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FLUID MODEL FOR A NETWORK OPERATING UNDER
A FAIR BANDWIDTH-SHARING POLICY
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University of Cambridge and University of California

We consider a model of Internet congestion control that represents the
randomly varying number of flows present in a network where bandwidth
is shared fairly between document transfers. We study critical fluid models
obtained as formal limits under law of large numbers scalings when the
average load on at least one resource is equal to its capacity. We establish
convergence to equilibria for fluid models and identify the invariant manifold.
The form of the invariant manifold gives insight into the phenomenon
of entrainment whereby congestion at some resources may prevent other
resources from working at their full capacity.

1. Introduction. Roberts and Massoulié [19] have introduced and studied
a flow-level model of Internet congestion control, that represents the randomly
varying number of flows present in a network where bandwidth is dynamically
shared between flows that correspond to continuous transfers of individual
documents. This model assumes a “separation of time scales” such that the time
scale of the flow dynamics (i.e., of document arrivals and departures) is much
longer than the time scale of the packet level dynamics on which rate control
schemes such as TCP converge to equilibrium.

Subsequent to the work of Roberts and Massoulié, assuming exponentially
distributed document sizes, de Veciana, Lee and Konstantopoulos [9] and Bonald
and Massoulié [2] studied the stabilitf the flow-level model operating under
various bandwidth sharing policies, where a bandwidth sharing policy corresponds
to a generalization of the notion of a processor sharing discipline from a
single resource to a network with several shared resources. Lyapunov functions
constructed in [9] for weighted max—min fair and proportionally fair policies, and
in [2] for weighted«-fair policies [« € (0, c0)] [17], imply positive recurrence
of the Markov chain associated with the model when the average load on each
resource is less than its capacity.
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As a mechanism for performance analysis, we propose to use critical fluid
models and related Brownian models to explore the behavior of flow-level models
operating under weighteg-fair bandwidth sharing policies in heavy traffic. We
are particularly interested in manifestations of the phenomenon of entrainment,
whereby congestion at some resources may prevent other resources from working
at their full capacity. As a first step in this exploration, in this paper we consider
critical fluid models, obtained as formal limits under law of large numbers scaling,
from the flow-level models with exponentially distributed document sizes and
operating under weighted-fair bandwidth sharing policies. The term critical
refers to the fact that the nominal (or average) load on at least one resource is
equal to its capacity, and for the other resources their nominal loads do not exceed
their capacities, see (11) and (12). We identify the invariant states for the critical
fluid models and we study the convergence to equilibria of critical fluid model
solutions as time goes to infinity. Extrapolating from results for open multiclass
gueueing networks, we conjecture that such behavior is key to establishing heavy
traffic diffusion approximations (also called Brownian models) for these flow-level
models. We indicate the natural diffusion approximations suggested by our fluid
model results.

There are several motivations for our work. One source of motivation lies in
fixed point approximations of network performance for TCP networks (cf. [7,
12, 20]). These approximations require, as input, information on the joint
distribution of the numbers of flows present on different routes, where dependen-
cies between these numbers may be induced by the bandwidth sharing mecha-
nism. Similarly, an understanding of such joint distributions seems important if
the performance models for a single bottleneck described by Ben Fredj, Bonald,
Proutiere, Regnie and Roberts [1] are to be generalized to a network. Another
motivation is that the flow-level model typically involves the simultaneous use of
several resources. With exponential document sizes, this model can be equated (in
distribution) with a stochastic processing network (SPN) as introduced by Harrison
[13, 14]. Open multiclass queueing networks are a special case of SPNs without
simultaneous resource possession. For such networks operating under a head-of-
the-line service discipline, it has been shown [5, 21] that suitable asymptotic be-
havior of critical fluid models implies a property called state space collapse, which
validates the use of Brownian model approximations for these networks in heavy
traffic. For more general SPNs, investigation of the behavior of critical fluid mod-
els, of a related notion of state space collapse, and of the implications for diffusion
approximations, are in the early stages of development. The analysis in this pa-
per can be viewed as a contribution to such an investigation for models involving
simultaneous resource possession. Finally, although we restrict to exponential doc-
ument sizes in this paper, we would like to relax that assumption in future work.
Although this involves a significantly more elaborate stochastic model to keep
track of residual document sizes (because of the processor sharing nature of the
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bandwidth sharing policy), knowing the results for exponential document sizes is
likely to be useful for such work.

In order to state our results for the fluid model and conjectures for diffusion
approximations, we need first to define the network structure, the weighfad
bandwidth sharing policy and the stochastic model. This is done in Sections 2—4.
The notion of a fluid model solution is defined in Section 5 and we state our
main results there. The proofs of these results are given in Section 6. Appendix A
develops some properties of the function that defines bandwidth allocations and
Appendix B shows that our definition of a fluid model solution is reasonable in
that fluid model solutions can be obtained as limit points of the stochastic model
under fluid (or law of large numbers) scaling.

Notation. For each positive integed > 1, R4 will denote d-dimensional
Euclidean space and the positive orthant in this space will be denot&iby
{(xeR%:x; >0fori =1,...,d}. The Euclidean norm of € R? will be denoted
by |lx||. Inequalities between vectors R’ will be interpreted componentwise,
that is, forx,y € R, x < y is equivalent tox; < y; fori =1,...,d. Given a
vectorx € RY, thed x d diagonal matrix with the entries of on its diagonal
will be denoted by diagr). For positive integerg; andda, the norm of ady x do
matrix A will be given by

di d 1/2
1Al = (ZZA%) :

i=1j=1

The set of nonnegative integers will be denotedhyand the set of points iRi
with all integer coordinates will be denoted @i A sum over an empty set of
indices will be taken to have a value of zero. The cardinality of a finites seill
be denoted bys]|.

2. Network structure. We consider a network with finitely mamgsources
labelled by € 4. A route i is a nonempty subset ¢f (interpreted as the set of
resources used by route We are given a sett of allowed routes. We assume that
4 andJ are both nonempty and finite. L&t |4 |, the total number of resources,
andl = |{|, the total number of routes. Let be theJ x | matrix containing only
zeros and ones, defined such thgt = 1 if resource; is used by routé and
Aj; =0 otherwise. Our assumption that each rauigentifies anonempty subset
of ¢ implies that no column oA is identically zero. We assume thathas rankJ,
so that it has full row rank. We further assume ttegiacities (C; : j € ¢) are given
and that these are all strictly positive and finite.

3. Bandwidth sharing policy. Bandwidth is allocated dynamically to the
routes according to the following bandwidth sharing policy, which was first
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introduced by Mo and Walrand [17]. (To see how this fits into a stochastic model
for the network dynamics, see Section 4.)

Given a fixed parameter € (0, oo) and strictly positive weightsgk; :i € {1),
if N;(t) denotes the (random) number of flows on routd timer for eachi €
and N(t) = (N;(¢):i € 1), then the bandwidth allocated to routeat time: is
given by A; (N (¢)) and this bandwidth is shared equally amongst all of the flows
on routei. The functionA(-) = (A;(-):i € 1) is defined as follows (we define it
on all of R!, as we shall later apply it to fluid analoguesiy. Let A :R!, — R,
be defined such that for eaahe RL, Ai(n)=0fori € Jo(n) ={l € 4 :n; =0},
and whend (n) = {l € 4:n; > 0} is nonempty,A*(n) = (A;(n):i € 4. (n)) is
the unique value oh ™ = (A; :i € 4 (n)) that solves the optimization problem

(1) maximizeG,(A™)

(2) subjectto Y AjiA; <Cj, jed,
iedy (n)

3) over A; >0, i €di(n),

where forn € R' \ {0} andA™+ = (A;:i € 41 (n)) e R,

A"
> Kinf’l’_ : if & € (0,00) \ {1},
(4) Gu(AT) =i ’
Z kin; logA;, if o =1,
iedy(n)

and the value of the right member above is taken to-be if o € [1, o0) and
A; =0 for somei € £, (n). The resulting allocation is calledweeighted «-fair
allocation.

Various properties of the mapping:R!, — R!, are developed in Appendix A
of this paper. In particular, for eaehe ]R'Jr:

(i) A;j(n) > 0foreach € 4 (n),
(i) A@rn) = A(n) for eachr > 0,
(i) A;(-) is continuous ak for eachi € 44 (n), and
(iv) thereisp € Ri (not necessarily unique and depending:msuch that

1/a
K .
(5) Ai(n) =n; (7) for eachi € 44.(n),
l \Xjeg pidii "
where
(6) pj(cj_ZAjiAi(n)>=o forall j € 4.
ied
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The (p;:j € ) are Lagrange multipliers for the optimization problem (1)—(3),
one for each of the capacity constraints (2). [Note that for éacli  (n), since
A;(n) > 0 [by (D] andn; > 0 (by definition), the fact that the representation (5)
holds implies thap is such that the denominator in the right member of (5) does
not vanish.]

Whenk; =1,i € {, the casesr — 0, « — 1 anda — oo correspond respec-
tively to an allocation which achieves maximum throughpupyaportionally fair
or is max—min fair [2, 17]. Weighteda-fair allocations provide a tractable the-
oretical abstraction of decentralized packet-based congestion control algorithms
such as TCP, the transmission control protocol of the Internet. Indeads=i2
andk; is the reciprocal of the square of the round trip time on rautden the
formula (5) is a version of thewverse square root law familiar from studies of the
throughput of TCP connections [11, 16, 18]. The relations (2) and (3), (5) and (6)
and more refined versions of these relations, can be solved by iterative methods to
give predictions of throughput, given the numbers of flowg) present at time
[7, 12, 20]. Given a distribution foW (¢), the overall network performance can be
predicted. But a major difficulty with this approach is the choice of the distribution
for N(r). For example, if flows arrive on different routes as independent Poisson
processes and if flows on a route remain in the system for independent and identi-
cally distributed holding periods, then the stationary distribution of the pragess
is easy to describe: the components are independent, each with a Poisson distri-
bution, whatever the distribution of holding periods. This model is indeed used
in [12] and might be appropriate for real-time flows whose time in the system is
unaffected by their allocated bandwidth. But for many flows, for example, doc-
ument transfers, their length of time in the system is affected by their allocated
bandwidth, and this may produce correlations between the componemé pof
which need to be understood. Roberts and Massoulié [19] have begun the study of
a stochastic model that captures this effect.

4. Stochasticmodel. An active flow on route corresponds to the continuous
transmission of a document through the resources used by irolitansmission
is assumed to occur simultaneously through all resources on irotitee number
of active flows on route at timer is denoted byV;(¢). The stochastic process
N = {(N1(t), ..., Ni(¢)), t = 0} is assumed to be a Markov process with state
spaceZ!, and infinitesimal transition rates: Z!, x Z!. — R given by

(7) qgn,m)=v; if m=n-+e;,
(8) qg(n,m) = pu;A;i(n) ifm=n—e, n >1,
9 g(n,m)=0 otherwise

foreachn, m e R'Jr, i € I, where, for each, v; > 0 andu; > 0 are fixed constants,
ande; is thel-dimensional unit vector whos¢h componentis 1 and whose other
components are all zero.
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This corresponds to a model where new flows arrive on réwecording to
a Poisson process of rate; for i such thatv;(¢) £ 0, A;(N(t))/N;(t) is the
bandwidth allocated to each active flow on routg timez; and a flow on route
transfers a document whose size is exponentially distributed with parameter
This is the model of Roberts and Massoulié [19] with exponential document sizes.
From the results of de Veciana, Lee and Konstantopoulos [9] and Bonald and
Massoulié [2], we know that the Markov chaMis positive recurrent if

(10) Y Ajipi < Cj, jed.
ied

wherep; = v;/u; for all i € 4. These are natural constrainis: is the average
load produced by route, and we can identify the ratio of the two sides of the
inequality (10) as theraffic intensity at resource;j. Indeed, condition (10) is
necessary for positive recurrence 8t For a proof, suppose tha& is positive
recurrent and fixj € . The virtual waiting timeV; (¢) for resourcej at timet is
the amount of time, measured from timenwards, that it would take to complete
the transfer of all of the documents that are being transmitted through respurce
at timer, assuming that external arrivals are turned off after tiprtbat is, no new
documents are accepted for transmission after tinaad that all other resources
are given infinite capacity, that i€y = +oo for all k # j, after timer. The
virtual waiting time thus measures the time it would take for resogioebecome
idle if there were no more arrivals after timeand if resourcej could work at
full capacity from times. Suppose that the network starts empty. The positive
recurrence ofV implies that the mean time for the virtual waiting time proce&ss
to return to zero (after first moving away from zero) is finite. Consider another
network with the same features as the original one, exceptGhat +oo for all
k#j.Let Vj denote the virtual waiting time process for resouj@ethis network.
When the same arrival and document size processes are used for the two networks,
V() < V;(¢) for all ¢. In particular, the mean time fdr; to return to zero must
be finite. Now,V; is equivalent in distribution to the virtual waiting time process
for a multiclass single server queueing system operating under a work conserving
service discipline. This system has one queue for éatch thatd;; = 1. The
gueue associated with suchiahas an infinite capacity buffer, Poisson arrivals at
ratev;, i.i.d. exponential service times with a mean ¢fil, and the server serves
ata maximum rate of ;. The virtual waiting time process for this queueing system
is the same for all work conserving service disciplines and it is well known that the
mean time for this process to return to zero is finite if and onlyif y A ;i p; < C;.
Since; was arbitrary, it follows that (10) must hold.

It is an open question whether, in the generalization of the above model
to allow arbitrarily (rather than exponentially) distributed document sizes, the
condition (10) is sufficient for stability.
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5. Main results. Our aim in this paper is to begin to explore the behavior of
the Markov chain{N (), r > 0} when

(11) > Ajipi <Cj, VASK S

ied
and some of the constraints are saturated, that is, some of the resources are in heavy
traffic. Thus, we henceforth assume that (11) holds and that

(12) Fe=1j€d:) Ajipi=Cjt#0.

ied
Let J. = |¢«| and without loss of generality assume that the fidst elements
of ¢ correspond to the sg,.

Here, we focus on understanding the behavior of fluid model solutions, which
can be thought of as formal limits of the stochastic pro@ésmder law of large
numbers scaling. The following notions are used in the definition below. A function
f=1,..., fi):[0,00) > RL is absolutely continuous if each of its components
fii[0,00) > R4, i=1,...,1, is absolutely continuous. Aegular point for an
absolutely continuous functiofi: [0, co) — ]R'+ is a value oft € [0, c0) at which
each component of is differentiable. [Sincef is absolutely continuous, almost
every timer € [0, co) is a regular point forf'.]

DEerFINITION 5.1. A fluid model solution is an absolutely continuous function
n:[0, 00) — R'Jr such that at each regular poinfor n(-), we have for eache J,

d i — Wi\ 1)), if n; (¢ 0,
(13) _ni(t)z{v wi\i(n(1)) I ni(t) >
dt 0, if n; (1) =0,
and for eacly € ¢,
(14) Z Ajl-Ai(n(t))-i- Z Ajipi SCj7
iedy(n() iedo(n())

whered (n(t)) ={i € L:n;(t) > 0} anddo(n(t)) ={i € L :n;(t) =0}.

Motivation for this definitia is given in Appendix B through a fluid limit result.
For the moment, we observe thatjf(z) > 0, then the right-hand side of (13) is the
infinitesimal drift of N; () whenN; (¢) > 0 [cf. (7) and (8)]. On the other hand, if
n;(t) = 0 andt is a regular point for (-), then the derivative of; (-) at¢ is forced
to be zero since; (s) > 0 for all s > 0—to see this, consider the left- and right-
hand derivatives of; (-) at¢. This property may seem counterintuitive, however,
this phenomenon is common in fluid models for queueing systems. It reflects the
fact that a fluid model solution is obtained as a (formal) law of large numbers limit
from the original stochastic model, and consequently a fluid model solution state
ne ]R'Jr, for whichn; = 0 can be the limit of rescaled states in the stochastic model
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where theth componentis at or near zero. The inequality (14) is derived from the
fact that, in the stochastic model, the cumulative unused capacity for each resource
is a nondecreasing process. As in the derivation of the differential equation (13),
some care is needed here in treating routefor which n;(z) = 0. One might
paraphrase (14) as saying that the total fluid model bandwidth allocation for each
resource cannot exceed its capacity, where the allocation to anyireatisfying
n;(t) =0 is p; at timet. For a more detailed justification, we refer the reader to
Theorem B.1 and its proof.

Following Bramson [5], we now define an invariant manifold for fluid model
solutions.

DEFINITION 5.2. A stateng € R, is called invariant if there is a fluid model
solutionn(-) such thai(¢) = ng for all 7 > 0. Let.M,, denote the set of all invariant
states. We callu(,, the invariant manifold.

The following is a simple characterization #f,, .

LEMMA 5.1. Theset of invariant states, M, iS given by

(15) (neRL 1 A;(n)=p; foralliedi(n)).

PROOF Let N, denote the set in (15). Note that, and .V, are nonempty
since they both contain the origin &, .

To show thatM, C Ny, suppose thatg € M. If ng = 0, then it follows
trivially that ng € N,. If ng # 0, then there is a fluid model solutiar-) satisfying
n(t) =ng for all t > 0 and so it follows from (13) that

(16) A;(ng) = p; foralli € 44 (no).

Conversely, to show that, c M,, suppose thatg € N,. Then, by (11),
n(t) = ng for all t > 0 satisfies (13) and (14) for alland alli € 4, j € ¢, and
son(-) is a valid fluid model solution. Heneg) is in M,. [

The following alternative characterization of the invariant states will also be
used. It is proved in Section 6.

THEOREM 5.1. A state n € R!, is an invariant state if and only if there is
qe€ ]Ri* such that

1/a
(17) n; = p; (w) forallied.
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REMARK 5.1. In fact, as examination of the proof of the above theorem
reveals, for an invariant state there is a one-to-one correspondence between
the vectorsg appearing in the above representationnofand the Lagrange
multipliers p appearing in the characterization af"(n) given in Lemma A.4
[see also (5) and (6)]. This correspondence is obtained by taking the entrges of
to be given by the entries gf with indices; € g, and noting that the other entries
in p are necessarily zero.

For each € R!, , we define the distance effrom (, as
(18) d(Mg,n) =inf{|jv —n| v e M}

The following theorem shows that, starting in any compact set, fluid model
solutions converge uniformly towards the invariant manifold. This theorem is
proved in Section 6.

THEOREMS5.2. FixR € (0, 00) and ¢ > 0. Thereisaconstant 7 . < oo such
that for each fluid model solution n(-) satisfying ||n(0)|| < R we have

(19) d(My,n(t)) <e forall 7 > Tg.

In the course of proving Theorem 5.2, in Section 6, we prove the following
(see Theorem 5.3) alternative characterization of invariant states. For this, define
w(n) = (w;j(n):j € §) forn € R\ to be given by

(20) wim =Y At jegs

icd !

We callw(n) theworkload associated with. Let

a+l
(21) F(n)_—Zv,K,,uf‘ 1( ) for allneRl_F

lel

This functionF was used in [2] as a Lyapunov function to show positive recurrence
of N under the conditions (10). Aintuitive interpretation of the functiod is

as follows. If the the number of flows on each route is fixed and given by the
components of € R , then by Little’s lawn; /v; is the mean time that a flow on
routei spends in the system and the time a flow on réwgpends in the system is
exponentially distributed with mean /v;. The (a + 1)st moment of this random
variable isI"(« + 2)(n; /v;)**1, whereI'(-) is the usual Gamma function. Thus,
givenn, F(n) can be interpreted as a weighted sum over the routes, where for
routei, the summand is the weighix; u;”‘l/(oe + DI'(x + 2) times the(a + 1)st
moment of the amount of time spent in the system by a flow on that route.
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For w € R, define A(w) to be the unique value of R!, that solves the
following optimization problem:

minimize F (n)

(22) subjectto) Ajl-n—i_ >wj, j € I
icg M
overn; >0, ield.

REMARK 5.2. SinceA has full row rank and its only entries are zeros and
ones, for eachw € Ri*, the feasible set of the optimization problem (22) is

nonempty, and then sinde is nonnegative omﬂr andF(n) — oo as||n| — oo,
(22) has an optimal solution. By the strict convexityfofthis solution is unique.

THEOREM 5.3. A vector n € R!, is an invariant state if and only if n =
A(w(n)).

The mapA :Rf — R'Jr plays an analogous role for the flow-level model of [19]
to the lifting maps occuring in Bramson’s work [3, 4] on the asymptotic behavior of
fluid models associated with multiclass queueing networks operating under certain
head-of-the-line service disciplines. It is natural to conjecture that one might
prove a state space collapse theorem for the flow-level model in an analogous
manner to that in [5], and extend the diffusion approximation results developed
for multiclass queueing networks in [21], to prove a diffusion approximation
for the flow-level model. This suggests that, under suitable rescaling and initial
conditions, a diffusion approximation for thk-dimensional workload process
W ={W () :t > 0} defined by
(23) Wi =" A N:_” . jed

ied !

is likely to be a reflecting Brownian motiow living in the workload cone
(24) Wo =AM Mo,

whereM = diag(u), A, is thed, x | matrix obtained fromd by eliminating those
rows of A that are not indexed by elementsgf, and

1/

. A

‘M(x:[neRl_’_nl:pl<M) ’
Ki

(25) J

i €4, for someg eR;},

Here the direction of reflection on the boundary surface corresponding=tc0
is the unit vector pointing in the direction of the positiyéh coordinate axis.
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Furthermore, state space collapse should yield an approximaficior N,
under diffusion scaling, wherd/ = A(W). This conjecture will be pursued in
a subsequent work.

To illustrate the conjecture, we consider the following simple example. Suppose
thatg = {1, 2} and 4 = {{1}, {2}, {1, 2}}, corresponding to a linear network with
two resources and three routes. ket (0,00),k; =pu; =1,fori =1,2,3,C; =1
for j =1, 2, andp; + p3 = p2 + p3 = 1. Then the state space for the diffusigh
is the cone

/

1
Wy = {(w1, w2) 1w1 = p1g;y”* + palqr + g2)V',

' 4 p3(g1+ q2)/*, for someg1 > 0, g2 > 0},

1
w2 = 0249,
which, for alla € (0, c0), is the same as the cone
{(w1, w2) w1 >0, wips < wp < wip3 )
pictured in Figure 1. Reflection occurs in the horizontal direction (corresponding to
resource 1 incurring idleness) on the bounding fage- w,p3. The interpretation

wWo

Wy — w2ps3

wo = wWi1pP3

{

wy

FiIG. 1. Theworkload cone W, for a network with two resources, with workloads labelled w1, w2,
and three routes, with traffic loads labelled p1, p2, p3. Under thelifting map A, points (w1, w2) on
the boundary wq = wpp3 are mapped to points (n1, no, n3), where nq = 0 (and the corresponding
q e ]R?F has g1 = 0); similarly, points (w1, w2) on the boundary wy = w103 are mapped to points
(n1,n2,n3), where np = 0 (and the corresponding ¢g € Ri has ¢ = 0).
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of this is that although there is work for resource 1 within the system, congestion
at resource 2 is preventing resource 1 from working at its full capacity. Similarly,
vertical reflection (corresponding to resource 2 incurring idleness) on the bounding
facew2 = w1p3 is interpreted to mean that congestion at resource 1 is preventing
resource 2 from working at its full capacity. Although the workload cone is the
same for alle € (0, co) in this example, this will not be the case, in general, for
higher-dimensional workloads.

6. Proofs. characterization of invariant states and convergence to the
invariant manifold.

PROOF OFTHEOREM5.1. It follows from Lemma 5.1 and the characteriza-
tion of A™(n) in terms of Lagrange multipliers given in Lemma A.4, that M,
if and only if there isp € R}. such that

Y jeg PjAji

Ki

1/a
(26) ni = p; ( ) foralli € 44 (n)

and for allj € ¢,

(27) pj (Cj - > Ajipi) =0.
i€di(n)

Note that forj € ¢ \ $«, >_jeqg Ajipi < C; and so (27) holds for such aif and
only if p; = 0. It follows that we can replacg by . andJ by J, in the above
characterization of invariant states. The characterization given in the theorem can
now be deduced as follows.

First, consider an invariant stateandi € { \ 4, (n). Thenn; = 0 and for any
J € §« suchthatd ;; > 0, we have

(28) Y Aup <) Ajup=Cj,
led (n) led

and so by (27), we must hayg = 0. On combining the above, we see that

1/a
(29) m=m(;E&£Li> foralli e .

Ki

Thus, any invariant state has the form given in (17) witk= p; for j € g..

Conversely, suppose thatis of the form given in (17) for some € R:’:. Set
pj=0forje g\ g« andp; =gq; for j € J.. Then, (26) holds immediately
with . in place of g, and so it suffices to show that and n satisfy the
complementarity condition (27) for eaghe 4. The only way that this can fail to
holdisif thereisj € g, andi € { suchtha;; > 0,A;; > 0andn; = 0. But, by the
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representation (17); = 0 implies thatg; =0 for all j € g, satisfyingA;; > 0.
Thus, (27) must hold for alf € .. O

We need some preliminary lemmas before we can prove the other characteriza-
tion of invariant states given by Theorem 5.3. For this, recall the definition of the
function F from (21) in Section 5. For any fluid model solutiar), F(n(-)) is
absolutely continuous and at each regular pofiot n(-),

d oF d
(30) EF(”(f)):ga—niE"i(t)

. Na—1
(31) = X T(E) o - maie)
iedy(n@))
(32) = ) K,-(“ "”"(t))a(i—zx,-(n(r)))
ied(n(t) Vi Hi
(33) = K(n(0)),

where, for each € R,

(34) Km= Y Ki<“i7f)a<i_Ai(n)).

icdy(n) i Hi

Indeed K (0) = 0 and forn e R!, \ {0},
(35) K(n) =VG,(AT*(n) - (AT*(n) — AT(n)),

where At (n) = (A;(n):i € 44 (n)), AT*(n) = (p;:i € 44 (n)), VG,() is the
gradient of the functior;,(-) defined in (4).

LEMMA 6.1. Thefunction K is continuous on R'Jr and
(36) K(n)<0  foreachneR!,

wherethe inequality is strict unless» is an invariant state.

PROOF The continuity ofK follows from the definition (34), combined with
Lemma A.3 and the fact that the term indexed lay the sum in (34) is small if;
is near zero, sincaA (n) is bounded.

If n=0, K(n) =0 and 0 is an invariant state. Now suppose thgt 0. Then,
by Lemma A.1,A*(n) solves the optimization problem (1)—(3) ¢® o)+,
Since AT = AT*(n) is feasible for this problem and,(A™) is concave as a
function of At € (0, o)+ with a strictly negative definite (diagonal) Hessian
matrix of second partial derivatives at each point, it follows from (35) #iat)
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is nonpositive and that it is strictly negative unless (n) = A™*(n). More
precisely, by (35) and Taylor's theorem with remainderafes A™(n) — A™*(n),
—K () =VG,(AT*(n))-v
= Gu(AT () — G (AT*()) = Fv - (V2G ) (M),

for someA lying on the line segment betweexi (n) and A™*(n) and where
(V2G,)(-) denotes the Hessian matrix f@t,(-). By the optimality ofA+(fz),
Gn.(AT(n)) > G,(AT*(n)), and by the strict negative definitenes§6fG,)(A),

it follows that the last line above is nonnegative and it is strictly positive unless

v=0.ByLemma5.1p = AT (n) — A™*(n) =0 if and only if n is an invariant
state. I

COROLLARY 6.1. At any regular point ¢ for a fluid model solution n(-), we
have

(37) %F(n(t)) =K(n(1) =0,

where the inequality is strict unlessn(z) € M.
ProoF This follows from Lemma 6.1 and (30)—(33)
Foreachm e R!,, letw(n) = (w;(n): j € g.) be defined by (20).

LEMMA 6.2. For any fluid model solution n(-), t — w;(n(t)) is a nonde-
creasing function of 7 € [0, oo) for each j € g..

ProOOF Consider a fluid model solutiom(-). Since n(-) is absolutely
continuous, then so is the linear functien(-)) of n(-). From (13) and (14)
satisfied by a fluid model solution, at a regular paifior n(-), we have for each

J € G
d
(38) Swi@)y =3 Ajilpi = Ai(@),
t .

iedy(n(®)
and (14) holds. Now, foy € .,
(39) Ci=)Y Ajipi,

ied

and on substituting this into (14) we obtain

(40) Y AjiAitn@) < ), Ajp forallje g,
ied4(n(r)) ied4(n(r))



FLUID MODEL FOR BANDWIDTH SHARING 1069

and when combined with (38) this yields
d
41 ij (n() =0 forall j € g.

Sincew; (n(-)) is obtained by integrating its almost everywhere defined derivative,
it follows thatw; (n(-)) is a nondecreasing function for eagle 7. 0O

For eachw € Rf, define F(w) to be the optimal value attained in the
optimization problem (22) and recall, from Section 5, the definitiom\¢fv) as
the optimizing value of:.

LEMMA 6.3. Thefunctions F: R — R and A:R3* — R arecontinuous.
In addition, F is a nondecreasing function, that is, if w and w are two vectors

inR}* such that w < i, then F(w) < F(ib).

PrROOFE To prove the continuity of the functiofandA, consider a sequence
{wp,m=121,2,...}in Rf converging to somev € Rf. By the growth property
of F that F(n) — oo as |n|| — oo, and the full row rank and nonnegativity
assumptions od, {A(w,,),m=1,2,...} is bounded. Let be any cluster point
of this sequence. Then,satisfies the constraints of the optimization problem (22)
and, by the continuity of, F (A(wy,,)) — F (i) ask — oo for some subsequence
{my} of {m}. By the feasibility ofi, F(n) > F(A(w)). We claim that: = A (w).

For a proof by contradiction, suppose that4 A(w). Then, by the strict
convexity of F, e = F(n) — F(A(w)) > 0, and by the continuity of, there
is § > 0 such thatF(n) < F(A(w)) + & = F@) for all n € RL satisfying
ln — Al <.

Sincew,, — w asm — oo and A has full row rank, there ig e ]R'+ such that
1A — A(w)|| <8 andA M 17 > w,, for all m sufficiently large. [Hered, is the
J. x | matrix of rankJ, obtained fromA by eliminating those rows oft that
are not indexed by, and M = diag(n).] To see this, letdT be al x J, matrix
that is a right inverse for, M1, that is,A,M~1AT = I, wherel denotes the
J.« x J, identity matrix. By the definition ofA (w), A M IAw) > w and so,
sincew,, — w asm — oo, there ism(§) sufficiently large that for alln > m(5),

)
- 1,
NARVY

where 1 denotes thel,-dimensional vector whose components are all 1's. Let
_ 8 t 3 -1, _ 8 e

u= 2\/J_*”N”A 1. Note that|lul| < 5 and A,M ™ u = ZJZIIATlll' Definen =

A(w) +ii, whereii; = |u;| fori € 4. Then e R, |A — A(w)|| = i@l = [lu]l <8

and, sinced,.M 1 has nonnegative entries,

A*M_lA(w) > Wy

AM > AM AW + AM u > wy,
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for all m > m(8), as desired.

For m > m(8), n is feasible for the optimization problem (22) witl,,
in place of w, and sinceA(w,,) is optimal for this problem, it follows that
F(n) = F(A(wp)). Hence,F (n) > limg F(A(wy,)) = F(n). But this yields a
contradiction, sincé (n) < F(n) as|ln — A(w)|| < §. Thus,n = A(w), and since
n was an arbitrary cluster point diA(w,,),m = 1,2,...}, it follows that this
sequence converges x(w), and

F(w) = F(Aw)) =lim F(A(wy)) = lim F(wy).

This implies the continuity ol andF.

The nondecreasing property Bffollows from the fact that, forw andw in Rf
satisfyingw < w, any feasible solution for the problem (22) wiihin place ofw
is feasible for the original problem witle. [

We have the following characterization of the optimal solutions of (22).

LEMMA 6.4. For each w € RY, a vector n € R! is the unique optimal
solution of (22)if and only if thereis p € Rf such that for eachi € 4,

1
Sjeq, PiAj e
Ki

(42) n = ,Oi(

and for each j € 4.,

(43) Pj(ZAjiﬂ_w]):O

icqx M
and

(44) S At =,
ier M

PROOF  Fix w e RY". Forn € R', andp € R}, let

(45) L(”ap):F(”)+ij(wj_ZAji_>-

n;
jeds ieqx M

Suppose that € R'Jr is the unique optimal solution of (22). Singehas full row

rank, no row ofA contains all zeros. Recall thadt only contains zeros and ones.

It follows that there i € R'Jr such thaty_; Aji% > w; for eachj € J,. Thus,
Slater’s constraint qualification (cf. [8], page 236) is satisfied and by the necessity
theory of Lagrange multipliers (cf. [15], Theorem 1, page 217), theyeeiﬁRf
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such thakz minimizesL(-, p) over]R'Jr and (43) holds for alj € g.. Now, L(-, p)
is continuously differentiable and so for eaich {4 we have

oL
(46) —(I’l, p) Zoa

al’l,‘
where the inequality is an equality when > 0. If n; > 0, this yields (42)
immediately. Ifn; = 0, this yields

1/
47) 0=n; >p_<Zfezc* PfAﬁ)
— "t M .

Ki

Sincep has nonnegative components, it follows that the above holds with equality.
Thus, (42) holds for ali € £. Inequality (44) holds for each € ., sincen is
feasible for (22).
Conversely, suppose thaie R'Jr andp e Rﬂ: satisfy (42)—(44). Then

oL
(48) —(n,p)=0 foralli € 4,

al’l,‘
and it follows from the strict convexity af thatx is a global minimum fod.(-, p)
over]R'Jr. By (44),n is feasible for (22) and for any other feasible ]R'+ we have

(49) F(n)=L(n,p) <L, p) < F(®),

where we have used (43), the feasibility7oénd the fact thap e R;]_*. Thus,n is
optimal for (22). O

We can now prove Theorem 5.3.

PROOF OF THEOREM 5.3. By Theorem 5.1 € R!, is an invariant state if

and only if there isp = ¢ € Ri* such that (42) holds for all € 4. Note that
if w=w), then (43) and (44) automatically hold for glle .. Thus, on
combining the above with Lemma 6.4, we see 1;In&t]RLr is an invariant state if
and only ifn is the unique optimal of (22) witlhv = w(n). The latter is equivalent
ton=A(wm)). O

For the proof of the convergence result, Theorem 5.2, we introduce the
following function H and prove some of its elementary properties. For each
ne R'Jr, let

(50) H(n) = F(n) — E(w(n)).

LEMMA 6.5. Thefunction H : RL — R iscontinuous. Furthermore, it is zero
on the set of invariant states, M, and it is strictly positive on ]R'+ \ My
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PrROOF The continuity ofH on RL follows from the facts thaf' is clearly
continuous, F is continuous by Lemma 6.3 and the linear functier-) is
continuous.

Sincen € RL is feasible for (22) withw = w(n), we haveF (n) > F(w(n)) and
henceH (n) > 0. FurthermoreH (n) = 0 if and only if n is the optimal solution
for (22) with w = w(n), that is, if and only ifn = A(w(n)). The latter occurs if
and only ifn is an invariant state by Theorem 5.3]

LEMMA 6.6. For any fluid model solution n(-), t — H(n(t)) isanonincreas-
ing function of ¢ € [0, co).

PrROOF By Corollary 6.1,F(n(¢)) = F(n(0)) + [é K(n(s))ds is a nonin-
creasing function of, and, by the combination of Lemmas 6.2 and &8y (n(¢))
is a nondecreasing function of and so it follows thatH (n(¢)) = F(n(t)) —
F(w(n(t))) is a nonincreasing function of O

REMARK 6.1. A stronger form of Lemma 6.6, which shows tl&n(r)) is
strictly decreasing at times whengr) ¢ M, will be developed and used in the
proof of Theorem 5.2 given below.

PROOF OFTHEOREM5.2. FixR € (0, 00) ande > 0. Let
F(R)=supF():veR', ||v]| <R}

Since F is continuous oriRL, F(R) is finite. For any fluid model solution(-)
satisfying||n(0)|| < R, on integrating (37) we see that(n(¢)) < F(n(0)) for all

t > 0. The fact thatF (n) — oo as||n| — oo implies that there is a closed ball
B (depending orR) in ]R'+ that is centered at the origin and of finite radius such

that F (v) > F(R) for all v € B¢, whereB¢ denotes the complement 8fin RL.
Combining the above, we see that for any fluid model solutién satisfying
In(0)|| < R, we haven(r) € B for all r € [0, 00).

Let

(51) D={veB:d(My,v)>c¢}

Note thatD depends orR ande. By Lemma 6.5, the functiof is continuous
and strictly positive on the compact get It follows thaté = inf{H (v):v € D} is
strictly positive, and the séd = {v € B: H(v) > §} containsD. Moreover, since
H is zero onM,, D does not mee(,,.

Consider a fluid model solution(-) satisfying||n(0)|| < R. LetT (n) = inf{r >
0:n(t) ¢ D}. Sincen(-) remains inB for all time, it follows that if 7 (1) < oo,
thenn(-) exits D by violating the constraini (n(-)) > 8. Then, sinced (n(-)) is a
nonincreasing function (by Lemma 6.6), it follows that) ¢ D for all t > T (n).
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Consequently, sinc® C DLwe haved (Mg, n(1)) < ¢ for all > T (n). We now
develop an upper bound di(n). For 0< ¢ < T (n),

(52) Hn(t)) — H(n(0)) < F(n(t)) — F(n(0)
t
(53) :/C; Kn(s))ds,

where we have used the nondecreasing property (@f(n(-))) for the first line,
and Corollary 6.1 for the second line. By Lemma &Lis continuous and strictly
negative off the manifoldM,. It follows that there isCg . > O such thatk is
bounded above by-Cg . on the compact seb which does not meew,,. Then,
the above yields

(54) T(n) < Hr/CR.e,

whereHg = supH (v): ||v]| < R} < oo, and the desired result follows ]
APPENDIX A

Properties of the bandwidth sharing policy. For eachn € R'Jr \ {0} and
At e R'j_l*(”)‘, recall the definition of5,, (A ™) from (4).

LEMMA A.1. For each n € ]R'+ \ {0}, there is a unique optimal solution
At(n) = (A;:i € 44.(n)) of (1)3); each of its components is strictly positive
and uniformly bounded by C* = max;c4 C;.

PROOR Fix n € R \ {0}. If « € (0, 1), the objective functionG,(A™) is
continuous and strictly concave as a function/of = (A;:i € 4,.(n)) on the
compact set

(55) {At:A;>0foralliedy(n), > AjiA;<C;foralljedt.

iedy(n)

It follows that the maximum of the objective function is achieved on this set, and
by the strict concavity, the maximizing point is unique. Furthermore, since the
derivative of the objective function with respectAq diverges to+oo asA; | 0

for eachi € {4 (n), the maximizing point must have strictly positive components,
that is, the maximum cannot occur with one of thg i € 44 (n), equal to zero.

For o € [1, 00), by convention, the objective function takes the valueo
wheneverA; = 0 for somei € 4 (n). Thus, any optimal solution to (1)—(3) has
all components strictly positive. In fact, if we let= min;cq C;/|4|, then the
|44 (n)|-dimensional vector* with all components set equal tosatisfies the
constraints in (1)—(3). By combining the fact that the feasible set for (1)—(3) is
bounded with the fact that the objective function diverges-te asA; — 0 for
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anyi € 4. (n), we may conclude that thereds> 0 such that foralA™ = (A; :i €
I4(n)) satisfying the constraints in (1)—(3) and such that< § for at least one
i € 4.(n), we haveG, (A1) < G,(A1). It follows that any optimal solution of
(1)—(3) must be in the compact set

(56) Atis<aiforalliedi(n), > AjAi<Cjforalljedt.

iedy(n)

Since the objective function is continuous and strictly concave on this compact set,
it has a unigue maximum there, which is the optimal solution of (1)—(3).

Since for eachi € £, there isj € ¢, such thatd ;; = 1, it follows thatA;“(n) <
C*=maxjcg C; foralli e 4, (n). O

In the following lemmasA :RLr — R'Jr is as defined in Section 3.
LEMMA A.2. Fixne Rl—i-' Then, A(rn) = A(n) for all r > 0.

PROOF Fix r > 0. Note thatl;(n) = 4. (rn) and soA;(n) = A;(rn) =0
for all i € 4o(n) = 4\ 44(n). Also, for AT e RI*™1 G, (AT) = r*G,(A™)
[for all @ € (0, 00)], and since the constraints in (1)—(3) do not involegit
follows that the optimal solutiom* (rn) for the objective functiorG,,(-) is the
same as the optimal solutioh™ (n) for the objective functiorG, (-), and hence
AT(rn)=ATn). O

LEMMA A.3. For eachi € 4, theith component A;(-) of the function A(-) is
continuouson {n € R, :n; > 0}.

PROOF We first prove continuity oA () atn™* € ]R'+ satisfyingn; > 0 for all
i € 4. Inthis case{,(n*) = 4 and, by Lemma A.1, the optimal solutiax(n*) to
the problem (1)—(3) witlk = n* has all components strictly positive. Giver- 0,
let B, be a nonempty open ball that is centered& ™), that has radius less than
or equal tos and that is a positive distance from the boundary of the orﬂﬁé;nt
Let D, denote the compact set of € R'Jr that satisfy the constraints of (1)—(3)
with n = n™* there and that are outside Bf.

We claim that there ig > 0, 8 € (0, minl_, n¥) andé > 0, such that

(57) Gur(A) < G (A(n™)) — 1 forall A € D,
and
(58) Gn(A) < Gps(A(n") — /2,

wheneven e ]R'+ satisfiedln —n*|| < g andA € D, is suchthat\; < é for at least
onei € . (Note that:; > 0 for alli when|ln —n*|| < 8.) The first inequality (57)
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can be proved by contradiction. For if (57) does not hold for sgme0, then for
each positive integel, there isA* € D, such that

(59) G (A% > G (A(*)) — 1/ k.

By the compactness db,, there isA € D, such thatf A%} converges ta\ along
some subsequence.dfe (0, 1), then by the continuity of5,+(-) on [0, co) in
this case, it follows on passing to the limit in (59) that«(A) > G, (A(n*)),
which contradicts the uniqueness of the optimunw™). If « € [1, 00) and
A € (0, 00)!, then the continuity 06,,+(-) on (0, o) yields a contradiction in the
same manner as for € (0, 1). Finally, if « € [1, c0) andA; =0 for somei € J,
then sinceA® — A; along some subsequenceid$, eitherx;n?log A¥ — —oo
(f « =1) or k;(nH)*(AHY*/(1 — «) - —oco (if @ > 1), along this same
subsequence. The other terms (indexed $yi) in the sum constitutings .« (A*)
are either bounded (if\; # 0) or go to—oo (if A; = 0) ask — oo along the
subsequence. Consequently,: (A¥) — —oco ask — oo along the subsequence,
which contradicts (59). Now we show the result pertaining to (58).oFer0, 1),

it follows from the uniform continuity ofG,,(A) as a function of(n, A) on any
compact subset 4, c0)' x [0, co)! that there is8 € (0, min!_, n¥) such that

Gn(A) <Gp=(N) +1/2
for all n e R'Jr satisfying |ln — n*|| < 8 and A € D,. Inequality (58) follows
immediately from this together with (57). Far= 1 and fixeds < (0, min}:l ny),

if n e R!, satisfies|n —n*|| < B, 8 € (0,1), A € D, andi € 4 such thatA; <,
then we have

(60) Gn(A) =) _Kinjlog A
led
(61) <«ki(nf —B)logs + Y _ki(n} + B)log(C* v 1),

I#i
where C* = max;cq C;. Sincen; — B > 0, by the definition ofg, the last line
above goes te-oo asd — 0. As there are only finitely many indicéss 4 and
the right member of (58) does not vary withor A, it follows that for any
fixed g € (0, minj_, n}), there is§ € (0, 1) such that whenever € R, satisfies
ln —n*|| < B, A € D, andA; < 8 for somei € £, then (58) holds. A similar proof
of (58) holds fora € (1, co), with the exception that (61) is replaced with

51—0[
R
SinceG,(A) is uniformly continuous as a function @&, A) on any compact

subset 0f(0, 00)! x (0,00)', there isy € (0, 8/2) such that for alln € R,
satisfying|ln — n*|| <y andA € D, satisfyingA; > § for all i € £, we have

(63) Gn(A) < Gpe(A) +1/2

(62) Gn(A) <ki(nj — B)*
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and
(64) Gn(A(n™)) > Gu=(A(n*)) —n/2.

Combining (57) and (58) with (63) and (64), we see that fomaeiIRLr satisfying
ln —n*|| <y andallA € D., we have

(65) Gn(A) < Gp+(A(n™) —n/2 < Gp(A(n™).

It follows that for alln R'Jr satisfying|ln —n*|| <y, the optimal solutiom (n) of
(1)—(3) must lie withinB,, and hence must be no more than distanftem A (n™*).
Hence,A(+) is continuous at*.

Next, considem™ e R'Jr \ {0} such thatn; = O for at least one. We will
show that as a function of, (A;(n),i € 4+ (n*)) is continuous at = n*. Small
perturbations: of »n* that only involve changes to the strictly positive components
of n* can be handled in a similar manner to that in the first three paragraphs of
this proof. It is perturbations for whiclh (rn) # 4 (n*) that require additional
argument, which we give below. For fixed> 0, let B, be a nonempty open ball
in R'j_”("*)‘ that is centered ah™(n*) = (A;(n*):i € 4, (n*)), that has radius
less than or equal te and that is a positive distance from the boundary of the
orthantR+ ! Let D, denote the set ok e B!+ that satisfy the constraints
of (1)—(3) withn = n* there and that are outside 8. In a similar manner to

that for (57), by the strict concavity af,«(-) on the interior of[&’if*("*)l and its

behavior near the boundaryRﬁ”(”*)‘, there isn > 0 such that
(66) G+ (A) <Gu=(AT(n*) —n  forall A € D,.

We now need separate arguments for the cased, o > 1 anda = 1.
We first considerx € (0, 1). For a vectorn € ]R'+ such thatn; > 0 for all

i € 4 (n*),the vectorA*(n*) € R'ff“n*)‘ can be extended, by the addition of zero

components, to a feasible vectormllf“")' for the optimization problem (1)—(3)
associated with. Using the fact that
l1-«

(67) Kking 1 ’_ "

is zero whenA; = 0 anda € (0, 1), it follows that the optimal solutiom ™ () of
the optimization problem (1)—(3) satisfies

(68) Gu(AF(n) = Ga(A* (")),

wheren is the vector inIE@'Jr obtained by resetting the entries inindexed by

i€dy(n)\ dy(n*) to zero. LetA*(n) denote the vector iﬁ%lj_l“"*)‘ consisting of
the components ok *(n) indexed byi € £, (n*). Then,

3 Aﬁ— -«
69) G AT =Gi(ATmn+ Y mé"%-

i€l (M\dy (1)
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Since (67) tends to zero as — 0, uniformly for A; € [0, C*], there isy; > 0
such that whenevelin — n*| < y1, we haven; € (0, oo) for all i € 4 (n*) and the
sum on the right-hand side of (69) is less thgi. Combining this with (68), we
see that foffjn — n*|| < y1,

(70) Gi(AT(n) > Gi(AT(n*)) — n/6.

+ /o %\ 1—a
By the uniform continuity of G;(AT(n*)) = et (%) K,‘Il?% as a

function of (n; :i € 44 (n*)) on compact subsets @0, co)t+")l there isy» €
(0, y1) such that

(71) IGi(AT(1*) — Gur (AT (™) < n/6,
wheneveln — n*| < y». Combining (70) with (71), we obtain
(72) Gi(AT(n) > G+ (AT (n*)) — /3,

forall n R'Jr satisfying|ln — n*|| < y». Finally, by the same kind of argument
as in the second and third paragraphs of this proof [cf. (58)—(65)], but Avith
replaced by(A; :i € 4+ (n*)) andn replaced by(n; :i € 44+ (n*)), using (66), there
is y3 € (0, y2) such that for al € R!, satisfying|ln —n*|| < y3 andA € D, we
have

(73) G+ (AT (n*) > G (A) +1/2.

Combining the above, we have that for alk ]R'+ such that||n — n*|| < y3 and
Ae D,,

(74) Gi(AT(n)) > Gi(A) +n/6.

It then follows that for|ln — n*|| < y3, AT(n) is not in D, and it satisfies the
constraints of the optimization problem (1)—(3) with(or n*) in place ofn, and
so it must be inB,. This completes the proof of the desired continuity for the case
ae(0,1).

For the case € (1, c0), for n; > 0, the term (67) is negative, and is unbounded
below asA; | 0. However the choica; = n; give? an evaluatior;n; /(1—«) that

convergesto zero ag | 0. SiNCEY ;g , (=) kilt; 11’_0[ is uniformly continuous as a
function of ((n;, A;):i € 44 (n*)) on compact subsets 60, 0o) x (0, 00))!4+)1,
there isy1 > 0 such that whenevelin; — n}|| < y1 and||A; — Al.+(n*)|| <y for
alli e {4 (n*), we haven; > 0, A; > 0foralli € 4+ (n*) and
Al
Y kini—— — G (AT (n"))
1«

iedy(n®)

U
< =.

(75)

Sincen} =0 for alli ¢ 4, (n*), there isy; € (0, y1) such that

1
(76) —Q < — Z Kin; < 0

6 1oy e
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and

(77) > Ajni<(n/AC;  foralljeg,

i€l (M\L4(n*)
wheneven e R'Jr satisfieg|n —n*|| < y». Then, for such, the vectorA e R'j_”(")'
defined byA; = n; for i € 41(n) \ 4+ (n*) and A; = A (n*) — y1/2 for i €
J4(n*), satisfies the constraints of the optimization problem (1)—(3):fd8ince
AT (n) is the optimal solution of that problem, using the same notation with tildes
as for the case € (0, 1), it follows, by the negativity of (67), that
(78) Gi(AT () = Gu (AT () = Gu(D),

where, by (75) and (76),

. 1 oy 1
(79) G,(A) = f Z K,'n?Al-l 4+ PR Z Kinj
iedy(n®) Y iety m\d4 )
(80) = G (At () — 3 — 2.

The proof proceeds in the same manner as from (72) onward in the proof for
« € (0, 1), to show thatA *(n) is in B, whenevem is sufficiently close ta*.

If « =1 andn; > 0, the term (67) becomesn; log A;, which may take positive
or negative values. Nevertheless, one can proceed in a very similar manner to
that for the case € (1, o), after observing that if\; = n;, then the evaluation
kin;logn; is negative for small enoughy and approaches zero as| 0, while
the maximum over & A; < C* of the analogue of (67), nametyn; logC*, also
approaches zero ag | 0. It follows that there ig» > 0 such that fom € R'Jr
satisfying|ln — n*|| < y2, we haven; > 0 for alli € 4, (n*) and

(81) Gi(AT(n) > G, (AT (n)) —n/12
(82) > Gy (AT (n*)) —n/12—1n/12— /6.

The proof can then be completed as in the easg1, co). O
REMARK A.1. A;(n) may be discontinuous atif n; = 0.

Forn € ]R'+ \ {0}, consider the Lagrangian

Ly(AT. p)=Gu(AT)+ D pj (C{,- -y A,-,-A,-),
j€d iedy(n)
where G, (A1) is defined by (4),AT = (A;:i € 4.(n)) € (0, 00)+™! and
p=(pj.jed € ]Rﬂr is a vector of Lagrange multipliers. Since the optimal
solution A™(n) of (1)—(3) has strictly positive components (cf. Lemma A.1), we
can use the theory of Lagrange multipliers to charactekiz¢n) as follows.
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LEMMA A.4. Fixn e Rl \ {0}. Avector AT = (Al i € 44 (n)) isthe unique
optimal solution of (1)+3) if and only if thereis p R % such that

(83) p;(Cj - > AjiAi) =0 foraljeg,
icdy(n)
(84) Z pjAji>0 for all i € 44 (n),
jed
s 1/a
(85) A; :n-<7l) forall i € 44 (n)
I\ X jeg piAji "
and
(86) Z AjiAiSCj for alljegl
icdi(n)

PrROOF BylLemma A.1, all of the components of the unique optimal solution
AT (n) of (1)—(3) are strictly positive. Sinc€; > 0 for eachj € ¢, there is
AT € (0, 00)+™l satisfyingC; — Yy, () Aji Ai > 0 for eachj € g. It follows
that Slater’s constraint qualification (cf. [8], page 236) is satisfied and so by
the necessity theory of Lagrange multipliers (cf. [15], Theorem 1, page 217),
there isp € RY. such thatA*(n) maximizesL, (A, p) over A* € (0, oo)4+®),
and (83) holds withA; = A (n) for all i € £,(n). Since AT = A*(n) is an
interior maximum forL,, (-, p), which is continuously differentiable as a function
of A1 e (0, co)H+™I it follows that

ALy, 4 ,
(87) 0= 34, (A" (n), p) = (A( )) %p] ji foralliedy(n).
The relations (84) and (85) follow immediately from this and the strict positivity
of AT (n). Condition (86) follows from the constraints satisfied®y (n).
Conversely, ifp € Rﬂr andAt = (A;:i € 44 (n)) satisfy (83)—(86), then using
the strict concavity ofL,(-, p) one can verify that(A, p) is a saddle point
of L,(-,-) on (0, 00)+®! x R and so by a sufficiency theorem for Lagrange
multipliers (cf. [15], Theorem 2, page 221A," is an optimal solution of (1)—(3)
with A; > 0in place ofA; > 0 for alli € 4. (n). But since the optimal solution of
(1)—(3) has strictly positive components, it follows tht is optimal for (1)—(3).
]

REMARK A.2. Givenn € ]R'+ \ {0}, while the vectorp = p(n) may be non-
unique, the vecto(y" ;.4 p;j(n)Aji, i € J4+(n)) is unique by (85) and the fact that
AT (n) is unique, by Lemma A.1.
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APPENDIX B

Fluid model solutions asfluid limits. We shall use the following representa-
tion for the Markov proces® introduced in Section 4:

(88) N;i(t) = Ni(0) + Ei (1) — Si(T; (1)), i€d, 1=0,

whereN (0) is a random variable taking valuesmﬁ+ that is independent of, S;

E, S are independentdimensional processes with independent components such
that for eachi € £, E; is a Poisson process with rate and S; is a Poisson
process with rate;. The sample paths of these processes are assumed to be right
continuous on the time intervd@0, oo) and to have finite left limits or{0, co).

The proces® = (T; :i € 4) is a continuoud,-dimensional, nondecreasing process
such that for eachi, T;(¢) represents the cumulative amount of (bandwidth)
capacity allocated to routeup to timetz; it is given by

(89) T; (1) :/Ot A;(N(s))ds foried, t >0,

where the functionA(-) = (A;(-):i € 4) is defined as in Section 3 using the
optimization problem (1)—(3). For eaghe ¢, let

(90) Uj(l‘)ICJ'Z—ZAJ,'T}(Z)ICJ'Z—(AT(Z‘))J', t>0.

ied
The processU; is continuous and nondecreasing, abid(s) represents the
cumulative unused capacity for resourcap to times.

We develop a fluid model, which can be thought of as a formal law of large
numbers approximation for the stochastic model. For this, we consider a sequence
of stochastic systems, indexed by~ oo, in which the initial conditions may
change withr, but E and S are kept fixed. The process¥s$, U, T", E, S, in the
rth system are rescaled with law of large numbers scaling to yield new processes
N U, T"E",S":

(91) N'(ty=N"(rn)/r,
(92) U'(t)=U"@1)/r,
(93) T (O)=T"(r1)/r,
(94) E'(t)=E@n/r,
(95) S"(y=Srn/r
for eachr > 0.

The sample paths g ", E",S",N",U") lie in the spaceD™®*J of functions
defined from[0, o) into R¥*+J that are right continuous ofD, co) and have
finite limits from the left on (0, o). This space is endowed with the usual
SkorokhodJ;-topology (cf. [10]). We say that a subsequence (which may be the
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whole sequence) o7’ ,E',S",N',U")} is tight (resp. converges weakly) if
the probability measures induced @f'+J by the subsequence are tight (resp.
converge weakly). We say that the subsequende-iight if it is tight and any
weak limit point has continuous paths almost surely.

To obtain the fluid model, we formally pass to the limitras> co in the rescaled
versions of (88)—(90). In fact, we have the following theorem. For this, recall the
definition of a regular point given before Definition 5.1.

THEOREMB.1. Supposethat {N' (0)} convergesin distribution as r — oo to
a random variable taking values in R',. Then, the sequence {(T",E',S",N",

U")} is C-tight, and any weak limit point (7,E,S,N,U) of this sequence
(obtained by taking a weak limit as » — oo along a suitable subsequence), almost

surely satisfies the following for all ¢+ > 0: E(¢) = vt, S(t) = ut,

(96) Ni(t) =N;(0) +vit — u; T;(t) = 0, i€,

(97) U;jt)=Cjt—(AT(1)); >0, ji€d,

where U is nondecreasing and continuous, 7 is uniformly Lipschitz continuous

with a Lipschitz constant bounded by C* = max;<4 C;, and T (0) = 0. Moreover,
for a.e. sample point w, 7(-, w) is absolutely continuous and for each regular

point ¢ for T (-, ), for eachi e 4,
A (N(t, w)), ifi e I (N(t,w)),

d .
08 —T; N
(98) aliee=y if i € Lo(N (1, ),

and (13)and (14)hold at ¢ for eachi € £ and j € g, withn(-) = N(-, w) there.
PrRoOOFE For each value of andr > 0,

(99) T () = }/rtA(N’(s))ds =/tA(N’(s))ds,

where we have used the scaling property of Lemma A.2. Hence, sirioe
is uniformly bounded byC*, for eachr, r — T'(¢) is uniformly Lipschitz
continuous with a Lipschitz constant boundedds¥; It follows immediately that
the sequence of procesd@s (-)} is C-tight. On combining this with the assumed
convergence in distribution ¢V’ (0)}, the functional weak law of large numbers
for (E, S), (88) and (90), we see that7 ', E',S",N",U")} is C-tight, and any
weak limit point (T, E, S, N, U) of this sequence has the following properties:
almost surely for alt > 0, E(t) = vt, S(t) = ut and (96) and (97) hold, wheig
is nondecreasing and continuous, dhés uniformly Lipschitz continuous with a
Lipschitz constant bounded iy, and7 (0) =

To prove the remaining properties claimed in the theorem, without loss of

generality, using the Skorokhod representation theorem and the fact that the sample
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paths ofT, E, S, N, U are continuous with probability one, we may assume that
all stochastic processes under consideration are defined on the same probability
space and that almost surely

(100) (T")E",S""N",U"))— (T,E,S,N,U) u.o.c.
asr — oo through a sequendey 2 ;. Here u.o.c. denotes uniformly on compact
time intervals.

Fix a sample pointy such that the convergence in (100) holds érThen,
T(-,w) is absolutely continuous and differentiable at almost every time. Fix a
regular points for T(-,w). This is the same as a regular point (-, ),
and U (-, w) is differentiable there. For € 4o(N (¢, w)), N;(t,w) = 0 and since
N;i(-, ) = 0, we musthaveL N, (, w) = 0, and hence, by (96%-T'; (¢, ) = p; =
v; /ui. Fori € 44 (N(t,)), N;(t, w) > 0 and by the continuity oN (-, ), there is
e > 0 (depending on andw) such thatV; (s, w) > 0 forall s € [¢, t +¢]. By (100),
N™(-,w) = N(-, w) uniformly on[z, t +¢] ask — oo, and it then follows from the
continuity property of Lemma A.3 thak;(N'“(-, w)) = A;(N(-, w)) uniformly
on|t,t + ] ask — oco. Hence, by passing to the limit in (99) we obtain

pR— JR— S JR—
(101) T;(s,0)—T;(t, w) :/ Ai(N(u,w))du foralls € [, 7 + ¢].
t
It follows, that %T,-(t,a)) = A;(N(t,w)), since A;(-) is continuous on{n e
]R'Jr:ni > 0}, by Lemma A.3. Combining the above, we see that (98) holds at

a regular point: for 7(-,w). Moreover, for eachj € ¢, sinceU;(-,w) is a
nondecreasing function, we have

d— d—
(102) 0< EU]'(I‘,Q))=C]’—(AET(Z’,(,()))/..
Combining (98) and (102) with (96), we see that) = N(-,w) satisfies

(13) and (14) for eache { and; € ¢, at each regular pointfor N(-, w) [which
is the same as a regular point fb(-, w)]. O

REMARK B.1. Theorem B.1 shows that there exists a fluid model solution for
each possible starting point0) ]R'Jr. Note, however, that we are not assuming
uniqueness of fluid model solutions given the starting state.
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