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FLUID MODEL FOR A NETWORK OPERATING UNDER
A FAIR BANDWIDTH-SHARING POLICY

BY F. P. KELLY 1 AND R. J. WILLIAMS 1,2

University of Cambridge and University of California

We consider a model of Internet congestion control that represents the
randomly varying number of flows present in a network where bandwidth
is shared fairly between document transfers. We study critical fluid models
obtained as formal limits under law of large numbers scalings when the
average load on at least one resource is equal to its capacity. We establish
convergence to equilibria for fluid models and identify the invariant manifold.
The form of the invariant manifold gives insight into the phenomenon
of entrainment whereby congestion at some resources may prevent other
resources from working at their full capacity.

1. Introduction. Roberts and Massoulié [19] have introduced and studied
a flow-level model of Internet congestion control, that represents the randomly
varying number of flows present in a network where bandwidth is dynamically
shared between flows that correspond to continuous transfers of individual
documents. This model assumes a “separation of time scales” such that the time
scale of the flow dynamics (i.e., of document arrivals and departures) is much
longer than the time scale of the packet level dynamics on which rate control
schemes such as TCP converge to equilibrium.

Subsequent to the work of Roberts and Massoulié, assuming exponentially
distributed document sizes, de Veciana, Lee and Konstantopoulos [9] and Bonald
and Massoulié [2] studied the stabilityof the flow-level model operating under
various bandwidth sharing policies, where a bandwidth sharing policy corresponds
to a generalization of the notion of a processor sharing discipline from a
single resource to a network with several shared resources. Lyapunov functions
constructed in [9] for weighted max–min fair and proportionally fair policies, and
in [2] for weightedα-fair policies [α ∈ (0,∞)] [17], imply positive recurrence
of the Markov chain associated with the model when the average load on each
resource is less than its capacity.
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As a mechanism for performance analysis, we propose to use critical fluid
models and related Brownian models to explore the behavior of flow-level models
operating under weightedα-fair bandwidth sharing policies in heavy traffic. We
are particularly interested in manifestations of the phenomenon of entrainment,
whereby congestion at some resources may prevent other resources from working
at their full capacity. As a first step in this exploration, in this paper we consider
critical fluid models, obtained as formal limits under law of large numbers scaling,
from the flow-level models with exponentially distributed document sizes and
operating under weightedα-fair bandwidth sharing policies. The term critical
refers to the fact that the nominal (or average) load on at least one resource is
equal to its capacity, and for the other resources their nominal loads do not exceed
their capacities, see (11) and (12). We identify the invariant states for the critical
fluid models and we study the convergence to equilibria of critical fluid model
solutions as time goes to infinity. Extrapolating from results for open multiclass
queueing networks, we conjecture that such behavior is key to establishing heavy
traffic diffusion approximations (also called Brownian models) for these flow-level
models. We indicate the natural diffusion approximations suggested by our fluid
model results.

There are several motivations for our work. One source of motivation lies in
fixed point approximations of network performance for TCP networks (cf. [7,
12, 20]). These approximations require, as input, information on the joint
distribution of the numbers of flows present on different routes, where dependen-
cies between these numbers may be induced by the bandwidth sharing mecha-
nism. Similarly, an understanding of such joint distributions seems important if
the performance models for a single bottleneck described by Ben Fredj, Bonald,
Proutiere, Regnie and Roberts [1] are to be generalized to a network. Another
motivation is that the flow-level model typically involves the simultaneous use of
several resources. With exponential document sizes, this model can be equated (in
distribution) with a stochastic processing network (SPN) as introduced by Harrison
[13, 14]. Open multiclass queueing networks are a special case of SPNs without
simultaneous resource possession. For such networks operating under a head-of-
the-line service discipline, it has been shown [5, 21] that suitable asymptotic be-
havior of critical fluid models implies a property called state space collapse, which
validates the use of Brownian model approximations for these networks in heavy
traffic. For more general SPNs, investigation of the behavior of critical fluid mod-
els, of a related notion of state space collapse, and of the implications for diffusion
approximations, are in the early stages of development. The analysis in this pa-
per can be viewed as a contribution to such an investigation for models involving
simultaneous resource possession. Finally, although we restrict to exponential doc-
ument sizes in this paper, we would like to relax that assumption in future work.
Although this involves a significantly more elaborate stochastic model to keep
track of residual document sizes (because of the processor sharing nature of the
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bandwidth sharing policy), knowing the results for exponential document sizes is
likely to be useful for such work.

In order to state our results for the fluid model and conjectures for diffusion
approximations, we need first to define the network structure, the weightedα-fair
bandwidth sharing policy and the stochastic model. This is done in Sections 2–4.
The notion of a fluid model solution is defined in Section 5 and we state our
main results there. The proofs of these results are given in Section 6. Appendix A
develops some properties of the function that defines bandwidth allocations and
Appendix B shows that our definition of a fluid model solution is reasonable in
that fluid model solutions can be obtained as limit points of the stochastic model
under fluid (or law of large numbers) scaling.

Notation. For each positive integerd ≥ 1, R
d will denote d-dimensional

Euclidean space and the positive orthant in this space will be denoted byR
d+ =

{x ∈ R
d :xi ≥ 0 for i = 1, . . . , d}. The Euclidean norm ofx ∈ R

d will be denoted
by ‖x‖. Inequalities between vectors inRd will be interpreted componentwise,
that is, forx, y ∈ R

d , x ≤ y is equivalent toxi ≤ yi for i = 1, . . . , d . Given a
vectorx ∈ R

d , the d × d diagonal matrix with the entries ofx on its diagonal
will be denoted by diag(x). For positive integersd1 andd2, the norm of ad1 × d2
matrix A will be given by

‖A‖ =
(

d1∑
i=1

d2∑
j=1

A2
ij

)1/2

.

The set of nonnegative integers will be denoted byZ+ and the set of points inRd+
with all integer coordinates will be denoted byZ

d+. A sum over an empty set of
indices will be taken to have a value of zero. The cardinality of a finite setS will
be denoted by|S|.

2. Network structure. We consider a network with finitely manyresources
labelled byj ∈ J. A route i is a nonempty subset ofJ (interpreted as the set of
resources used by routei). We are given a setI of allowed routes. We assume that
J andI are both nonempty and finite. LetJ = |J|, the total number of resources,
andI = |I|, the total number of routes. LetA be theJ × I matrix containing only
zeros and ones, defined such thatAji = 1 if resourcej is used by routei and
Aji = 0 otherwise. Our assumption that each routei identifies anonempty subset
of J implies that no column ofA is identically zero. We assume thatA has rankJ,
so that it has full row rank. We further assume thatcapacities (Cj : j ∈ J) are given
and that these are all strictly positive and finite.

3. Bandwidth sharing policy. Bandwidth is allocated dynamically to the
routes according to the following bandwidth sharing policy, which was first
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introduced by Mo and Walrand [17]. (To see how this fits into a stochastic model
for the network dynamics, see Section 4.)

Given a fixed parameterα ∈ (0,∞) and strictly positive weights(κi : i ∈ I),
if Ni(t) denotes the (random) number of flows on routei at timet for eachi ∈ I
andN(t) = (Ni(t) : i ∈ I), then the bandwidth allocated to routei at time t is
given by�i(N(t)) and this bandwidth is shared equally amongst all of the flows
on routei. The function�(·) = (�i(·) : i ∈ I) is defined as follows (we define it
on all of RI+ as we shall later apply it to fluid analogues ofN ). Let � :RI+ → R

I+
be defined such that for eachn ∈ R

I+, �i(n) = 0 for i ∈ I0(n) ≡ {l ∈ I :nl = 0},
and whenI+(n) ≡ {l ∈ I :nl > 0} is nonempty,�+(n) ≡ (�i(n) : i ∈ I+(n)) is
the unique value of�+ = (�i : i ∈ I+(n)) that solves the optimization problem

maximizeGn(�
+)(1)

subject to
∑

i∈I+(n)

Aji�i ≤ Cj , j ∈ J,(2)

over �i ≥ 0, i ∈ I+(n),(3)

where forn ∈ R
I+ \ {0} and�+ = (�i : i ∈ I+(n)) ∈ R

|I+(n)|
+ ,

Gn(�
+) =




∑
i∈I+(n)

κin
α
i

�1−α
i

1− α
, if α ∈ (0,∞) \ {1},

∑
i∈I+(n)

κini log�i, if α = 1,
(4)

and the value of the right member above is taken to be−∞ if α ∈ [1,∞) and
�i = 0 for somei ∈ I+(n). The resulting allocation is called aweighted α-fair
allocation.

Various properties of the mapping� :RI+ → R
I+ are developed in Appendix A

of this paper. In particular, for eachn ∈ R
I+:

(i) �i(n) > 0 for eachi ∈ I+(n),
(ii) �(rn) = �(n) for eachr > 0,
(iii) �i(·) is continuous atn for eachi ∈ I+(n), and
(iv) there isp ∈ R

J+ (not necessarily unique and depending onn) such that

�i(n) = ni

(
κi∑

j∈J pjAji

)1/α

for eachi ∈ I+(n),(5)

where

pj

(
Cj − ∑

i∈I

Aji�i(n)

)
= 0 for all j ∈ J.(6)
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The (pj : j ∈ J) are Lagrange multipliers for the optimization problem (1)–(3),
one for each of the capacity constraints (2). [Note that for eachi ∈ I+(n), since
�i(n) > 0 [by (i)] andni > 0 (by definition), the fact that the representation (5)
holds implies thatp is such that the denominator in the right member of (5) does
not vanish.]

Whenκi = 1, i ∈ I, the casesα → 0, α → 1 andα → ∞ correspond respec-
tively to an allocation which achieves maximum throughput, isproportionally fair
or is max–min fair [2, 17]. Weightedα-fair allocations provide a tractable the-
oretical abstraction of decentralized packet-based congestion control algorithms
such as TCP, the transmission control protocol of the Internet. Indeed, ifα = 2
andκi is the reciprocal of the square of the round trip time on routei, then the
formula (5) is a version of theinverse square root law familiar from studies of the
throughput of TCP connections [11, 16, 18]. The relations (2) and (3), (5) and (6)
and more refined versions of these relations, can be solved by iterative methods to
give predictions of throughput, given the numbers of flowsN(t) present at timet
[7, 12, 20]. Given a distribution forN(t), the overall network performance can be
predicted. But a major difficulty with this approach is the choice of the distribution
for N(t). For example, if flows arrive on different routes as independent Poisson
processes and if flows on a route remain in the system for independent and identi-
cally distributed holding periods, then the stationary distribution of the processN

is easy to describe: the components are independent, each with a Poisson distri-
bution, whatever the distribution of holding periods. This model is indeed used
in [12] and might be appropriate for real-time flows whose time in the system is
unaffected by their allocated bandwidth. But for many flows, for example, doc-
ument transfers, their length of time in the system is affected by their allocated
bandwidth, and this may produce correlations between the components ofN(t)

which need to be understood. Roberts and Massoulié [19] have begun the study of
a stochastic model that captures this effect.

4. Stochastic model. An active flow on routei corresponds to the continuous
transmission of a document through the resources used by routei. Transmission
is assumed to occur simultaneously through all resources on routei. The number
of active flows on routei at time t is denoted byNi(t). The stochastic process
N = {(N1(t), . . . ,NI(t)), t ≥ 0} is assumed to be a Markov process with state
spaceZI+ and infinitesimal transition ratesq :ZI+ × Z

I+ → R given by

q(n,m) = νi if m = n + ei,(7)

q(n,m) = µi�i(n) if m = n − ei, ni ≥ 1,(8)

q(n,m) = 0 otherwise,(9)

for eachn,m ∈ R
I+, i ∈ I, where, for eachi, νi > 0 andµi > 0 are fixed constants,

andei is theI-dimensional unit vector whoseith component is 1 and whose other
components are all zero.
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This corresponds to a model where new flows arrive on routei according to
a Poisson process of rateνi ; for i such thatNi(t) �= 0, �i(N(t))/Ni(t) is the
bandwidth allocated to each active flow on routei at timet ; and a flow on routei
transfers a document whose size is exponentially distributed with parameterµi .
This is the model of Roberts and Massoulié [19] with exponential document sizes.

From the results of de Veciana, Lee and Konstantopoulos [9] and Bonald and
Massoulié [2], we know that the Markov chainN is positive recurrent if∑

i∈I

Ajiρi < Cj , j ∈ J,(10)

whereρi = νi/µi for all i ∈ I. These are natural constraints:ρi is the average
load produced by routei, and we can identify the ratio of the two sides of the
inequality (10) as thetraffic intensity at resourcej . Indeed, condition (10) is
necessary for positive recurrence ofN . For a proof, suppose thatN is positive
recurrent and fixj ∈ J. The virtual waiting timeVj (t) for resourcej at timet is
the amount of time, measured from timet onwards, that it would take to complete
the transfer of all of the documents that are being transmitted through resourcej

at timet , assuming that external arrivals are turned off after timet , that is, no new
documents are accepted for transmission after timet , and that all other resources
are given infinite capacity, that is,Ck = +∞ for all k �= j , after time t . The
virtual waiting time thus measures the time it would take for resourcej to become
idle if there were no more arrivals after timet and if resourcej could work at
full capacity from timet . Suppose that the network starts empty. The positive
recurrence ofN implies that the mean time for the virtual waiting time processVj

to return to zero (after first moving away from zero) is finite. Consider another
network with the same features as the original one, except thatCk = +∞ for all
k �= j . Let Ṽj denote the virtual waiting time process for resourcej in this network.
When the same arrival and document size processes are used for the two networks,
Ṽj (t) ≤ Vj(t) for all t . In particular, the mean time for̃Vj to return to zero must
be finite. Now,Ṽj is equivalent in distribution to the virtual waiting time process
for a multiclass single server queueing system operating under a work conserving
service discipline. This system has one queue for eachi such thatAji = 1. The
queue associated with such ani has an infinite capacity buffer, Poisson arrivals at
rateνi , i.i.d. exponential service times with a mean of 1/µi , and the server serves
at a maximum rate ofCj . The virtual waiting time process for this queueing system
is the same for all work conserving service disciplines and it is well known that the
mean time for this process to return to zero is finite if and only if

∑
i∈I Ajiρi < Cj .

Sincej was arbitrary, it follows that (10) must hold.
It is an open question whether, in the generalization of the above model

to allow arbitrarily (rather than exponentially) distributed document sizes, the
condition (10) is sufficient for stability.
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5. Main results. Our aim in this paper is to begin to explore the behavior of
the Markov chain{N(t), t ≥ 0} when∑

i∈I

Ajiρi ≤ Cj , j ∈ J,(11)

and some of the constraints are saturated, that is, some of the resources are in heavy
traffic. Thus, we henceforth assume that (11) holds and that

J∗ ≡
{
j ∈ J :

∑
i∈I

Ajiρi = Cj

}
�= ∅.(12)

Let J∗ = |J∗| and without loss of generality assume that the first|J∗| elements
of J correspond to the setJ∗.

Here, we focus on understanding the behavior of fluid model solutions, which
can be thought of as formal limits of the stochastic processN under law of large
numbers scaling. The following notions are used in the definition below. A function
f = (f1, . . . , fI) : [0,∞) → R

I+ is absolutely continuous if each of its components
fi : [0,∞) → R+, i = 1, . . . , I, is absolutely continuous. Aregular point for an
absolutely continuous functionf : [0,∞) → R

I+ is a value oft ∈ [0,∞) at which
each component off is differentiable. [Sincef is absolutely continuous, almost
every timet ∈ [0,∞) is a regular point forf .]

DEFINITION 5.1. A fluid model solution is an absolutely continuous function
n : [0,∞) → R

I+ such that at each regular pointt for n(·), we have for eachi ∈ I,

d

dt
ni(t) =

{
νi − µi�i(n(t)), if ni(t) > 0,

0, if ni(t) = 0,
(13)

and for eachj ∈ J, ∑
i∈I+(n(t))

Aji�i(n(t)) + ∑
i∈I0(n(t))

Ajiρi ≤ Cj ,(14)

whereI+(n(t)) = {i ∈ I :ni(t) > 0} andI0(n(t)) = {i ∈ I :ni(t) = 0}.

Motivation for this definition is given in Appendix B through a fluid limit result.
For the moment, we observe that ifni(t) > 0, then the right-hand side of (13) is the
infinitesimal drift ofNi(t) whenNi(t) > 0 [cf. (7) and (8)]. On the other hand, if
ni(t) = 0 andt is a regular point forn(·), then the derivative ofni(·) at t is forced
to be zero sinceni(s) ≥ 0 for all s ≥ 0—to see this, consider the left- and right-
hand derivatives ofni(·) at t . This property may seem counterintuitive, however,
this phenomenon is common in fluid models for queueing systems. It reflects the
fact that a fluid model solution is obtained as a (formal) law of large numbers limit
from the original stochastic model, and consequently a fluid model solution state
n ∈ R

I+, for whichni = 0 can be the limit of rescaled states in the stochastic model
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where theith component is at or near zero. The inequality (14) is derived from the
fact that, in the stochastic model, the cumulative unused capacity for each resource
is a nondecreasing process. As in the derivation of the differential equation (13),
some care is needed here in treating routesi, for which ni(t) = 0. One might
paraphrase (14) as saying that the total fluid model bandwidth allocation for each
resource cannot exceed its capacity, where the allocation to any routei satisfying
ni(t) = 0 is ρi at time t . For a more detailed justification, we refer the reader to
Theorem B.1 and its proof.

Following Bramson [5], we now define an invariant manifold for fluid model
solutions.

DEFINITION 5.2. A staten0 ∈ R
I+ is called invariant if there is a fluid model

solutionn(·) such thatn(t) = n0 for all t ≥ 0. LetMα denote the set of all invariant
states. We callMα the invariant manifold.

The following is a simple characterization ofMα.

LEMMA 5.1. The set of invariant states, Mα, is given by

{n ∈ R
I+ :�i(n) = ρi for all i ∈ I+(n)}.(15)

PROOF. Let Nα denote the set in (15). Note thatMα andNα are nonempty
since they both contain the origin inRI+.

To show thatMα ⊂ Nα, suppose thatn0 ∈ Mα. If n0 = 0, then it follows
trivially that n0 ∈ Nα. If n0 �= 0, then there is a fluid model solutionn(·) satisfying
n(t) = n0 for all t ≥ 0 and so it follows from (13) that

�i(n0) = ρi for all i ∈ I+(n0).(16)

Conversely, to show thatNα ⊂ Mα, suppose thatn0 ∈ Nα. Then, by (11),
n(t) = n0 for all t ≥ 0 satisfies (13) and (14) for allt and all i ∈ I, j ∈ J, and
son(·) is a valid fluid model solution. Hencen0 is in Mα. �

The following alternative characterization of the invariant states will also be
used. It is proved in Section 6.

THEOREM 5.1. A state n ∈ R
I+ is an invariant state if and only if there is

q ∈ R
J∗+ such that

ni = ρi

(∑
j∈J∗ qjAji

κi

)1/α

for all i ∈ I.(17)
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REMARK 5.1. In fact, as examination of the proof of the above theorem
reveals, for an invariant staten, there is a one-to-one correspondence between
the vectorsq appearing in the above representation ofn and the Lagrange
multipliers p appearing in the characterization of�+(n) given in Lemma A.4
[see also (5) and (6)]. This correspondence is obtained by taking the entries ofq

to be given by the entries ofp with indicesj ∈ J∗ and noting that the other entries
in p are necessarily zero.

For eachn ∈ R
I+, we define the distance ofn from Mα as

d(Mα, n) = inf{‖v − n‖ :v ∈ Mα}.(18)

The following theorem shows that, starting in any compact set, fluid model
solutions converge uniformly towards the invariant manifold. This theorem is
proved in Section 6.

THEOREM 5.2. Fix R ∈ (0,∞) and ε > 0.There is a constant TR,ε < ∞ such
that for each fluid model solution n(·) satisfying ‖n(0)‖ ≤ R we have

d
(
Mα, n(t)

)
< ε for all t > TR,ε.(19)

In the course of proving Theorem 5.2, in Section 6, we prove the following
(see Theorem 5.3) alternative characterization of invariant states. For this, define
w(n) = (wj (n) : j ∈ J∗) for n ∈ R

I+ to be given by

wj(n) = ∑
i∈I

Aji

ni

µi

, j ∈ J∗.(20)

We callw(n) theworkload associated withn. Let

F(n) = 1

α + 1

∑
i∈I

νiκiµ
α−1
i

(
ni

νi

)α+1

for all n ∈ R
I+.(21)

This functionF was used in [2] as a Lyapunov function to show positive recurrence
of N under the conditions (10). An intuitive interpretation of the functionF is
as follows. If the the number of flows on each route is fixed and given by the
components ofn ∈ R

I+, then by Little’s lawni/νi is the mean time that a flow on
routei spends in the system and the time a flow on routei spends in the system is
exponentially distributed with meanni/νi . The(α + 1)st moment of this random
variable is�(α + 2)(ni/νi)

α+1, where�(·) is the usual Gamma function. Thus,
given n, F(n) can be interpreted as a weighted sum over the routes, where for
routei, the summand is the weightνiκiµ

α−1
i /(α + 1)�(α + 2) times the(α + 1)st

moment of the amount of time spent in the system by a flow on that route.
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For w ∈ R
J∗+ , define�(w) to be the unique value ofn ∈ R

I+ that solves the
following optimization problem:

minimizeF(n)

subject to
∑
i∈I

Aji

ni

µi

≥ wj , j ∈ J∗,

overni ≥ 0, i ∈ I.

(22)

REMARK 5.2. SinceA has full row rank and its only entries are zeros and
ones, for eachw ∈ R

J∗+ , the feasible set of the optimization problem (22) is
nonempty, and then sinceF is nonnegative onRI+ andF(n) → ∞ as‖n‖ → ∞,
(22) has an optimal solution. By the strict convexity ofF , this solution is unique.

THEOREM 5.3. A vector n ∈ R
I+ is an invariant state if and only if n =

�(w(n)).

The map� :RJ∗+ → R
I+ plays an analogous role for the flow-level model of [19]

to the lifting maps occuring in Bramson’s work [3, 4] on the asymptotic behavior of
fluid models associated with multiclass queueing networks operating under certain
head-of-the-line service disciplines. It is natural to conjecture that one might
prove a state space collapse theorem for the flow-level model in an analogous
manner to that in [5], and extend the diffusion approximation results developed
for multiclass queueing networks in [21], to prove a diffusion approximation
for the flow-level model. This suggests that, under suitable rescaling and initial
conditions, a diffusion approximation for theJ∗-dimensional workload process
W = {W(t) : t ≥ 0} defined by

Wj(t) = ∑
i∈I

Aji

Ni(t)

µi

, j ∈ J∗,(23)

is likely to be a reflecting Brownian motioñW living in the workload cone

Wα = A∗M−1Mα,(24)

whereM = diag(µ), A∗ is theJ∗ × I matrix obtained fromA by eliminating those
rows ofA that are not indexed by elements ofJ∗, and

Mα =
{
n ∈ R

I+ :ni = ρi

(∑
j∈J∗ qjAji

κi

)1/α

,

(25)
i ∈ I, for someq ∈ R

J∗+

}
.

Here the direction of reflection on the boundary surface corresponding toqj = 0
is the unit vector pointing in the direction of the positivej th coordinate axis.
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Furthermore, state space collapse should yield an approximationÑ for N ,
under diffusion scaling, wherẽN = �(W̃ ). This conjecture will be pursued in
a subsequent work.

To illustrate the conjecture, we consider the following simple example. Suppose
that J = {1,2} andI = {{1}, {2}, {1,2}}, corresponding to a linear network with
two resources and three routes. Letα ∈ (0,∞), κi = µi = 1, for i = 1,2,3,Cj = 1
for j = 1,2, andρ1 + ρ3 = ρ2 + ρ3 = 1. Then the state space for the diffusionW̃

is the cone

Wα = {
(w1,w2) :w1 = ρ1q

1/α
1 + ρ3(q1 + q2)

1/α,

w2 = ρ2q
1/α
2 + ρ3(q1 + q2)

1/α, for someq1 ≥ 0, q2 ≥ 0
}
,

which, for allα ∈ (0,∞), is the same as the cone

{(w1,w2) :w1 ≥ 0, w1ρ3 ≤ w2 ≤ w1ρ
−1
3 }

pictured in Figure 1. Reflection occurs in the horizontal direction (corresponding to
resource 1 incurring idleness) on the bounding facew1 = w2ρ3. The interpretation

FIG. 1. The workload cone Wα for a network with two resources, with workloads labelled w1,w2,
and three routes, with traffic loads labelled ρ1, ρ2, ρ3. Under the lifting map �, points (w1,w2) on
the boundary w1 = w2ρ3 are mapped to points (n1, n2, n3), where n1 = 0 (and the corresponding
q ∈ R

2+ has q1 = 0); similarly, points (w1,w2) on the boundary w2 = w1ρ3 are mapped to points
(n1, n2, n3), where n2 = 0 (and the corresponding q ∈ R

2+ has q2 = 0).
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of this is that although there is work for resource 1 within the system, congestion
at resource 2 is preventing resource 1 from working at its full capacity. Similarly,
vertical reflection (corresponding to resource 2 incurring idleness) on the bounding
facew2 = w1ρ3 is interpreted to mean that congestion at resource 1 is preventing
resource 2 from working at its full capacity. Although the workload cone is the
same for allα ∈ (0,∞) in this example, this will not be the case, in general, for
higher-dimensional workloads.

6. Proofs: characterization of invariant states and convergence to the
invariant manifold.

PROOF OFTHEOREM 5.1. It follows from Lemma 5.1 and the characteriza-
tion of �+(n) in terms of Lagrange multipliers given in Lemma A.4, thatn ∈ Mα

if and only if there isp ∈ R
J+ such that

ni = ρi

(∑
j∈J pjAji

κi

)1/α

for all i ∈ I+(n)(26)

and for allj ∈ J,

pj

(
Cj − ∑

i∈I+(n)

Ajiρi

)
= 0.(27)

Note that forj ∈ J \ J∗,
∑

i∈I Ajiρi < Cj and so (27) holds for such aj if and
only if pj = 0. It follows that we can replaceJ by J∗ andJ by J∗ in the above
characterization of invariant states. The characterization given in the theorem can
now be deduced as follows.

First, consider an invariant staten andi ∈ I \ I+(n). Thenni = 0 and for any
j ∈ J∗ such thatAji > 0, we have∑

l∈I+(n)

Ajlρl <
∑
l∈I

Ajlρl = Cj ,(28)

and so by (27), we must havepj = 0. On combining the above, we see that

ni = ρi

(∑
j∈J∗ pjAji

κi

)1/α

for all i ∈ I.(29)

Thus, any invariant state has the form given in (17) withqj = pj for j ∈ J∗.

Conversely, suppose thatn is of the form given in (17) for someq ∈ R
J∗+ . Set

pj = 0 for j ∈ J \ J∗ and pj = qj for j ∈ J∗. Then, (26) holds immediately
with J∗ in place of J, and so it suffices to show thatp and n satisfy the
complementarity condition (27) for eachj ∈ J∗. The only way that this can fail to
hold is if there isj ∈ J∗ andi ∈ I such thatqj > 0,Aji > 0 andni = 0. But, by the
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representation (17),ni = 0 implies thatqj = 0 for all j ∈ J∗ satisfyingAji > 0.
Thus, (27) must hold for allj ∈ J∗. �

We need some preliminary lemmas before we can prove the other characteriza-
tion of invariant states given by Theorem 5.3. For this, recall the definition of the
function F from (21) in Section 5. For any fluid model solutionn(·), F(n(·)) is
absolutely continuous and at each regular pointt for n(·),

d

dt
F (n(t)) = ∑

i∈I

∂F

∂ni

d

dt
ni(t)(30)

= ∑
i∈I+(n(t))

κi

νi

(
µi

νi

)α−1

(ni(t))
α
(
νi − µi�i(n(t))

)
(31)

= ∑
i∈I+(n(t))

κi

(
µini(t)

νi

)α(
νi

µi

− �i(n(t))

)
(32)

= K(n(t)),(33)

where, for eachn ∈ R
I+,

K(n) = ∑
i∈I+(n)

κi

(
µini

νi

)α(
νi

µi

− �i(n)

)
.(34)

Indeed,K(0) = 0 and forn ∈ R
I+ \ {0},

K(n) = ∇Gn

(
�+,∗(n)

) · (
�+,∗(n) − �+(n)

)
,(35)

where�+(n) = (�i(n) : i ∈ I+(n)), �+,∗(n) = (ρi : i ∈ I+(n)), ∇Gn(·) is the
gradient of the functionGn(·) defined in (4).

LEMMA 6.1. The function K is continuous on R
I+ and

K(n) ≤ 0 for each n ∈ R
I+,(36)

where the inequality is strict unless n is an invariant state.

PROOF. The continuity ofK follows from the definition (34), combined with
Lemma A.3 and the fact that the term indexed byi in the sum in (34) is small ifni

is near zero, since�(n) is bounded.
If n = 0, K(n) = 0 and 0 is an invariant state. Now suppose thatn �= 0. Then,

by Lemma A.1,�+(n) solves the optimization problem (1)–(3) on(0,∞)|I+(n)|.
Since�+ = �+,∗(n) is feasible for this problem andGn(�

+) is concave as a
function of�+ ∈ (0,∞)|I+(n)| with a strictly negative definite (diagonal) Hessian
matrix of second partial derivatives at each point, it follows from (35) thatK(n)
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is nonpositive and that it is strictly negative unless�+(n) = �+,∗(n). More
precisely, by (35) and Taylor’s theorem with remainder, forv = �+(n)−�+,∗(n),

−K(n) = ∇Gn

(
�+,∗(n)

) · v
= Gn(�

+(n)) − Gn

(
�+,∗(n)

) − 1
2v · (∇2Gn)(�̃)v,

for some�̃ lying on the line segment between�+(n) and�+,∗(n) and where
(∇2Gn)(·) denotes the Hessian matrix forGn(·). By the optimality of�+(n),
Gn(�

+(n)) ≥ Gn(�
+,∗(n)), and by the strict negative definiteness of(∇2Gn)(�̃),

it follows that the last line above is nonnegative and it is strictly positive unless
v = 0. By Lemma 5.1,v ≡ �+(n) − �+,∗(n) = 0 if and only if n is an invariant
state. �

COROLLARY 6.1. At any regular point t for a fluid model solution n(·), we
have

d

dt
F (n(t)) = K(n(t)) ≤ 0,(37)

where the inequality is strict unless n(t) ∈ Mα.

PROOF. This follows from Lemma 6.1 and (30)–(33).�

For eachn ∈ R
I+, let w(n) = (wj (n) : j ∈ J∗) be defined by (20).

LEMMA 6.2. For any fluid model solution n(·), t → wj(n(t)) is a nonde-
creasing function of t ∈ [0,∞) for each j ∈ J∗.

PROOF. Consider a fluid model solutionn(·). Since n(·) is absolutely
continuous, then so is the linear functionw(n(·)) of n(·). From (13) and (14)
satisfied by a fluid model solution, at a regular pointt for n(·), we have for each
j ∈ J∗,

d

dt
wj (n(t)) = ∑

i∈I+(n(t))

Aji

(
ρi − �i(n(t))

)
,(38)

and (14) holds. Now, forj ∈ J∗,

Cj = ∑
i∈I

Ajiρi,(39)

and on substituting this into (14) we obtain∑
i∈I+(n(t))

Aji�i(n(t)) ≤ ∑
i∈I+(n(t))

Ajiρi for all j ∈ J∗,(40)
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and when combined with (38) this yields

d

dt
wj (n(t)) ≥ 0 for all j ∈ J∗.(41)

Sincewj(n(·)) is obtained by integrating its almost everywhere defined derivative,
it follows thatwj(n(·)) is a nondecreasing function for eachj ∈ J∗. �

For eachw ∈ R
J∗+ , define F(w) to be the optimal value attained in the

optimization problem (22) and recall, from Section 5, the definition of�(w) as
the optimizing value ofn.

LEMMA 6.3. The functions F :RJ∗+ → R+ and � :RJ∗+ → R
I+ are continuous.

In addition, F is a nondecreasing function, that is, if w and w̃ are two vectors
in R

J∗+ such that w ≤ w̃, then F(w) ≤ F(w̃).

PROOF. To prove the continuity of the functionsF and�, consider a sequence
{wm,m = 1,2, . . . } in R

J∗+ converging to somew ∈ R
J∗+ . By the growth property

of F that F(n) → ∞ as ‖n‖ → ∞, and the full row rank and nonnegativity
assumptions onA, {�(wm),m = 1,2, . . . } is bounded. Let̃n be any cluster point
of this sequence. Then,ñ satisfies the constraints of the optimization problem (22)
and, by the continuity ofF , F(�(wmk

)) → F(ñ) ask → ∞ for some subsequence
{mk} of {m}. By the feasibility ofñ, F(ñ) ≥ F(�(w)). We claim thatñ = �(w).

For a proof by contradiction, suppose thatñ �= �(w). Then, by the strict
convexity of F , ε ≡ F(ñ) − F(�(w)) > 0, and by the continuity ofF , there
is δ > 0 such thatF(n) < F(�(w)) + ε = F(ñ) for all n ∈ R

I+ satisfying
‖n − �(w)‖ < δ.

Sincewm → w asm → ∞ andA has full row rank, there iŝn ∈ R
I+ such that

‖n̂ − �(w)‖ < δ andA∗M−1n̂ ≥ wm for all m sufficiently large. [HereA∗ is the
J∗ × I matrix of rankJ∗ obtained fromA by eliminating those rows ofA that
are not indexed byJ∗ andM = diag(µ).] To see this, letA† be aI × J∗ matrix
that is a right inverse forA∗M−1, that is,A∗M−1A† = I , whereI denotes the
J∗ × J∗ identity matrix. By the definition of�(w), A∗M−1�(w) ≥ w and so,
sincewm → w asm → ∞, there ism(δ) sufficiently large that for allm ≥ m(δ),

A∗M−1�(w) ≥ wm − δ

2
√

J∗‖A†‖1,

where1 denotes theJ∗-dimensional vector whose components are all 1’s. Let
u = δ

2
√

J∗‖A†‖A†1. Note that‖u‖ ≤ δ
2 and A∗M−1u = δ

2
√

J∗‖A†‖1. Define n̂ =
�(w)+ ũ, whereũi = |ui| for i ∈ I. Then,n̂ ∈ R

I+, ‖n̂−�(w)‖ = ‖ũ‖ = ‖u‖ < δ

and, sinceA∗M−1 has nonnegative entries,

A∗M−1n̂ ≥ A∗M−1�(w) + A∗M−1u ≥ wm
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for all m ≥ m(δ), as desired.
For m ≥ m(δ), n̂ is feasible for the optimization problem (22) withwm

in place of w, and since�(wm) is optimal for this problem, it follows that
F(n̂) ≥ F(�(wm)). Hence,F(n̂) ≥ limk F (�(wmk

)) = F(ñ). But this yields a
contradiction, sinceF(n̂) < F(ñ) as‖n̂ − �(w)‖ < δ. Thus,ñ = �(w), and since
ñ was an arbitrary cluster point of{�(wm),m = 1,2, . . . }, it follows that this
sequence converges to�(w), and

F(w) = F(�(w)) = lim
m

F(�(wm)) = lim
m

F(wm).

This implies the continuity of� andF .
The nondecreasing property ofF follows from the fact that, forw andw̃ in R

J∗+
satisfyingw ≤ w̃, any feasible solution for the problem (22) with̃w in place ofw
is feasible for the original problem withw. �

We have the following characterization of the optimal solutions of (22).

LEMMA 6.4. For each w ∈ R
J∗+ , a vector n ∈ R

I+ is the unique optimal

solution of (22) if and only if there is p ∈ R
J∗+ such that for each i ∈ I,

ni = ρi

(∑
j∈J∗ pjAji

κi

)1/α

(42)

and for each j ∈ J∗,

pj

(∑
i∈I

Aji

ni

µi

− wj

)
= 0(43)

and ∑
i∈I

Aji

ni

µi

≥ wj .(44)

PROOF. Fix w ∈ R
J∗+ . Forn ∈ R

I+ andp ∈ R
J∗+ , let

L(n,p) = F(n) + ∑
j∈J∗

pj

(
wj − ∑

i∈I

Aji

ni

µi

)
.(45)

Suppose thatn ∈ R
I+ is the unique optimal solution of (22). SinceA has full row

rank, no row ofA contains all zeros. Recall thatA only contains zeros and ones.
It follows that there isv ∈ R

I+ such that
∑

i∈I Aji
vi

µi
> wj for eachj ∈ J∗. Thus,

Slater’s constraint qualification (cf. [8], page 236) is satisfied and by the necessity
theory of Lagrange multipliers (cf. [15], Theorem 1, page 217), there isp ∈ R

J∗+
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such thatn minimizesL(·,p) overRI+ and (43) holds for allj ∈ J∗. Now,L(·,p)

is continuously differentiable and so for eachi ∈ I we have

∂L

∂ni

(n,p) ≥ 0,(46)

where the inequality is an equality whenni > 0. If ni > 0, this yields (42)
immediately. Ifni = 0, this yields

0 = ni ≥ ρi

(∑
j∈J∗ pjAji

κi

)1/α

.(47)

Sincep has nonnegative components, it follows that the above holds with equality.
Thus, (42) holds for alli ∈ I. Inequality (44) holds for eachj ∈ J∗, sincen is
feasible for (22).

Conversely, suppose thatn ∈ R
I+ andp ∈ R

J∗+ satisfy (42)–(44). Then

∂L

∂ni

(n,p) = 0 for all i ∈ I,(48)

and it follows from the strict convexity ofF thatn is a global minimum forL(·,p)

overRI+. By (44),n is feasible for (22) and for any other feasibleñ ∈ R
I+ we have

F(n) = L(n,p) ≤ L(ñ,p) ≤ F(ñ),(49)

where we have used (43), the feasibility ofñ and the fact thatp ∈ R
J∗+ . Thus,n is

optimal for (22). �

We can now prove Theorem 5.3.

PROOF OFTHEOREM 5.3. By Theorem 5.1,n ∈ R
I+ is an invariant state if

and only if there isp = q ∈ R
J∗+ such that (42) holds for alli ∈ I. Note that

if w = w(n), then (43) and (44) automatically hold for allj ∈ J∗. Thus, on
combining the above with Lemma 6.4, we see thatn ∈ R

I+ is an invariant state if
and only ifn is the unique optimal of (22) withw = w(n). The latter is equivalent
to n = �(w(n)). �

For the proof of the convergence result, Theorem 5.2, we introduce the
following function H and prove some of its elementary properties. For each
n ∈ R

I+, let

H(n) = F(n) − F(w(n)).(50)

LEMMA 6.5. The function H :RI+ → R is continuous. Furthermore, it is zero
on the set of invariant states, Mα, and it is strictly positive on R

I+ \ Mα.
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PROOF. The continuity ofH on R
I+ follows from the facts thatF is clearly

continuous,F is continuous by Lemma 6.3 and the linear functionw(·) is
continuous.

Sincen ∈ R
I+ is feasible for (22) withw = w(n), we haveF(n) ≥ F(w(n)) and

henceH(n) ≥ 0. Furthermore,H(n) = 0 if and only if n is the optimal solution
for (22) with w = w(n), that is, if and only ifn = �(w(n)). The latter occurs if
and only ifn is an invariant state by Theorem 5.3.�

LEMMA 6.6. For any fluid model solution n(·), t → H(n(t)) is a nonincreas-
ing function of t ∈ [0,∞).

PROOF. By Corollary 6.1,F(n(t)) = F(n(0)) + ∫ t
0 K(n(s)) ds is a nonin-

creasing function oft , and, by the combination of Lemmas 6.2 and 6.3,F(w(n(t))

is a nondecreasing function oft , and so it follows thatH(n(t)) = F(n(t)) −
F(w(n(t))) is a nonincreasing function oft . �

REMARK 6.1. A stronger form of Lemma 6.6, which shows thatH(n(t)) is
strictly decreasing at times wheren(t) /∈ Mα will be developed and used in the
proof of Theorem 5.2 given below.

PROOF OFTHEOREM 5.2. FixR ∈ (0,∞) andε > 0. Let

F̂ (R) = sup{F(v) :v ∈ R
I+, ‖v‖ ≤ R}.

SinceF is continuous onRI+, F̂ (R) is finite. For any fluid model solutionn(·)
satisfying‖n(0)‖ ≤ R, on integrating (37) we see thatF(n(t)) ≤ F(n(0)) for all
t ≥ 0. The fact thatF(n) → ∞ as‖n‖ → ∞ implies that there is a closed ball
B (depending onR) in R

I+ that is centered at the origin and of finite radius such
thatF(v) > F̂ (R) for all v ∈ Bc, whereBc denotes the complement ofB in R

I+.
Combining the above, we see that for any fluid model solutionn(·) satisfying
‖n(0)‖ ≤ R, we haven(t) ∈ B for all t ∈ [0,∞).

Let

D = {v ∈ B :d(Mα, v) ≥ ε}.(51)

Note thatD depends onR andε. By Lemma 6.5, the functionH is continuous
and strictly positive on the compact setD. It follows thatδ ≡ inf{H(v) :v ∈ D} is
strictly positive, and the set̃D ≡ {v ∈ B :H(v) ≥ δ} containsD. Moreover, since
H is zero onMα, D̃ does not meetMα.

Consider a fluid model solutionn(·) satisfying‖n(0)‖ ≤ R. Let T̃ (n) = inf{t ≥
0 :n(t) /∈ D̃}. Sincen(·) remains inB for all time, it follows that if T̃ (n) < ∞,
thenn(·) exitsD̃ by violating the constraintH(n(·)) ≥ δ. Then, sinceH(n(·)) is a
nonincreasing function (by Lemma 6.6), it follows thatn(t) /∈ D̃ for all t > T̃ (n).
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Consequently, sinceD ⊂ D̃, we haved(Mα, n(t)) < ε for all t > T̃ (n). We now
develop an upper bound oñT (n). For 0≤ t ≤ T̃ (n),

H(n(t)) − H(n(0)) ≤ F(n(t)) − F(n(0))(52)

=
∫ t

0
K(n(s)) ds,(53)

where we have used the nondecreasing property ofF(w(n(·))) for the first line,
and Corollary 6.1 for the second line. By Lemma 6.1,K is continuous and strictly
negative off the manifoldMα. It follows that there isCR,ε > 0 such thatK is
bounded above by−CR,ε on the compact set̃D which does not meetMα. Then,
the above yields

T̃ (n) ≤ H̄R/CR,ε,(54)

whereH̄R = sup{H(v) :‖v‖ ≤ R} < ∞, and the desired result follows.�

APPENDIX A

Properties of the bandwidth sharing policy. For eachn ∈ R
I+ \ {0} and

�+ ∈ R
|I+(n)|
+ , recall the definition ofGn(�

+) from (4).

LEMMA A.1. For each n ∈ R
I+ \ {0}, there is a unique optimal solution

�+(n) = (�i : i ∈ I+(n)) of (1)–(3); each of its components is strictly positive
and uniformly bounded by C∗ = maxj∈J Cj .

PROOF. Fix n ∈ R
I+ \ {0}. If α ∈ (0,1), the objective functionGn(�

+) is
continuous and strictly concave as a function of�+ = (�i : i ∈ I+(n)) on the
compact set{

�+ :�i ≥ 0 for all i ∈ I+(n),
∑

i∈I+(n)

Aji�i ≤ Cj for all j ∈ J

}
.(55)

It follows that the maximum of the objective function is achieved on this set, and
by the strict concavity, the maximizing point is unique. Furthermore, since the
derivative of the objective function with respect to�i diverges to+∞ as�i ↓ 0
for eachi ∈ I+(n), the maximizing point must have strictly positive components,
that is, the maximum cannot occur with one of the�i , i ∈ I+(n), equal to zero.

For α ∈ [1,∞), by convention, the objective function takes the value−∞
whenever�i = 0 for somei ∈ I+(n). Thus, any optimal solution to (1)–(3) has
all components strictly positive. In fact, if we letc = minj∈J Cj/|I|, then the
|I+(n)|-dimensional vector̃�+ with all components set equal toc satisfies the
constraints in (1)–(3). By combining the fact that the feasible set for (1)–(3) is
bounded with the fact that the objective function diverges to−∞ as�i → 0 for
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anyi ∈ I+(n), we may conclude that there isδ > 0 such that for all�+ = (�i : i ∈
I+(n)) satisfying the constraints in (1)–(3) and such that�i < δ for at least one
i ∈ I+(n), we haveGn(�

+) < Gn(�̃
+). It follows that any optimal solution of

(1)–(3) must be in the compact set{
�+ : δ ≤ �i for all i ∈ I+(n),

∑
i∈I+(n)

Aji�i ≤ Cj for all j ∈ J

}
.(56)

Since the objective function is continuous and strictly concave on this compact set,
it has a unique maximum there, which is the optimal solution of (1)–(3).

Since for eachi ∈ I, there isj ∈ J, such thatAji = 1, it follows that�+
i (n) ≤

C∗ = maxj∈J Cj for all i ∈ I+(n). �

In the following lemmas,� :RI+ → R
I+ is as defined in Section 3.

LEMMA A.2. Fix n ∈ R
I+. Then, �(rn) = �(n) for all r > 0.

PROOF. Fix r > 0. Note thatI+(n) = I+(rn) and so�i(n) = �i(rn) = 0
for all i ∈ I0(n) = I \ I+(n). Also, for �+ ∈ R

|I+(n)|
+ , Grn(�

+) = rαGn(�
+)

[for all α ∈ (0,∞)], and since the constraints in (1)–(3) do not involven, it
follows that the optimal solution�+(rn) for the objective functionGrn(·) is the
same as the optimal solution�+(n) for the objective functionGn(·), and hence
�+(rn) = �+(n). �

LEMMA A.3. For each i ∈ I, the ith component �i(·) of the function �(·) is
continuous on {n ∈ R

I+ :ni > 0}.

PROOF. We first prove continuity of�(·) atn∗ ∈ R
I+ satisfyingn∗

i > 0 for all
i ∈ I. In this case,I+(n∗) = I and, by Lemma A.1, the optimal solution�(n∗) to
the problem (1)–(3) withn = n∗ has all components strictly positive. Givenε > 0,
let Bε be a nonempty open ball that is centered at�(n∗), that has radius less than
or equal toε and that is a positive distance from the boundary of the orthantR

I+.
Let Dε denote the compact set of� ∈ R

I+ that satisfy the constraints of (1)–(3)
with n = n∗ there and that are outside ofBε.

We claim that there isη > 0, β ∈ (0,minI
i=1 n∗

i ) andδ > 0, such that

Gn∗(�) < Gn∗(�(n∗)) − η for all � ∈ Dε(57)

and

Gn(�) < Gn∗(�(n∗)) − η/2,(58)

whenevern ∈ R
I+ satisfies‖n−n∗‖ < β and� ∈ Dε is such that�i < δ for at least

onei ∈ I. (Note thatni > 0 for all i when‖n − n∗‖ < β.) The first inequality (57)
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can be proved by contradiction. For if (57) does not hold for someη > 0, then for
each positive integerk, there is�k ∈ Dε such that

Gn∗(�k) ≥ Gn∗(�(n∗)) − 1/k.(59)

By the compactness ofDε, there is�̃ ∈ Dε such that{�k} converges tõ� along
some subsequence. Ifα ∈ (0,1), then by the continuity ofGn∗(·) on [0,∞)I in
this case, it follows on passing to the limit in (59) thatGn∗(�̃) ≥ Gn∗(�(n∗)),
which contradicts the uniqueness of the optimum�(n∗). If α ∈ [1,∞) and
�̃ ∈ (0,∞)I, then the continuity ofGn∗(·) on (0,∞)I yields a contradiction in the
same manner as forα ∈ (0,1). Finally, if α ∈ [1,∞) and�̃i = 0 for somei ∈ I,
then since�k

i → �̃i along some subsequence ofk’s, eitherκin
∗
i log�k

i → −∞
(if α = 1) or κi(n

∗
i )

α(�k
i )

1−α/(1 − α) → −∞ (if α > 1), along this same
subsequence. The other terms (indexed byl �= i) in the sum constitutingGn∗(�k)

are either bounded (if̃�l �= 0) or go to−∞ (if �̃l = 0) ask → ∞ along the
subsequence. Consequently,Gn∗(�k) → −∞ ask → ∞ along the subsequence,
which contradicts (59). Now we show the result pertaining to (58). Forα ∈ (0,1),
it follows from the uniform continuity ofGn(�) as a function of(n,�) on any
compact subset of[0,∞)I × [0,∞)I that there isβ ∈ (0,minI

i=1 n∗
i ) such that

Gn(�) < Gn∗(�) + η/2

for all n ∈ R
I+ satisfying ‖n − n∗‖ ≤ β and � ∈ Dε . Inequality (58) follows

immediately from this together with (57). Forα = 1 and fixedβ ∈ (0,minI
l=1 n∗

l ),
if n ∈ R

I+ satisfies‖n − n∗‖ < β, δ ∈ (0,1), � ∈ Dε andi ∈ I such that�i < δ,
then we have

Gn(�) = ∑
l∈I

κlnl log�l(60)

≤ κi(n
∗
i − β) logδ + ∑

l �=i

κl(n
∗
l + β) log(C∗ ∨ 1),(61)

whereC∗ = maxj∈J Cj . Sincen∗
i − β > 0, by the definition ofβ, the last line

above goes to−∞ asδ → 0. As there are only finitely many indicesi ∈ I and
the right member of (58) does not vary withn or �, it follows that for any
fixed β ∈ (0,minI

l=1 n∗
l ), there isδ ∈ (0,1) such that whenevern ∈ R

I+ satisfies
‖n−n∗‖ < β, � ∈ Dε and�i < δ for somei ∈ I, then (58) holds. A similar proof
of (58) holds forα ∈ (1,∞), with the exception that (61) is replaced with

Gn(�) ≤ κi(n
∗
i − β)α

δ1−α

1− α
.(62)

SinceGn(�) is uniformly continuous as a function of(n,�) on any compact
subset of(0,∞)I × (0,∞)I, there isγ ∈ (0, β/2) such that for alln ∈ R

I+
satisfying‖n − n∗‖ ≤ γ and� ∈ Dε satisfying�i ≥ δ for all i ∈ I, we have

Gn(�) < Gn∗(�) + η/2(63)
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and

Gn(�(n∗)) > Gn∗(�(n∗)) − η/2.(64)

Combining (57) and (58) with (63) and (64), we see that for alln ∈ R
I+ satisfying

‖n − n∗‖ ≤ γ and all� ∈ Dε, we have

Gn(�) < Gn∗(�(n∗)) − η/2 < Gn(�(n∗)).(65)

It follows that for alln ∈ R
I+ satisfying‖n−n∗‖ ≤ γ , the optimal solution�(n) of

(1)–(3) must lie withinBε, and hence must be no more than distanceε from �(n∗).
Hence,�(·) is continuous atn∗.

Next, considern∗ ∈ R
I+ \ {0} such thatn∗

k = 0 for at least onek. We will
show that as a function ofn, (�i(n), i ∈ I+(n∗)) is continuous atn = n∗. Small
perturbationsn of n∗ that only involve changes to the strictly positive components
of n∗ can be handled in a similar manner to that in the first three paragraphs of
this proof. It is perturbations for whichI+(n) �= I+(n∗) that require additional
argument, which we give below. For fixedε > 0, letBε be a nonempty open ball
in R

|I+(n∗)|
+ that is centered at�+(n∗) = (�i(n

∗) : i ∈ I+(n∗)), that has radius
less than or equal toε and that is a positive distance from the boundary of the

orthantR|I+(n∗)|
+ . LetDε denote the set of̃� ∈ R

|I+(n∗)|
+ that satisfy the constraints

of (1)–(3) with n = n∗ there and that are outside ofBε. In a similar manner to
that for (57), by the strict concavity ofGn∗(·) on the interior ofR|I+(n∗)|

+ and its

behavior near the boundary ofR
|I+(n∗)|
+ , there isη > 0 such that

Gn∗(�̃) < Gn∗(�+(n∗)) − η for all �̃ ∈ Dε.(66)

We now need separate arguments for the casesα < 1, α > 1 andα = 1.
We first considerα ∈ (0,1). For a vectorn ∈ R

I+ such thatni > 0 for all

i ∈ I+(n∗), the vector�+(n∗) ∈ R
|I+(n∗)|
+ can be extended, by the addition of zero

components, to a feasible vector inR
|I+(n)|
+ for the optimization problem (1)–(3)

associated withn. Using the fact that

κin
α
i

�1−α
i

1− α
(67)

is zero when�i = 0 andα ∈ (0,1), it follows that the optimal solution�+(n) of
the optimization problem (1)–(3) satisfies

Gn(�
+(n)) ≥ Gñ(�

+(n∗)),(68)

where ñ is the vector inR
I+ obtained by resetting the entries inn indexed by

i ∈ I+(n) \ I+(n∗) to zero. Let�̃+(n) denote the vector inR|I+(n∗)|
+ consisting of

the components of�+(n) indexed byi ∈ I+(n∗). Then,

Gn(�
+(n)) = Gñ(�̃

+(n)) + ∑
i∈I+(n)\I+(n∗)

κin
α
i

(�+
i (n))1−α

1− α
.(69)
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Since (67) tends to zero asni → 0, uniformly for �i ∈ [0,C∗], there isγ1 > 0
such that whenever‖n − n∗‖ < γ1, we haveni ∈ (0,∞) for all i ∈ I+(n∗) and the
sum on the right-hand side of (69) is less thanη/6. Combining this with (68), we
see that for‖n − n∗‖ < γ1,

Gñ(�̃
+(n)) ≥ Gñ(�

+(n∗)) − η/6.(70)

By the uniform continuity ofGñ(�
+(n∗)) = ∑

i∈I+(n∗) κin
α
i

(�
+
i (n∗))1−α

1−α
as a

function of (ni : i ∈ I+(n∗)) on compact subsets of(0,∞)|I+(n∗)|, there isγ2 ∈
(0, γ1) such that

‖Gñ(�
+(n∗)) − Gn∗(�+(n∗))‖ < η/6,(71)

whenever‖n − n∗‖ < γ2. Combining (70) with (71), we obtain

Gñ(�̃
+(n)) ≥ Gn∗(�+(n∗)) − η/3,(72)

for all n ∈ R
I+ satisfying‖n − n∗‖ < γ2. Finally, by the same kind of argument

as in the second and third paragraphs of this proof [cf. (58)–(65)], but with�

replaced by(�i : i ∈ I+(n∗)) andn replaced by(ni : i ∈ I+(n∗)), using (66), there
is γ3 ∈ (0, γ2) such that for alln ∈ R

I+ satisfying‖n − n∗‖ < γ3 and�̃ ∈ Dε , we
have

Gn∗(�+(n∗)) > Gñ(�̃) + η/2.(73)

Combining the above, we have that for alln ∈ R
I+ such that‖n − n∗‖ < γ3 and

�̃ ∈ Dε ,

Gñ(�̃
+(n)) > Gñ(�̃) + η/6.(74)

It then follows that for‖n − n∗‖ < γ3, �̃+(n) is not in Dε and it satisfies the
constraints of the optimization problem (1)–(3) withñ (or n∗) in place ofn, and
so it must be inBε. This completes the proof of the desired continuity for the case
α ∈ (0,1).

For the caseα ∈ (1,∞), for ni > 0, the term (67) is negative, and is unbounded
below as�i ↓ 0. However the choice�i = ni gives an evaluationκini/(1−α) that

converges to zero asni ↓ 0. Since
∑

i∈I+(n∗) κin
α
i

�1−α
i

1−α
is uniformly continuous as a

function of((ni,�i) : i ∈ I+(n∗)) on compact subsets of((0,∞)×(0,∞))|I+(n∗)|,
there isγ1 > 0 such that whenever‖ni − n∗

i ‖ < γ1 and‖�i − �+
i (n∗)‖ < γ1 for

all i ∈ I+(n∗), we haveni > 0,�i > 0 for all i ∈ I+(n∗) and∥∥∥∥∥
∑

i∈I+(n∗)
κin

α
i

�1−α
i

1− α
− Gn∗(�+(n∗))

∥∥∥∥∥ <
η

6
.(75)

Sincen∗
i = 0 for all i /∈ I+(n∗), there isγ2 ∈ (0, γ1) such that

−η

6
<

1

1− α

∑
i∈I+(n)\I+(n∗)

κini < 0(76)
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and ∑
i∈I+(n)\I+(n∗)

Ajini < (γ1/2) ∧ Cj for all j ∈ J,(77)

whenevern ∈ R
I+ satisfies‖n−n∗‖ < γ2. Then, for suchn, the vector�̆ ∈ R

|I+(n)|
+

defined by�̆i = ni for i ∈ I+(n) \ I+(n∗) and �̆i = �+
i (n∗) − γ1/2 for i ∈

I+(n∗), satisfies the constraints of the optimization problem (1)–(3) forn. Since
�+(n) is the optimal solution of that problem, using the same notation with tildes
as for the caseα ∈ (0,1), it follows, by the negativity of (67), that

Gñ(�̃
+(n)) ≥ Gn(�

+(n)) ≥ Gn(�̆),(78)

where, by (75) and (76),

Gn(�̆) = 1

1− α

∑
i∈I+(n∗)

κin
α
i �̆1−α

i + 1

1− α

∑
i∈I+(n)\I+(n∗)

κini(79)

≥ Gn∗(�+(n∗)) − η

6
− η

6
.(80)

The proof proceeds in the same manner as from (72) onward in the proof for
α ∈ (0,1), to show that�̃+(n) is in Bε whenevern is sufficiently close ton∗.

If α = 1 andni > 0, the term (67) becomesκini log�i , which may take positive
or negative values. Nevertheless, one can proceed in a very similar manner to
that for the caseα ∈ (1,∞), after observing that if�i = ni , then the evaluation
κini logni is negative for small enoughni and approaches zero asni ↓ 0, while
the maximum over 0≤ �i ≤ C∗ of the analogue of (67), namelyκini logC∗, also
approaches zero asni ↓ 0. It follows that there isγ2 > 0 such that forn ∈ R

I+
satisfying‖n − n∗‖ < γ2, we haveni > 0 for all i ∈ I+(n∗) and

Gñ(�̃
+(n)) ≥ Gn(�

+(n)) − η/12(81)

≥ Gn∗(�+(n∗)) − η/12− η/12− η/6.(82)

The proof can then be completed as in the caseα ∈ (1,∞). �

REMARK A.1. �i(n) may be discontinuous atn if ni = 0.

Forn ∈ R
I+ \ {0}, consider the Lagrangian

Ln(�
+,p) = Gn(�

+) + ∑
j∈J

pj

(
Cj − ∑

i∈I+(n)

Aji�i

)
,

where Gn(�
+) is defined by (4),�+ = (�i : i ∈ I+(n)) ∈ (0,∞)|I+(n)| and

p = (pj : j ∈ J) ∈ R
J+ is a vector of Lagrange multipliers. Since the optimal

solution�+(n) of (1)–(3) has strictly positive components (cf. Lemma A.1), we
can use the theory of Lagrange multipliers to characterize�+(n) as follows.
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LEMMA A.4. Fix n ∈ R
I+ \ {0}. A vector �+ = (�i : i ∈ I+(n)) is the unique

optimal solution of (1)–(3) if and only if there is p ∈ R
J+ such that

pj

(
Cj − ∑

i∈I+(n)

Aji�i

)
= 0 for all j ∈ J,(83)

∑
j∈J

pjAji > 0 for all i ∈ I+(n),(84)

�i = ni

(
κi∑

j∈J pjAji

)1/α

for all i ∈ I+(n)(85)

and ∑
i∈I+(n)

Aji�i ≤ Cj for all j ∈ J.(86)

PROOF. By Lemma A.1, all of the components of the unique optimal solution
�+(n) of (1)–(3) are strictly positive. SinceCj > 0 for eachj ∈ J, there is
�+ ∈ (0,∞)|I+(n)| satisfyingCj − ∑

i∈I+(n) Aji�i > 0 for eachj ∈ J. It follows
that Slater’s constraint qualification (cf. [8], page 236) is satisfied and so by
the necessity theory of Lagrange multipliers (cf. [15], Theorem 1, page 217),
there isp ∈ R

J+ such that�+(n) maximizesLn(�
+,p) over�+ ∈ (0,∞)|I+(n)|,

and (83) holds with�i = �+
i (n) for all i ∈ I+(n). Since�+ = �+(n) is an

interior maximum forLn(·,p), which is continuously differentiable as a function
of �+ ∈ (0,∞)|I+(n)|, it follows that

0= ∂Ln

∂�i

(
�+(n),p

) = κi

(
ni

�i(n)

)α

− ∑
j∈J

pjAji for all i ∈ I+(n).(87)

The relations (84) and (85) follow immediately from this and the strict positivity
of �+(n). Condition (86) follows from the constraints satisfied by�+(n).

Conversely, ifp ∈ R
J+ and�+ = (�i : i ∈ I+(n)) satisfy (83)–(86), then using

the strict concavity ofLn(·,p) one can verify that(�+,p) is a saddle point
of Ln(·, ·) on (0,∞)|I+(n)| × R

J+ and so by a sufficiency theorem for Lagrange
multipliers (cf. [15], Theorem 2, page 221),�+ is an optimal solution of (1)–(3)
with �i > 0 in place of�i ≥ 0 for all i ∈ I+(n). But since the optimal solution of
(1)–(3) has strictly positive components, it follows that�+ is optimal for (1)–(3).

�

REMARK A.2. Givenn ∈ R
I+ \ {0}, while the vectorp = p(n) may be non-

unique, the vector(
∑

j∈J pj (n)Aji, i ∈ I+(n)) is unique by (85) and the fact that
�+(n) is unique, by Lemma A.1.
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APPENDIX B

Fluid model solutions as fluid limits. We shall use the following representa-
tion for the Markov processN introduced in Section 4:

Ni(t) = Ni(0) + Ei(t) − Si(Ti(t)), i ∈ I, t ≥ 0,(88)

whereN(0) is a random variable taking values inR
I+ that is independent ofE,S;

E,S are independentI-dimensional processes with independent components such
that for eachi ∈ I, Ei is a Poisson process with rateνi and Si is a Poisson
process with rateµi . The sample paths of these processes are assumed to be right
continuous on the time interval[0,∞) and to have finite left limits on(0,∞).
The processT = (Ti : i ∈ I) is a continuous,I-dimensional, nondecreasing process
such that for eachi, Ti(t) represents the cumulative amount of (bandwidth)
capacity allocated to routei up to timet ; it is given by

Ti(t) =
∫ t

0
�i(N(s)) ds for i ∈ I, t ≥ 0,(89)

where the function�(·) = (�i(·) : i ∈ I) is defined as in Section 3 using the
optimization problem (1)–(3). For eachj ∈ J, let

Uj(t) = Cj t − ∑
i∈I

AjiTi(t) = Cj t − (AT (t))j , t ≥ 0.(90)

The processUj is continuous and nondecreasing, andUj(t) represents the
cumulative unused capacity for resourcej up to timet .

We develop a fluid model, which can be thought of as a formal law of large
numbers approximation for the stochastic model. For this, we consider a sequence
of stochastic systems, indexed byr → ∞, in which the initial conditions may
change withr , butE andS are kept fixed. The processesNr , Ur , T r , E, S, in the
r th system are rescaled with law of large numbers scaling to yield new processes
N

r
,U

r
, T

r
,E

r
, S

r
:

N
r
(t) = Nr(rt)/r,(91)

U
r
(t) = Ur(rt)/r,(92)

T
r
(t) = T r(rt)/r,(93)

E
r
(t) = E(rt)/r,(94)

S
r
(t) = S(rt)/r(95)

for eacht ≥ 0.
The sample paths of(T

r
,E

r
, S

r
,N

r
,U

r
) lie in the spaceD4I+J of functions

defined from[0,∞) into R
4I+J that are right continuous on[0,∞) and have

finite limits from the left on (0,∞). This space is endowed with the usual
SkorokhodJ1-topology (cf. [10]). We say that a subsequence (which may be the
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whole sequence) of{(T r
,E

r
, S

r
,N

r
,U

r
)} is tight (resp. converges weakly) if

the probability measures induced onD4I+J by the subsequence are tight (resp.
converge weakly). We say that the subsequence isC-tight if it is tight and any
weak limit point has continuous paths almost surely.

To obtain the fluid model, we formally pass to the limit asr → ∞ in the rescaled
versions of (88)–(90). In fact, we have the following theorem. For this, recall the
definition of a regular point given before Definition 5.1.

THEOREM B.1. Suppose that {Nr
(0)} converges in distribution as r → ∞ to

a random variable taking values in R
I+. Then, the sequence {(T r

,E
r
, S

r
,N

r
,

U
r
)} is C-tight, and any weak limit point (T ,E,S,N,U) of this sequence

(obtained by taking a weak limit as r → ∞ along a suitable subsequence), almost
surely satisfies the following for all t ≥ 0: E(t) = νt , S(t) = µt ,

Ni(t) = Ni(0) + νit − µiT i(t) ≥ 0, i ∈ I,(96)

Uj(t) = Cj t − (AT (t))j ≥ 0, j ∈ J,(97)

where U is nondecreasing and continuous, T is uniformly Lipschitz continuous
with a Lipschitz constant bounded by C∗ = maxj∈J Cj , and T (0) = 0. Moreover,
for a.e. sample point ω, T (·,ω) is absolutely continuous and for each regular
point t for T (·,ω), for each i ∈ I,

d

dt
T i(t,ω) =

{
�i(N(t,ω)), if i ∈ I+(N(t,ω)),

ρi, if i ∈ I0(N(t,ω)),
(98)

and (13) and (14) hold at t for each i ∈ I and j ∈ J, with n(·) = N(·,ω) there.

PROOF. For each value ofr andt ≥ 0,

T
r
(t) = 1

r

∫ rt

0
�(Nr(s)) ds =

∫ t

0
�(N

r
(s)) ds,(99)

where we have used the scaling property of Lemma A.2. Hence, since�(·)
is uniformly bounded byC∗, for each r , t → T

r
(t) is uniformly Lipschitz

continuous with a Lipschitz constant bounded byC∗. It follows immediately that
the sequence of processes{T r

(·)} is C-tight. On combining this with the assumed
convergence in distribution of{N r

(0)}, the functional weak law of large numbers
for (E,S), (88) and (90), we see that{(T r

,E
r
, S

r
,N

r
,U

r
)} is C-tight, and any

weak limit point (T ,E,S,N,U) of this sequence has the following properties:
almost surely for allt ≥ 0, E(t) = νt , S(t) = µt and (96) and (97) hold, whereU
is nondecreasing and continuous, andT is uniformly Lipschitz continuous with a
Lipschitz constant bounded byC∗, andT (0) = 0.

To prove the remaining properties claimed in the theorem, without loss of
generality, using the Skorokhod representation theorem and the fact that the sample
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paths ofT ,E,S,N,U are continuous with probability one, we may assume that
all stochastic processes under consideration are defined on the same probability
space and that almost surely

{(T r
,E

r
, S

r
,N

r
,U

r
)} → (T ,E,S,N,U) u.o.c.(100)

asr → ∞ through a sequence{rk}∞k=1. Here u.o.c. denotes uniformly on compact
time intervals.

Fix a sample pointω such that the convergence in (100) holds forω. Then,
T (·,ω) is absolutely continuous and differentiable at almost every time. Fix a
regular point t for T (·,ω). This is the same as a regular point forN(·,ω),
andU(·,ω) is differentiable there. Fori ∈ I0(N(t,ω)), Ni(t,ω) = 0 and since
Ni(·,ω) ≥ 0, we must haved

dt
Ni(t,ω) = 0, and hence, by (96),d

dt
T i(t,ω) = ρi =

νi/µi . Fori ∈ I+(N(t,ω)), Ni(t,ω) > 0 and by the continuity ofN(·,ω), there is
ε > 0 (depending ont andω) such thatNi(s,ω) > 0 for all s ∈ [t, t +ε]. By (100),
N

rk
(·,ω) → N(·,ω) uniformly on[t, t +ε] ask → ∞, and it then follows from the

continuity property of Lemma A.3 that�i(N
rk

(·,ω)) → �i(N(·,ω)) uniformly
on [t, t + ε] ask → ∞. Hence, by passing to the limit in (99) we obtain

T i(s,ω) − T i(t,ω) =
∫ s

t
�i(N(u,ω)) du for all s ∈ [t, t + ε].(101)

It follows, that d
dt

T i(t,ω) = �i(N(t,ω)), since �i(·) is continuous on{n ∈
R

I+ :ni > 0}, by Lemma A.3. Combining the above, we see that (98) holds at
a regular pointt for T (·,ω). Moreover, for eachj ∈ J, since Uj(·,ω) is a
nondecreasing function, we have

0 ≤ d

dt
Uj (t,ω) = Cj −

(
A

d

dt
T (t,ω)

)
j

.(102)

Combining (98) and (102) with (96), we see thatn(·) = N(·,ω) satisfies
(13) and (14) for eachi ∈ I andj ∈ J, at each regular pointt for N(·,ω) [which
is the same as a regular point forT (·,ω)]. �

REMARK B.1. Theorem B.1 shows that there exists a fluid model solution for
each possible starting pointn(0) ∈ R

I+. Note, however, that we are not assuming
uniqueness of fluid model solutions given the starting state.
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