a, b] and a nonconstantX0 withP(X0 ∈ [a, b]) =1,
define the hierarchical sequence of random variables{Xn}n≥0 by Xn+1 =
F(Xn,1, . . . ,Xn,k), whereXn,i are i.i.d. asXn. Such sequences arise from
hierarchical structures which have been extensively studied in the physics
literature to model, for example, the conductivity of a random medium. Under
an averaging and smoothness condition on nontrivialF , an upper bound of
the formCγ n for 0< γ < 1 is obtained on the Wasserstein distance between
the standardized distribution ofXn and the normal. The results apply, for
instance, to random resistor networks and, introducing the notion of strict
averaging, to hierarchical sequencesgenerated by certain compositions. As
an illustration, upper bounds on the rate of convergence to the normal are
derived for the hierarchical sequence generated by the weighted diamond
lattice which is shown to exhibit a full range of convergence rate behavior.

1. Introduction. Let k ≥ 2 be an integer,D ⊂ R, X0 a nonconstant random
variable withP (X0 ∈ D) = 1 andF :Dk → D a given function. We consider
the accuracy of the normal approximation for the sequence of hierarchical random
variablesXn, where

Xn+1 = F(Xn), n ≥ 0,(1)

andXn = (Xn,1, . . . ,Xn,k)
T with Xn,i independent, each with distributionXn.

Hierarchical variables have been considered extensively in the physics literature
(see [5] and the references therein), in particular to model conductivity of a random
medium. The diamond lattice in particular has been considered in [3, 7]. Figure 1
shows the progression of the diamond lattice from large to small scale. At the large
scale [Figure 1(a)], the system displays some conductivity along the bond between
its top and bottom nodes. Inspection on a finer scale reveals the bond actually
comprises four smaller bonds, each similar to Figure 1(a), connected as shown in
Figure 1(b). Further inspection of each of the four bonds in Figure 1(b) reveals
them to be constructed in a self-similar way from bonds at an even smaller level,
giving the successive diagram Figure 1(c) and so on.

We assume each bond has a fixed conductivity characteristicw ≥ 0 such that
when a component with conductivityx ≥ 0 is present along the bond the net
conductivity of the bond iswx. For the diamond lattice as in Figure 1(b), we
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FIG. 1. The diamond lattice.

associate conductivitiesw = (w1,w2,w3,w4)
T, numbering from the top node and

proceeding counterclockwise. Ifx0 = (x0,1, x0,2, x0,3, x0,4)
T are the conductances

of four elements each as in Figure 1(a) which are present along the bonds in
Figure 1(b), then applying the resistor circuit parallel and series combination rules,
the conductivity between the top and bottom nodes in Figure 1(b) isx1 = F(x0),
where

F(x) =
(

1

w1x1
+ 1

w2x2

)−1

+
(

1

w3x3
+ 1

w4x4

)−1

.(2)

The network in Figure 1(c) is constructed from four diamond structures similar to
Figure 1(b), and endowing each with the same fixed conductivity characteristicsw,
with x1 = (x1,1, x1,2, x1,3, x1,4)

T and eachx1,i determined in the same manner
as x1, the conductance between the top and bottom nodes in Figure 1(c) is
x2 = F(x1), and so forth.

In general, a functionF :Dk → D and a distribution onX0 such that
P (X0 ∈ D) = 1 determines a sequence of distributions throughXn+1 = F(Xn),
whereXn = (Xn,1, . . . ,Xn,k)

T with Xn,i independent, each with distributionXn.
Conditions onF which imply the weak law

Xn
p→ c(3)

have been considered by various authors. Shneiberg [8] proves that (3) holds if
D = [a, b] and F is continuous, monotonically increasing, positively homoge-
neous, convex and satisfies the normalization conditionF(1k) = 1, where1k is the
vector of all ones inRk . Li and Rogers in [5] provide rather weak conditions under
which (3) holds for closedD ⊂ (−∞,∞). See also [4, 11, 12] for an extension
of the model to randomF and applications of hierarchical structures to computer
science.
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LettingX0 have meanc and varianceσ 2, the classical central limit theorem can
be set in the framework of hierarchical sequences by letting

F(x1, x2) = 1
2(x1 + x2),(4)

which gives in distribution

Xn = X0,1 + · · · + X0,2n

2n
.

Hence,Xn
p→ c, and sinceXn is an average ofN = 2n i.i.d. variables with finite

variance,

Wn = 2n/2
(

Xn − c

σ

)
d→ N (0,1).

Under some higher-order moment conditions one would expect a bound on the
Wasserstein distanced betweenWn and to the standard normalN to decay at rate
N−1/2, that is, withγ = 1/

√
2,

d(Wn,N ) ≤ Cγ n.(5)

The function (4), and (2) withF(14) = 1, are examples of averaging functions,
that is, functionsF :Dk → D which satisfy the following three properties on their
domain:

1. mini xi ≤ F(x) ≤ maxi xi .
2. F(x) ≤ F(y) wheneverxi ≤ yi .
3. For allx < y and for any two distinct indicesi1 �= i2, there existxi ∈ {x, y},

i = 1, . . . , k, such thatxi1 = x, xi2 = y andx < F(x) < y.

We note that the functionF(x) = mini xi satisfies the first two properties but not
the third, and gives rise to nonnormal limiting behavior. We will callF(x) a scaled
averaging function ifF(x)/F (1k) is averaging.

Normal limits in [13] are proved for the sequencesXn determined by the
recursion (1) when the functionF(x) is averaging by showing that such recursions
can be treated as the approximate linear recursion around the meancn = EXn with
small perturbationZn,

Xn+1 = αn · Xn + Zn, n ≥ 0,(6)

where αn = F ′(cn), cn = (cn, . . . , cn)
T ∈ R

k and F ′ is the gradient ofF . In
Section 3 we prove Theorem 3.1, which gives the exponential bound (5) for
the distance to the normal for sequences generated by the approximate linear
recursion (6) under moment Conditions 3.1 and 3.2, which guarantee thatZn is
small relative toXn.

In Section 4 we prove Theorem 1.1, which shows that the normal convergence
of the hierarchical sequenceXn holds with the exponential bound (5) under mild
conditions, and specifiesγ in an explicit range. Theorem 1.1 is proved by invoking
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Theorem 3.1 after showing that the required moment conditions are satisfied for
averaging functions. In particular, the higher-order moment Condition 3.2 used
to prove the upper bound (5) is satisfied under the same averaging assumption
on F used in [13] to guarantee Condition 3.1 for convergence to the normal. The
condition in Theorem 1.1 that the gradientα = F ′(c) of F at the limiting valuec
not be a scalar multiple of a standard basis vector rules out trivial cases such as
F(x1, x2) = x1, for which normal limits are not valid.

THEOREM 1.1. Let X0 be a nonconstant random variable with P (X0 ∈
[a, b]) = 1 and Xn given by (1) with F : [a, b]k → [a, b], twice continuously
differentiable. Suppose F is averaging, or scaled averaging and homogeneous,

and that Xn
p→ c, with α = F ′(c) not a scalar multiple of a standard basis vector.

Then with Wn = (Xn − cn)/
√

Var(Xn) and N a standard normal variable, for all
γ ∈ (ϕ,1) there exists C such that

d(Wn,N ) ≤ Cγ n,

where

ϕ =
∑k

i=1 |αi |3
(
∑k

i=1 |αi |2)3/2
,(7)

a positive number strictly less than 1. The value ϕ achieves a minimum of 1/
√

k if
and only if the components of α are equal.

At stagen there areN = kn variables, so achieving the rateγ n for γ to just
within its minimum value 1/

√
k corresponds to the rateN−1/2+ε for everyε > 0.

On the other hand, whenα is close to a standard basis vector,ϕ is close to 1, and
the rateγ n is slow. This is anticipated, as for the hierarchical sequence generated
using the function, sayF(x1, x2) = (1 − ε)x1 + εx2 for smallε > 0, convergence
to the normal will be slow.

In Section 5, Theorem 1.1 is applied to the hierarchical variables generated by
the diamond lattice conductivity function (2). In (47) the valueϕ determining the
range ofγ in (5) for the rate of convergence to the normal is given as an explicit
function of the weightsw; for the diamond lattice all ratesN−θ for θ ∈ (0,1/2) are
exhibited. Interestingly, there appears to be no such formula, simple or otherwise,
for the limiting mean or variance of the sequenceXn.

We prove our results using Stein’s method (see, e.g., [9]) in conjunction with the
zero bias coupling of [1], derived from similar use of the size bias coupling in [2].
Let Z be a mean zero, varianceσ 2 normal variate andNh = Eh(Z/σ) for a test
function h. Given a meanc, varianceσ 2 random variableX, Stein’s method, as
typically applied, estimatesEh((X − c)/σ ) − Nh using the auxiliary functionf
which is the bounded solution to

h(w/σ) − Nh = σ 2f ′(w) − wf (w).(8)
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In [1] it is shown that for any mean zero varianceσ 2 random variableW there
existsW ∗ such that, for all absolutely continuousf for whichEWf (W) exists,

EWf (W) = σ 2Ef ′(W ∗),(9)

and thatW is normal if and only ifW
d= W ∗. Hence, the distance fromW to

the normal can be expressed in a distanced from W to W ∗. The variableW ∗ is
termed theW -zero biased distribution due to parallels with size biasing. In both
size biasing and zero biasing, a sum of independent variables is biased by choosing
a summand at random and replacing it with its biased version. In size biasing the
variables must be nonnegative, and one is chosen with probability proportional to
its expectation. In zero biasing the variables are mean zero, and one is chosen with
probability proportional to its variance. The coupling construction for zero biasing
just stated appears in [1] and is presented formally in Section 3; it provides the
key in the proof of Lemma 2.2. To see how the zero-bias coupling is used in the
Stein equation, letf andh be related through (8). Evaluating (8) at a mean zero,
varianceσ 2 variableW , taking expectation and using (9), we obtain

σ 2[Ef ′(W) − Ef ′(W ∗)] = E[σ 2f ′(W) − Wf (W)] = Eh(W/σ) − Nh.(10)

For d the Wasserstein distance (also known as the Dudley, Fortet–Mourier or
Kantarovich distance), Lemma 2.1 applies (10) to show the following strong con-
nection between normal approximation and the distance between theW andW ∗
distributions as measured byd . With N a mean zero normal variable with the same
variance asW ,

d(W,N ) ≤ 2d(W,W ∗).(11)

Hence, bounds on the distance betweenW and W ∗ can be used to bound the
distance fromW to the normal.

We recall that, with

L = {h :R → R : |h(y) − h(x)| ≤ |y − x|},(12)

the Wasserstein distanced(Y,X) between variablesY andX onR is given by

d(Y,X) = sup
h∈L

∣∣E(
h(Y ) − h(X)

)∣∣,
or equivalently, with

F = {f :f absolutely continuous,f (0) = f ′(0) = 0, f ′ ∈ L}(13)

we have

d(Y,X) = sup
f ∈F

∣∣E(
f ′(Y ) − f ′(X)

)∣∣.(14)

For f ∈ F , certain growth restrictions are implied onh of (8) for this f . In
Theorem 3.1 these restrictions are used to compute a bound ond(Wn,W

∗
n ), which
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in turn is used to boundd(Wn,N ) by (11). This argument, wheref is taken as
given and thenh determined in terms off by (8), is reversed from the way Stein’s
method is typically applied, whereh is the function of interest andf has only an
auxiliary role as the solution of (8) for the givenh.

For the application of Theorem 1.1, it is necessary to verify the functionF(x)

in (1) is averaging. Proposition 3 of [13] shows that the effective conductance of
a resistor network is an averaging function of the conductances of its individual
components. Theorem 1.2, proved in Section 6, provides an additional source
of averaging functions to which Theorem 1.1 may be applied by introducing
the notion of strict averaging and showing that it is preserved under certain
compositions.

We sayF is strictly averaging if strict inequality holds in property 1 when
mini xi < maxi xi , and in property 2 whenxi < yi for somei. Property 3 is the
least intuitive, but is a consequence of a strict version of the first two properties;
that is, a strictly averaging function is averaging: ifx < y andxii = x, xi2 = y, then
any assignment of the valuesx, y to the remaining coordinates givesx < F(x) < y

by the strict form of property 1, soF satisfies property 3.

THEOREM 1.2. Let k ≥ 1 and set I0 = {1, . . . , k}. Suppose subsets Ii ⊂ I0,
i ∈ I0 satisfy

⋃
i∈I0

Ii = I0. For x ∈ R
k and i ∈ I0 let xi = (xj1, . . . , xj|Ii |),

where {j1, . . . , j|Ii |} = Ii and j1 < · · · < j|Ii |. Let (Fi : [0,∞)|Ii | → [0,∞) or)
Fi :R|Ii | → R, i = 0, . . . , k. If F0,F1, . . . ,Fk are strictly averaging and F0 is
( positively) homogeneous, then the composition

Fs(x) = F0
(
s1F1(x1), . . . , skFk(xk)

)
is strictly averaging for any s for which F0(s) = 1 and si > 0 for all i. If
F0,F1, . . . ,Fk are scaled, strictly averaging and F0 is ( positively) homogeneous,
then

F1(x) = F0
(
F1(x1), . . . ,Fk(xk)

)
is a scaled strictly averaging function.

In particular, in the context of resistor networks, two components with
conductancesx1, x2 in parallel is equivalent to one component with conductance

L1(x1, x2) = x1 + x2,

and in series to one component with conductance

L−1(x1, x2) = (x−1
1 + x−1

2 )−1.

These parallel and series combination rules are thep = 1 andp = −1 special
cases, withwi = 1, of the weightedLp-norm functions

Lw
p(x) =

(
k∑

i=1

(wixi)
p

)1/p

, w = (w1, . . . ,wk)
T, wi ∈ (0,∞),
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which are scaled, strictly averaging and positively homogeneous on[0,∞)k for
p > 0, and on(0,∞]k for p < 0.

Though Theorem 1.2 cannot be invoked to subsume the result of [13] that every
resistor network is strictly averaging in its component conductances (e.g., consider
the complete graphK4), now suppressing the dependence ofLp on w, sinceF(x)

in (2) can be represented as

F(x) = L1
(
L−1(x1, x2),L−1(x3, x4)

)
,

Theorem 1.2 obtains to show that the diamond lattice conductivity function is a
scaled, strictly averaging function on(0,∞)4 for any choice of positive weights.
Moreover, Theorem 1.2 shows the same conclusion holds when the resistor
parallelL1 and seriesL−1 combination rules in this network are replaced by, say,
L2 andL−2, respectively.

2. Zero bias and the Wasserstein distance. The following lemma, of
separate interest, shows how the zero bias coupling ofW upper bounds the
Wasserstein distance to normality.

LEMMA 2.1. Let W be a mean zero, finite variance random variable, and let
W ∗ have the W -zero bias distribution. Then with d the Wasserstein distance, and
N a normal variable with the same variance as W ,

d(W,N ) ≤ 2d(W,W ∗).

PROOF. Sinceσ−1d(X,Y ) = d(σ−1X,σ−1Y ) andσ−1W ∗ = (σ−1W)∗, we
may assume Var(W) = 1. The dual form of the Wasserstein distance gives that

inf
(Y,X)

E|Y − X| = d(Y,X),(15)

where the infimum, achieved for random variables onR, is taken over all
pairs(Y,X) on a common space with the given marginals (see [6]). TakeW,W ∗
to achieve the infimumd(W,W ∗).

For a differentiable test functionh andσ 2 = 1, Stein [10] shows the solutionf
of (8) is twice differentiable with‖f ′′‖ ≤ 2‖h′‖, where ‖ · ‖ represents the
supremum norm. Now going from right to left in (10), applying this bound and
using (15) we have

|Eh(W) − Nh| ≤ ‖f ′′‖E|W − W ∗| ≤ 2‖h′‖E|W − W ∗| = 2‖h′‖d(W,W ∗).

Functionsh ∈ L of (12) are absolutely continuous with‖h′‖ ≤ 1, so taking
supremum overh ∈ L on the left-hand side completes the proof.�

The following results in this section give the prototype of the argument used
in Section 3 and show how the zero bias coupling can be used to obtain the
exponential decay of the Wasserstein distance to the normal.
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PROPOSITION2.1. For α ∈ R
k with λ = ‖α‖ �= 0, for all p > 2,
k∑

i=1

|αi |p
λp

≤ 1,

with equality if and only if α is a multiple of a standard basis vector. In the case
p = 3, yielding ϕ of (7),

1√
k

≤ ϕ ≤ 1,(16)

with equality to the upper bound if and only if α is a multiple of a standard basis
vector, and equality to the lower bound if and only if |αi | = |αj | for all i, j . In
addition, when αi ≥ 0 with

∑n
i=1 αi = 1, then

λ ≤ ϕ,(17)

with equality if and only α is equal to a standard basis vector.

PROOF. Since|αi |/λ ≤ 1 we have|αi |p−2/λp−2 ≤ 1, yielding
k∑

i=1

|αi |p
λp

=
k∑

i=1

( |αi |p−2

λp−2

) |αi |2
λ2 ≤

k∑
i=1

α2
i

λ2 = 1,

with equality if and only if for somei we have|αi | = λ, andαj = 0 for all j �= i.
By Hölder’s inequality withp = 3, q = 3/2, we have(

k∑
i=1

1 · α2
i

)3/2

≤ √
k

k∑
i=1

|αi |3,

giving the lower bound (16), with equality if and only ifα2
i is proportional to 1 for

all i. For the claim (17), by considering the inequality between the squared mean
and variance of a random variable which takes the valueαi with probabilityαi , we
have(

∑
i α

2
i )

2 ≤ ∑
i α

3
i , with equality if and only if the variable is constant.�

Lemma 2.2 shows how zero biasing an independent sum behaves like a
contraction mapping.

LEMMA 2.2. For α ∈ R
k with λ = ‖α‖ �= 0, let

Y =
k∑

i=1

αi

λ
Wi,

where Wi are mean zero, variance 1, independent random variables distributed
as W . Then

d(Y,Y ∗) ≤ ϕ d(W,W ∗)
with ϕ as in (7), and ϕ < 1 if and only if α is not a multiple of a standard basis
vector.
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PROOF. By [1], for any collectionW ∗
i with the Wi zero biased distribution

independent ofWj , j �= i, andI a random index independent of all other variables
with distribution

P (I = i) = α2
i

λ2 ,

the variable

Y ∗ = Y − αI

λ
(WI − W ∗

I )(18)

has theY zero biased distribution. SinceWi
d= W , we may take(Wi,W

∗
i )

d=
(W,W ∗), with W,W ∗ achieving the infimum in (15). Then

|Y − Y ∗| =
k∑

i=1

|αi |
λ

|Wi − W ∗
i |1(I = i)

and

E|Y − Y ∗| =
k∑

i=1

|αi |3
λ3 E|Wi − W ∗

i | =
(

k∑
i=1

|αi |3
λ3

)
E|W − W ∗|.

Now using (15) to upper boundd(Y,Y ∗) by the particular coupling in (18) we
obtain

d(Y,Y ∗) ≤ E|Y − Y ∗| = ϕE|W − W ∗| = ϕ d(W,W ∗).
The final claim was shown in Proposition 2.1.�

In the classical case, whenY = n−1/2 ∑n
i=1 Wi , the normalized sum of i.i.d.

random variables, applying Lemmas 2.1 and 2.2 withαi = 1/
√

n givesd(Y,N ) ≤
2d(Y,Y ∗) ≤ 2n−1/2d(W,W ∗) → 0 asn → ∞, yielding a streamlined proof of the
central limit theorem, complete with a bound ind .

When the sequenceXn is given by the recursion (6) withZn = 0, setting
λn = ‖αn‖ andσ 2

n = Var(Xn) we haveσn+1 = λnσn, and we can write (6) as

Wn+1 =
k∑

i=1

αn,i

λn

Wn,i with Wn = Xn − cn

σn

.

Iterating the bound provided by Lemma 2.2 gives

d(Wn,W
∗
n ) ≤

(
n−1∏
i=0

ϕi

)
d(W0,W

∗
0 ),

where

ϕn =
(∑k

i=1 |αi,n|3
λ3

n

)
.(19)

When lim supn ϕn = ϕ < 1, for anyγ ∈ (ϕ,1) there existsC such that for alln we
haved(Wn,N ) ≤ 2d(Wn,W

∗
n ) ≤ Cγ n. In Section 3 we study the situation when

Zn is not necessarily zero.



HIERARCHICAL STRUCTURES 1959

3. Bounds to the normal for approximately linear recursions. In this sec-
tion we study sequences{Xn}n≥0 generated by the approximate linear recur-
sion (6), and we present Theorem 3.1, which shows the exponential bound (5)
holds when the perturbation termZn is small as reflected in the termβn of (24),
and holds in particular under the moment bounds in Conditions 3.1 and 3.2. When
Zn is small,Xn+1 will be approximately equal toαn · Xn, and therefore its vari-
anceσ 2

n+1 will be close toσ 2
n λ2

n, whereλn = ‖αn‖, and the ratio(λnσn)/σn+1
will be close to 1. Iterating, the variance ofXn will grow like a constantC times
λ2

n−1 · · ·λ2
0, so whencn → c andαn → α, like C2λ2n. Condition 3.1 assures that

Zn is small relative toXn in that its variance grows at a slower rate. This condi-
tion was assumed in [13] for deriving a normal limiting law for the standardized
sequence generated by (6).

CONDITION 3.1. The nonzero sequence of vectorsαn ∈ R
k, k ≥ 2, converges

to α, not equal to any multiple of a standard basis vector. Forλ = ‖α‖, there exist
0 < δ1 < δ2 < 1 and constantsCZ,2,CX,2 such that, for alln,

Var(Zn) ≤ C2
Z,2λ

2n(1− δ2)
2n,

Var(Xn) ≥ C2
X,2λ

2n(1− δ1)
2n.

Bounds on the distance betweenXn and the normal can be provided under the
following conditions on the fourth-order moments ofXn andZn.

CONDITION 3.2. There existδ3 and δ4 ∈ (δ1,1) and constantsCZ,4,CX,4
such that

E(Zn − EZn)
4 ≤ C4

Z,4λ
4n(1− δ4)

4n,

E(Xn − EXn)
4 ≤ C4

X,4λ
4n(1+ δ3)

4n

and

β = max{φ1, φ2} < 1
(20)

whereφ1 = (1− δ2)(1+ δ3)
3

(1− δ1)4
and φ2 =

(
1− δ4

1− δ1

)2

.

Using Hölder’s inequality and Condition 3.2 we may take

1− δ2 ≤ 1− δ4 < 1− δ1 ≤ 1+ δ3.(21)

In particular,β ≤ η for

η = (1− δ4)(1+ δ3)
3

(1− δ1)
4 .(22)
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THEOREM 3.1. Let Xn+1 = αn · Xn + Zn with λn = ‖αn‖ �= 0 and Xn a
vector in R

k with i.i.d. components distributed as Xn with mean cn and nonzero
variance σ 2

n . Set

Wn = Xn − cn

σn

, Yn =
k∑

i=1

αn,i

λn

Wn,i(23)

and

βn = E|Wn+1 − Yn| + 1
2E|W3

n+1 − Y 3
n |.(24)

If there exist (β,ϕ) ∈ (0,1)2 such that

lim sup
n→∞

βn

βn
< ∞(25)

and ϕn in (19) satisfies

lim sup
n→∞

ϕn = ϕ,(26)

then with γ = β when ϕ < β, and for any γ ∈ (ϕ,1) when β ≤ ϕ, there exists C

such that

d(Wn,N ) ≤ Cγ n.(27)

Under Conditions 3.1 and 3.2, (27)holds for all γ ∈ (max(β,ϕ),1), with β as
in (20),and ϕ = ∑k

i=1 |αi |3/λ3 < 1.

PROOF. By Lemma 2.1, it suffices to prove the bound (27) holds for
d(Wn,W

∗
n ). Let f ∈ F with F given by (13). Then|f ′′(x)| ≤ 1, |f ′(x)| ≤

|x|, |f (x)| ≤ x2/2, and for h given by (8) with σ 2 = 1 and the chosenf ,
differentiation of (8) yields

h′(w) = f ′′(w) − wf ′(w) − f (w),

and therefore

|h′(w)| ≤ (
1+ 3

2w2).(28)

Letting rn = (λnσn)/σn+1 and using (23), writeXn+1 = αn · Xn + Zn as

Wn+1 = rnYn + Tn, whereTn = σn

σn+1

(
Zn − EZn

σn

)
.(29)

Now by (28) and the definition ofβn in (24),

E|h(Wn+1) − h(Yn)| = E

∣∣∣∣
∫ Wn+1

Yn

h′(u) du

∣∣∣∣ ≤ βn.
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From (10) withσ 2 = 1, using Var(Yn) = 1,

|Ef ′(Wn+1) − Ef ′(W ∗
n+1)| = |Eh(Wn+1) − Nh|

= ∣∣E(
h(Wn+1) − h(Yn) + h(Yn) − Nh

)∣∣
≤ βn + |Eh(Yn) − Nh|
≤ βn + ∣∣E(

f ′(Yn) − f ′(Y ∗
n )

)∣∣
≤ βn + d(Yn,Y

∗
n ) [by (14)]

≤ βn + ϕnd(Wn,W
∗
n ) (by Lemma 2.2).

Taking the supremum overf ∈ F on the left-hand side, using (14) again and
letting dn = d(Wn,W

∗
n ) we obtain, for alln ≥ 0,

dn+1 ≤ βn + ϕndn.

Iteration yields that, for alln,n0 ≥ 0,

dn0+n ≤
n0+n−1∑
j=n0

(
n0+n−1∏
i=j+1

ϕi

)
βj +

(
n0+n−1∏

i=n0

ϕi

)
dn0.(30)

Now suppose the bounds (25) and (26) hold and recall the choice ofγ . When
ϕ < β takeϕ̄ ∈ (ϕ,β) so thatϕ < ϕ̄ < β = γ ; whenβ ≤ ϕ setϕ̄ ∈ (ϕ, γ ) so that
β ≤ ϕ < ϕ̄ < γ . Then for any�B greater than the lim sup in (25) there existsn0
such that, for alln ≥ n0,

βn ≤ Bβn and ϕn ≤ ϕ̄.

Applying these inequalities in (30) and summing yields, for alln ≥ 0,

dn+n0 ≤ �Bβn0

(
βn − ϕ̄n

β − ϕ̄

)
+ ϕ̄ndn0;

since max(β, ϕ̄) ≤ γ , (27) follows.
To prove the final claim it suffices to show that, under Conditions 3.1 and 3.2,

(25) and (26) hold withβ < 1 as defined in (20), and withϕ = ∑k
i=1 |αi|3/λ3 < 1.

Lemma 6 of [13] gives that the limit asn → ∞ of σn/(λ0 · · ·λn−1) exists
in (0,∞), and therefore

lim
n→∞ rn = 1 and lim

n→∞
σn+1

σn

= λ.(31)

Referring to the definition ofTn in (29) and using (31) and Conditions
3.1 and 3.2, there existCt,2,Ct,4 such that

(E|Tn|)2 ≤ ET 2
n = Var(Tn) =

(
σn

σn+1

)2 Var(Zn)

Var(Xn)
≤ C2

t,2

(
1− δ2

1− δ1

)2n

,

ET 4
n =

(
σn

σn+1

)4

E

(
Zn − EZn

σn

)4

≤ C4
t,4

(
1− δ4

1− δ1

)4n

.
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By independence, a simple bound and Condition 3.2 for the inequality,

(E|Yn|)2 ≤ EY 2
n = Var(Yn) = 1,

EY 4
n ≤ 6E

(
Xn − cn

σn

)4

≤ 6C4
X,4

(
1+ δ3

1− δ1

)4n

.

From (6), withσZn = √
Var(Zn), σn+1 ≤ λnσn + σZn andλnσn ≤ σn+1 + σZn ;

hence withCr,1 = Ct,2 we have

|λnσn − σn+1| ≤ σZn so |rn − 1| ≤ Cr,1

(
1− δ2

1− δ1

)n

.

Since|rp
n − 1| ≤ ∑

j≥1

(
p

j

)
|rn − 1|j , using (21) there areCr,p such that

|rp
n − 1| ≤ Cr,p

(
1− δ2

1− δ1

)n

, p = 1,2, . . . .

Now considering the first term ofβn of (24), recalling (29),

E|Wn+1 − Yn| = E|(rn − 1)Yn + Tn|
≤ |rn − 1|E|Yn| + E|Tn| ≤ (Cr,1 + Ct,2)

(
1− δ2

1− δ1

)n

,

which is upper bounded by a constant timesφn
1.

For the second term of (24) we have

E|W3
n+1 − Y 3

n | = E|(r3
n − 1)Y 3

n + 3r2
nY 2

n Tn + 3rnYnT
2
n + T 3

n |.
Using the triangle inequality, the first term is bounded by a constant timesφn

1 as

|r3
n − 1|E|Y 3

n | ≤ |r3
n − 1|(EY 4

n )3/4 ≤ 63/4Cr,3C
3
X,4

(
(1− δ2)(1+ δ3)

3

(1− δ1)4

)n

.

Sincern → 1 by (31), it suffices to bound the next two terms without the factor
of rn. Thus,

E|Y 2
n Tn| ≤

√
EY 4

nET 2
n ≤ 61/2C2

X,4Ct,2

(
(1− δ2)(1+ δ3)

2

(1− δ1)
3

)n

,

which is less than a constant timesφn
1 by (21), and finally,

E|YnT
2
n | ≤

√
EY 2

nET 4
n ≤ C2

t,4

(
1− δ4

1− δ1

)2n

≤ C2
t,4φ

n
2,

E|T 3
n | ≤ (ET 4

n )3/4 ≤ C3
t,4

(
1− δ4

1− δ1

)3n

≤ C3
t,4φ

3n/2
2 .

Hence (25) holds with the givenβ.
Sinceαn → α, we haveϕn → ϕ. Under Condition 3.1,α is not a scalar multiple

of a standard basis vector andϕ < 1 by Lemma 2.2. We finish by invoking the first
part of the theorem. �
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4. Normal bounds for hierarchical sequences. The following result, extend-
ing Proposition 9 of [13] to higher orders, is used to show that the moment bounds
of Conditions 3.1 and 3.2 are satisfied under the hypotheses of Theorem 1.1, so that
Theorem 3.1 may be invoked. The dependence of the constants in (33) and (34)
on ε is suppressed for notational simplicity.

PROPOSITION 4.1. Let the hypotheses of Theorem 1.1 hold. Following (6),
with cn = EXn and αn = F ′(cn), define

Zn = F(Xn) − αn · Xn.(32)

Then with α the limit of αn and λ = ‖α‖, for any p ≥ 1 and ε > 0, there exist
constants CX,p,CZ,p such that

E|Zn − EZn|p ≤ C
p
Z,p(λ + ε)2pn for all n ≥ 0(33)

and

E|Xn − cn|p ≤ C
p
X,p(λ + ε)pn for all n ≥ 0.(34)

PROOF. ExpandingF(Xn) aroundcn, with αn = F ′(cn),

F(Xn) = F(cn) +
k∑

i=1

αn,i(Xn,i − cn) + R2(cn,Xn),(35)

where

R2(cn,Xn) =
k∑

i,j=1

∫ 1

0
(1− t)

∂2F

∂xi ∂xj

(
cn + t (Xn − cn)

)
(Xn,i − cn)(Xn,j − cn) dt.

Since the second partials ofF are continuous onD = [a, b]k , with ‖ · ‖ the
supremum norm onD , B = 2−1 maxi,j ‖∂2F/∂xi ∂xj‖ < ∞, we have

|R2(cn,Xn)| ≤ B

k∑
i,j=1

|(Xn,i − cn)(Xn,j − cn)|.(36)

Using (32), (35) and (36), we have, for allp ≥ 1,

E|Zn − EZn|p

= E

∣∣∣∣∣F(Xn) − cn+1 −
k∑

i=1

αn,i(Xn,i − cn)

∣∣∣∣∣
p

(37) = E|F(cn) − cn+1 + R2(cn,Xn)|p

≤ 2p−1

(
|F(cn) − cn+1|p + BpE

(∑
i,j

|(Xn,i − cn)(Xn,j − cn)|
)p)

.
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For the first term of (37), again using (36),

|F(cn) − cn+1|p = |F(cn) − EF(Xn)|p = |ER2(cn,Xn)|p

≤ Bp

(
E

∑
i,j

|(Xn,i − cn)(Xn,j − cn)|
)p

≤ Bpkp

(
E

k∑
i=1

(Xn,i − cn)
2

)p

(38)

≤ Bpk2p[E(Xn − cn)
2]p

≤ Bpk2pE(Xn − cn)
2p,

using Hölder’s inequality for the final step.
Similarly, for the expectation in (37),

E

(∑
i,j

|(Xn,i − cn)(Xn,j − cn)|
)p

≤ kpE

(
k∑

i=1

(Xn,i − cn)
2

)p

≤ k2p−1E

(
k∑

i=1

(Xn,i − cn)
2p

)
(39)

= k2pE(Xn − cn)
2p.

Applying (38) and (39) in (37) we obtain for allp ≥ 1, with Cp = 2pBpk2p,

E|Zn − EZn|p ≤ CpE(Xn − cn)
2p.(40)

It therefore suffices to prove (34) to demonstrate the proposition.
In Lemma 8 of [13], it is shown that whenF : [a, b]k → [a, b] is an averaging

function and there existsc ∈ [a, b] such thatXn
p→ c, then

for everyε ∈ (0,1) there existsM such that, for alln,
(41)

P (|Xn − c| > ε) ≤ Mεn.

Hence the large deviation estimate (41) holds under the given assumptions, and

so also withcn replacingc whencn → c. SinceXn ∈ [a, b] andXn
p→ c, cn =

EXn → c by the bounded convergence theorem.
We now show that ifan, n = 0,1, . . . , is a sequence such that for everyε > 0

there existsM such that, for alln ≥ n0,

an+1 ≤ (λ + ε)pan + M(λ + ε)p(n+1),(42)

then for allε > 0 there existsC such that

an ≤ C(λ + ε)pn for all n.(43)



HIERARCHICAL STRUCTURES 1965

Let ε > 0 be given, and letM andn0 be such that (42) holds withε replaced
by ε/2. Setting

ρ = 1−
(

λ + ε/2

λ + ε

)p

and C = max
{

an0

(λ + ε)n0
,
M

ρ

[
λ + ε/2

λ + ε

]p(n0+1)}
,

it is trivial that (43) holds forn = n0. Since the second quantity in the maximum
decreases whenn0 is replaced byn ≥ n0, induction shows (43) holds for alln ≥ n0.
By increasingC if necessary, we have that (43) holds for alln.

Unqualified statements in the remainder of the proof below involvingε andM

are to be read to mean that for everyε > 0 there existsM , not necessarily the same
at each occurrence, such that the statement holds for alln. By (41),

E(Xn − cn)
2p = E[(Xn − cn)

2p; |Xn − cn| ≤ ε]
+ E[(Xn − cn)

2p; |Xn − cn| > ε]
≤ εpE|Xn − cn|p + Mεn,

so from (40),

E|Zn − EZn|p ≤ εE|Xn − cn|p + Mεn.(44)

Since for allw,z,

|w + z|p ≤ (1+ ε)|w|p + M|z|p,

definition (32) yields

E|Xn+1 − cn+1|p ≤ (1+ ε)E

∣∣∣∣∣
k∑

i=1

αn,i(Xn − cn)

∣∣∣∣∣
p

+ ME|Zn − EZn|p.(45)

Specializing (45) to the casep = 2 gives, for alln sufficiently large,

E(Xn+1 − cn+1)
2 ≤ (λ + ε)2E(Xn − cn)

2 + ME(Zn − EZn)
2.

Applying (44) withp = 2 to this inequality yields, for alln sufficiently large,

E(Xn+1 − cn+1)
2 ≤ (λ + ε)2E(Xn − cn)

2 + Mε2n+2

≤ (λ + ε)2E(Xn − cn)
2 + M(λ + ε)2(n+1).

Hence, withp = 2, (42) and therefore (43) are true foran = E(Xn − cn)
2,

yielding (34) forp = 2. Now apply Hölder’s inequality to prove the casep = 1.
Assume now that (34) is true for all 2≤ q < p in order to induct onp. Expand

the first term in (45), lettingp = (p1, . . . , pk) and|p| = ∑
i pi . Use the induction

hypotheses, and Proposition 2.1 in (46), to obtain for alln sufficiently large,
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with AX,p = maxq<p CX,q andB
p
X,p = kp−1A

p
X,p,

E

∣∣∣∣∣
k∑

i=1

αn,i(Xn − cn)

∣∣∣∣∣
p

≤
k∑

i=1

|αn,i |pE|Xn,i − cn|p + ∑
|p|=p,pi<p

(
p

p

)
E

k∏
i=1

|αn,i |pi |Xn,i − cn|pi

≤ E|Xn − cn|p
k∑

i=1

|αn,i|p + ∑
|p|=p,pi<p

(
p

p

) k∏
i=1

|αn,i |piC
pi

X,pi
(λ + ε)pin

≤ E|Xn − cn|p
k∑

i=1

|αn,i|p + A
p
X,p(λ + ε)pn

∑
|p|=p

(
p

p

) k∏
i=1

|αn,i|pi(46)

= E|Xn − cn|p
k∑

i=1

|αn,i |p + A
p
X,p(λ + ε)pn

(
k∑

i=1

|αn,i |
)p

≤
k∑

i=1

|αn,i |p(
E|Xn − cn|p + B

p
X,p(λ + ε)pn

)

≤ (λ + ε)pE|Xn − cn|p + B
p
X,p(λ + ε)p(n+1).

Applying (44) and (46) to (45) gives

E|Xn+1 − cn+1|p ≤ (λ + ε)pE|Xn − cn|p + M(λ + ε)p(n+1),

from which we can conclude (43) foran = E|Xn − cn|p, completing the induction
onp. We conclude (34) holds for allp ≥ 1. �

PROOF OF THEOREM 1.1. By replacingXn and F(x) by Xn/F (1k)
n

and F(x)/F (1k), respectively, we may assumeF is averaging. By property 1
of averaging functions,F(c) = c, and differentiation yields

∑n
i=1 αi = 1. By

property 2, monotonicity,αi ≥ 0, and (17) of Proposition 2.1 yields 0< λ ≤ ϕ < 1.
Inspection of (22) shows that, for anyη ∈ (λ,1), there existsδ1 andδ3 in (0,1)

andδ4 in (δ1,1 − λ) yielding η. For example, to achieve values arbitrarily close
to λ from above, takeδ1 andδ3 close to zero andδ4 close to 1− λ from below.
Setδ2 = δ4. By Theorem 3.1 it suffices to show that Conditions 3.1 and 3.2 are
satisfied for these choices ofδ.

Sinceδ4 < 1 − λ we haveλ2 < λ(1 − δ4); hence we may pickε > 0 such that
(λ + ε)2 < λ(1 − δ4). By Proposition 4.1, forp = 2 andp = 4, for this ε there
existsCp

Z,p such that

E(Zn − EZn)
p ≤ C

p
Z,p(λ + ε)4pn ≤ C

p
Z,pλ2pn(1− δ4)

2pn.
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Hence the fourth and second moment bounds onZn are satisfied withδ4 and
δ2 = δ4, respectively.

Proposition 10 of [13] shows that under the assumptions of Theorem 1.1, for
everyε > 0 there existsC2

X,2 such that

Var(Xn) ≥ C2
X,2(λ − ε)2n.

Taking ε = λδ1, we have Var(Xn) satisfies its lower bound condition. Lastly,
applying Proposition 4.1 withp = 4 andε = λδ3 we see the fourth moment bound
onXn is satisfied, and the proof is complete.�

5. Convergence rates for the diamond lattice. We now apply Theorem 1.1
to hierarchical sequences generated by the diamond lattice conductivity functionF

in (2), for various choice of positive weights satisfyingF(14) = 1. For all
suchF(x) the result of Shneiberg [8] quoted in Section 1 shows thatXn satisfies a
strong law ifX0 ∈ [0,1], say. The first partials ofF have the form, for example,

∂F (x)

∂x1
= (w1x

2
1)−1

((w1x1)−1 + (w2x2)−1)2
,

and thereforeF ′(cn14) does not depend oncn. In particular, for alln,

αn =
[

w−1
1

(w−1
1 + w−1

2 )2
,

w−1
2

(w−1
1 + w−1

2 )2
,

w−1
3

(w−1
3 + w−1

4 )2
,

w−1
4

(w−1
3 + w−1

4 )2

]T

,

from which

ϕ = λ−3
(

w−3
1 + w−3

2

(w−1
1 + w−1

2 )6
+ w−3

3 + w−3
4

(w−1
3 + w−1

4 )6

)
,(47)

where

λ =
(

w−2
1 + w−2

2

(w−1
1 + w−1

2 )4
+ w−2

3 + w−2
4

(w−1
3 + w−1

4 )4

)1/2

.

As an illustration, define the “side equally weighted network” to be the one with
w = (w,w,2 − w,2 − w)T for w ∈ [1,2); such weights are positive and satisfy
F(14) = 1. Forw = 1 all weights are equal, and we haveα = 4−114, and hence
ϕ achieves its minimum value 1/2 = 1/

√
k with k = 4. By Theorem 1.1, for all

γ ∈ (0,1/2) there exists a constantC such thatd(Wn,N ) ≤ Cγ n, with γ close to
1/2 corresponding to the rateN−1/2+ε for small ε > 0 andN = 4n, the number
of variables at stagen. As w increases from 1 to 2,ϕ increases continuously from
1/2 to 1/

√
2, with w close to 2 corresponding to the least favorable rate for the

side equally weighted network ofN−1/4+ε for anyε > 0.
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With only the restriction that the weights are positive and satisfyF(14) = 1
consider

w = (1+ 1/t, s, t,1/t)T,

wheres = [(
1− (1/t + t)−1)−1 − (1+ 1/t)−1]−1

, t > 0.

When t = 1 we haves = 2/3 andϕ = 11
√

2/27. As t → ∞, s/t → 1/2 andα
tends to the standard basis vector(1,0,0,0), soϕ → 1. Since 11

√
2/27< 1/

√
2,

the above two examples show that the value ofγ given by Theorem 1.1 for the
diamond lattice can take any value in the range(1/2,1), corresponding toN−θ for
anyθ ∈ (0,1/2).

6. Composition of strict averaging functions. In this section, we prove
Theorem 1.2, which shows when the composition of strictly averaging functions
is again strictly averaging.

PROOF OF THEOREM 1.2. We first showFs(x) satisfies the strict form of
property 1. Ifx = t1k , thenFs(x) = F0(s1t, . . . , skt) = F0(s)t = t and property 1
is satisfied in this case. Hence assume mini xi = x < y = maxi xi . For suchx, if
there is at such thatFi(xi) = t for all i = 1, . . . , k, then for somei and j we
havey = xj , j ∈ Ii , and hencex < Fi(xi) = t sinceFi is strictly averaging, and
similarly, t < y. Hencex < F1(x) = t < y.

For x such that for alli ∈ I0, siFi(xi ) = t for somet , we have

Fs(x) = F0
(
s1F1(x1), . . . , skFk(xk)

) = F0(t1k) = t.

For s = 1k we have just shown the strict inequalityx < t < y holds. Otherwise
s �= 1k and byF0(s) = 1 we have mini si < 1 < maxi si , and sincet = Fi(xi )/si
for all i there existi1 andi2 such that

x ≤ Fi1

(
xi1

)
< t < Fi2

(
xi2

) ≤ y,

yielding again the required strict inequality.
For x such that there arei1, i2 such thatsi1Fi1(xi1) �= si2Fi2(xi2), we have

sjFj (xj ) < maxi siFi(xi) for somej . SinceF0 is strictly monotone and homo-
geneous,

Fs(x) = F0
(
s1F1(x1), . . . , skFk(xk)

)
< F0

(
s1 max

i
Fi(xi ), . . . , sk max

i
Fi(xi)

)

= max
i

Fi(xi)F0(s) = max
i

Fi(xi ) ≤ y.

The argument for the minimum is the same; henceFs(x) satisfies the strict form of
property 1.

Since the composition of strictly monotone increasing functions is strictly
monotone, the strict form of property 2 is satisfied forFs(x).
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The claim forF1(x) now follows by setting

Gi(x) = Fi(xi )

Fi(1|Ii |)
and si = Fi(1|Ii |)F0(1k)

F0(F1(1|I1|), . . . ,Fk(1|Ik|))
for i = 0,1, . . . , k,

so that

F1(x)

F1(1k)
= F0(F1(x1), . . . ,Fk(xk))

F0(F1(1|I1|), . . . ,Fk(1|Ik|))
= G0

(
s1G1(x1), . . . , skGk(xk)

)
,

whereGi(xi) is strictly averaging withG0 homogeneous, andG0(s) = 1. �
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