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NORMAL APPROXIMATION FOR HIERARCHICAL STRUCTURES

BY LARRY GOLDSTEIN

University of Southern California

GivenF :[a, b]* — [a, b] and anonconstat¥g with P(Xg € [a, b]) =1,
define the hierarchical sequence of random variaplgs >0 by X, 11 =
F(Xp 1,05 X,.k),» WhereX,, ; are i.i.d. asX,. Such sequences arise from
hierarchical structures which have been extensively studied in the physics
literature to model, for example, the conductivity of a random medium. Under
an averaging and smoothness condition on nontriigan upper bound of
the formCy" for 0 < y < 1 is obtained on the Wasserstein distance between
the standardized distribution df, and the normal. The results apply, for
instance, to random resistor networks and, introducing the notion of strict
averaging, to hierarchical sequenggnerated by certain compositions. As
an illustration, upper bounds on the rate of convergence to the normal are
derived for the hierarchical sequence generated by the weighted diamond
lattice which is shown to exhibit a full range of convergence rate behavior.

1. Introduction. Letk > 2 be an integerD C R, Xg a nonconstant random
variable with P(Xo € D) = 1 and F: D% — D a given function. We consider
the accuracy of the normal approximation for the sequence of hierarchical random
variablesX,,, where

(1) Xni1=F(Xp), n>0,

andX, = (X,.1,..., X,x) " with X,, ; independent, each with distributiox, .

Hierarchical variables have been considered extensively in the physics literature
(see [5] and the references therein), in particular to model conductivity of a random
medium. The diamond lattice in particular has been considered in [3, 7]. Figure 1
shows the progression of the diamond lattice from large to small scale. At the large
scale [Figure 1(a)], the system displays some conductivity along the bond between
its top and bottom nodes. Inspection on a finer scale reveals the bond actually
comprises four smaller bonds, each similar to Figure 1(a), connected as shown in
Figure 1(b). Further inspection of each of the four bonds in Figure 1(b) reveals
them to be constructed in a self-similar way from bonds at an even smaller level,
giving the successive diagram Figure 1(c) and so on.

We assume each bond has a fixed conductivity charactenstid such that
when a component with conductivity > 0 is present along the bond the net
conductivity of the bond isvx. For the diamond lattice as in Figure 1(b), we
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(a) (b) (c)

Fic. 1. Thediamond lattice.

associate conductivitias = (w1, wp, wz, wa)', numbering from the top node and
proceeding counterclockwise.th = (xo.1, X0.2, x0.3, X0.4)" are the conductances

of four elements each as in Figure 1(a) which are present along the bonds in
Figure 1(b), then applying the resistor circuit parallel and series combination rules,
the conductivity between the top and bottom nodes in Figure 1(by) s F (Xg),
where

1 1 \1 1 1 \1
2) FX) = ( + ) + ( + ) .
wix1 wax2 w3x3 wax4

The network in Figure 1(c) is constructed from four diamond structures similar to
Figure 1(b), and endowing each with the same fixed conductivity charactewstics
with X1 = (x1,1,x1,2, 1.3, x1.4)" and eachxy; determined in the same manner
as x1, the conductance between the top and bottom nodes in Figure 1(c) is
x2 = F(X1), and so forth.

In general, a functionF:D* — D and a distribution onXy such that
P(Xgp e D) =1 determines a sequence of distributions throXgh, = F(X,,),
whereX, = (X,.1, ..., X,.x)" with X,,; independent, each with distributiox,.
Conditions onF which imply the weak law

(3) X, L c

have been considered by various authors. Shneiberg [8] proves that (3) holds if
D = [a,b] and F is continuous, monotonically increasing, positively homoge-
neous, convex and satisfies the normalization condfiigy) = 1, wherely, is the
vector of all ones ifRX. Li and Rogers in [5] provide rather weak conditions under
which (3) holds for closedD C (—o0, 00). See also [4, 11, 12] for an extension

of the model to randon¥ and applications of hierarchical structures to computer
science.
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Letting Xo have mearm and variance 2, the classical central limit theorem can
be set in the framework of hierarchical sequences by letting

4) F(x1, x2) = 3(x1+ x2),
which gives in distribution

_ Xoi+--+ Xoom

X o

Hence, X, L ¢, and sinceX,, is an average oN = 2" i.i.d. variables with finite
variance,

X, —c

Wi :2"/2<

Under some higher-order moment conditions one would expect a bound on the
Wasserstein distaneEbetweenw,, and to the standard normal to decay at rate
N~12 thatis, withy = 1/+/2,

®) d(Wp, N) < Cy".

The function (4), and (2) withF (14) = 1, are examples of averaging functions,
that is, functions” : D% — D which satisfy the following three properties on their
domain:

)iw@n

1. min x; < F(X) <max x;.

2. F(X) < F(y) whenever; < y;.

3. For allx < y and for any two distinct indiced # i», there existy; € {x, y},
i=1,...,k suchthat; =x,x;, =yandx < F(X) <.

We note that the functiot’ (x) = min; x; satisfies the first two properties but not
the third, and gives rise to nonnormal limiting behavior. We will ¢aik) a scaled
averaging function iff'(x) / F (1) is averaging.

Normal limits in [13] are proved for the sequencEgs determined by the
recursion (1) when the functiofi(x) is averaging by showing that such recursions
can be treated as the approximate linear recursion around thecneafi X,, with
small perturbatior,,,

(6) Xn—i—l:an “Xn+ Zy, n>0,

wherea,, = F'(C,), C, = (cn,...,cn)’ € RF and F’ is the gradient ofF. In
Section 3 we prove Theorem 3.1, which gives the exponential bound (5) for
the distance to the normal for sequences generated by the approximate linear
recursion (6) under moment Conditions 3.1 and 3.2, which guarante& that
small relative taX,,.

In Section 4 we prove Theorem 1.1, which shows that the normal convergence
of the hierarchical sequencég, holds with the exponential bound (5) under mild
conditions, and specifiesin an explicit range. Theorem 1.1 is proved by invoking
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Theorem 3.1 after showing that the required moment conditions are satisfied for
averaging functions. In particular, the higher-order moment Condition 3.2 used
to prove the upper bound (5) is satisfied under the same averaging assumption
on F used in [13] to guarantee Condition 3.1 for convergence to the normal. The
condition in Theorem 1.1 that the gradient F’(c) of F at the limiting valuec

not be a scalar multiple of a standard basis vector rules out trivial cases such as
F (x1, x2) = x1, for which normal limits are not valid.

THEOREM 1.1. Let Xg be a nonconstant random variable with P(Xg €
[a,b]) = 1 and X, given by (1) with F:[a, b]¥ — [a, b], twice continuously
differentiable. Suppose F is averaging, or scaled averaging and homogeneous,
and that X, 2 ¢, withe = F’(c) not a scalar multiple of a standard basis vector.
Thenwith W,, = (X,, — ¢,,)/+/Var(X,,) and & a standard normal variable, for all
y € (¢, 1) there exists C such that

d(W,, N) < Cy",

where

(7)

k 3
__> |
(i )32

a positive number strictly lessthan 1. The value ¢ achievesa minimum of 1/v/k if
and only if the components of o are equal.

At stagen there areN = k" variables, so achieving the raje for y to just

within its minimum value X+/k corresponds to the rafé—1/2+¢ for everye > 0.

On the other hand, whamis close to a standard basis vectpiis close to 1, and

the ratey” is slow. This is anticipated, as for the hierarchical sequence generated
using the function, say (x1, x2) = (1 — ¢)x1 + ex2 for smalle > 0, convergence

to the normal will be slow.

In Section 5, Theorem 1.1 is applied to the hierarchical variables generated by
the diamond lattice conductivity function (2). In (47) the valudetermining the
range ofy in (5) for the rate of convergence to the normal is given as an explicit
function of the weightsv; for the diamond lattice all rate¥~ for 6 € (0, 1/2) are
exhibited. Interestingly, there appears to be no such formula, simple or otherwise,
for the limiting mean or variance of the sequenge

We prove our results using Stein’s method (see, e.g., [9]) in conjunction with the
zero bias coupling of [1], derived from similar use of the size bias coupling in [2].
Let Z be a mean zero, variane€ normal variate an&vi = Eh(Z /o) for a test
function . Given a mear, variances 2 random variableX, Stein’s method, as
typically applied, estimateB/((X — ¢)/o) — Nh using the auxiliary functiory
which is the bounded solution to

(8) h(w/o) — Nh=o?f'(w) — wf (w).
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In [1] it is shown that for any mean zero variancé random variablé¥ there
existsW* such that, for all absolutely continuoyfsfor which EW f (W) exists,

) EWf(W)=a2Ef (W*),

and thatW is normal if and only ifW < w*. Hence, the distance frofv to

the normal can be expressed in a distasiddeom W to W*. The variableW* is
termed theW-zero biased distribution due to parallels with size biasing. In both
size biasing and zero biasing, a sum of independent variables is biased by choosing
a summand at random and replacing it with its biased version. In size biasing the
variables must be nonnegative, and one is chosen with probability proportional to
its expectation. In zero biasing the variables are mean zero, and one is chosen with
probability proportional to its variance. The coupling construction for zero biasing
just stated appears in [1] and is presented formally in Section 3; it provides the
key in the proof of Lemma 2.2. To see how the zero-bias coupling is used in the
Stein equation, lef andh be related through (8). Evaluating (8) at a mean zero,
varianceo ? variableW, taking expectation and using (9), we obtain

(10) o2(Ef'(W) — Ef'(W")] = E[o?f' (W) — Wf(W)] = ER(W /o) — Nh.

For d the Wasserstein distance (also known as the Dudley, Fortet-Mourier or
Kantarovich distance), Lemma 2.1 applies (10) to show the following strong con-
nection between normal approximation and the distance betwedh ted W*
distributions as measured ByWith & a mean zero normal variable with the same
variance a¥v,

(11) d(W, N) < 2d(W, W*).

Hence, bounds on the distance betwé€nand W* can be used to bound the
distance fromW to the normal.
We recall that, with

12) L={h:R—>R:[h(y) —h)| =y — x|},
the Wasserstein distand¢Y, X) between variableg andX onR is given by

d(Y, X) = sup|E (h(Y) — h(X))
heL

’

or equivalently, with

(13) F ={f: f absolutely continuous;(0) = f'(0) =0, f’' € L}
we have

(14) d(y, X) = ;3}9|E(f%¥) — f'X))].

For f € #, certain growth restrictions are implied dnof (8) for this f. In
Theorem 3.1 these restrictions are used to compute a bouhtn W,"), which
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in turn is used to bound(W,, &) by (11). This argument, wherg is taken as
given and ther determined in terms of by (8), is reversed from the way Stein’s
method is typically applied, whereis the function of interest ang has only an
auxiliary role as the solution of (8) for the givén

For the application of Theorem 1.1, it is necessary to verify the fundtion
in (1) is averaging. Proposition 3 of [13] shows that the effective conductance of
a resistor network is an averaging function of the conductances of its individual
components. Theorem 1.2, proved in Section 6, provides an additional source
of averaging functions to which Theorem 1.1 may be applied by introducing
the notion of strict averaging and showing that it is preserved under certain
compositions.

We sayF is strictly averaging if strict inequality holds in property 1 when
min; x; < max x;, and in property 2 when; < y; for somei. Property 3 is the
least intuitive, but is a consequence of a strict version of the first two properties;
that is, a strictly averaging function is averaginge ik y andx;, = x, x;, =y, then
any assignment of the valuesy to the remaining coordinates gives< F(X) < y
by the strict form of property 1, sf satisfies property 3.

THEOREM 1.2. Letk>1andset Ip=1{1,...,k}. Suppose subsets I; C Io,
i € lo satisfy Ujesoli = lo- For x e R* and i € Io let x; = (xjp, ..., %)),
where {j1, ..., jiu )} = I and j1 < --- < j,|. Let (F;:[0, o0)!iil — [0, c0) or)
Fi:Rl 5 R, i=0,...,k. If Fo,Fy,..., Fy are strictly averaging and Fp is
(positively) homogeneous, then the composition
Fs(X) = Fo(s1F1(X1), ..., st Fi (X))

is strictly averaging for any s for which Fp(s) = 1 and s; > 0 for all i. If
Fo, F1, ..., F, arescaled, strictly averaging and Fy is (positively) homogeneous,
then

F1(X) = Fo(F1(X1), . .., Fx(Xx))
isa scaled strictly averaging function.
In particular, in the context of resistor networks, two components with
conductances, x2 in parallel is equivalent to one component with conductance
Li(x1, x2) = x1+ x2,
and in series to one component with conductance
Loa(x1,x) = (g 4270

These parallel and series combination rules arejire 1 and p = —1 special
cases, withw; = 1, of the weighted.”-norm functions

k 1/p
Ly(x)= (Z(wixi)p> . wW=(wi,..wg)', wi € (0,00),
i=1
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which are scaled, strictly averaging and positively homogeneou$,ar)* for
p >0, and on(0, ool for p < 0.

Though Theorem 1.2 cannot be invoked to subsume the result of [13] that every
resistor network is strictly averaging in its component conductances (e.g., consider
the complete grapls), now suppressing the dependencé gfonw, sinceF (x)
in (2) can be represented as

F(X) = L1(L_1(x1, x2), L_1(x3, x4)),

Theorem 1.2 obtains to show that the diamond lattice conductivity function is a
scaled, strictly averaging function @f, co)* for any choice of positive weights.
Moreover, Theorem 1.2 shows the same conclusion holds when the resistor
parallel L1 and seried._1 combination rules in this network are replaced by, say,
Lo andL_j, respectively.

2. Zero bias and the Wasserstein distance. The following lemma, of
separate interest, shows how the zero bias couplingvotipper bounds the
Wasserstein distance to normality.

LEMMA 2.1. Let W be a mean zero, finite variance random variable, and let
W* have the W-zero bias distribution. Then with d the Wasser stein distance, and
A anormal variable with the same varianceas W,

d(W, N)<2d(W,W¥).

PROOF Sinceoc 1d(X,Y)=d(oc~1X,071Y) ando~1W* = (6 "1W)*, we
may assume VaWw) = 1. The dual form of the Wasserstein distance gives that

(15) inf E|Y — X|=d(Y, X),
(Y.X)

where the infimum, achieved for random variables Rnis taken over all
pairs(Y, X) on a common space with the given marginals (see [6]). Tak& *
to achieve the infimurd (W, W*).

For a differentiable test functiomnando? = 1, Stein [10] shows the solutiofi
of (8) is twice differentiable with| f”|| < 2||#’||, where || - || represents the
supremum norm. Now going from right to left in (10), applying this bound and
using (15) we have

|ER(W) — Nh| < | f"IIE|W — W*| < 2||W'||[E|W — W*| = 2|k’ |[d(W, W*).
Functionsh € £ of (12) are absolutely continuous witth'|| < 1, so taking
supremum ovek € £ on the left-hand side completes the proafl

The following results in this section give the prototype of the argument used
in Section 3 and show how the zero bias coupling can be used to obtain the
exponential decay of the Wasserstein distance to the normal.
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PROPOSITION2.1. For a € R¥ with A = |« £ 0, for all p > 2,

k o 1p
Zlall <1,
AP T

i=1
with equality if and only if & is a multiple of a standard basis vector. In the case
p = 3,yielding ¢ of (7),

1
16 —<p<l1,
(16) \/E_qo_

with equality to the upper bound if and only if & is a multiple of a standard basis
vector, and equality to the lower bound if and only if |o;| = |o;| for all 7, j. In
addition, when o; > O with }°7_; o;; =1, then

17) <o,

with equality if and only & is equal to a standard basis vector.

PROOF Since|al-|/k <1 we havee;|P~2/AP"2 <1, yielding

jevi |7 i P72 Jexi |2
_2;_ Z( AP—2 ) = Z )LZ =1
=
with equality if and only if for someé we havely; | = k, anda; =0 forall j #i.
By Holder’s inequality withp = 3, ¢ = 3/2, we have

k 3/2 k
(Zl-a?) <VEY i,
i=1 i=1

giving the lower bound (16), with equality if and Onlydf is proportional to 1 for

all i. For the claim (17), by considering the inequality between the squared mean
and variance of a random variable which takes the vajueith probability«; , we
have(Y; @?)? < ¥; &, with equality if and only if the variable is constant]

Lemma 2.2 shows how zero biasing an independent sum behaves like a
contraction mapping.

LEMMA 2.2. For a € R* with A = ||la| #£0, let

k
o
Y=y 5w
i=1
where W; are mean zero, variance 1, independent random variables distributed
as W. Then
d(Y,Y*) <ed(W,W")

with ¢ asin (7),and ¢ < 1 if and only if & is not a multiple of a standard basis
vector.



1958 L. GOLDSTEIN

ProOF. By [1], for any collectionW;* with the W; zero biased distribution
independent oW ;, j # i, andI a random index independent of all other variables

with distribution
2

. o;
P(I=i)= 2
the variable

(18) Y=y — %(W, — W

has theY zero biased distribution. Sinc#; 4 W, we may take(W;, W) 4
(W, W*), with W, W* achieving the infimum in (15). Then
K o
Y — ¥ =Z'°;—"|Wl- — WL =)
i=1
and
oy ol o (3 el .
ElY-Y |:X£ 3 EIWi — Wil = 2; 5 |EIW — W7,
1= 1=
Now using (15) to upper bound(Y, Y*) by the particular coupling in (18) we
obtain

dY, Y <E|Y —=Y*|=@E|W—-W*=¢pd(W,W").
The final claim was shown in Proposition 2.1.]

In the classical case, wheih = n~Y/2%" | W;, the normalized sum of i.i.d.
random variables, applying Lemmas 2.1 and 2.2 wjth- 1/./n givesd (Y, N) <
2d(Y,Y*) < 2n~Y24(W, W*) — 0 asn — o0, yielding a streamlined proof of the
central limit theorem, complete with a bounddn

When the sequencg, is given by the recursion (6) witlZ, = 0, setting
An = |, || @ando? = Var(X,) we haves, 1 = A,0,, and we can write (6) as

k

Qp.i . Xy —cy
W1 = W, ; with W,, = .
+1 ; }Vn N n o,

Iterating the bound provided by Lemma 2.2 gives

n—1

d(W,, W) < ( I1 w,-) d(Wo, W§),

i=0
where

k 3

i= |0‘i, |
(19) on = (Zlkig)

n

When limsup ¢, = ¢ < 1, for anyy € (¢, 1) there exist< such that for alk we
haved(W,,, N) < 2d(W,, W) < Cy". In Section 3 we study the situation when
Z, is not necessarily zero.
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3. Boundsto the normal for approximately linear recursions. In this sec-
tion we study sequences(,},>o generated by the approximate linear recur-
sion (6), and we present Theorem 3.1, which shows the exponential bound (5)
holds when the perturbation ter), is small as reflected in the tergy, of (24),
and holds in particular under the momiéounds in Conditions 3.1 and 3.2. When
Z, is small, X, 1 will be approximately equal ta,, - X,;, and therefore its vari-
anceo?,; will be close too212, wherei, = |lo, ||, and the ratio(x,0)/0y+1
will be close to 1. Iterating, the variance &f, will grow like a constantC times
A2_,---12 so whenc, — ¢ ande, — a, like C2)2". Condition 3.1 assures that
Z, is small relative toX,, in that its variance grows at a slower rate. This condi-
tion was assumed in [13] for deriving a normal limiting law for the standardized

sequence generated by (6).

CoNDITION 3.1. The nonzero sequence of veci®yss RK k> 2, converges
to o, not equal to any multiple of a standard basis vector.AFer||«||, there exist
0 <81 <82 <1 and constant§z 2, Cx 2 such that, for alh,

Var(Z,) < €% ;22 (1—82)*",
Var(X,) = C% ;22" (1— 82"

Bounds on the distance betwe&p and the normal can be provided under the
following conditions on the fourth-order momentsXf andZ,,.

ConDITION 3.2. There exisb3 and és € (61, 1) and constant€z 4,Cx 4
such that

E(Z, — EZ)* < C3 27 (1 8p)™,
E(Xy — EXy)* < Cy " (1+83)™
and
B =max{¢1, p2} <1

(1—82)(1+83)°
(1-451)%

(20)

1—34)2

whereg) = 13
— 01

and ¢, = (

Using Holder’s inequality and Condition 3.2 we may take
(21) 1-8<1-684<1-81<1+363.
In particular,f < n for

_ (1-89)(1+89)°

(22) (1—61)4
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THEOREM 3.1. Let X,,11 =oa, - X, + Z, With A, = |la,|| #0 and X, a
vector in R¥ with i.i.d. components distributed as X,, with mean ¢, and nonzero
variance o2, Set

k
X, — .
(23) Wn =" En s Yn = Z Ol Wn,i
On izl M
and

If there exist (8, ¢) € (0, 1)2 such that

(25) lim supﬁ—’; < 00
n— oo

and ¢, in (19) satisfies

(26) limsupg, = ¢,
n—0o0

then with y = 8 when ¢ < 8, and for any y € (¢, 1) when 8 < ¢, thereexists C
such that

(27) d(W,, N) < Cy".
Under Conditions 3.1 and 3.2, (27)holds for all y € (max(8, ¢), 1), with g as
in(20),and ¢ = XK, [ |3/2% < 1.

PrROOF By Lemma 2.1, it suffices to prove the bound (27) holds for
d(W,, W¥). Let f € F with F given by (13). Then|f"(x)| < 1, |f'(x)| <
Ix|, | f(x)] < x2/2, and forh given by (8) witho2 = 1 and the chosery,
differentiation of (8) yields

B (w) = f"(w) —wf'(w) — f(w),
and therefore
(28) 1 (w)] < (1+ 3w?).

Lettingr, = (A,0p)/0on+1 and using (23), writ&,, 11 = o, - X, + Z,, as

Z,— EZ
(29) Wpir=rY, + Ty, whereT,, = On < 1 ”)

On+1 On

Now by (28) and the definition g8, in (24),

Wn+1 ,
E|h<wn+1>—h<Yn>|=E‘/Y W () du| < B
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From (10) witho2 = 1, using VatY,) = 1,
|Ef' (Wat1) — Ef (W, )| = |ER(Wni1) — Nh|
= |E(h(Wpy1) — h(Yy) +h(Y,) — Nh)|
< Bn+I|ER(Yy) — Nh|
<Bu+IE(f (Y0 = £/ (V)]
<Bn+d(Y, Y,) [by (14)]
< Bn + @nd(Wy,, W,)) (by Lemma 2.2).
Taking the supremum ovef € & on the left-hand side, using (14) again and
letting d,, = d(W,,, W,’) we obtain, for all: > 0,
dpt1 < Bn + @ndy.
Iteration yields that, for alk, ng > 0,

no+n—1 s/no+n—1 no+n—1
Jj=no i=j+1 i=ng
Now suppose the bounds (25) and (26) hold and recall the choige \éfhen
¢ < B takeg € (¢, B) so thaty < ¢ < B =y; wheng < ¢ setg € (¢, y) so that
B < ¢ < ¢ < y. Then for anyB greater than the limsup in (25) there exists
such that, for alk > ng,

B.<BB" and ¢, <¢.
Applying these inequalities in (30) and summing yields, fomaH 0,
g —¢"

— | + ¢"dpy;
ﬂ—qo) "o

dn+no = Eﬂn()(
since maxg, ¢) < y, (27) follows.
To prove the final claim it suffices to show that, under Conditions 3.1 and 3.2,
(25) and (26) hold withp < 1 as defined in (20), and with= >"¥_, |o;|3/23 < 1.
Lemma 6 of [13] gives that the limit a8 — oo of o0,/(Ag---Ay_1) €Xists
in (0, 00), and therefore

A.

. . Op4+1
(31) im r,=1 and lim 2= =
n—o00 n—>oo gy,

Referring to the definition off,, in (29) and using (31) and Conditions
3.1 and 3.2, there exisl; », C; 4 such that

Oy >2Var(Zn) 2 (1—52)2"
onp1) Var(X,) — "A\1-¢) °

4 4 an
Z,— EZ 1-6

et (2 BB e ()
Ol on 1-46,

(E|T,)? < ET? = Var(T,) = (
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By independence, a simple bound and Condition 3.2 for the inequality,
(E|Ya)? < EY/ =Var(Y,) =1,

X, —cn\? 1+ 683\ %
EY*<6E (”70”) <6C% 4<ﬁ> :
Oy 11— 81
From (6), Witho'Zn =Jvar(Z,), op41 < Ay0, + 0z, andi,o0, <o,41+ 07,
hence withC, 1 = C; » we have

1-—8\"
|Anon —0opy1l <oz, SO |r,—1]< C,,1< ) .
1-61

Sincelrf —1| < ijl<?)|rn — 1}/, using (21) there are€,. , such that

1-—82\"
-UsCy(ig) . p=l2e.

Now considering the first term ¢, of (24), recalling (29),
EWyp1—Yu|=E|(rn — DY, + T,

1-62\"
<l — U B + EIT = Coat (T2

which is upper bounded by a constant tingé's
For the second term of (24) we have

EIW2 1 =Y =E|(2 — VY2 + 3r2Y2T, + 3r, Y, T2+ T2.
Using the triangle inequality, the first term is bounded by a constant tfhes
(1-5)(1+ 53>3>"
(1-68p)% '

Sincer, — 1 by (31), it suffices to bound the next two terms without the factor
of r,,. Thus,

1—82)(1+683)%\"
EY2T,| <VEY ET? < 61/2C;2(,4C,,2<( (12)(5 J)FS 3) ) ,
— 01
which is less than a constant timg% by (21), and finally,

1_8 2n
E|Y,T? <VEY2ET? < cﬁ4<1_ 8‘1‘) < C24¢5,

P UEIY3 < 13— (EYHY < 63/4cr,3c;°;,4(

1— 84\ 3n/2
E|T3| <(ETH%% < cfj4(1 - 51> < C3,05"2
Hence (25) holds with the gives.
Sincea,, — a, we havep, — ¢. Under Condition 3.1¢ is not a scalar multiple
of a standard basis vector apd< 1 by Lemma 2.2. We finish by invoking the first
part of the theorem. [
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4. Normal boundsfor hierarchical sequences. The following result, extend-
ing Proposition 9 of [13] to higher orders, is used to show that the moment bounds
of Conditions 3.1 and 3.2 are satisfied under the hypotheses of Theorem 1.1, so that
Theorem 3.1 may be invoked. The dependence of the constants in (33) and (34)
one¢ is suppressed for notational simplicity.

PrROPOSITION4.1. Let the hypotheses of Theorem 1.1 hold. Following (6),
withc, = EX, and a,, = F'(c,,), define
(32) Zn=F(X,) —a, - X,.

Then with a the limit of &, and A = |||, for any p > 1 and ¢ > 0, there exist
constants Cx ,, Cz,, suchthat

(33) ElZn—Eanpng’p()\+£)2p” foralln>0
and
(34) E|X, —cal? <Cx ,(0+&)"  foraln=>0.

PROOF ExpandingF (X,,) aroundc,, with a;, = F’(c,),

k
(35) F(Xn) =F(c,) + Zan,i(xn,i —cy) + Ra(cy, Xn)7
i=1
where
L 32F

Roer X = 3 [@-0) (G + 1K — €)Xt — ) (X — ) .

ij=1 0 x; 8XJ'
Since the second partials @ are continuous oD = [a, b]¥, with || - || the

supremum norm o, B =2"1max ; [|a%F/ax; dx;| < oo, we have
k

(36) |R2(Cr, Xi)| < B Y [(Xni — cn) (X j — )l
i,j=1
Using (32), (35) and (36), we have, for all> 1,
E|Z,— EZ,|?

k P
=E|F(X,) —cpy1— Zan,i(xn,i —Cn)

i=1

(37)
= E|F(Cy) — cny1+ R2(Cp, X)|P

p
=< 2p_1<|F(Cn) - Cn+l|p + BpE(Z |(Xn,i - Cn)(Xn,J' - C”)l) )

i,j
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For the first term of (37), again using (36),
|F(Cn) — cn+1l” = |F(Cn) — EF (Xp)|P = |ER2(Cn, X)|”

p
< BP(EZ |(Xni — ) (X j — cn>|)

i,j
k p
(38) < BPkP(E Y (Xni — cn>2)
i=1
P12p 21p
<B k [E(Xn _Cn) ]
< BPK?PE(X, — cn)??,

using Holder’s inequality for the final step.
Similarly, for the expectation in (37),

p k p
E(Z |(Xni — Cn)(Xnj — cn>|) < kPE(Z(Xn,i — cn>2)
i,J

i=1

k
(39) < kZP—lE(Z(Xn,,- — cn)z">

i=1
= k?PE(X, — c)?P.
Applying (38) and (39) in (37) we obtain for gl > 1, with C,, = 2P BPk2P,
(40) E|Zy — EZy|" < CpE(Xy — )P

It therefore suffices to prove (34) to demonstrate the proposition.
In Lemma 8 of [13], it is shown that wheR : [a, b]* — [a, b] is an averaging
function and there existse [a, b] such thatX,, L ¢, then

for everye € (0, 1) there exists such that, for alk,
(41)
P(X, —c|>e¢e)<Me".
Hence the large deviation estimate (41) holds under the given assumptions, and

so also withc, replacinge whenc, — ¢. SinceX,, € [a, b] and X,, LS c,cp =
E X, — ¢ by the bounded convergence theorem.

We now show that itz,, n =0, 1, ..., is a sequence such that for every 0
there exists such that, for alh > ng,
(42) anp1 < o+ 8)Pay + MO+ )P "D,

then for alle > 0O there exist€ such that
(43) an < C(+¢e)P" for all n.
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Let ¢ > 0 be given, and leM andng be such that (42) holds with replaced
by e/2. Setting

A4e/2\P M A+ ¢g/27P00tD
,0=1—< +€/) and C=max{ Ano ,—[ +8/] }
Ate A+e)o pl A+e

it is trivial that (43) holds fom = ng. Since the second quantity in the maximum
decreases when is replaced by: > ng, induction shows (43) holds for all> ng.
By increasingC if necessary, we have that (43) holds forsall

Unqualified statements in the remainder of the proof below involyiagd M
are to be read to mean that for every 0 there exist®/, not necessarily the same
at each occurrence, such that the statement holds far B (41),

E(Xy — ) = E[(Xn — c2)?; | X, — cal <]
+ E[(Xp — cn)®; | Xn — cal > €]
<ePE|X, —cnl? + Me",
so from (40),
(44) E|\Z, — EZ,|’ <¢E|X, —c,|P + Me".
Since for allw, z,
lw+z|” < A+ o) |w|? + M|z|?,

definition (32) yields

p
+ME|Z, — EZ,|".

k

Zan,i (Xn —cn)

i=1

(45) E|Xp41—cnt1l? <(A+6)E

Specializing (45) to the cage= 2 gives, for alln sufficiently large,
E(Xn11—cn41)? < O+ 8)2E(X, — ¢)° + ME(Z, — EZ)>.
Applying (44) with p = 2 to this inequality yields, for akk sufficiently large,
E(Xn11— cn41)? < O+ )PE(X, — ¢)° + Me?'*?
<A +6)2E(X, — )2+ ML +¢)20*D,

Hence, with p = 2, (42) and therefore (43) are true fap = E(X, — c»)?,
yielding (34) forp = 2. Now apply Hélder's inequality to prove the case- 1.
Assume now that (34) is true for all2 ¢ < p in order to induct orp. Expand
the first term in (45), lettingg = (p1, ..., px) and|p| = _; p;. Use the induction
hypotheses, and Proposition 2.1 in (46), to obtain forrnaBufficiently large,
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with Ax , =max, -, Cx 4 andBy , =kP~*A%

P
E

k
Zan,i (Xn —cn)
i=1

k

k
<l iPE X —eal? + 3 ({;)El'[|an,i|f’f|xn,i—cn|f’f

i=1 IPl=p.pi<p i=1
k » k
i CPi i
<EXp—cnl? ) lonil? + > (p)]‘[mn,iv’ CY , (L +e)P"
i=1 Ipl=p.pi<p i=1

k k

@6) =X, —al? Ylanil? + 4% 0+ ¥ (2) [Tl

i=1 Ipl=p P i=1

k k p
= E|Xp —cal? )l il” + A% 0.+ e)P”(Z |an,,-|)
i=1 i=1
k

<D lanil?(EIXy —cal” + BY (L +)"")

i=1
< +8)PE|X, —cul” + BY 0+ &)P" D,

Applying (44) and (46) to (45) gives
E|Xn41— cnp1l” < A+ 8)PE|Xy — cul? + MO+ )P D,

from which we can conclude (43) fay, = E|X,, — ¢,|?, completing the induction
on p. We conclude (34) holds forai > 1. O

PROOF OF THEOREM 1.1. By replacingX, and F(x) by X,/F(1)"
and F(x)/F (1), respectively, we may assunte is averaging. By property 1
of averaging functionsfF(c) = ¢, and differentiation yields)"?_;o; = 1. By
property 2, monotonicityy; > 0, and (17) of Proposition 2.1 yieldsOx < ¢ < 1.

Inspection of (22) shows that, for amye (A, 1), there exist$; andés in (0, 1)
andd, in (61,1 — 1) yielding n. For example, to achieve values arbitrarily close
to A from above, také; andés close to zero and, close to 1— A from below.
Setdr = 84. By Theorem 3.1 it suffices to show that Conditions 3.1 and 3.2 are
satisfied for these choices &f

Sincess < 1 — A we haver? < A(1 — 84); hence we may pick > 0 such that
(A 4+ €)% < A(1 — 84). By Proposition 4.1, fop = 2 and p = 4, for thise there
existsCy , such that

E(Zy— EZy)P < CY O+ 8)*" < Ch 27"(1— 84)7".
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Hence the fourth and second moment boundsZgnare satisfied withs; and
82 = 84, respectively.

Proposition 10 of 13] shows that under the assumptions of Theorem 1.1, for
everye > 0 there existsf)z(’2 such that

Var(X,,) > C% ,(n — &)?".

Taking ¢ = Ad1, we have VafX,) satisfies its lower bound condition. Lastly,
applying Proposition 4.1 witlp = 4 ande = 183 we see the fourth moment bound
on X, is satisfied, and the proof is completd.]

5. Convergenceratesfor the diamond lattice. We now apply Theorem 1.1
to hierarchical sequences generated by the diamond lattice conductivity fuRction
in (2), for various choice of positive weights satisfyirfg(14) = 1. For all
suchF (x) the result of Shneiberg [8] quoted in Section 1 shows Kasatisfies a
strong law if Xg € [0, 1], say. The first partials of have the form, for example,

IF (X) (wixd)~?
dxt  (wix) "+ (waxp)~H?

and therefore’(c,14) does not depend afy. In particular, for allz,

-1 1 —1 -1 T
o _[ wq () wy wy ]
n= -1 N — —1.2° -1 —1.2° -1 —1yvo |
(wi +wy )2 (wy™ +wy )2 (wz™ 4wy )2 (wy™ +w,)?

from which
-3 -3 -3 -3
(47) _ -3 W T wy W3~ 1 Wy
= il + w; he -1, .,-16)
where

2

wl—z n wz—z wgz +wy 1/2
A= -1 1.4 —1 1.4 :
(wl + w,y ) (w3 + wy )

As anillustration, define the “side equally weighted network” to be the one with
w=(w,w,2—w,2—w) forwe[l,2); such weights are positive and satisfy
F(14) = 1. Forw =1 all weights are equal, and we hawve= 4-11,, and hence
¢ achieves its minimum value/2 = 1/v/k with k = 4. By Theorem 1.1, for all
y € (0, 1/2) there exists a constaatsuch that/(W,, N) < Cy", with y close to
1/2 corresponding to the ratg¢~1/2*¢ for smalle > 0 andN = 4", the number
of variables at stage. As w increases from 1 to Z3 increases continuously from
1/2 to 1/+/2, with w close to 2 corresponding to the least favorable rate for the
side equally weighted network &f ~1/4+¢ for anye > 0.



1968 L. GOLDSTEIN

With only the restriction that the weights are positive and satfs{ls) = 1
consider

w=(1+1/t,5,1,1/1)",
wheres =[(1— (1/t+n D ' —@a+1/0" "t >0

Whent = 1 we haves = 2/3 andy = 11./2/27. Ast — oo, s/t — 1/2 anda
tends to the standard basis veatbr0, 0, 0), sog — 1. Since 11/2/27 < 1/+/2,
the above two examples show that the value afiven by Theorem 1.1 for the
diamond lattice can take any value in the raif2, 1), corresponding tov —¢ for
anyé € (0, 1/2).

6. Composition of strict averaging functions. In this section, we prove
Theorem 1.2, which shows when the composition of strictly averaging functions
is again strictly averaging.

PrROOF OF THEOREM 1.2. We first showFs(x) satisfies the strict form of
property 1. Ifx = t1;, then Fs(X) = Fo(s1t, ..., sgt) = Fo(S)t =t and property 1
is satisfied in this case. Hence assume;min= x < y = max x;. For such, if
there is ar such thatF;(x;) =¢ forall i = 1,...,k, then for some& and j we
havey =x;, j € I;, and hence: < F;(x;) =t sinceF; is strictly averaging, and
similarly, r < y. Hencex < F1(X) =t < y.

Forx such that for all € Iy, s; F; (X;) =t for somet, we have

Fs(X) = Fo(s1F1(X1), ..., sk Fr (X)) = Fo(t1y) = t.

For s= 1; we have just shown the strict inequality< r < y holds. Otherwise
s# 1; and by Fp(s) = 1 we have mips; < 1 < max s;, and since = F;(X;)/s;
for all i there exisi; andi, such that

x < Fiy(Xiy) <t < Fiy(Xip) <,

yielding again the required strict inequality.

For x such that there are;, ip such thats;, F;, (X;,) # si,Fi,(X;,), we have
s;iF;j(Xj) < max s; F;(x;) for somej. Since Fy is strictly monotone and homo-
geneous,

Fi00 = Fols1Fixa). .5t Fi(0) < Fo( s1maxFy ). ... maxF; ) )
= maxF;(x;) Fo(s) = maxFi(x;) < y.
l l
The argument for the minimum is the same; heRg) satisfies the strict form of
property 1.

Since the composition of strictly morwte increasing functions is strictly
monotone, the strict form of property 2 is satisfied FKafx).
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The claim forF1(x) now follows by setting

Fi (%)
F: ()

_ F; (1) Fo(1p)
Fo(Fi(4jpy), - - Fe(Lyp)))
fori =0,1,...,k,

Gi(X)= and s;

so that

F1(x) _ Fo(F1(X1), ..., Fr(Xr)) _
Fi(lx)  Fo(Fi(Ly1))s - .-, Fr(Qg)

Go(s1G1(X1), - .., sk G (Xk)),

whereG; (x;) is strictly averaging withGg homogeneous, an@p(s) =1. O
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