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EXACT ASYMPTOTICS FOR FLUID QUEUES FED BY
MULTIPLE HEAVY-TAILED ON–OFF FLOWS

BY BERT ZWART, SEM BORST AND MICHEL MANDJES

Eindhoven University of Technology and CWI

We consider a fluid queue fed by multiple On–Off flows with heavy-
tailed (regularly varying) On periods. Under fairly mild assumptions, we
prove that the workload distribution is asymptotically equivalent to that in
a reduced system. The reduced system consists of a “dominant” subset of the
flows, with the original service rate subtracted by the mean rate of the other
flows. We describe how a dominant set may be determined from a simple
knapsack formulation.

The dominant set consists of a “minimally critical” set of On–Off flows
with regularly varying On periods. In case the dominant set contains just
a single On–Off flow, the exact asymptotics for the reduced system follow
from known results. For the case of several On–Off flows, we exploit a
powerful intuitive argument to obtain the exact asymptotics. Combined with
the reduced-load equivalence, the results for the reduced system provide a
characterization of the tail of the workload distribution for a wide range of
traffic scenarios.

1. Introduction. Over the past few decades, fluid models have gained strong
ground as a versatile approach for analyzing burst-scale traffic behavior. The basic
model is that of several On–Off sources, each alternating between activity phases
(commonly referred to as bursts) and silence periods. When active, each source
generates traffic at some constant rate.

Classical papers of Anick, Mitra and Sondhi [2] and Kosten [24] considered
a queue fed by the superposition of several homogeneous On–Off sources with
exponentially distributed activity and silence periods. Subsequent work extended
the model in various directions, such as heterogeneous source characteristics,
several source states to account for various activity levels, or activity periods
with a general Markovian structure; see, for instance, [25, 38]. Under traditional
statistical assumptions, it turns out that the tail of the backlog distribution typically
exhibits exponential decay.

In recent years, empirical findings have triggered a strong interest in fluid
models with non-Markovian activity periods. Extensive measurements indicate
that bursty traffic behavior may extend over a wide range of time scales,
manifesting itself in long-range dependence and self-similarity; see [26, 33]. The
occurrence of these phenomena is commonly attributed to extreme variability and
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heavy-tailed characteristics in the underlying activity patterns (connection times,
file sizes, scene lengths); see [5, 13, 39]. Fluid queues with heavy-tailed activity
periods provide a natural paradigm for capturing these characteristics. We refer to
[10] for a survey.

Although the presence of heavy-tailed traffic characteristics is widely ac-
knowledged, the practical implications for network performance and traffic en-
gineering remain to be fully resolved. Analytical studies show potentially dra-
matic performance repercussions for infinite buffers. For moderate buffer sizes,
though, the impact of heavy-tailed traffic characteristics is not as pronounced; see
[18, 20, 30, 37]. For larger buffer sizes, flow control mechanisms play a critical
role in preventing badly behaved traffic from overwhelming the buffer content;
see [3]. However, the amount of backlogged traffic at the user, and thus the end-to-
end quality-of-service, may still be significantly affected by heavy-tailed activity
patterns.

The effect of heavy-tailed traffic characteristics on buffer behavior also crucially
depends on the relative amount of heavy-tailed traffic, in particular whether or
not activity of heavy-tailed flows alone can cause the buffer to fill. Asymptotic
bounds in [15] indeed show a sharp dichotomy in the qualitative behavior of the
workload, depending on whether the mean rate of the light-tailed flows plus the
peak rate of the heavy-tailed flows exceeds the link rate or not. In case the link rate
is larger, the workload distribution has light-tailed characteristics, whereas the link
rate being smaller results in heavy-tailed characteristics. The exact asymptotics
for the former case were recently obtained in [7]. For the latter case, the bounds
of [15] indicate that one can usually identify a “dominant” set, which is a minimal
set of flows that can cause a positive drift in the buffer. As far as bounds are
concerned, all other flows can essentially be accounted for by subtracting their
aggregate mean rate from the link rate. Somewhat related notions are developed
in [27] in the setting ofM/G/∞ input with heterogeneous sessions. Exact results,
however, have remained elusive for all but a few special cases. Results of Agrawal,
Makowski and Nain [1] show that the dominance principle described above in fact
extends to the exact asymptotics in the case of asingle dominant flow. This may be
expressed in terms of a “reduced-load equivalence,” implying that the workload is
asymptotically equivalent to that in a reduced system. The reduced system consists
only of the dominant flow, with the link rate subtracted by the aggregate mean rate
of all other flows. This extends results of Boxma [9], Jelenković and Lazar [22]
and Rolski, Schlegel and Schmidt [36] for multiplexing a single (intermediately)
regularly varying flow with several exponential flows. Related results are derived
in [22, 35] in the context ofM/G/∞ input. Like the reduced-load equivalence,
however, all these results rely on the assumption that a single active flow is
sufficient for a positive drift in the buffer.

In the present paper we determine the exact asymptotics for the case where
several On–Off flows must be active for the buffer to fill (under the assumption
that the distribution of the On periods is regularly varying [6]). From a practical
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perspective, this case appears particularly relevant, as the peak rate of a single
flow is usually substantially smaller than the link rate. However, the rather
subtle interaction of several flows that is involved in filling the buffer drastically
complicates the analysis, reflecting the sharp demarcation in known results
described above. We start with extending the reduced-load equivalence to the case
of a reduced system consisting of several flows, using sample-path arguments. We
then build on a qualitative understanding of the large-deviations behavior to obtain
the exact asymptotics for the reduced system. This part of the analysis is related
to recent work of Resnick and Samorodnitsky [35] on fluid queues withM/G/∞
input.

The remainder of the paper is organized as follows. In Section 2, we present
a detailed model description. In Section 3, we give a broad overview of the
main results of the paper, and describe how the dominant set may be determined
from a simple knapsack formulation. Section 4 gives some preliminary results.
The reduced-load equivalence result is established in Section 5. Section 6 develops
the detailed probabilistic arguments involved in deriving the tail asymptotics
for the reduced system. In Section 7, we discuss the relationship between the
asymptotic regime considered here (“large buffers”) and a “many-sources” regime.

2. Model description. We first present a detailed model description. We
consider a queue with unit capacity (i.e., working at unit speed) fed by several
flows indexed by the setI. For any subsetE ⊆ I, denote byAE(s, t) :=∑

i∈E Ai(s, t) the aggregate amount of traffic generated by the flowsi ∈ E during
the time interval(s, t]. Denote byρE := ∑

i∈E ρi the aggregate traffic intensity of
the flowsi ∈ E (as will be specified in detail below). We assumeρ := ρI < 1 for
stability.

For anyc ≥ 0, E ⊆ I, defineV c
E(t) := sup0≤s≤t {AE(s, t) − c(t − s)} as the

workload at timet in a queue of capacityc fed by the flowsi ∈ E [assuming
V c

E(0) = 0]. Forc > ρE , let Vc
E be a random variable with the limiting distribution

of V c
E(t) for t → ∞. In particular,V (t) := V 1

I (t) is the total workload, and
V := V1

I is a random variable with the limiting distribution ofV (t) for t → ∞.
We assume the flows may be partitioned into two sets:I1 is the set of “light-

tailed” flows;I2 is the set of “heavy-tailed” flows. For the flowsi ∈ I1 we make
the following assumption.

ASSUMPTION2.1. For anyc > ρI1, µ > 0,

lim
x→∞xµ

{
Vc

I1
> x

} = 0.

The above assumption is quite weak; see, for instance, [17] for a very general
class of arrival processes satisfying a large-deviations principle (with linear scaling
function). However, (superpositions of) On–Off flows of which the activity period
has a Weibull distribution satisfy Assumption 2.1 too, as can easily be shown using
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the bounds in [15] or Section 4.1 of the present paper. Instantaneous renewal input
of which the tail of the jump sizes (bursts) is lighter than any power tail is covered
by Assumption 2.1 as well.

We assume the flows inI2 generate traffic according to independent On–Off
processes, each alternating between On and Off periods. The Off periods of flowi

are generally distributed with mean 1/λi . The On periodsAi have a heavy-tailed
distributionAi(·) with meanαi < ∞. While On, flowi produces traffic at constant
rateri , so the mean burst size isαiri . The fraction of time that flowi is On is

pi = αi

1/λi + αi

= λiαi

1+ λiαi

.

Thus the traffic intensity of flowi is

ρi := piri = λiαiri

1+ λiαi

.

Before stating an important preliminary result, we first introduce some use-
ful notation. For any two real functionsf (·) and g(·), we use the nota-
tional conventionf (x) ∼ g(x) to denote limx→∞ f (x)/g(x) = 1. Also, we use
f (x) � g(x) to denote lim supx→∞ f (x)/g(x) ≤ 1. Similarly, f (x) � g(x) de-

notes lim infx→∞ f (x)/g(x) ≥ 1. With X
d= Y we denote thatX andY have the

same distribution.
For any positive stochastic variableX with distribution function F(·),

E{X} < ∞, denote byF r(·) the distribution function of the residual lifetime ofX,
that is,

F r(x) := 1

E{X}
∫ x

0
P

(
1− F(y)

)
dy,

and denote byXr a stochastic variable with that distribution.
The classes oflong-tailed, subexponential, regularly varying andintermediately

regularly varying distributions are denoted with the symbolsL, S, R and
IR, respectively (note thatR ⊂ IR ⊂ S ⊂ L). Background on heavy-tailed
distributions may be found in [16].

For each flowi ∈ I2, we assume that the On period distribution is regularly
varying of index−νi , that is,Ai(·) ∈ R−νi

for someνi > 1. The next result, which
is due to [22], then yields the tail behavior of the workload distribution.

THEOREM 2.1. If Ar
i (·) ∈ S, ρi < c < ri , then

P{Vc
i > x} ∼ (1− pi)

ρi

c − ρi

P

{
Ar

i >
x

ri − c

}
.
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3. Overview of the results. We now give a broad overview of the main results
of the paper. As mentioned in the Introduction, asymptotic bounds in [15] show a
sharp dichotomy in the qualitative behavior ofP{V > x}, depending on the value
of ρI1 + rI2 (i.e., the mean rate of the light-tailed flows plus the peak rate of
the heavy-tailed flows) relative to the service rate. In caseρI1 + rI2 < 1, the
workload has light-tailed characteristics, whereasρI1 + rI2 > 1 implies heavy-
tailed characteristics. In the present paper we determine the exact asymptotics of
P{V > x} in the latter case. For the caseρI1 + rI2 < 1 (where both the light-tailed
and heavy-tailed input determine the workload asymptotics) we refer to [7].

3.1. Intuitive arguments. Before formulating our main theorems, we first
provide a heuristic derivation of the tail behavior ofP{V > x}.

Large-deviations theory suggests that, given that a “rare event” occurs, with
overwhelming probability “it happens in the most likely way.” In the asymptotic
regime considered here (“large buffers”), the most likely way usually consists of
a linear build-up of the workload, due to temporary instability of the system. In
case of heavy-tailed distributions, the temporary instability typically arises from
a “minimal set” of potential causes. The minimal set corresponds to the minimal
number of causes when these are homogeneous in nature. In general, however,
when the potential causes have heterogeneous characteristics, not only the number
of them matters, but also their relative likelihood, and their relative contribution to
the occurrence of the rare event under consideration.

Translated to our situation, temporary instability is most likely caused by
a “minimal set” of flows generating an extreme amount of traffic, while all
other flows show roughly average behavior. These considerations give rise to the
following characterization of the tail behavior ofP{V > x}:

P{V > x} ∼ P
{
VcS∗

S∗ > x
}
,

with S∗ representing the “minimal set,” andcS∗ := 1 − ρI\S∗ representing the
service rate subtracted by the aggregate traffic intensity of all other flows.

We now introduce some helpful notions in order to formalize the above intuitive
arguments. For any subsetS ⊆ I2, define cS := 1 − ρI\S as the service rate
subtracted by the aggregate traffic intensity of all other flowsj ∈ I \ S. Observe
that the stability condition impliesρS < cS for anyS ⊆ I2.

For any subsetS ⊆ I2, denote byrS := ∑
j∈S rj the aggregate peak rate of the

flows j ∈ S. DefinedS := rS − cS = rS + ρI\S − 1 as the net input rate (i.e., the
drift) when all flows inS are On and all other flows show average behavior.

A setS ⊆ I2 is called (strictly)critical if dS ≥ (>) 0, that is, if

rS + ρI\S ≥ (>) 1.

Thus, when all flows in a (strictly) critical set are On, the workload has a (strictly)
positive drift. A critical setS is termedminimally critical if no proper subset ofS
is critical, that is,dS < minj∈S{rj − ρj }.
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For any subsetS ⊆ I2, denoteµS := ∑
j∈S(νj −1). A strictly critical setS ⊆ I2

is said to be (weakly)dominant if µS < (≤) µU for any other critical setU ⊆ I2.
Observe that for a setS ⊆ I2 to be dominant, it must be minimally critical (because
otherwise the defining property would be violated for any critical subsetU ⊂ S).

The quantityµS may be interpreted as a measure for the “cost” associated with
a temporary driftdS : the probability of all flows inS being On for a time of the
orderx in steady state is roughly equal tox−µS . Thus, a setS is (weakly) dominant
if the flows inS being On causes the drift to be positive in the cheapest possible
way.

In case of light-tailed distributions, the cost minimization is usually not so
simple; one then also needs to consider how long a certain positive drift must
be maintained in order for a given workload levelx to be reached. This issue does
not arise in case of regularly varying On periods, sinceP{Ar

i > ax} is of the same
order of magnitude (up to a constant) asP{Ar

i > x} for any constanta > 1. This
implies that the value of the temporary drift is not relevant as long as it is positive.

Note that these heuristic arguments clearly do not hold for other subexponential
distributions, such as the lognormal and Weibull distribution. In this case, one has
P{Ar

i > ax} = o(P{Ar
i > x}), if a > 1.

3.2. Tail behavior of the workload distribution. We now state our main
theorem.

THEOREM 3.1 (Reduced-load equivalence).Suppose the set of flows S∗ ⊆ I2
is dominant. If Aj(·) ∈ R for all j ∈ I2, then

P{V > x} ∼ P
{
VcS∗

S∗ > x
}
,(3.1)

with

P
{
VcS∗

S∗ > x
} ∼

( ∏
j∈S∗

pj

) ∑
J0⊆S∗

PJ0(x),(3.2)

where PJ0(x) is given by (with J1 = S∗ \ J0, and dS∗ = rS∗ − cS∗ as defined
earlier)

PJ0(x) = 1∏
i∈J1

E{Ai}

×
∫
yi∈(0,∞),i∈J1

∏
i∈J1

P

{
dS∗Ai >

∑
j∈J1

yj (rj − ρj ) − dS∗yi + x

}
(3.3)

× ∏
i∈J0

P

{
dS∗Ar

i >
∑
j∈J1

yj (rj − ρj ) + x

} ∏
i∈J1

dyi.

In particular, P{V > x} and PJ0(x) are regularly varying of index −µS∗ =
−∑

j∈S∗(νj − 1).
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The proof of the above theorem may be found in Section 5.1 [(3.1)] and Section 6
[(3.2) and (3.3) and the regular variation property].

Note that in case the reduced system consists of just a single flow, that is,
S∗ = {i∗}, the tail asymptotics follow directly from Theorem 2.1. This is in fact the
reduced-load equivalence established in [1] (under somewhat weaker distributional
assumptions). Note that in this case the right-hand side of (3.2) takes the form
pi∗ [P∅(x) + Pi∗(x)], with

Pi∗(x) = P

{
Ar

i∗ >
x

ri∗ − ci∗

}
,

and (after a straightforward calculation)

P∅(x) = ri∗ − ci∗

ci∗ − ρi∗
P

{
Ar

i∗ >
x

ri∗ − ci∗

}
,

so that

pi∗[P∅(x) + Pi∗(x)] = (1− pi∗)
ρi∗

ci∗ − ρi∗
P

{
Ar

i∗ >
x

ri∗ − ci∗

}
,

which is consistent with Theorem 2.1.
In case the reduced system consists of several flows, the tail asymptotics cannot

be obtained from known results. In fact, the analysis of the reduced system
then poses a major challenge because of the rather subtle mechanics involved in
reaching a large workload level. By definition, though, the reduced system has the
special feature that all flows must be On for the drift in the workload to be positive,
that is,rS∗ − minj∈S∗{rj − ρj } < cS∗ < rS∗ . In Section 6 we determine the exact
asymptotics for systems satisfying this property, yielding the integral expression
given in Theorem 3.1.

3.3. Knapsack formulation for determining a dominant set. We now describe
how a dominant set may be determined from a simple knapsack formulation.
Recall that the On period distributions of the flowsi ∈ I2 are regularly varying
of index−νi .

For a strictly critical setS ⊆ I2 to be dominant, it must necessarily solve the
optimization problem

min
S⊆I2

∑
j∈S

(νj − 1)

sub
∑
j∈S

rj + ∑
j∈I2\S

ρj > 1− ρI1.

Note that the constraint is equivalent todS > 0. If we defineθi := ri − ρi for
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all i ∈ I2, then the above problem may be expressed in the standard knapsack
form as

max
U⊆I2

∑
j∈U

(νj − 1)

sub
∑
j∈U

θj ≤ ρI1 + rI2 − 1− ε,

with U = I2 \ S andε some small positive number. The above problem may not
always have a unique solution. In case it does, the corresponding setS is dominant,
except for the case when some setT exists which is critical but not strictly
critical (i.e., rT + ρI\T = 1), with µT ≤ µS (see the definition of a dominant set).
Although intriguing, this “critical case” is not further considered in the present
paper. In this case, the temporary drift may bezero for a long period of time during
the path to overflow.

In case the knapsack problem has several solutions, the corresponding sets are
weakly dominant (except for the critical case again). The next theorem extends the
reduced-load equivalence to the case of weakly dominant sets.

THEOREM 3.2 (Generalized reduced-load equivalence; weakly dominant sets).
Let ϒ ⊆ 2I2 be the collection of all weakly dominant sets. If Aj(·) ∈ R for all
j ∈ S, S ∈ ϒ , then

P{V > x} ∼ ∑
S∈ϒ

P{VcS

S > x},(3.4)

with P{VcS

S > x} as in (3.2), (3.3).

3.4. Homogeneous On–Off flows. We briefly consider the case of homoge-
neous On–Off flows as an important special case with weakly dominant sets.
Assume that the flowsi ∈ I2 have identical characteristics. With some minor
abuse of notation, letA(·) := Ai(·), ν := νi , ρ := ρi , r := ri , pi ≡ p. Define
N∗ := arg min{N :Nr + (|I2| − N)ρ > 1 − ρI1}. (Observe that the assumption
ρI1 + rI2 > 1 ensuresN∗ ≤ |I2|.) To exclude the critical case, assume that
(N∗ − 1)r + (|I2| − N∗ + 1)ρ < 1 − ρI1, so that the drift remains negative (and
cannot be zero) when onlyN∗ − 1 flows are On.

COROLLARY 3.1. If A(·) ∈ R, then

P{V > x} ∼
( |I2|

N∗
)

P{V̄ > x},
with

P{V̄ > x} ∼ pN∗ N∗∑
n=0

(
N∗
n

)
P{1,...,n}(x),

where P{1,...,n}(x) is given by (3.3). In particular, P{V > x} and P{1,...,n}(x) are
regularly varying of index −N∗(ν − 1).
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3.5. K heterogeneous classes. We finally consider the important special case
where each On–Off flow inI2 belongs to one ofK heterogeneous classes. We
will show how an approximate solution to the knapsack problem may be obtained
using a simple index rule. The approximation is in fact asymptotically exact in the
many-sources regime.

Specifically, consider the superposition ofn On–Off flows, each belonging
to one of K heterogeneous classes. Letak be the fraction of flows of class
k ∈ {1, . . . ,K}, with peak raterk, mean rateρk , and an On period distribution
which is regularly varying of index−νk . Let the service rate ben (instead of 1),
and letV(n) be the stationary workload. The knapsack problem then takes the form

min
nk∈{0,...,nak}

K∑
k=1

nk(νk − 1)

sub
K∑

k=1

nkrk +
K∑

k=1

(nak − nk)ρk > n.

Unfortunately, the above problem cannot be easily solved due to the integrality
constraints. Intuitively, however, one may expect that asn grows large, the
integrality constraints should have a negligible effect, so that a continuous
relaxation withnk ∈ [0, nak] should give a good approximate solution.

This relaxation may be solved using a simple index rule. Index theK classes in
nondecreasing order of the ratios

γk := (νk − 1)/(rk − ρk).

For anyk ∈ {1, . . . ,K}, defineσk := ∑k−1
m=1 amrm + ∑K

m=k amρm. Determine the
(unique) indexl such that 1∈ (σl−1, σl]. Then taken∗

k = nak for all classesk < l,
n∗

k = 0 for all classesk > l, andn∗
l = n(1− σl−1)/(rl − ρl).

This yields the (crude) approximation

P
{
V(n) > x

} ≈ x−nµ,(3.5)

with µ := ∑l−1
k=1ak(νk − 1) + (1 − σl−1)γl . In Section 7 we prove that the above

approximation is logarithmically exact in the many-sources regime. In particular,
one may show that the limits forx → ∞ andn → ∞ commute if one considers
logarithmic asymptotics.

THEOREM 3.3 (Robustness of logarithmic asymptotics).

lim
n→∞ lim

x→∞
1

n

logP{V(n) > nx}
logx

= lim
x→∞ lim

n→∞
1

n

logP{V(n) > nx}
logx

.

The proof of the above theorem may be found in Section 7. Although logarith-
mically exact, the approximation (3.5) may not be appropriate from a practical
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perspective. In particular, it is shown in Section 7 that an analogue of Theorem 3.3
cannot hold if one considers exact asymptotics. This “negative” result is reminis-
cent of a phenomenon occurring in heavy-traffic theory where two limiting regimes
lead either to stable Lévy motion or to fractional Brownian motion; see, for exam-
ple, [31] and references therein.

4. Preliminary results. In this section we collect some preliminary results
which will be used in later sections.

4.1. Bounds. We first derive some simple bounds for the workload distribution
P{Vc

S > x} for subsetsS ⊆ I2.
For any subsetS ⊆ I2, c < rS , define

P c
S (x) := ∏

j∈S

pjP

{
Ar

j >
x

rS − c

}
.

The next lemma gives a lower bound forP{Vc
S > x} which may also be found

in [12].

LEMMA 4.1. Let S ⊆ I2. For c < rS ,

P{Vc
S > x} ≥ P c

S (x).

PROOF. Consider the event that at some arbitrary timet all flows j ∈ S have
been On since timet − x

rS−c
or longer. This event occurs with probabilityP c

s (x),
and implies that the workload at timet is larger than rSx

rS−c
− cx

rS−c
= x. �

For any subsetS ⊆ I2, c < rS , define

Kc
S := ∏

j∈S

rj − ρj

rj − ρj + c − rS
.

The next lemma establishes an asymptotic upper bound forP{Vc
S > x} for the case

whereS is a minimally critical set with respect to the capacityc.

LEMMA 4.2. Let S ⊆ I2. If c ∈ (rS −minj∈S{rj −ρj }, rS), and Ar
j (·) ∈ S for

all j ∈ S, then

P{Vc
S > x} � Kc

SP c
S (x).

PROOF. For anyi ∈ S, denotedi := c − rS + ri . Observe thatdi > ρi since
c > rS − (ri − ρi). We apply the usual technique to obtain an upper bound: split
the capacity. Formally, we have the sample-path upper bound

V c
S (t) ≤ V

di

i (t) + V
rS\{i}
S\{i} (t) = V

di

i (t)(4.1)

for all i ∈ S.
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In the stationary regime, using Theorem 2.1,

P{Vc
S > x} ≤ P

{
V

dj

j > x for all j ∈ S
}

= ∏
j∈S

P
{
V

dj

j > x
}

∼ ∏
j∈S

(1− pj )
ρj

dj − ρj

P

{
Ar

j >
x

rj − dj

}

= ∏
j∈S

pj

rj − ρj

rj − ρj + c − rS
P

{
Ar

j >
x

rS − c

}

= Kc
SP c

S (x). �

COROLLARY 4.1. Let S ⊆ I2. If c ∈ (rS − minj∈S{rj − ρj }, rS), and
Ar

j (·) ∈ S for all j ∈ S, then

P c
S (x) ≤ P{Vc

S > x} � Kc
SP c

S (x).

PROOF. The proof follows directly by combining Lemmas 4.1 and 4.2.�

COROLLARY 4.2. Let S ⊆ I2. If Ar
j (·) ∈ IR for all j ∈ S, then, for any

closed interval T ⊆ (rS − minj∈S{rj − ρj }, rS), there exist constants K(1), K(2)

independent of c, such that for all c ∈ T ,

K(1)PS(x) � P{Vc
S > x} � K(2)PS(x),

with

PS(x) := ∏
j∈S

P{Ar
j > x}.

PROOF. The statement follows directly from Corollary 4.1 and the fact that
Ar

j (·) ∈ IR ⊂ S for all j ∈ S when observing thatAr
j (·) ∈ IR, j ∈ S implies that

lim sup
x→∞

P
c1
S (x)

P
c2
S (x)

< ∞,

if c1, c2 ∈ T . �

We now derive some general bounds for the total workload distribution
P{V > x} which will be crucial in establishing the reduced-load equivalence.

For any c ≥ 0, E ⊆ I, define Zc
E(t) := sup0≤s≤t {c(t − s) − AE(s, t)}.

For c < ρE , let Zc
E be a random variable with the limiting distribution ofZc

E(t)
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for t → ∞. Let 
 ⊆ 2I2 be the collection of all minimally critical sets.
We first present a lower bound. The idea is as follows:VcE

E being large for some
minimally critical setE ∈ � basically implies thatV must be large too, unless
the other flowsj /∈ E persist in below-average behavior. Excluding such below-
average behavior (reflected in large values ofZc

I\E) from the event{V > x} yields
the following lower bound forP{V > x}.

LEMMA 4.3. Let � ⊆ 
. Then for any δ > 0 and y ≥ 0,

P{V > x} ≥ ∑
E∈�

P
{
VcE+δ

E > x + y
}
P

{
Z

ρI\E−δ

I\E ≤ y
}

− ∑
E1,E2∈�,E1 �=E2

∏
j∈E1∪E2

P

{
V

ρj+δ

j > x

}
.

PROOF. Sample-path wise,

V (t) = sup
0≤s≤t

{A(s, t) − (t − s)}

= sup
0≤s≤t

{
AE(s, t) + AI\E(s, t) − (cE + δ)(t − s)

− (ρI\E − δ)(t − s)
}

≥ sup
0≤s≤t

{AE(s, t) − (cE + δ)(t − s)}

+ inf
0≤s≤t

{
AI\E(s, t) − (ρI\E − δ)(t − s)

}
= sup

0≤s≤t

{AE(s, t) − (cE + δ)(t − s)}

− sup
0≤s≤t

{
(ρI\E − δ)(t − s) − AI\E(s, t)

}

= V
cE+δ
E (t) − Z

ρI\E−δ

I\E (t)

for all E ∈ �.
In the stationary regime, for anyδ > 0 andy ≥ 0, using the independence

of VcE+δ
E andZ

ρI\E−δ

I\E ,

P{V > x}
≥ P

{
VcE+δ

E − Z
ρI\E−δ

I\E > x for someE ∈ �
}

≥ P
{
VcE+δ

E > x + y,Z
ρI\E−δ

I\E ≤ y for someE ∈ �
}

≥ P
{
VcE+δ

E > x + y,Z
ρI\E−δ

I\E ≤ y for exactly oneE ∈ �
}

(4.2)
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= ∑
E∈�

P
{
VcE+δ

E > x + y,Z
ρI\E−δ

I\E ≤ y
}

− ∑
E1,E2∈�,E1 �=E2

P
{
V

cE1+δ

E1
> x + y,Z

ρI\E1−δ

I\E1
≤ y,

V
cE2+δ

E2
> x + y,Z

ρI\E2−δ

I\E2
≤ y

}
≥ ∑

E∈�

P
{
VcE+δ

E > x + y
}
P

{
Z

ρI\E−δ

I\E ≤ y
}

− ∑
E1,E2∈�,E1 �=E2

P
{
V

cE1+δ

E1
> x,V

cE2+δ

E2
> x

}
.

As in (4.1),

V
cE+δ
E (t) ≤ V

cE−rE\{i}+δ

i (t) + V
rE\{i}
E\{i} (t)

(4.3)
= V

cE−rE\{i}+δ

i (t)

for all i ∈ E.
Note thatcE − rE\{i} > ρi for all i ∈ E, E ∈ �, sinceE is minimally critical.
Hence,

V
cE+δ
E (t) ≤ V

ρi+δ
i (t)

for all i ∈ E, E ∈ �.
Thus,

P
{
V

cE1+δ

E1
> x,V

cE2+δ

E2
> x

}
≤ P

{
V

ρj +δ

j > x for all j ∈ E1,V
ρj+δ

j > x for all j ∈ E2
}

(4.4)
= P

{
V

ρj+δ

j > x for all j ∈ E1 ∪ E2
}

= ∏
j∈E1∪E2

P
{
V

ρj +δ

j > x
}
.

Substituting (4.4) into (4.2) completes the proof.�

We now provide a corresponding upper bound, which is somewhat more
involved. The idea is as follows:V being large essentially means thatVcE

E must
be large for some minimally critical setE ∈ � too, unless the other flowsj /∈ E

exhibit above-average behavior. Extending the event{V > x} with possible above-

average behavior of the flowsj /∈ E (manifesting itself in large values ofV
ρI\E+δ

I\E )
leads to the following upper bound forP{V > x}.
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LEMMA 4.4. Let � ⊆ 
. Then for any δ, ε > 0 sufficiently small and y,

P{V > x} ≤ ∑
E∈�

P
{
VcE−δ

E > x − y
}+P

{
V

ρI1+ε

I1
> x/N

}

+ ∑
E∈�

P
{
V

ρI\E+δ

I\E > y
} ∏

j∈E

P
{
V

ρj+ε

j > x/N
}

+ ∑
E∈
\�

∏
j∈E

P
{
V

ρj+ε

j > x/N
}
,

with N := |I| denoting the total number of flows.

PROOF. As before, we divide the capacity to obtain the sample-path upper
bound

V (t) ≤ V
cE−δ
E (t) + V

ρI\E+δ

I\E (t)

for all E ∈ �.
In addition, forε > 0 sufficiently small,V (t) > x impliesV

ρI1+ε

I1
(t) > x/N , or

there exists a minimally critical setS ∈ 
 such thatV
ρj +ε

j (t) > x/N for all j ∈ S.
This may be seen as follows: suppose that it were not the case, that is,

V
ρI1+ε

I1
(t) ≤ x/N , and for every minimally critical setS ∈ 
 there exists

a j (depending onS) such thatV
ρj+ε

j (t) ≤ x/N . Then the setJ(t) := {j ∈
I2 :V

ρj+ε

j (t) > x/N } does not contain any minimally critical set, hencerJ(t) +
ρI\J(t) < 1. This means thatρI\J(t) + N ε ≤ 1− rJ(t) for ε > 0 sufficiently small.
Thus, noting thatρI\J(t) = ρI1 + ρI2\J(t),

V (t) ≤ V
rJ(t)

J(t) (t) + V
1−rJ(t)

I\J(t) (t)

= V
1−rJ(t)

I\J(t) (t)

≤ V
ρI\J(t)+N ε

I\J(t) (t)

≤ V
ρI1+ε

I1
(t) + ∑

j∈I2\J(t)

V
ρj +ε

j (t)

≤ |I \ J(t)| x/N

≤ x,

contradicting the initial supposition.
In the stationary regime, for anyδ, ε > 0 sufficiently small andy, using
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independence

P{V > x}
≤ P

{
VcE−δ

E + V
ρI\E+δ

I\E > x for all E ∈ �,

V
ρI1+ε

I1
> x/N or V

ρj +ε

j > x/N for all j ∈ S for someS ∈ 

}

≤ P
{
VcE−δ

E > x − y or V
ρI\E+δ

I\E > y for all E ∈ �,

V
ρI1+ε

I1
> x/N or V

ρj +ε

j > x/N for all j ∈ S for someS ∈ 

}

≤ ∑
E∈�

P
{
VcE−δ

E > x − y
} + P

{
V

ρI1+ε

I1
> x/N

}

+ ∑
S∈


P
{
V

ρj+ε

j > x/N for all j ∈ S,V
ρI\E+δ

I\E > y for all E ∈ �
}

≤ ∑
E∈�

P
{
VcE−δ

E > x − y
} + P

{
V

ρj+ε

j > x/N
}

+ ∑
E∈�

P
{
V

ρj +ε

j > x/N for all j ∈ E,V
ρI\E+δ

I\E > y
}

+ ∑
E∈
\�

P
{
V

ρj+ε

j > x/N for all j ∈ E
}

≤ ∑
E∈�

P
{
VcE−δ

E > x − y
} + P

{
V

ρj+ε

j > x/N
}

+ ∑
E∈�

P
{
V

ρI\E+δ

I\E > y
} ∏

j∈E

P
{
V

ρj+ε

j > x/N
}

+ ∑
E∈
\�

∏
j∈E

P
{
V

ρj +ε

j > x/N
}
.

�

4.2. Stationary workload representation. We now give a convenient represen-
tation for the stationary workloadVc

E , with E ⊆ I2 an arbitrary set of heavy-tailed
On–Off flows. We start from the definitionV c

E(t) := sup0≤s≤t {AE(s, t)− c(t − s)}
[assumingV c

E(0) = 0]. Since the processAE(·, ·) has stationary and reversible
increments, we have

sup
0≤s≤t

{AE(s, t) − c(t − s)} d= sup
0≤s≤t

{AE(0, s) − cs}.

In the sequel, we simply use the latter expression as thedefinition of V c
E(t).

Accordingly, forc > ρE , the stationary workload ast → ∞ may be represented as

Vc
E := sup

t≥0
{AE(0, t) − ct}.
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Explicit constructions ofAi(0, t) (satisfying the stationarity condition) may be
found in [15, 19]. For completeness, we review the construction in [19], which
will be extensively used in Section 6.

Let {Aim,m ≥ 0} be a sequence of i.i.d. random variables representing On
periods of flow i. Similarly, let {Uim,m ≥ 1} be Off periods. Define three

additional random variablesAr
i0, Ur

i0 andBi such thatAr
i0

d= Ar
i , Ur

i0
d= Ur

i and

P{Bi = 1} = E{Ai1}
E{Ai1} + E{Ui1} = 1− P{Bi = 0}.

Note thatBi = 1 corresponds to flowi being On (in stationarity).
To obtain a stationary alternating renewal process, we define the delay random

variableDi0 by

Di0 = BiAr
i0 + (1− Bi)(Ur

i0 + Ai0).

Then the delayed renewal sequence

{Zin, n ≥ 0} =
{

Di0,Di0 +
n∑

m=1

(Uim + Aim), n ≥ 1

}

is stationary.
Next, we define the process{Ji(t), t ≥ 0} as follows.Ji(t) is the indicator of the

event that flowi is On at timet . Formally, we have

Ji(t) = Bi1{t<Ar
i0} + (1− Bi )1{Ur

i0≤t<Ur
i0+Ai0}

+
∞∑

n=0

1{Zin+Ui,n+1≤t<Zi,n+1}.

The On–Off process{Ji(t), t ≥ 0} is strictly stationary; see [19], Theorem 2.1. The
process{Ai(0, t), t ≥ 0} is defined by

Ai(0, t) := ri

∫ t

0
Ji(u) du.

Finally, note that the number of elapsed Off periods during[0, t] which started
after time 0 is given by

NA
i (t) := max{n : Zi,n−1 + Uin ≤ t}.(4.5)

We conclude this section with the following useful lemma.

LEMMA 4.5. Let S ⊆ I2. If Aj(·) ∈ R for all j ∈ S and c ∈ (rS −minj∈S{rj −
ρj }, rS), then

lim
M→∞ lim sup

x→∞
P{supt≥Mx{AS(0, t) − (c − ε)t} > x}

P{Vc
S > x} = 0,

for any ε ∈ [0, rS − c).
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PROOF. For t ≥ Mx, write

AS(0, t) − (c − ε)t

= AS(0,Mx) − (c − ε)Mx + AS(Mx, t) − (c − ε)(t − Mx),

and observe thatAS(Mx, t)
d= AS(0, t − Mx) since the processAS(0, t) is

stationary. Thus, forδ > 0 sufficiently small,

P

{
sup

t≥Mx

{AS(0, t) − (c − ε)t} > x

}

= P

{
sup

t≥Mx

{
AS(0,Mx) − (c − ε)Mx

+ AS(Mx, t) − (c − ε)(t − Mx)
}
> x

}

= P

{
AS(0,Mx) − (c − ε)Mx

+ sup
t≥Mx

{
AS(Mx, t) − (c − ε)(t − Mx)

}
> x

}

≤ P
{
AS(0,Mx) − (c − ε)Mx > −δ(c − ε)Mx

}
+ P

{
sup

t≥Mx

{
AS(0, t − Mx) − (c − ε)(t − Mx)

}
>

(
1+ δ(c − ε)M

)
x

}

= P
{
AS(0,Mx) > (1− δ)(c − ε)Mx

}
+ P

{
sup

t≥Mx

{
AS(0, t − Mx) − (c − ε)(t − Mx)

}
>

(
1+ δ(c − ε)M

)
x

}

≤ P

{
sup
t≥0

{
AS(0, t) − (1− 2δ)(c − ε)t

}
> δ(c − ε)Mx

}

+ P

{
sup
t≥0

{AS(0, t) − (c − ε)t} >
(
1+ δ(c − ε)M

)
x

}

= P
{
V(1−2δ)(c−ε)

S > δ(c − ε)Mx
} + P

{
Vc−ε

S >
(
1+ δ(c − ε)M

)
x
}
.

Using Corollary 4.2, forδ > 0 sufficiently small,

P{supt≥Mx{AS(0, t) − (c − ε)t} > x}
P{Vc

S > x}

≤ K(2)PS(δ(c − ε)Mx)

K(1)PS(x)
+ K(2)PS((1+ δ(c − ε)M)x)

K(1)PS(x)
.

Now letx → ∞ and thenM → ∞ [use the fact thatPS(·) is of regular variation].
�
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5. Reduced-load equivalence. In this section we provide the proofs of the
various reduced-load equivalence results stated in Section 3. The proofs of
the complementing results for the reduced system are presented in Section 6.
Section 5.1 treats the case of several weakly dominant sets, culminating in a
proof of (3.4). See Theorem 5.1; this also gives the proof of the special case
in Theorem 3.1. In Section 5.2 we extend the results to the case of additional
instantaneous, heavy-tailed input.

5.1. Proof of (3.4). Recall that ϒ denotes the collection of all weakly
dominant sets, and that
 represents the collection of all minimally critical sets.

ASSUMPTION5.1. For anyy andδ > 0,

F c
S (δ) := lim inf

x→∞
P{Vc+δ

S > x + y}
P{Vc

S > x}
is independent ofy. In addition, limδ↓0F c

S (δ) = 1.

ASSUMPTION5.2. For anyy andδ > 0,

Gc
S(δ) := lim sup

x→∞
P{Vc−δ

S > x − y}
P{Vc

S > x}
is independent ofy. In addition, limδ↓0Gc

S(δ) = 1.

ASSUMPTION5.3. For anyε > 0,

lim
x→∞

P{VρI1+ε

I1
> x/N }

P{Vc
S > x} = 0.

ASSUMPTION5.4. For anyε > 0,

Hc
S(ε) := lim sup

x→∞

∏
j∈S P{Vρj+ε

j > x/N }
P{Vc

S > x} < ∞.

ASSUMPTION5.5. For any pair of setsS ∈ ϒ , E ∈ 
 \ ϒ , for anyε > 0,

lim
x→∞

∏
j∈E P{Vρj+ε

j > x/N }
P{Vc

S > x} = 0.

THEOREM 5.1 (Generalized reduced-load equivalence; weakly dominant sets).
Suppose the sets S ∈ � satisfy Assumptions 5.1–5.5.Then

P{V > x} ∼ ∑
S∈�

P
{
VcS

S > x
}
.



FLUID QUEUES WITH HEAVY TAILS 921

PROOF. As before, the proof consists of a lower bound and an upper
bound which asymptotically coincide. For compactness, denoteQ(x) :=∑

S∈� P{VcS

S > x}.
(Lower bound.) From Lemma 4.3, for anyδ > 0 andy ≥ 0,

P{V > x} ≥ ∑
S∈�

P
{
VcS+δ

S > x + y
}
P

{
Z

ρI\S−δ

I\S ≤ y
}

− ∑
S1,S2∈�,S1 �=S2

∏
j∈S1∪S2

P
{
V

ρj+ε

j > x/N
}
.

Note that ifS1, S2 ∈ �, S1 �= S2, thenS1 ∪ S2 cannot be a minimally critical set,
so thatS1 ∪ S2 /∈ �.

Thus, using Assumptions 5.1 and 5.4, and the inequality

∑
i ai∑
i bi

≥ min
i

ai

bi

for ai, bi > 0, we obtain

lim inf
x→∞

P{V > x}
Q(x)

≥ lim inf
x→∞

∑
S∈�

P
{
Z

ρI\S−δ

I\S ≤ y
}P{VcS+δ

S > x + y}
Q(x)

− ∑
S1,S2∈�,S1 �=S2

lim sup
x→∞

∏
j∈S1∪S2

P{Vρj+ε

j > x/N }
Q(x)

≥ lim inf
x→∞ min

S∈�
P

{
Z

ρI\S−δ

I\S ≤ y
}P{VcS+δ

S > x + y}
P{VcS

S > x}

≥ min
S∈�

P
{
Z

ρI\S−δ

I\S ≤ y
}

lim inf
x→∞

P{VcS+δ
S > x + y}

P{VcS

S > x}
= min

S∈�
F

cS

S (δ)P
{
Z

ρI\S−δ

I\S ≤ y
}
.

Lettingy → ∞, thenδ ↓ 0, we obtain

lim inf
x→∞

P{V > x}
Q(x)

≥ 1,

which completes the proof of the lower bound.
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(Upper bound.) From Lemma 4.4, for anyδ > 0 andy,

P{V > x} ≤ ∑
S∈�

P
{
VcS−δ

S > x − y
} + P

{
V

ρI1+ε

I1
> x/N

}

+ ∑
S∈�

P
{
V

ρI\S+δ

I\S > y
} ∏

j∈S

P
{
V

ρj+ε

j > x/N
}

+ ∑
E∈
\�

∏
j∈E

P
{
V

ρj+ε

j > x/N
}
.

Thus, using Assumptions 5.2–5.5, and the inequality∑
i ai∑
i bi

≤ max
i

ai

bi

for ai, bi > 0,

P{V > x} ≤ lim sup
x→∞

∑
S∈�

P{VcS−δ
S > x − y}

Q(x)
+ lim sup

x→∞
P{VρI1+ε

I1
> x/N }

Q(x)

+ ∑
S∈�

P
{
V

ρI\S+δ

I\S > y
}

lim sup
x→∞

∏
j∈S P{Vρj+ε

j > x/N }
Q(x)

+ ∑
E∈
\�

lim sup
x→∞

∏
j∈E P{Vρj+ε

j > x/N }
Q(x)

≤ lim sup
x→∞

max
S∈�

P{VcS−δ
S > x − y}

P{VcS

S > x}

+ ∑
S∈�

P
{
V

ρI\S+δ

I\S > y
}

lim sup
x→∞

∏
j∈S P{Vρj+ε

j > x/N }
P{VcS

S > x}

≤ max
S∈�

lim sup
x→∞

P{VcS−δ
S > x − y}

P{VcS

S > x} + ∑
S∈�

HS(ε)P
{
V

ρI\S+δ

I\S > y
}

= max
S∈�

G
cS

S (δ) + ∑
S∈�

HS(ε)P
{
V

ρI\S+δ

I\S > y
}
.

Lettingy → ∞, thenδ ↓ 0, we obtain

lim sup
x→∞

P{V > x}
Q(x)

≤ 1,

which completes the proof.�

In order to complete the proof of the reduced-load equivalence result (3.1), it
remains to be shown that a dominant setS∗ ⊆ I2 with Aj(·) ∈ R for all j ∈ S∗
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satisfies Assumptions 5.1–5.5. That is done in the following two propositions
for S = S∗.

PROPOSITION 5.1. Let S ⊆ I2. If Aj(·) ∈ R for all j ∈ S, then Assump-
tions 5.1and 5.2are satisfied for any c ∈ (rS − minj∈S{rj − ρj }, rS).

PROOF. We first prove that Assumption 5.2 is satisfied. It follows from
Theorem 6.4 (see also Corollary 6.1; it is important to note here that results from
Section 6 do not rely on the results of this section) that ifAj(·) ∈ R for all j ∈ S,
thenP{Vc

S > x} ∈ IR. SinceIR ⊂ L, it suffices to prove that the assumption is
satisfied fory = 0.

Let ε ∈ [0, rS − c), and letδ ∈ (0, ε]. Then

P
{
Vc−δ

S > x
} = P

{
sup
t≥0

{AS(0, t) − (c − δ)t} > x

}

≤ P

{
sup

t≤xδ−1/2
{AS(0, t) − (c − δ)t} > x

}

+ P

{
sup

t≥xδ−1/2
{AS(0, t) − (c − δ)t} > x

}

≤ P

{
sup

t≤xδ−1/2
{AS(0, t) − ct} > (1− δ1/2)x

}

+ P

{
sup

t≥xδ−1/2
{AS(0, t) − (c − ε)t} > x

}
.

Thus,

lim sup
x→∞

P{Vc−δ
S > x}

P{Vc
S > x} ≤ lim sup

x→∞
P{Vc

S > (1− δ1/2)x}
P{Vc

S > x}

+ lim sup
x→∞

P{supt≥xδ−1/2{AS(0, t) − (c − ε)t} > x}
P{Vc

S > x} .

The fact thatP{Vc
S > x} ∈ IR implies that the first term tends to 1 asδ ↓ 0, while

Lemma 4.5 (withM = δ−1/2) shows that the second term then goes to 0.
The proof that Assumption 5.1 holds is similar, and therefore omitted.�

PROPOSITION 5.2. Let S ⊆ I2. If Aj(·) ∈ R for all j ∈ S, then Assump-
tions 5.3and 5.4are satisfied for any c > ρS . If, in addition, S is a weakly dominant
set, then Assumption 5.5 is satisfied as well.

PROOF. Using Lemma 4.1,

P{Vc
S > x} ≥ ∏

j∈S

pjP

{
Ar

j >
x

rS − c

}
.
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Assumption 5.3 then follows from combining Assumption 2.1 and the assumption
thatAj(·) ∈ R for all j ∈ S.

Theorem 2.1 gives

P
{
V

ρj+ε

j > x/N
} ∼ (1− pj)

ρj

ε
P

{
Ar

j >
x/N

rj − ρj − ε

}

for all j ∈ I2.
Assumption 5.4 then follows from the assumption thatAj(·) ∈ R for all j ∈ S,

and so does Assumption 5.5 in caseS is a weakly dominant set.�

5.2. Additional instantaneous input. So far we have considered a scenario
with only fluid heavy-tailed input. We now extend the reduced-load equivalence
to the case with additionalinstantaneous, heavy-tailed input. We thus allow for
an additional subset of flowsI3 ⊆ I which generate instantaneous traffic bursts
according to independent renewal processes. The interarrival times between bursts
of flow i are generally distributed with mean 1/λi . The burst sizesBi have a heavy-
tailed distributionBi(·) with meanβi < ∞. Thus the traffic intensity of flowi is
ρi := λiβi .

For each flowi ∈ I3, we assume that the burst size distribution is regularly
varying of index−νi , that is,Bi(·) ∈ R−νi

for someνi > 1. The next result which
is due to [32] then gives the tail behavior of the workload distribution for a single
flow i ∈ I3 served in isolation.

THEOREM 5.2. If Br
i (·) ∈ S, ρi < c, then

P{Vc
i > x} ∼ ρi

c − ρi

P{Br
i > x}.(5.1)

In order to formulate the results, we need to extend the concept of dominance
introduced in Section 3. A flowi ∈ I3 is said to (weakly) dominate a flowj ∈ I3
if νi < (≤) νj . A flow i ∈ I3 is said to (weakly) dominate a critical setS ⊆ I2 if
νi − 1 < (≤)

∑
j∈S(νj − 1). A critical setS ⊆ I2 is said to (weakly) dominate a

flow i ∈ I3 if νi − 1 > (≥)
∑

j∈S(νj − 1).
A flow i ∈ I3 is called (weakly) dominant if it (weakly) dominates all other

flows j ∈ I3 as well as all critical setsS ⊆ I2. A critical setS ⊆ I2 is called
(weakly) dominant if it (weakly) dominates any other critical setU ⊆ I2 as well
as all flowsj ∈ I3.

THEOREM 5.3. Let K ⊆ I3 and ϒ ⊆ 2I2 be the collection of all weakly
dominant flows and all weakly dominant sets, respectively. If Bi(·) ∈ R for all
i ∈ K , and Aj(·) ∈ R for all j ∈ S, S ∈ ϒ , then

P{V > x} ∼ ∑
i∈K

P{Vci

i > x} + ∑
S∈ϒ

P{VcS

S > x},(5.2)

with P{Vci

i > x} and P{VcS

S > x} as in (5.1)and (3.2), (3.3),respectively.
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The proof of the above theorem is similar to that of Theorem 5.1 after a few
modifications to Lemmas 4.3 and 4.4.

It may be worth mentioning that Theorem 5.3 continues to hold under the
conditionBr

i (·) ∈ S for all i ∈ K , provided there are no weakly dominant sets
of On–Off flows (the concept of dominance may be extended to subexponential
distributions in a straightforward way). In particular, when there are simply no
On–Off flows at all, one obtains the extension of Theorem 5.2 to the single-server
queue fed by a superposition of renewal processes (which is not a renewal process).
This result was obtained as Theorem 4.1 in [4], using a different approach.

Theorem 5.3 also provides an extension of a recent result in [11], who study
anM/G/1 queue with two different speeds of service using an analytic approach.
A queue with two service speeds fits into our framework by the observation that
the varying service capacity can be regulated by an On–Off source.

6. Tail asymptotics for the reduced system. In this section we derive the
tail asymptotics for the reduced system. In particular, we give a proof of (3.2)
and (3.3).

For notational convenience, letc be the capacity of the reduced system, let the
set of flows be indexed asJ = {1, . . . ,N}, and denoter := rJ and A(0, t) :=
AJ(0, t). By definition, the reduced system satisfies the following two properties:

(i) The On period distribution of flowi is regularly varying of index−νi < −1,
that is,Ai(·) ∈ R−νi

.
(ii) All flows must be On for the drift of the workload process to be positive,

that is,c ∈ (r − mini=1,...,N {ri − ρi}, r).
We now state our main theorem.

THEOREM 6.1. Consider a queue of capacity c fed by N On–Off flows.
If c ∈ (r − mini=1,...,N {ri − ρi}, r) with r = ∑N

i=1 ri , and Aj(·) ∈ R for all
j = 1, . . . ,N , then

P{Vc > x} ∼
(

N∏
j=1

pj

) ∑
J0⊆{1,...,N}

PJ0(x),

where PJ0(x) is given by (with J1 = {1, . . . ,N} \ J0)

PJ0(x) = 1∏
i∈J1

E{Ai}

×
∫
yi∈(0,∞),i∈J1

∏
i∈J1

P

{
(r − c)Ai >

∑
j∈J1

yj (rj − ρj ) − (r − c)yi + x

}
(6.1)

× ∏
i∈J0

P

{
(r − c)Ar

i >
∑
j∈J1

yj (rj − ρj ) + x

} ∏
i∈J1

dyi.
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An asymptotic characterization ofPJ0(x) which may be useful for further analysis
is provided in Section 6.4. This characterization also shows thatP{Vc > x} and
PJ0(x) are regularly varying, and gives an expression for the pre-factor in the
asymptotic expansion ofP{Vc > x}.

The remainder of this section is organized as follows. Detailed heuristic
arguments are given in Section 6.1. In Section 6.2, we prove some preliminary
results on the most probable behavior of the process{A(0, t) − ct}. The proof
of Theorem 6.1 is then completed in Section 6.3. Section 6.4 deals with the
asymptotic behavior ofPJ0(x).

6.1. Heuristic arguments. The proof of Theorem 6.1 is quite lengthy. Nev-
ertheless, it is based on a simple intuitive argument: the most likely way for
Vc ≡ supt≥0{A(0, t) − ct} to reach a large value is that all flows have been si-
multaneously On for a long time. Specifically, each flow is likely to contribute
throughexactly one “long” On period; apart from these long On periods, the flows
show typical behavior.

The above heuristic argument may be used for computing supt≥0{A(0, t) − ct}.
Let us say that the long On period of flowi begins at timesi and ends at timesi + ti .
Define

t∗ := min
i=1,...,N

{si + ti}
as the time epoch at which the first of the long On periods finishes. One may also
interprett∗ as the time epoch at which the process{A(0, t)− ct} reaches its largest
value. Note thatAi(0, si) ≈ ρisi , Ai(si, si + ti ) = riti , andAi(si + ti , si + ti + t) ≈
ρit , t ≥ 0. One thus obtains, using the fact thatc ∈ (r − mini=1,...,N {ri − ρi}, r),

sup
t≥0

{A(0, t) − ct} ≈ A(0, t∗) − ct∗

≈
N∑

i=1

[ρisi + ri(t
∗ − si)] − ct∗(6.2)

=
N∑

i=1

(ρi − ri)si + (r − c)t∗.

The problem is thus reduced to calculating

P

{
N∑

i=1

(ρi − ri)si + (r − c) min
i=1,...,N

{si + ti} > x

}
.(6.3)

Although the proof is based on the representationVc ≡ supt≥0{A(0, t) − ct},
it is useful to keep the original workload process sup0≤s≤t {A(s, t) − c(t − s)} in
mind as well. Figure 1 shows a typical scenario leading to a large workload level
(so small fluctuations are ignored) in the case of two On–Off flows.
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FIG. 1. Typical overflow scenario for two On–Off flows.

At a certain timeω0, the first long On period begins. Before that time, both flows
show average behavior. The queue starts to build (at rater1 + r2 − c) at timeω1
when the second long On period begins, and reaches its largest level at timeω3.
Levelx is crossed at timeω2.

Between timesω3 and ω4, the queue drains at ratec − r1 − ρ2: flow 1 is
still in the middle of its long On period, and flow 2 shows average behavior
(remember small fluctuations are neglected). The process is still above levelx

between timesω4 andω5. However, here both flows show average behavior again,
causing a negative driftc − ρ1 − ρ2.

The figure illustrates why the analysis of the reduced system is still quite
complicated:

(i) Although the long On periods must significantly overlap, the difference
between the finishing times of these On periods can be quite large (of orderx,
hence not negligible).

(ii) Given that the observed workload is larger thanx, it is not necessarily the
case that all flows are in the middle of their long On periods. In Figure 1, this is
only the case in the time interval(ω2,ω3). In fact, for any given flow, its long On
period may have finished a long time ago. Consequently, there are 2N different
possibilities (corresponding to which subsets of the flows are still in the middle of
their long On periods). Sample-path wise, there areN + 1 different time intervals
in which the workload may be larger thanx (depending on how many of the flows
are still in the middle of their long On periods).

(iii) Specifically, given that the observed workload is larger thanx, it may still
have been even larger at an earlier time epoch. In Figure 1, this is the case in the
time intervals(ω3,ω4) and(ω4,ω5).
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These complications do not arise if one considers a related problem, which
concerns the overflow probability in a fluid queue with afinite buffer of sizex. As
is shown in [23], the analysis of the reduced system is then considerably simpler.
It suffices to use bounds which are similar to Lemmas 4.1 and 4.2, and to combine
these with the asymptotic results for a single On–Off flow in [21, 40].

6.2. Characterization of most probable behavior. In this section we prove
some preliminary results characterizing the most probable behavior of the process
{A(0, t) − ct} given that it reaches a large value. In particular, we formalize the
following two heuristic statements, resulting in a formal version of (6.2).

(i) Each flow contributes to supt≥0{A(0, t) − ct} through exactly one “long”
On period.

(ii) Apart from these long On periods, the flows show typical behavior.

An On period is referred to as “long” when larger thanεx, with ε some small but
positive constant. In order to formalize the above statements, we need to keep track
of how many such long On periods occur.

With that in mind, we defineNi(A,B), for intervalsA,B ⊆ [0,∞), as the
number of On periods of flowi of which the length is contained inA and which
overlap (in time) withB. For compactness, denote

Ni(u, t) ≡ Ni

(
(u,∞), [0, t]).

We now proceed with a few preparatory lemmas.
First we show how to obtain an upper bound for the workload process in terms

of a simple random walk. As in (4.1), we haveV c(t) ≤ V
di

i (t) for all i = 1, . . . ,N ,

with di := c − rI\{i} = c − r + ri . Recall thatV di

i (t)
d= sup0≤s≤t {Ai(0, s) − dis}.

Now let, for fixed i, Sin = Xi1 + · · · + Xin be a random walk with step sizes
Xim = (ri − di)Aim − diUim, with Aim andUim i.i.d. random variables distributed
as the On and Off periods of flowi, respectively.

Sincec ∈ (r − mini=1,...,N {ri − ρi}, r), we haveρi < di for all i = 1, . . . ,N ,
so thatE{Xi1} < 0, that is, the random walk has negative drift. Because of the
sawtooth nature of the processAi(0, s) − dis, we have

sup
0≤s≤t

{Ai(0, s) − dis} ≤ (ri − di)
(
BiAr

i0 + (1− Bi )Ai0
) + sup

n≤NA
i (t)

Sin,

with NA
i (t) denoting the number of Off periods of flowi elapsed during[0, t]

which started after time 0 [for a formal definition see (4.5)].
The above observations are summarized in the following auxiliary lemma.
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LEMMA 6.1. For all ε > 0, t and x,

P{V c(t) > x,Ni (εx, t) = 0}
≤ P

{
sup

n≤NA
i (t)

Sin > x
(
1− ε(ri − di)

)
,Ni(εx, t) = 0

}
.

PROOF. We have

P{V c(t) > x,Ni (εx, t) = 0}
≤ P

{
V

di

i (t) > x,Ni(εx, t) = 0
}

≤ P

{
(ri − di)

(
BiAr

i0 + (1− Bi )Ai0
)

+ sup
n≤NA

i (t)

Sin > x,Ni(εx, t) = 0
}

≤ P

{
sup

n≤NA
i (t)

Sin > x
(
1− ε(ri − di)

)
,Ni(εx, t) = 0

}
.

The last inequality follows from the fact thatAr
i0 andAi0 must be smaller thanεx

if Ni (εx, t) = 0. �

To obtain upper bounds for probabilities as in Lemma 6.1, we will frequently
apply the following key lemma, which is a trivial modification of Lemma 3 in [34].

LEMMA 6.2. Let Sn = X1 + · · · + Xn be a random walk with i.i.d. step sizes
such that E{X1} < 0 and E{(X+

1 )p} < ∞ for some p > 1. Then, for any β < ∞,
there exists an ε∗ > 0 and a function φ(·) ∈ R−β such that, for ε ∈ (0, ε∗],

P
{
Sn > x | Xj ≤ εx, j = 1, . . . , n

} ≤ φ(x),

for all n and all x.

Note that if Xj can be represented as the difference of two nonnegative
independent random variablesX1

j and X2
j , then the lemma remains valid if the

Xj ’s are replaced byX1
j .

The final preparatory lemma is a simple consequence of Corollary 4.2, which
will be used several times in combination with Lemma 6.2 that probabilities of
certain events are ofo(P{Vc > x}). Define

P (x) :=
N∏

j=1

P{Ar
j > x} ∈ R−µ, µ :=

N∑
j=1

(νj − 1).
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LEMMA 6.3.

lim sup
x→∞

P (x)

P{Vc > x} < ∞.

We now show that, with overwhelming probability (asx → ∞), the rare event
{Vc > x} occurs as follows:

(i) The process{A(0, t) − ct} reaches levelx before timeMx for some
largeM .

(ii) Up to time Mx, each flow generatesexactly one long On period, that is,
Ni(εx, t) = 1 for i = 1, . . . ,N .

PROPOSITION6.1.

lim
M→∞ lim inf

x→∞
P{V c(Mx) > x}

P{Vc > x} = 1.

PROOF. By definition,

P{Vc > x} = P

{
sup
t≥0

{A(0, t) − ct} > x

}

≤ P

{
sup

0≤t≤Mx

{A(0, t) − ct} > x

}
+ P

{
sup

t≥Mx

{A(0, t) − ct} > x

}

= P{V c(Mx) > x} + P

{
sup

t≥Mx

{A(0, t) − ct} > x

}
.

Thus, it suffices to show

lim
M→∞ lim sup

x→∞
P{supt≥Mx{A(0, t) − ct} > x}

P{Vc > x} = 0,

which, however, follows directly from Lemma 4.5.�

Now suppose that the workload reaches levelx. By the previous proposition,
we may assume that this occurs before timeMx (for M sufficiently large). The
next two propositions show that we may restrict the attention to a scenario where
each flow initiatesexactly one long On period before timeMx.

The first proposition indicates that each flow hasat least one long On period.

PROPOSITION6.2. For all i and all M , there exists an ε∗ > 0 such that, for
all ε ∈ (0, ε∗],

P
{
V c(Mx) > x,Ni(εx,Mx) = 0

} = o(P{Vc > x}),
as x → ∞.
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PROOF. Define NU
i (t) := max{n :

∑n
j=1 Uij ≤ t} + 1. Note thatNA

i (t) ≤
NU

i (t).
Using Lemma 6.1, takingt = Mx,

P
{
Vc(Mx) > x,Ni(εx,Mx) = 0

}
≤ P

{
sup

n≤NA
i (Mx)

Sin > x
(
1− ε(ri − di)

)
,Ni(εx,Mx) = 0

}

≤ P

{
sup

n≤NA
i (Mx)

Sin > x
(
1− ε(ri − di)

) ∣∣Ni(εx,Mx) = 0
}

= P

{
sup

n≤NA
i (Mx)

Sin > x(1− ε(ri − di))
∣∣Aij < εx,

j = 1, . . . ,NA
i (Mx)

}

= P

{
sup

n≤NA
i (Mx)

Sin > x
(
1− ε(ri − di)

) ∣∣ Aij < εx, j ≥ 1
}

≤ P

{
sup

n≤NU
i (Mx)

Sin > x
(
1− ε(ri − di)

) ∣∣Aij < εx, j ≥ 1
}

= P

{
sup

n≤NU
i (Mx)

Sin > x
(
1− ε(ri − di)

) ∣∣ Aij < εx,

j = 1, . . . ,NU
i (Mx)

}

≤ P

{
sup

n≤M2x

Sin > x
(
1− ε(ri − di)

) ∣∣Aij < εx, j ≥ 1
}

+ P
{
NU

i (Mx) > M2x
}
.

The second term decays exponentially fast inx if M2 > λiM . The first term can
be bounded by

M2x∑
m=1

P
{
Sim > x

(
1− ε(ri − di)

) ∣∣Aij ≤ εx, j = 1, . . . ,m
}
.

According to Lemma 6.2, there exists anε∗ > 0 and a functionφ(·) ∈ R−β

with β > µ + 1, such that, forε ∈ (0, ε∗], the last quantity is upper bounded by
M2xφ(x). The latter function is regularly varying of index 1− β < −µ. Invoking
Lemma 6.3 then completes the proof.�

The next proposition shows that each flow hasat most one long On period.
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PROPOSITION6.3. For all i, all M and all ε > 0,

P
{
V c(Mx) > x,Ni (εx,Mx) ≥ 2

} = o(P{Vc > x}),
as x → ∞.

PROOF. Without loss of generality we may takei = 1. By Proposition 6.2 it
suffices to show that

P
{
V c(Mx) > x,N1(εx,Mx) ≥ 2,Ni(εx,Mx) ≥ 1, i ≥ 2

} = o(P{Vc > x}).
Note that the left-hand side is bounded by

P{N1(εx,Mx) ≥ 2}
N∏

i=2

P{Ni(εx,Mx) ≥ 1}.

Thus, invoking Lemma 6.3, it suffices to show that:

(i) P{Ni(εx,Mx) ≥ 1} is bounded by a function which is regularly varying of
index 1− νi .

(ii) P{Ni(εx,Mx) ≥ 2} = o(P{Ni(εx,Mx) ≥ 1}).
We will prove both assertions fori = 1. For assertion (i), note that

P{N1(εx,Mx) ≥ 1}
≤ p1P{Ar

1 ≥ εx} + P
{
#
{
j ∈ {1, . . . ,NU

1 (Mx)} : A1j ≥ εx
} ≥ 1

}
.

The first term is inR1−ν1. By conditioning uponNU
1 (Mx), the second term can

be bounded byE{NU
1 (Mx)}P{A1 ≥ εx}, which is also regularly varying of index

1− ν1. To prove assertion (ii), note that

P{N1(εx,Mx) ≥ 2}
≤ p1P{Ar

1 ≥ εx}P{
N1

(
(εx,∞), (0,Mx]) ≥ 1

}
+ P

{
N1

(
(εx,∞), (0,Mx]) ≥ 2

}
.

Using P{N1((εx,∞), (0,Mx]) ≥ 1} ≤ P{N1(εx,Mx) ≥ 1} and assertion (i), it
follows that the first term is ofo(P{N1(εx,Mx) ≥ 1}). To bound the second term,
condition (again) onNU

1 (Mx). This yields

P
{
N1

(
(εx,∞), (0,Mx)

) ≥ 2
} ≤ E

{
NU

1 (Mx)2}
P{A1 ≥ εx}2.

Finally, note thatE{NU
1 (Mx)2} is quadratic inx for x → ∞. �

We have now shown that, with overwhelming probability, each flow contributes
to a large value of supt≥0{A(0, t) − ct} through exactly one long On period. We
thus proceed with the second statement (as indicated at the beginning of this
section), implying that apart from these long On periods, the flows show typical
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behavior. In order to formalize that statement, we need to introduce some notation.
Define

τ (y) := inf{t ≥ 0 :A(0, t) − ct = y}
as the first time at which the process{A(0, t) − ct} reaches levely.

For fixedε > 0 andx, let τs,i(εx) andτf,i(εx) be the respective starting and
finishing times of the first On period of flowi exceeding lengthεx. Denote

τs(εx) := max
i=1,...,N

τs,i(εx)

and

τf (εx) := min
i=1,...,N

τf,i(εx).

Note that all flows are in the middle of their long On periods between
times τs(εx) and τf (εx). We will show that the fluctuations of the process
{A(0, t) − ct} away from the mean before timeτs(εx) and after timeτf (εx) can
be neglected.

More formally, the next two propositions show that, given that the workload
reaches levelx before timeMx, there exists for any smallδ > 0 anεδ such that,
for all ε ∈ (0, εδ),

τs(εx) ≤ τ (δx) < τ
(
(1− δ)x

) ≤ τf (εx).

Thus, the workload remains small up to timeτs(εx), and reaches a level close tox

before timeτf (εx), as depicted in Figure 2.
The first proposition indicates that it is most unlikely that the process{A(0, t)−

ct} reaches levelδx before timeτs(εx).

PROPOSITION 6.4. For any δ > 0, there exists an ε∗ > 0 such that, for all
ε ∈ (0, ε∗],

P{τ (δx) < τs(εx)} = o(P{Vc > x}).

PROOF. For compactness, denoteτs ≡ τs(εx), τs,i ≡ τs,i(εx). Then

P{τ (δx) < τs} = P{V c(τs) > δx} ≤
N∑

i=1

P{V c(τs,i) > δx}.

We bound each term in the last summation.
Define Ni(εx) := NA

i (τ−
s,i) as the number of On periods initiated by flowi

before the first On period exceeding lengthεx. Note that Ni(εx) + 1 is
geometrically distributed with parameterP{Ai > εx}.
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FIG. 2. Typical path to overflow.

Using Lemma 6.1, takingt = τs,i ,

P{V c(τs,i) > δx}
= P

{
V c(τs,i) > δx,Ni

(
(εx,∞), [0, τs,i)

) = 0
}

≤ P

{
sup

n≤Ni(εx)

Sn > x
(
δ − ε(ri − di)

)
,Aij ≤ εx, j = 1, . . . ,Ni(εx)

}

≤
∞∑

m=1

P{Ni(εx) = m}

× P

{
sup
n≤m

Sn > x
(
δ − ε(ri − di)

)
,Aij ≤ εx, j = 1, . . . ,m

}

≤
∞∑

m=1

P{Ni(εx) = m}

× P

{
sup
n≤m

Sn > x
(
δ − ε(ri − di)

) ∣∣ Aij ≤ εx, j = 1, . . . ,m

}
.

According to Lemma 6.2, there exists anε∗ > 0 and a functionφ(·) ∈ R−β with
β > 2ν + 1, such that, forε ∈ (0, ε∗), the last quantity is upper bounded by

E{Ni(εx)}φ(x) = φ(x)P{Ai ≤ εx}
P{Ai > εx} ,
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which is regularly varying of indexνi − β < µ + 1− (2µ + 1) = −µ.
Invoking Lemma 6.3 then completes the proof.�

The next proposition shows that, given that the process{A(0, t) − ct} reaches
level x before time Mx, most probably level(1 − δ)x is crossed before
time τf (εx).

PROPOSITION 6.5. For any δ > 0 and M < ∞, there exists an ε∗ > 0 such
that, for all ε ∈ (0, ε∗),

P
{
τ
(
(1− δ)x

)
> τf (εx),V c(Mx) > x

} = o(P{Vc > x}).
PROOF. For conciseness, denoteτf ≡ τf (εx), τf,i ≡ τf,i(εx). By Proposi-

tions 6.2 and 6.3, it suffices to show that

P
{
τ
(
(1− δ)x

)
> τf ,V c(Mx) > x,Ni (εx,Mx) = 1 for all i = 1, . . . ,N

}
= o(P{Vc > x}).

Note that

P
{
τ
(
(1− δ)x

)
> τf ,V c(Mx) > x,Ni (εx,Mx) = 1 for all i = 1, . . . ,N

}
= P

{
V c(τf ) > (1− δ)x,V c(Mx) > x,

Ni (εx,Mx) = 1 for all i = 1, . . . ,N
}

≤
N∑

i=1

P
{
V c(τf,i) > (1− δ)x,V c(Mx) > x,Ni(εx,Mx) = 1

}
.

As before, we bound each term in the last summation:

P
{
V c(τf,i) > (1− δ)x,V c(Mx) > x,Ni(εx,Mx) = 1

}
≤ P

{
sup

0≤t≤τf,i

{A(0, t) − ct} < (1− δ)x, sup
0≤t≤Mx

{A(0, t) − ct} > x,

Ni

(
(εx,∞), (τf,i ,Mx]) = 0

}

≤ P

{
sup

τf,i≤t≤Mx

{A(τf,i , t) − c(t − τf,i)} > δx,

Ni

(
(εx,∞), (τf,i ,Mx]) = 0

}

≤ P

{
sup

τf,i≤t≤Mx

{Ai(τf,i , t) − di(t − τf,i)} > δx,

Ni

(
(εx,∞), (τf,i ,Mx]) = 0

}
.
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The first inequality follows from the definitions. The second inequality follows
from properties of the sup operator, and the last inequality is obtained by assuming
that all flows buti are On between timesτf,i andMx.

Note that the last probability is upper bounded by

P

{
sup

Ni(εx)+2≤n≤NA
i (Mx)

Sn − SNi(εx)+1 > δx,

Aj ≤ εx,Ni(εx) + 2≤ j ≤ NA
i (Mx)

}
.

The latter probability can be upper bounded by a function which is regularly
varying of index−β < −µ in a similar fashion as in the proof of Propositions
6.2 and 6.4.

The proof is complete by invoking Lemma 6.3.�

Propositions 6.4 and 6.5 may be used to obtain the following result.

COROLLARY 6.1. If Aj(·) ∈ R for all j = 1, . . . ,N , then P{Vc > x} ∈ IR.

The above result suffices to prove the reduced-load equivalence. (See Section 5,
in particular Proposition 5.1, for the details.) However, determining the exact
asymptotic behavior ofP{Vc > x} requires further analysis, to be found in
Sections 6.3 and 6.4. In particular, the analysis in Section 6.4 will lead to a sharper
version of Corollary 6.1, showing thatP{Vc > x} ∈ R (which is a strict subset
of IR).

Nevertheless, we sketch a direct proof of Corollary 6.1 which we believe is of
independent interest. For the formal proof details we refer to [41].

SKETCH OF PROOF OFCOROLLARY 6.1. The idea of the proof is as follows.
If Vc > x, then Propositions 6.4 and 6.5 show that the process{A(0, t) − ct}
reaches the level(1 − δ)x after all flows have been On for at least(1−2δ)x

r−c
time

units. SinceAj(·) ∈ R ⊂ IR for all j = 1, . . . ,N , with high probability, all flows

remain On for at least2δx
r−c

more time units. This yields

lim
δ↓0

lim inf
x→∞ P{Vc > (1+ δ)x | Vc > x} = 1,

implying the desired statement (by definition).�

6.3. Proof of Theorem 6.1. In this section we give a proof of Theorem 6.1.
First we consolidate the key results from the previous section in the following
theorem.
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THEOREM 6.2. For any δ > 0, there exists an ε∗ > 0 such that, for all
ε ∈ (0, ε∗),

P
{
A

(
0, τf (εx)

) − cτf (εx) > x
} ≤ P{Vc > x}
� P

{
A

(
0, τf (εx)

) − cτf (εx) > (1− δ)x
}
.

PROOF. The lower bound is trivial. The upper bound follows from Proposi-
tions 6.1, 6.4 and 6.5.�

In order to obtain tight bounds for the probabilities in Theorem 6.2, we condition
uponτs,i for all i. Hence, for anyJ0 ⊆ J, define the eventDJ0(εx) by

DJ0(εx) := {
τs,i(εx) = 0 for all i ∈ J0; τs,i(εx) > 0 for all i /∈ J0

}
.

The eventDJ0(εx) implies that the flowsi ∈ J0 started their long On period before
time 0 (remember that we consider the system in stationarity). The flowsi ∈ J1

start their long On period at a later time epoch.
DenotePJ0{·} = P{· | DJ0(εx)}. The following two lemmas will be useful for

providing tight upper and lower bounds for the probabilities in Theorem 6.2.

LEMMA 6.4 (Upper bound). For any δ > 0, there exists an εδ > 0 such that,
for all ε ∈ (0, εδ),

PJ0

{
A

(
0, τf (εx)

) − cτf (εx) > (1− δ)x
} ∏

i∈J0

P{Ar
i > εx}

� PJ0

(
(1− δ)x

) ∏
i∈J1

pi,

with PJ0((1− δ)x) as in (6.1).

LEMMA 6.5 (Lower bound). There exists an ε > 0 such that

PJ0

{
A

(
0, τf (εx)

) − cτf (εx) > x
} ∏

i∈J0

P{Ar
i > εx}

� PJ0(x)
∏
i∈J1

pi,

with PJ0(x) as in (6.1).

The proofs of these lemmas are quite technical, and are deferred to Appen-
dices A and B. A brief sketch of the proofs is given at the end of this section.

We now have gathered all the ingredients for the proof of Theorem 6.1.
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PROOF OFTHEOREM 6.1. The lower bound in Theorem 6.2 may be written
as

P
{
A

(
0, τf (εx)

) − cτf (εx) > x
}

= ∑
J0⊆{1,...,N}

PJ0

{
A

(
0, τf (εx)

) − cτf (εx) > x
}
P{DJ0(εx)}.

Note that

P
{
DJ0(εx)

} ∼ ∏
i∈J0

piP{Ar
i > εx}.

Using Lemma 6.5, we then obtain

P
{
A

(
0, τf (εx)

) − cτf (εx) > x
}

�
(

N∏
j=1

pj

) ∑
J0⊆{1,...,N}

PJ0(x).

Similarly, using Lemma 6.4,

PJ0

{
A

(
0, τf (εx)

) − cτf (εx) > (1− δ)x
}

�
(

N∏
j=1

pj

) ∑
J0⊆{1,...,N}

PJ0

(
(1− δ)x

)
.

Theorem 6.2 then gives(
N∏

j=1

pj

) ∑
J0⊆{1,...,N}

PJ0(x)

� P{Vc > x}

�
(

N∏
j=1

pj

) ∑
J0⊆{1,...,N}

PJ0

(
(1− δ)x

)
,

which implies Theorem 6.1, sincePJ0(x) ∈ R as will be shown in Theorem 6.3.
�

In preparation for the proofs of Lemmas 6.4 and 6.5, we give a convenient
representation forA(0, τf ) − cτf under the eventDJ0(εx).

LEMMA 6.6. Under the event DJ0(εx), A(0, τf )− cτf can be represented as

A(0, τf ) − cτf

= min
{

min
i∈J0

Fi ,min
i∈J1

Gi

}
,
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where J1 = J \ J0. The random variables Fi and Gi are given by

Fi = (r − c)Ār
i (εx)

− ∑
k∈J1

rk

[
BkAr

k(εx) + (1− Bk)[Ak(εx) + Ur
k] +

Nk(εx)∑
j=1

Ukj

]
,

Gi = (r − c)Āi(εx)

+ (r − c)

[
BiAr

i (εx) + (1− Bi )Ai (εx) +
Ni(εx)∑
j=1

Aij (εx)

]

− di

[
(1− Bi )Ur

i +
Ni(εx)∑
j=1

Uij

]
− ∑

k∈J1\{i}
rk

[
(1− Bk)Ur

k +
Nk(εx)∑
j=1

Ukj

]
.

Here Āi(εx) = Ai |Ai > εx, Ār
i (εx) = Ar

i |Ar
i > εx, Aij (εx)

d= Aij |Aij ≤ εx and

Ar
i (εx)

d= Ar
i |Ar

i ≤ εx.

PROOF. Under the eventDJ0(εx), the random variablesτs,i , i ∈ J1, can be
represented as

τs,i = BiAr
i (εx) + (1− Bi )[Ur

i + Ai(εx)] +
Ni(εx)∑
j=1

[Uij + Aij (εx)], i ∈ J1.

Combined with the identities

Ai(0, τs,i) = ri

[
BiAr

i (εx) + (1− Bi)Ai (εx) +
Ni(εx)∑
j=1

Aij (εx)

]
,

τf = min
{

min
i∈J0

Ār
i (εx),min

i∈J1
{Āi(εx) + τs,i}

}
,

Ai(τs,i, τf ) = ri(τf − τs,i),

the representation forA(0, τf ) − cτf then easily follows. �

We now give a brief sketch of the proofs of Lemmas 6.4 and 6.5. Both rely on
the above representation forA(0, τf ) − cτf in terms of the variablesFi andGi .
The proofs of the lemmas have a similar structure.

(i) The expressions forFi and Gi are quite complicated, so an attempt to
obtain the exact joint distribution does not seem promising. Therefore, the first
step is to show that all random variablesAij (εx) andUij can be replaced by their
means.
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(ii) The above point indicates thatFi andGi may be approximated as follows:

Fi ≈ (r − c)Ār
i (εx) + ∑

k∈J1

rkE{Uk}Nk(εx),

Gi ≈ (r − c)Āi(εx) + [
(r − c)E{Ai} − diE{Ui}]Ni(εx)

− ∑
k∈J1\{i}

rkE{Uk}Nk(εx).

It will be useful to keep these approximations in mind. The formulas in
Appendixes A and B look much more cumbersome by the appearance of many
additional but small constants.

(iii) The only random variables appearing in the above expressions areĀi (εx),
Br

i (εx) andNi(εx), of which the distributions are known. What thus remains is a
straightforward computation.

The first point causes the most technical difficulties. It requires a separate treatment
in the proofs of Lemmas 6.4 and 6.5. Details may be found in the Appendices.

6.4. Asymptotic behavior of PJ0(x) and P{Vc > x}. In this section we give an
asymptotic characterization ofPJ0(x), which may be useful for further analysis.
In particular, we establish thatPJ0(x) andP{Vc > x} are both regularly varying.

Assume thatJ0 is a proper subset ofJ, observing

PJ(x) = ∏
i∈J

P

{
Ar

i >
x

r − c

}
.

For every setJ0, define the|J1|-vectorg by

g :=
(

rj − ρj

r − c

)
j∈J1

.

Let G be a (square) matrix with identical rowsg, and letḠ := G − I , with I the
identity matrix of dimension|J1|.

It can easily be shown that̄G is invertible; denote its inverse byH .
A straightforward computation yieldsH = 1

ge−1G− I , with e = (1, . . . ,1), which

implies thatgH = 1
ge−1g. A further straightforward computation shows|Ḡ| =

eg − 1.
Definey = (yi)J1 anddy = ∏

i∈J1
dyi . Then we may write

PJ0(x) = 1∏
i∈J1

E{Ai}

×
∫
y≥0

∏
i∈J1

P

{
Ai > (Ḡy)i + x

r − c

} ∏
i∈J0

P

{
Ar

i > gy + x

r − c

}
dy.
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If we integrate w.r.t.z := Ḡy (note thatḠ is a positive matrix), then we obtain
[definingAJ1 = (Ar

i )i∈J1]

PJ0(x) = 1

|Ḡ|∏i∈J1
E{Ai}

×
∫
z≥0

∏
i∈J1

P

{
Ai > zi + x

r − c

} ∏
i∈J0

P

{
Ar

i > gHz + x

r − c

}
dz

= 1

eg − 1

∫
z≥0

∏
i∈J0

P

{
Ar

i >
1

eg − 1
gz + x

r − c

} ∏
i∈J1

dP

{
Ar

i ≤ zi + x

r − c

}

= 1

eg − 1
P

{
Ar

i ≥ x

r − c
, i ∈ J;

Ar
k − x

r − c
≥ 1

eg − 1
g

(
Ar

J1
− e

x

r − c

)
, k ∈ J1

}
.

We conclude thatPJ0(x) can be written (up to a constant) as the probability that
(Ar

i )i∈J belongs to a certain set. We now show thatPJ0(x) is regularly varying
of index −µ [recall thatµ = ∑N

i=1(νi − 1)]. If Ai is regularly varying of index
−νi < −1, then it is well known and elementary to show that

P

{
Ar

i − γ x

x
> y

∣∣Ar
i > γ x

}
→

(
1+ y

γ

)1−νi

,

as x → ∞. Let Zi be a random variable with the above limiting distribution,
with γ = 1

r−c
such that theZi , i ∈ J1, are independent. The above computations

are summarized in the following theorem.

THEOREM 6.3.

PJ0(x) ∼ κJ0

N∏
i=1

P

{
Ar

i >
x

r − c

}
,

with κJ = 1 and

κJ0 = 1

eg − 1
P

{
Zi ≥ 1

eg − 1
gZJ1, i ∈ J0

}

if J0 is a proper subset of J. In particular, PJ0(x) is regularly varying of index −µ.

Combining Theorems 6.1 and 6.3, we obtain:

THEOREM 6.4.

P{Vc > x} ∼ κ

N∏
i=1

piP

{
Ar

i >
x

r − c

}
,
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with

κ = ∑
J0⊆{1,...,N}

κJ0.

In particular, P{Vc > x} is regularly varying of index −µ.

The above theorem is used in proving the reduced-load equivalence (see
Section 5), and may be potentially useful for computational purposes.

In particular, in the case of two On–Off flows, the computation ofκ is as difficult
as the computation ofκ1 andκ2. Using the probabilistic interpretation of these
constants readily leads to an integral expression, which can be solved explicitly
when bothν1 andν2 are integer-valued. We omit the details.

7. K heterogeneous classes: proofs. In this section we provide the proofs of
the results in Section 3.5 for the case withK heterogeneous classes of On–Off
flows. In particular, we present a proof of Theorem 3.3.

We start with the regime where we first letx → ∞ and thenn → ∞. For everyn
we have, using Theorem 3.2,

lim
x→∞

P{V(n) > nx}
logx

= −µ(n),

with µ(n) denoting the optimal value of the criterion function of the associated
knapsack problem. It thus remains to be shown that

lim
n→∞

µ(n)

nµ
= 1.(7.1)

First observe that the optimal value of the continuous relaxation of the knapsack
problem isnµ, yielding a lower bound forµ(n). On the other hand, the continuous
relaxation may be used to construct a feasible solution of the knapsack problem.
Take (use the notation of Section 3.5)qk = nk = nak for k < l, qk = nk = 0 for
k > l, andql = |nl| + 1. This is a feasible solution with a value at mostnµ + γl ,
giving an upper bound forµ(n). In conclusion, we have

nµ ≤ µ(n) ≤ nµ + γl,

from which (7.1) directly follows.
We now turn to the regime where we first letn → ∞ and thenx → ∞ (i.e., the

many-sources regime). Define the “decay rate”

I (x) := − lim
n→∞

1

n
logP

{
V(n) > nx

}
.

It needs to be shown thatI (x) ∼ µ logx asx → ∞.



FLUID QUEUES WITH HEAVY TAILS 943

The above decay rate equals ([8], page 300)

I (x) = inf
t≥0

sup
θ

(
θ(x + t) −

K∑
k=1

ak logE
{
eθAk(t)

})
,

with Ak(t) := Ak(0, t) representing the amount of traffic generated by a single
class-k flow in a time interval of lengtht in steady state. Replacingθ by θ(log t)/t ,
we obtain an alternative variational problem,

inf
t≥0

log t · Jt

(
x

t
+ 1

)
(7.2)

whereJt (x) := sup
θ

(
θx −

K∑
k=1

ak

logE{eθ(logt)Ak(t)/t }
log t

)
,

for x ∈ (0,
∑K

k=1akrk). The latter variational problem allows direct asymptotic
analysis (x → ∞) as in [29], which yields Theorem 7.1.

First, however, we state an auxiliary lemma. Recall thatσk = ∑k−1
m=1 amrm +∑K

m=k amρm, and that theK classes are indexed in nondecreasing order of the
ratiosγk = (νk − 1)/(rk − ρk).

LEMMA 7.1. For θ ≥ 0,

lim
t→∞

logE{eθ(logt)Ak(t)/t}
logt

= max{θρk, θrk − νk + 1},
so that the cumulant function of the superposition is piecewise linear:

K∑
k=1

ak lim
t→∞

logE{eθ(logt)Ak(t)/t }
log t

=
K∑

k=1

ak max{θρk, θrk − νk + 1}.

Further,

lim
t→∞Jt (x) = γl(x)x −

l(x)−1∑
k=1

ak

(
γl(x)rk − νk + 1

) −
K∑

k=l(x)

akγl(x)ρk,(7.3)

for x ∈ (0,
∑K

k=1 akrk), where l(x) is such that x ∈ (σl(x)−1, σl(x)).
The function lim t→∞ Jt (·) is increasing.

The proof of the above lemma is analogous to that of Theorem 3.6 and Lemma 3.7
of [29].

THEOREM 7.1 (Large-buffer asymptotics).

lim
x→∞

I (x)

logx
= µ,

with µ = ∑l−1
k=1ak(νk − 1) + (1− σl−1)γl and l := l(1).
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PROOF. The proof consists of deriving an upper bound and a lower bound
which asymptotically coincide.

(Upper bound.) Using the representation (7.2),

lim sup
x→∞

I (x)

logx
= lim sup

x→∞
inf
t>0

log t

logx
Jt

(
x

t
+ 1

)
.

Substituting t = x/s, s ∈ (0,
∑K

k=1 akrk − 1), to obtain an upper bound, and
using (7.3),

lim sup
x→∞

inf
t>0

log t

logx
Jt

(
x

t
+ 1

)

≤ lim sup
x→∞

log(x/s)

logx
Jx/s(s + 1)

≤ lim sup
x→∞

log(x/s)

logx
lim sup
x→∞

Jx/s(s + 1)

≤ lim sup
x→∞

Jx/s(s + 1)

= γl(s+1)(s + 1)

−
l(s+1)−1∑

k=1

(
akγl(s+1)rk − νk + 1

) −
K∑

k=l(s+1)

akγl(s+1)ρk.

The above inequality holds for anys ∈ (0,
∑K

k=1 akrk − 1). According to
Lemma 7.1, the last term is increasing ins +1. Lettings ↓ 0 to obtain the sharpest
possible upper bound, we obtain

lim sup
x→∞

I (x)

logx
≤ γl −

l−1∑
k=1

ak(γlrk − νk + 1) −
K∑

k=l

akγlρk = µ.

(Lower bound.) Using the representation (7.2), and takingθ = γl , we obtain
the lower bound

I (x) = inf
t≥0

logt · sup
θ

(
θ

(
x

t
+ 1

)
−

K∑
k=1

ak

logE{eθ(logt)Ak(t)/t}
logt

)

≥ inf
t≥0

logt ·
(
γl

(
x

t
+ 1

)
−

K∑
k=1

ak

logE{eγl(logt)Ak(t)/t}
log t

)
.

The optimizing value oft in the above variational problem isat least linear inx,
for largex. Formally, there exists ad such that the above infimum need be taken
only overt > dx, for largex. This may be proven analogously to case (iii) of [14],
page 258. Thus,

I (x) ≥ inf
t>dx

log t ·
(
γl

(
x

t
+ 1

)
−

K∑
k=1

ak

logE{eγl(logt)Ak(t)/t }
log t

)
.
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Using (7.3), we find that for anyε > 0, andx large enough, we have, for allt > dx,
K∑

k=1

ak

logE{eγl logtAk(t)/t }
logt

≤ (1+ ε)

K∑
k=1

ak max{γlρk, γlrk − νk + 1}.

Thus,

lim inf
x→∞

I (x)

logx

≥ lim inf
x→∞ inf

t>dx

logt

logx

(
γl

(
x

t
+ 1

)

− (1+ ε)

K∑
k=1

ak max{γlρk, γlrk − νk + 1}
)

≥ lim inf
x→∞ inf

t>dx

logt

logx
inf

t>dx

(
γl

(
x

t
+ 1

)

− (1+ ε)

K∑
k=1

ak max{γlρk, γlrk − νk + 1}
)

≥ γl − (1+ ε)

K∑
k=1

ak max{γlρk, γlrk − νk + 1}.

Letting ε ↓ 0, we obtain

lim inf
x→∞

I (x)

logx

≥ γl −
K∑

k=1

ak max{γlρk, γlrk − νk + 1}

= γl −
K∑

k=1

ak

(
γlρk + max{0, γl(rk − ρk) − νk + 1})

= γl −
K∑

k=1

ak

(
γlρk + max{0, (γl − γk)(rk − ρk)})

= γl −
l−1∑
k=1

ak(γlrk − νk + 1) −
K∑

k=l

akγlρk

= µ. �

As shown above, Theorem 3.3 implies that the limitsx → ∞ and n → ∞
commute, as long as one considers “rough” (i.e., logarithmic) asymptotics.



946 B. ZWART, S. BORST AND M. MANDJES

However, in case of “more refined” asymptotics, the limits do not necessarily
commute. This may be seen as follows. Consider the case ofn homogeneous
On–Off flows with Pareto(ν) distributed On periods. In [28], it is proven that

lim
x→∞ lim

n→∞
1

n
logP

{
V(n) > nx

} + (ν − 1)

(
c − ρ

r − ρ

)
log(x logx) = H,

for some constantH ∈ (0,∞). Now reverse the limits. Denote bykn the number
of flows sending at peak rate in the reduced-load approximation (in the notation of
Section 3.4, we havekn = N∗):

kn :=
⌈
nc − nρ

r − ρ

⌉
.

Now with Theorem 3.1, we have, for any finiten andx → ∞,

P
{
V(n) > nx

} ∼ f (n)x−(ν−1)kn,

for some functionf (·). Hence,

lim
x→∞

1

n
logP

{
V(n) > nx

} + (ν − 1)

(
c − ρ

r − ρ

)
log(x logx)

= logf (n) + lim
x→∞(ν − 1)

(
kn

n
− c − ρ

r − ρ

)
logx − (ν − 1)

c − ρ

r − ρ
log logx.

Since this limit does not exist inR, we conclude that the limits do not necessarily
commute.

8. Concluding remarks. We have characterized the asymptotic behavior of
the workload distribution in a fluid queue fed by multiple heavy-tailed On–Off
flows. The results extend previous work, like the bounds derived in [15], and
the exact asymptotics in [9, 22] which rely on strong peak-rate conditions. As
a by-product, the proofs lead to several important insights like the extension of
the reduced-load equivalence established in [1] (see Section 5), and a detailed
understanding of the typical overflow behavior (see Section 6). In the analysis,
we excluded the case where the drift may be zero during the path to overflow (see
Section 3.1 for a brief discussion), which appears particularly interesting from a
theoretical perspective.

There are several other interesting topics for further research. We expect that the
methodology of Section 6 is also suitable to study other similar problems, such as
fluid queues withM/G/∞ input, multiserver queues, and Generalized Processor
Sharing queues. A further avenue for research is the extension of the results to the
case of On–Off flows with more general subexponential On periods, for example,
Weibull. Partial results in [1] indicate that the typical overflow behavior may then
actually be quite different.
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APPENDIX A

Proof of Lemma 6.4.

LEMMA 6.4 (Upper bound). For any δ > 0, there exists an εδ > 0 such that,
for all ε ∈ (0, εδ),

PJ0

{
A

(
0, τf (εx)

) − cτf (εx) > (1− δ)x
} ∏

i∈J0

P{Ar
i > εx}

� PJ0

(
(1− δ)x

) ∏
i∈J1

pi,

with PJ0((1− δ)x) as in (6.1).

PROOF. As mentioned earlier, the first step is to replace all random variables
Aij andUij by their means. Let̄δ andδ̃ be two|J1|-vectors, of which the elements
are positive but arbitrarily small. Note that, for fixedJ0,

Fi ≤ (r − c)Ār
i (εx) − ∑

k∈J1

rkNk(εx)[E{Uk} − δ̄k]

+ ∑
k∈J1

rk

Nk(εx)∑
j=1

[E{Uk} − δ̄k − Ukj ],

Gi ≤ (r − c)Āi(εx) + (r − c)εx + (r − c)Ni(εx)[E{Ai} + δ̃i]

+ (r − c)

Ni(εx)∑
j=1

[Aij (εx) − E{Ai} − δ̃i] − diNi(εx)[E{Ui} − δ̃i]

+ di

Ni(εx)∑
j=1

[E{Ui} − δ̃i − Uij ]
∑

k∈J1\{i}
rkNk(εx)[E{Uk} − δ̄k]

+ ∑
k∈J1\{i}

rk

Nk(εx)∑
j=1

[E{Uk} − δ̄k − Ukj ].

Define the eventE1(γ, δ̄, δ̃, ε, x) by{
Ni(εx)∑
j=1

[E{Ui} − min{δ̄i , δ̃i} − Uij ] ≤ γ x/(2r), i ∈ J1

}

∪
{

Ni(εx)∑
j=1

[
Aij (εx) − E{Ai} − min{δ̄i , δ̃i}]

≤ γ x/(2r) − (r − c)εx, i ∈ J1

}
.
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A straightforward application of Lemma 6.2 (analogously to the proofs of
Propositions 6.2, 6.4 and 6.5) shows that, for anyγ, δ̄, δ̃ > 0, there exists anε∗ > 0
such that, for allε ∈ (0, ε∗],

PJ0{E1(γ, δ̄, δ̃, ε, x)c} = o(P (x)),(A.1)

asx → ∞ with P (x) = ∏N
j=1 P{Ar

j > x}, as defined earlier.
From (A.1) and Lemma 6.6, we conclude that, using the upper bounds forFi

andGi ,

PJ0{A(0, τf ) − cτf > (1− δ)x}
= PJ0

{
A(0, τf ) − cτf > (1− δ)x;E1(γ, δ̄, δ̃, ε, x)c

}
+ PJ0

{
A(0, τf ) − cτf > (1− δ)x;E1(γ, δ̄, δ̃, ε, x)

}
≤ P

{
(r − c)Ār

i (εx)

− ∑
k∈J1

rkNk(εx)[E{Uk} − δ̄k] > (1− γ − δ)x, i ∈ J0;

(r − c)Āi(εx) + (r − c)Ni(εx)[E{Ai} + δ̃i]
− diNi(εx)[E{Ui} − δ̃i]

− ∑
k∈J1\{i}

rkNk(εx)[E{Uk} − δ̄k] > (1− γ − δ)x, i ∈ J1

}

+ o(P (x)).

The last probability equals [condition onNi(εx), i ∈ J1]

∑
ni≥1,i∈J1

( ∏
i∈J1

P{Ni(εx) = ni}
)

× P

{
(r − c)Ār

i (εx)

− ∑
k∈J1

rk[E{Uk} − δ̄k]nk > (1− γ − δ)x, i ∈ J0;

(r − c)Āi(εx) + (r − c)[E{Ai} + δ̃i]ni

− di[E{Ui} − δ̃i]ni

− ∑
k∈J1\{i}

rk[E{Uk} − δ̄k]nk > (1− γ − δ)x, i ∈ J1

}
.
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Deconditioning upon̄Ai andĀr
i (i.e., dividing by

∏
i∈J0

P{Ar
i > εx}∏

i∈J1
P{Ai >

εx}), and noting thatP{Ni(εx) = ni} ≤ P{Ai > εx}, we obtain that

PJ0{A(0, τf ) − cτf > (1− δ)x}
× ∏

i∈J0

P{Ar
i > εx}

is upper bounded by [up too(P (x))]

∑
ni≥0,i∈J1

( ∏
i∈J0

P

{
(r − c)Ar

i > (1− γ − δ)x

+ ∑
k∈J1

rk[E{Uk} − δ̄k]nk

})

× ∏
i∈J1

P

{
(r − c)Ai > (1− γ − δ)x

+ [
diE{Ui} − (r − c)E{Ai} − ri δ̃i

]
ni

+ ∑
k∈J1\{i}

rk[E{Uk} − δ̄k]nk

}
.

It is important to note that this expression is independent ofε.
Since all probabilities appearing in the right-hand side are decreasing functions

of ni (for δ̄ andδ̃ small enough), the latter term is bounded by [withy := (yi)i∈J1

anddy := ∏
i∈J1

dyi ]∫
y≥0

P

{
(r − c)Ar

i > (1− γ − δ)x + ∑
k∈J1

rk[E{Uk} − δ̄k]yk

}

× ∏
i∈J1

P

{
(r − c)Ai > (1− γ − δ)x

(A.2)
+ [

diE{Ui} − (r − c)E{Ai} − ri δ̃i

]
yi

+ ∑
k∈J1\{i}

rk[E{Uk} − δ̄k]yk

}
dy.

We will rewrite this expression in terms ofPJ0(x). Apply the change of variables
zi := yi/(E{Ai} + E{Ui}). Redefinēδi := δ̄i/(E{Ai} + E{Ui}) and similarlyδ̃i :=
δ̃i/(E{Ai} + E{Ui}). Note that

1

E{Ai} + E{Ui} = pi

E{Ai} and ri
E{Ui}

E{Ai} + E{Ui} = ri(1− pi) = ri − ρi.
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Then we obtain that (A.2) equals( ∏
i∈J1

pi

E{Ai}
)

×
∫
z≥0

∏
i∈J0

P

{
(r − c)Ar

i > (1− γ − δ)x + ∑
k∈J1

(rk − ρk − δ̄k)zk

}

× ∏
i∈J1

P

{
(r − c)Ai > (1− γ − δ)x + (di − ρi − δ̃i )zi

+ ∑
k∈J1\{i}

(rk − ρk − δ̄k)zk

}
dz.

If we takeδ̃i = di−ρi

ri−ρi
δ̄i and integrate w.r.t.zi

ri−ρi−δ̄i

ri−ρi
, then we obtain( ∏

i∈J1

ri − ρi

ri − ρi − δ̄i

pi

E{Ai}
)

×
∫
z≥0

∏
i∈J0

P

{
(r − c)Ar

i > (1− γ − δ)x + ∑
k∈J1

(rk − ρk)zk

}

× ∏
i∈J1

P

{
(r − c)Ai > (1− γ − δ)x

+ (di − ρi)zi + ∑
k∈J1\{i}

(rk − ρk)zk

}
dz

= ∏
i∈J1

pi

ri − ρi

ri − ρi − δ̄i

PJ0

(
(1− γ − δ)x

)
.

Together with the fact thatPJ0(·) is regularly varying (see below), this completes
the proof of the upper bound after dividing byPJ0(x), lettingx → ∞, and noting
thatδ, δ̄ andγ may be chosen arbitrarily small.�

APPENDIX B

LEMMA 6.5 (Lower bound). There exists an ε > 0 such that

PJ0

{
A

(
0, τf (εx)

) − cτf (εx) > x
} ∏

i∈J0

P{Ar
i > εx} � PJ0(x)

∏
i∈J1

pi,

with PJ0(x) as in (6.1).
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PROOF. As in Appendix A, the first step is to replace the random variables
Ai (εx) andUi by their means. Adding and subtracting appropriate means, it is
easy to see that, for fixedJ0,

Fi = (r − c)Ār
i (εx) − ∑

k∈J1

rkNk(εx)[E{Uk} + δ̄k]

+ ∑
k∈J1

rk

Nk(εx)∑
j=1

[E{Uk} − Ukj + δ̄k]

− ∑
k∈J1

rk
[
BkAr

k(εx) + (1− Bk)
(
Ak(εx) + Ur

k

)]
,

Gi = (r − c)Āi(εx) + (r − c)[BiAr
i (εx) + (1− Bi )Ai (εx)]

− di(1− Bi)Ur
i − ∑

k∈J1\{i}
rk(1− Bk)Ur

k

+ (r − c)

Ni(εx)∑
j=1

[Aij (εx) − E{Ai} + δ̃i]

+ (r − c)Ni(εx)[E{Ai} − δ̃i]
− diNi(εx)[E{Ui} + δ̃i]

+ di

Ni(εx)∑
j=1

[E{Ui} − Uij + δ̃i]

− ∑
k∈J1\{i}

rkNk(εx)[E{Uk} + δ̄k]

+ ∑
k∈J1\{i}

rk

Nk(εx)∑
j=1

[E{Uk} − Ukj + δ̄k].

Define the eventE2(γ, δ̄, δ̃, ε, x) by
{

Ni(εx)∑
j=1

[
E{Ui} − Uij + min{δ̄i , δ̃i}] ≥ −γ x/(3r), i ∈ J1

}

∪
{

Ni(εx)∑
j=1

[
Aij (εx) − E{Ai} + min{δ̄i , δ̃i}] ≥ −γ x/(3r), i ∈ J1

}

∪
{ ∑

k∈J1

[
BkAr

k(εx) + (1− Bk)
(
Ak(εx) + Ur

k

)] ≤ γ x/(3r)

}
.



952 B. ZWART, S. BORST AND M. MANDJES

We have the lower bound

PJ0{A(0, τf ) − cτf > x}
= PJ0{Fi > x, i ∈ J0; Gi > x, i ∈ J1}
≥ P

{
Fi > x, i ∈ J0; Gi > x, i ∈ J1;E2(γ, δ̄, δ̃, ε, x)

}
≥ P

{
(r − c)Ār

i (εx) − ∑
k∈J1

rkNk(εx)[E{Uk} + δ̄k] > (1+ γ )x, i ∈ J0;

(r − c)Āi(εx) + (r − c)Ni(εx)[E{Ai} − δ̃i] − diNi(εx)[E{Ui} + δ̃i]

− ∑
k∈J1\{i}

rkNk(εx)[E{Uk} + δ̄k] > (1+ γ )x, i ∈ J1;E2(γ, δ̄, δ̃, ε, x)

}
.

This probability is lower bounded by, for anyL [condition onNi(εx)],∑
0≤ni≤Lx,i∈J1

P{E2(γ, δ̄, δ̃, ε, x) | Ni(εx) = ni, i ∈ J1}

× ∏
i∈J1

P{Ni(εx) = ni}

× P

{
(r − c)Ār

i (εx)(B.1)

− ∑
k∈J1

rkNk(εx)[E{Uk} + δ̄k] > (1+ γ )x, i ∈ J1;

(r − c)Āi(εx) + (r − c)Ni(εx)[E{Ai} − δ̃i]
− diNi(εx)[E{Ui} + δ̃i]
− ∑

k∈J1\{i}
rkNk(εx)[E{Uk} + δ̄k] > (1+ γ )x,

i ∈ J1 | Ni(εx) = ni, i ∈ J1

}
.

Before proceeding, we first state a useful lemma (a proof is given at the end of this
section). �

LEMMA B.1. For all ε, γ, δ̄, δ̃ > 0,

P
{
E2(γ, δ̄, δ̃, ε, x) | Ni(εx) = ni, i ∈ J1

} → 1,(B.2)

as x → ∞ uniformly in ni ≥ 0, i ∈ J1, and

P{Ni(εx) = ni}
P{Ai > εx} → 1(B.3)

for all i ∈ J1 as x → ∞ uniformly in 0 ≤ ni ≤ Lx.
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Equations (B.2) and (B.3) imply that, for anyL < ∞ andη > 0, one can lower
bound (B.1) forx large enough by

(1− η)
∑

ni≤Lx,i∈J1

PJ0

{
(r − c)Ār

i (εx)

− ∑
k∈J1

rknk[E{Uk} + δk]n > (1+ γ )x, i ∈ J0;

(r − c)Āi(εx) + (r − c)ni[E{Ai} − δ̃i]
− dini[E{Ui} + δ̃i]
− ∑

k∈J1\{i}
rknk[E{Uk} + δ̄k] > (1+ γ )x,

i ∈ J1 | Ni(εx) = ni, i ∈ J1

}

× ∏
i∈J1

P{Ai > εx}.

As before, deconditioning upon̄Ai and Ār
i and applying a similar change of

variables as in Appendix A, we obtain the lower bound

(1− η)

( ∏
i∈J1

pi

E{Ai}
)

×
∫

1≤yi≤Lx,i∈J1

∏
i∈J0

P

{
(r − c)Ar

i > (1+ γ )x + ∑
k∈J1

(rk − ρk + δ̄k)yk

}

× ∏
i∈J1

P

{
(r − c)Ai > (1+ γ )x + (di − ρi + δ̃i )yi

+ ∑
k∈J1\{i}

(rk − ρk + δ̄k)yk

}
dy.

Now write

(1− η)

∫
1≤yi≤Lx,i∈J1

· · · = (1− η)

∫
yi≥0,i∈J1

· · · − (1− η)

∫
{1≤yi≤Lx,i∈J1}c

· · ·

(the complement taken with respect to the nonnegative orthant). The first term in
the right-hand side can be handled as in the proof of the upper bound (the only
difference is the factor 1+ γ instead of 1− γ − δ). The next lemma shows that the
second term can be neglected.



954 B. ZWART, S. BORST AND M. MANDJES

LEMMA B.2.

lim
L→∞ lim sup

x→∞
1

P (x)

∫
{1≤yi≤Lx,i∈J1}c

∏
i∈J0

P

{
(r − c)Ar

i > (1+ γ )x

+ ∑
k∈J1

(rk − ρk + δ̄k)yk

}

× ∏
i∈J1

P

{
(r − c)Ai > (1+ γ )x + (di − ρi + δ̃i )yi

+ ∑
k∈J1\{i}

(rk − ρk + δ̄k)yk

}
dy

= 0.

PROOF. The integral over the regions in which at least oneyi is smaller than 1
is easily shown to be of o(P (x)), so we concentrate on the set{0 ≤ yi ≤ Lx,

i ∈ J1}c. The integral

∫
{0≤yi≤Lx,i∈J1}c

∏
i∈J0

P

{
(r − c)Ar

i > (1+ γ )x + ∑
k∈J1

(rk − ρk + δ̄k)yk

}

× ∏
i∈J1

P

{
(r − c)Ai > (1+ γ )x + (di − ρi + δ̃i )yi

+ ∑
k∈J1\{i}

(rk − ρk + δ̄k)yk

}
dy

is bounded from above by

( ∏
i∈J0

P{(r − c)Ar
i > (1+ γ )x}

)

× ∑
j∈J1

∫
yj≥Lx,yi≥0,i∈J1,i �=j

∏
i∈J1

P

{
(r − c)Ai

> (1+ γ )x + (di − ρi + δ̃i )yi

+ ∑
k∈J1\{i}

(rk − ρk + δ̄k)yk, i ∈ J1

}
dy.
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Observing that the integrals can be separated, we obtain the upper bound

O

( ∏
i∈J0

P{Ar
i > x}

) ∑
j∈J1

O(P{Ar
j > Lx}) ∏

i∈J1,i �=j

O

( ∏
i∈J0

P{Ar
i > x}

)

= O(P (x))
∑
j∈J1

P{Ar
j > Lx}

P{Ar
j > x} .

The result then follows immediately.�

PROOF OF LEMMA B.1. Equation (B.2) follows immediately from the
following result. LetSn = X1 + · · · + Xn be a random walk with i.i.d. step sizes
with E{X1} < 0. Then

lim sup
x→∞

sup
n≥1

P{Sn > x} ≤ lim
x→∞P

{
sup
n≥1

Sn > x

}
= 0,

since supn≥1 Sn is a proper random variable. Apply this result withXj = Uij −
E{Ui} − min{δ̄i , δ̃i} andXj = E{Ai} − Aij (εx) − min{δ̄i , δ̃i}.

In order to prove (B.3), note that, forni ≤ Lx,

P{Ni(εx) = ni}
P{Ai > εx} = P{Ai ≤ εx}ni ≤ P{Ai ≤ εx}Lx =

(
1− o(1)

x

)Lx

→ 1,

asx → ∞. The last equality holds becauseAi has finite mean. �
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