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EXACT ASYMPTOTICS FOR FLUID QUEUES FED BY
MULTIPLE HEAVY-TAILED ON-OFF FLOWS

By BERT ZWART, SEM BORST AND MICHEL MANDJES
Eindhoven University of Technology and CWI

We consider a fluid queue fed by multiple On—Off flows with heavy-
tailed (regularly varying) On periods. Under fairly mild assumptions, we
prove that the workload distribution is asymptotically equivalent to that in
a reduced system. The reduced system consists of a “dominant” subset of the
flows, with the original service rate subtracted by the mean rate of the other
flows. We describe how a dominant set may be determined from a simple
knapsack formulation.

The dominant set consists of a “minimally critical” set of On—Off flows
with regularly varying On periods. In case the dominant set contains just
a single On—Off flow, the exact asymptotics for the reduced system follow
from known results. For the case of several On—Off flows, we exploit a
powerful intuitive argument to obtain the exact asymptotics. Combined with
the reduced-load equivalence, the results for the reduced system provide a
characterization of the tail of the workload distribution for a wide range of
traffic scenarios.

1. Introduction. Over the past few decades, fluid models have gained strong
ground as a versatile approach for analyzing burst-scale traffic behavior. The basic
model is that of several On—Off sources, each alternating between activity phases
(commonly referred to as bursts) and silence periods. When active, each source
generates traffic at some constant rate.

Classical papers of Anick, Mitra and Sondhi [2] and Kosten [24] considered
a queue fed by the superposition of several homogeneous On—Off sources with
exponentially distributed activity and silence periods. Subsequent work extended
the model in various directions, such as heterogeneous source characteristics,
several source states to account for various activity levels, or activity periods
with a general Markovian structure; see, for instance, [25, 38]. Under traditional
statistical assumptions, it turns out that the tail of the backlog distribution typically
exhibits exponential decay.

In recent years, empirical findings have triggered a strong interest in fluid
models with non-Markovian activity periods. Extensive measurements indicate
that bursty traffic behavior may extend over a wide range of time scales,
manifesting itself in long-range dependence and self-similarity; see [26, 33]. The
occurrence of these phenomena is commonly attributed to extreme variability and
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heavy-tailed characteristics in the underlying activity patterns (connection times,

file sizes, scene lengths); see [5, 13, 39]. Fluid queues with heavy-tailed activity

periods provide a natural paradigm for capturing these characteristics. We refer to
[10] for a survey.

Although the presence of heavy-tailed traffic characteristics is widely ac-
knowledged, the practical implications for network performance and traffic en-
gineering remain to be fully resolved. Analytical studies show potentially dra-
matic performance repercussions for infinite buffers. For moderate buffer sizes,
though, the impact of heavy-tailed traffic characteristics is not as pronounced; see
[18, 20, 30, 37]. For larger buffer sizes, flow control mechanisms play a critical
role in preventing badly behaved traffic from overwhelming the buffer content;
see [3]. However, the amount of backlogged traffic at the user, and thus the end-to-
end quality-of-service, may still be significantly affected by heavy-tailed activity
patterns.

The effect of heavy-tailed traffic characteristics on buffer behavior also crucially
depends on the relative amount of heavy-tailed traffic, in particular whether or
not activity of heavy-tailed flows alone can cause the buffer to fill. Asymptotic
bounds in [15] indeed show a sharp dichotomy in the qualitative behavior of the
workload, depending on whether the mean rate of the light-tailed flows plus the
peak rate of the heavy-tailed flows exceeds the link rate or not. In case the link rate
is larger, the workload distribution has light-tailed characteristics, whereas the link
rate being smaller results in heavy-tailed characteristics. The exact asymptotics
for the former case were recently obtained in [7]. For the latter case, the bounds
of [15] indicate that one can usually identify a “dominant” set, which is a minimal
set of flows that can cause a positive drift in the buffer. As far as bounds are
concerned, all other flows can essentially be accounted for by subtracting their
aggregate mean rate from the link rate. Somewhat related notions are developed
in [27] in the setting oV / G /oo input with heterogeneous sessions. Exact results,
however, have remained elusive for all but a few special cases. Results of Agrawal,
Makowski and Nain [1] show that the dominance principle described above in fact
extends to the exact asymptotics in the casesnfigle dominant flow. This may be
expressed in terms of a “reduced-load equivalence,” implying that the workload is
asymptotically equivalent to that in a reduced system. The reduced system consists
only of the dominant flow, with the link rate subtracted by the aggregate mean rate
of all other flows. This extends results of Boxma [9], Jelenkamd Lazar [22]
and Rolski, Schlegel and Schmidt [36] for multiplexing a single (intermediately)
regularly varying flow with several exponential flows. Related results are derived
in [22, 35] in the context oM /G /oo input. Like the reduced-load equivalence,
however, all these results rely on the assumption that a single active flow is
sufficient for a positive drift in the buffer.

In the present paper we determine the exact asymptotics for the case where
several On—-Off flows must be active for the buffer to fill (under the assumption
that the distribution of the On periods is regularly varying [6]). From a practical
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perspective, this case appears particularly relevant, as the peak rate of a single
flow is usually substantially smaller than the link rate. However, the rather
subtle interaction of several flows that is involved in filling the buffer drastically
complicates the analysis, reflecting the sharp demarcation in known results
described above. We start with extending the reduced-load equivalence to the case
of a reduced system consisting of several flows, using sample-path arguments. We
then build on a qualitative understanding of the large-deviations behavior to obtain
the exact asymptotics for the reduced system. This part of the analysis is related
to recent work of Resnick and Samorodnitsky [35] on fluid queues Mitl /oo
input.

The remainder of the paper is organized as follows. In Section 2, we present
a detailed model description. In Section 3, we give a broad overview of the
main results of the paper, and describe how the dominant set may be determined
from a simple knapsack formulation. Section 4 gives some preliminary results.
The reduced-load equivalence result is established in Section 5. Section 6 develops
the detailed probabilistic arguments involved in deriving the tail asymptotics
for the reduced system. In Section 7, we discuss the relationship between the
asymptotic regime considered here (“large buffers”) and a “many-sources” regime.

2. Modd description. We first present a detailed model description. We
consider a queue with unit capacity (i.e., working at unit speed) fed by several
flows indexed by the sef. For any subsett C {, denote byAg(s,t) :=
Y ik Ai(s, t) the aggregate amount of traffic generated by the floe€ during
the time intervalis, 7]. Denote bypr := Y, pi the aggregate traffic intensity of
the flowsi € E (as will be specified in detail below). We assume= p; < 1 for
stability.

For anyc >0, E C {, defineVg (1) := supy,,{Ae(s, 1) — c(t — 5)} as the
workload at timer in a queue of capacity fed by the flowsi € E [assuming
V£ (0) =0]. Fore > pg, letV¢ be arandom variable with the limiting distribution
of Vg(r) for t — oo. In particular, V(¢) := Vll(t) is the total workload, and
V := V1 is a random variable with the limiting distribution () for ¢ — oo.

We assume the flows may be partitioned into two s¢iss the set of “light-
tailed” flows; {2 is the set of “heavy-tailed” flows. For the flows {1 we make
the following assumption.

ASSUMPTIONZ2.1. Forany > py,, u >0,

e _
Jim x Vg, >x}=0.

The above assumption is quite weak; see, for instance, [17] for a very general
class of arrival processes satisfying a large-deviations principle (with linear scaling
function). However, (superpositions of) On—-Off flows of which the activity period

has a Weibull distribution satisfy Assumption 2.1 too, as can easily be shown using
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the bounds in [15] or Section 4.1 of the present paper. Instantaneous renewal input
of which the tail of the jump sizes (bursts) is lighter than any power tail is covered
by Assumption 2.1 as well.

We assume the flows ith, generate traffic according to independent On—-Off
processes, each alternating between On and Off periods. The Off periods of flow
are generally distributed with meariX;. The On period#\; have a heavy-tailed
distribution A4; () with meanx; < oo. While On, flowi produces traffic at constant
rater;, so the mean burst sizedsr;. The fraction of time that flow is On is

. o _ Ao
- 1/hi + o h 1—{-)»,'0(,'.

Di

Thus the traffic intensity of flow is

o Aar
B 1+ Ao ’

Pi = PpiTi

Before stating an important preliminary result, we first introduce some use-
ful notation. For any two real functiong'(-) and g(-), we use the nota-
tional conventionf(x) ~ g(x) to denote lim_, o, f(x)/g(x) = 1. Also, we use
f(x) S g(x) to denote limsup, ., f(x)/g(x) < 1. Similarly, f(x) 2 g(x) de-

notes liminf, . o f(x)/g(x) > 1. With X 2 y we denote thak andY have the
same distribution.

For any positive stochastic variabl¥ with distribution function F(.),
E{X} < oo, denote byF’ () the distribution function of the residual lifetime ¥,
that is,

r o— 1 * R
F"(x):= —E{X}/O P(1— F(y))dy,

and denote byX" a stochastic variable with that distribution.

The classes dbng-tailed, subexponential, regularly varying andintermediately
regularly varying distributions are denoted with the symbals 4§, R and
IR, respectively (note thalR C LR C 4 C £). Background on heavy-tailed
distributions may be found in [16].

For each flowi € {2, we assume that the On period distribution is regularly
varying of index—v;, thatis,A;(-) € R_,, for somey; > 1. The nextresult, which
is due to [22], then yields the tail behavior of the workload distribution.

THEOREM2.1. If A7(-) € 8, pi <c <r;,then

P{VE > x} ~ (1— p) -2t P{Ay> al }

C — P ri —c¢
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3. Overview of theresults. We now give a broad overview of the main results
of the paper. As mentioned in the Introduction, asymptotic bounds in [15] show a
sharp dichotomy in the qualitative behaviorl®&V > x}, depending on the value
of py, +ry, (i.e., the mean rate of the light-tailed flows plus the peak rate of
the heavy-tailed flows) relative to the service rate. In cage+ ry, < 1, the
workload has light-tailed characteristics, whergas + r;, > 1 implies heavy-
tailed characteristics. In the present paper we determine the exact asymptotics of
P{V > x} in the latter case. For the casg + ry, < 1 (where both the light-tailed
and heavy-tailed input determine the workload asymptotics) we refer to [7].

3.1. Intuitive arguments. Before formulating our main theorems, we first
provide a heuristic derivation of the tail behavior®fV > x}.

Large-deviations theory suggests that, given that a “rare event” occurs, with
overwhelming probability “it happens in the most likely way.” In the asymptotic
regime considered here (“large buffers”), the most likely way usually consists of
a linear build-up of the workload, due to temporary instability of the system. In
case of heavy-tailed distributions, the temporary instability typically arises from
a “minimal set” of potential causes. The minimal set corresponds to the minimal
number of causes when these are homogeneous in nature. In general, however,
when the potential causes have heterogeneous characteristics, not only the number
of them matters, but also their relative likelihood, and their relative contribution to
the occurrence of the rare event under consideration.

Translated to our situation, temporary instability is most likely caused by
a "minimal set” of flows generating an extreme amount of traffic, while all
other flows show roughly average behavior. These considerations give rise to the
following characterization of the tail behavior BfV > x}:

PV > x} ~P{VE > x},

with S* representing the “minimal set,” ang« := 1 — py\ s+ representing the
service rate subtracted by the aggregate traffic intensity of all other flows.

We now introduce some helpful notions in order to formalize the above intuitive
arguments. For any subsstC {4, definecy := 1 — py\s as the service rate
subtracted by the aggregate traffic intensity of all other flgvesd \ S. Observe
that the stability condition implieps < cg for any S C .

For any subse§ C 45, denote byrs := 3 ;s r; the aggregate peak rate of the
flows j € S. Defineds :=rg — cs =rs + py\s — 1 as the net input rate (i.e., the
drift) when all flows inS are On and all other flows show average behavior.

A setS C {,is called (strictly)critical if ds > (>) 0, that is, if

rs+pps = (>) 1

Thus, when all flows in a (strictly) critical set are On, the workload has a (strictly)
positive drift. A critical setS is termedminimally critical if no proper subset of
is critical, thatisds < min;es{r; — p;}.
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For any subsef C {5, denoteug := 2jeswi—D.A strictly critical setS C 4>
is said to be (weaklydlominant if us < (<) uy for any other critical setV C .
Observe that for a sétC {4, to be dominant, it must be minimally critical (because
otherwise the defining property would be violated for any critical subsets).

The gquantityus may be interpreted as a measure for the “cost” associated with
a temporary drifidg: the probability of all flows inS being On for a time of the
orderx in steady state is roughly equalto*s. Thus, a sef is (weakly) dominant
if the flows in S being On causes the drift to be positive in the cheapest possible
way.

In case of light-tailed distributions, the cost minimization is usually not so
simple; one then also needs to consider how long a certain positive drift must
be maintained in order for a given workload lewelo be reached. This issue does
not arise in case of regularly varying On periods, siB¢&” > ax} is of the same
order of magnitude (up to a constant)lB&; > x} for any constant > 1. This
implies that the value of the temporary drift is not relevant as long as it is positive.

Note that these heuristic arguments clearly do not hold for other subexponential
distributions, such as the lognormal and Weibull distribution. In this case, one has
P{A] > ax} = o(P{A] > x}), if a > 1.

3.2. Tail behavior of the workload distribution. We now state our main
theorem.

THEOREM 3.1 (Reduced-load equivalence)Suppose the set of flows S* C (o
isdominant. If A;(-) e R for all j € 42, then

(3.1) P{V > x} ~P{V{ > x},

with

(3.2) P{V gs** > x} (H pj> Z Py, (x),
JES* JoSS*

where Pg,(x) is given by (with g1 = S* \ Jo, and dg+ = rg« — cs+ as defined
earlier)

1
Pgo(x) = =————
Fo nieﬂlE{Ai}
(3.3) X/ [1 ]P’{ds*A > > ¥ —pj) —dsey; +x}
yie(O,oo),iegllegl JEF1

x [1 ]P’{dS*Af > > yj(rj —pj)-i-X} [ dvi.

i€do Jjed ied
In particular, P{V > x} and Pg,(x) are regularly varying of index —ug« =
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The proof of the above theorem may be found in Section 5.1 [(3.1)] and Section 6
[(3.2) and (3.3) and the regular variation property].

Note that in case the reduced system consists of just a single flow, that is,
S* = {i*}, the tail asymptotics follow directly from Theorem 2.1. This is in fact the
reduced-load equivalence established in [1] (under somewhat weaker distributional
assumptions). Note that in this case the right-hand side of (3.2) takes the form
pix[Pz(x) + Pix(x)], with

Pi*(x) :P{A{* > a },
rix — Cj*

and (after a straightforward calculation)

rix — Cj* X
Py(x) = 7]?{ I }
Cix — Pj* rix — Cjx

so that

pilPo) + P = (W= i) bl >
Cix — Pix '
which is consistent with Theorem 2.1.

In case the reduced system consists of several flows, the tail asymptotics cannot
be obtained from known results. In fact, the analysis of the reduced system
then poses a major challenge because of the rather subtle mechanics involved in
reaching a large workload level. By definition, though, the reduced system has the
special feature that all flows must be On for the drift in the workload to be positive,
that is,rg« — min;cg+{r; — p;} < cs+ < rg=. In Section 6 we determine the exact
asymptotics for systems satisfying this property, yielding the integral expression
given in Theorem 3.1.

3.3. Knapsack formulation for determining a dominant set. \We now describe
how a dominant set may be determined from a simple knapsack formulation.
Recall that the On period distributions of the flows {, are regularly varying
of index —v;.

For a strictly critical setS C {2 to be dominant, it must necessarily solve the
optimization problem

min E -
SCIp © (UJ b
JES

sub er+ Z /Oj>1_:011-
jes jeda\S

Note that the constraint is equivalentdg > 0. If we definef; :=r; — p; for



910 B. ZWART, S. BORST AND M. MANDJES

all i € {», then the above problem may be expressed in the standard knapsack
form as
PP

jeU

sub 29]' <pg;+7ry, —1—¢,

jeU
with U = 4, \ S ande some small positive number. The above problem may not
always have a unique solution. In case it does, the correspondifigssgébminant,
except for the case when some gétexists which is critical but not strictly
critical (i.e., rr + pn\r = 1), with ur < s (see the definition of a dominant set).
Although intriguing, this “critical case” is not further considered in the present
paper. In this case, the temporary drift mayzbe for a long period of time during
the path to overflow.
In case the knapsack problem has several solutions, the corresponding sets are

weakly dominant (except for the critical case again). The next theorem extends the
reduced-load equivalence to the case of weakly dominant sets.

THEOREM 3.2 (Generalized reduced-load equivalence; weakly dominant sets).
Let T € 2%2 be the collection of all weakly dominant sets. If A;(-) € R for all
jes, SeT,then
(3.4) PV > x}~ > PV§ >x},

SeT

with P{V > x} asin (3.2), (3.3).

3.4. Homogeneous On—Off flows. We briefly consider the case of homoge-
neous On-Off flows as an important special case with weakly dominant sets.
Assume that the flows € 4o have identical characteristics. With some minor
abuse of notation, leA(:) := A;(-), v:i=v;, p = p;, ¥ :=r1i, p; = p. Define
N*:=argminN :Nr + (|d2| — N)p > 1 — py,}. (Observe that the assumption
pi, + i, > 1 ensuresN* < [{,].) To exclude the critical case, assume that
(N* = Dr + (42| = N* + D)p < 1 — py,, so that the drift remains negative (and
cannot be zero) when only* — 1 flows are On.

COROLLARY 3.1. If A(") € R, then
P{V > x} ~ (%ﬁ')l@{\’/ > x},
with
_ N* N* N*
PV > x}~ p go( ) Pl o)

where Py, »(x) is given by (3.3).In particular, P{V > x} and P, ,(x) are
regularly varying of index —N*(v — 1).
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3.5. K heterogeneous classes. We finally consider the important special case
where each On—Off flow i, belongs to one oK heterogeneous classes. We
will show how an approximate solution to the knapsack problem may be obtained
using a simple index rule. The approximation is in fact asymptotically exact in the
many-sources regime.

Specifically, consider the superposition ofOn—-Off flows, each belonging
to one of K heterogeneous classes. Lgt be the fraction of flows of class
ke {l,..., K}, with peak rater;, mean rateo;, and an On period distribution
which is regularly varying of index-vy. Let the service rate be (instead of 1),
and letvV™ be the stationary workload. The knapsack problem then takes the form

K
min an(vk -1
}k—l

nx€{0,...,nag

K K
sub anrk + Z(nak —nE)pr > n.
k=1 k=1

Unfortunately, the above problem cannot be easily solved due to the integrality
constraints. Intuitively, however, one may expect thatragrows large, the
integrality constraints should have a negligible effect, so that a continuous
relaxation withn € [0, nay] should give a good approximate solution.

This relaxation may be solved using a simple index rule. IndexXtloéasses in
nondecreasing order of the ratios

Yk = (e — 1) /(re — o).

For anyk € {1, ..., K}, defineoy := Zﬁ;llamrm + ang:k a, pm. Determine the
(unique) index such that e (0;_1, 07]. Then take:; = na for all classes </,
ni =0 for all classe& > [, andn; =n(1—0;-1)/(r1 — p1)-

This yields the (crude) approximation

(3.5) PV > x} & x 7,

with o := Y ih ax (i — 1) + (1 — 0y-1)y1. In Section 7 we prove that the above
approximation is logarithmically exact in the many-sources regime. In particular,
one may show that the limits for - co andn — oo commute if one considers
logarithmic asymptotics.

THEOREM 3.3 (Robustness of logarithmic asymptotics).

1l0gP{V® 1l0gP{V®
lim fim 11O9PNVTT > nx} iy 1109PVIT > nxy
n—>00x—00 p Ing X—>00n—>00 p |ng

The proof of the above theorem may be found in Section 7. Although logarith-
mically exact, the approximation (3.5) may not be appropriate from a practical
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perspective. In particular, it is shown in Section 7 that an analogue of Theorem 3.3
cannot hold if one considers exact asymptotics. This “negative” result is reminis-
cent of a phenomenon occurring in heavy-traffic theory where two limiting regimes
lead either to stable Lévy motion or to fractional Brownian motion; see, for exam-
ple, [31] and references therein.

4. Preliminary results. In this section we collect some preliminary results
which will be used in later sections.

4.1. Bounds. We first derive some simple bounds for the workload distribution
P{V§ > x} for subsetsS C {».
For any subsef C {», ¢ < rg, define

X
PS(x) := PIA” }
50 ]ELP] { J>rs—c

The next lemma gives a lower bound BV > x} which may also be found
in[12].

LEMMA 4.1. Let S C dy. Forc <y,
P{V§ > x} > P§(x).

PrROOF Consider the event that at some arbitrary tiradl flows j € S have
been On since time— —Z— or longer. This event occurs with probabiliBf (x),

rsg—c

and implies that the workload at times larger than=s*- — < = x. [
§—C rs—c

For any subsesf C {5, ¢ < rg, define

: rj—Pj
Kg.:]_[r'_ Srp—
jes'J Pj S

The nextlemma establishes an asymptotic upper bourief¥¢§ > x} for the case
whereS is a minimally critical set with respect to the capacity

LEMMA 4.2, LetS C dp.Ifce (rg—minjes{r; —p;}, rs), and A;.(-) € 4 for
all j €S, then
P{V§ > x} S KSPg(x).
PROOF For anyi € S, denoted; := ¢ — rg + r;. Observe thatl; > p; since

c>rs — (r; — p;). We apply the usual technique to obtain an upper bound: split
the capacity. Formally, we have the sample-path upper bound

(4.1) Ve < VI + vl 0 =V
foralli € S.
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In the stationary regime, using Theorem 2.1,

P(V§ > x} < P(VY/ > x forall j € §)

d,
= [TP{V} > x}
jeSs
~Tla-pp-"24 IP{A’,> a }
jes di—pj U7 rj—d;

~

rj—pj X
e LY
jes rj—pjtc—rs

= KPS (x). O
COROLLARY 4.1. Let S C do. If ¢ € (rs — minjes{r; — pj},rs), and
A’/.(-) e S forall j €S, then

Pg(x) <P{V§ > x} S KSPg(x).
PROOF The proof follows directly by combining Lemmas 4.1 and 4.2]

COROLLARY 4.2. Let S C do. If A%() € IR for all j € S, then, for any

closed interval T C (rs — min;cs{r; — p;}, rs), there exist constants KD, K@
independent of ¢, such that for all c € T,

KD Ps(x) SPIV§ > x} S K@ Ps(x),
with
Pg(x) := 1_[ P{A’; > x}.
jeS ‘

PrROOF The statement follows directly from Corollary 4.1 and the fact that
Ai()edRCS forall j € S when observing thaAfj(-) e IR, j € S implies that
Pg*(x)

limsu < 00,
PPE)

X—>00 Ky

if c1,c0eT. O

We now derive some general bounds for the total workload distribution
P{V > x} which will be crucial in establishing the reduced-load equivalence.

For anyc > 0, E C {, define Z; (1) := SURy<s<,fc(t — s) — Ag(s,D)}.
Forc < pg, let Z%, be a random variable with the limiting distribution @f; ()
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for r — oo. Let Q C 242 be the collection of all minimally critical sets.

We first present a lower bound. The idea is as followg: being large for some
minimally critical setE € A basically implies thalV must be large too, unless
the other flows;j ¢ E persist in below-average behavior. Excluding such below-
average behavior (reflected in large valuezp\fE) from the evenfV > x} yields
the following lower bound fof{V > x}.

LEMMA 4.3. Let A C Q. Thenforanys >0andy >0,

PV >x) = 3 PV > x4 y|PIZE T < y)
EcA

- ¥ I ]P{vff” > x}.

E1,E2e N, E1#E2 jeE1UE>

PROOF Sample-path wise,

V(t) = sup{A(s,?) — (t —s)}

O<s<t

= SUP{Ag(s, )+ Ape(s, 1) — (cg +8)(t —5)

O<s<t
— (pg\E —8)(t —5)}
> SUp{Ag(s,1) — (ce +8)(t —s)}

O<s<t

+ oi<r3f<z{A1\E(s’ D — (ppe =8t —s)}

= SUP{Ag(s,1) — (ce +8)(r — )}

O<s<t

— sup{(ppe —8)(t —s) — ApEe(s, 1)}

O<s<t
-5
= ViR 0 - 200 )

forall E € A.
In the stationary regime, for any > 0 andy > 0, using the independence

E+8 PINE—S
of V¥ andzf iy,
P{V > x}

> P{VET — Zﬁ\f—s > x for someE € A}
>P{VE > x4y, Zf‘{\,f_s <y for someE € A}

(4.2) >P{VET > x4y, Zf‘{\,f_s <y for exactly oneE € A}
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-5
= Z IP’{V?EE—HS >x+y, Z'K\EE <y}
EecA
CEq,+6 PINE,—0
_ 3 PIVp!' >x+y,Zpg <V,
E1,ExeN,E1#E>

CE,+8 PINE,—8
VE22 >x+y,Zl\E22 Sy}

> Y PV s x4y PIZ)E T <)
EeA
Y PV s v s
E1,ExeN,E1#E>

Asin (4.1),
—rE\(i}+8 i
=V )
foralli € E.

Note thatcg — rp\(;) > p; foralli € E, E € A, sinceE is minimally critical.
Hence,

VEER (1) < VP ()

foralli e E, E € A.
Thus,

(4.4) :
4.4
pj+é
Pivy’
= l_[ P{V?'i+6>x}.

jeE1UE>

> x forall j € E4U E3}

Substituting (4.4) into (4.2) completes the proof]

We now provide a corresponding upper bound, which is somewhat more
involved. The idea is as follow8/ being large essentially means th&f® must
be large for some minimally critical séi € A too, unless the other flows¢ E
exhibit above-average behavior. Extending the e{¥nt x} with possible above-

average behavior of the flowss¢ E (manifesting itself in large values Mﬁ\lfr‘s)
leads to the following upper bound f&{V > x}.
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LEMMA 4.4. Let A C Q. Thenfor any §, e > 0 sufficiently small and y,

PV >x)< 3 PVET > x -y} + PV S 1/

EeA
P V,Ol\E—HS P V,Oj+8 N
+ ) Pf INE v} TP V> x/ N
EecA JjeE
+ 3 TTPVY™ >y},
EcQ\A jeE

with & := || denoting the total number of flows.

PROOF As before, we divide the capacity to obtain the sample-path upper
bound

+4
V) S VER O+ VT @)

forall E € A. e
In addition, fore > 0 sufficiently small,V () > x implies lel“ ) >x/N,or

there exists a minimally critical séte 2 such thatV (t) >x/N forall j €S.

This may be seen as follows: suppose that it were not the case, that is,
fol (#) < x/N, and for every minimally critical setS € Q there exists
a j (depending onS) such thatV/.p-f+€(t) < x/N. Then the setf(r) :={j €
do: Vf-’“(t) > x/ N} does not contain any minimally critical set, hengg; +
p\g(r < 1. This means thady\ g + Ne < 1—rg() for e > 0 sufficiently small.
Thus, noting tham\g(,) = P4y T PI\F0)s

1 1 1
Vt) < v&,i‘;; (1) + Vl\;g;)(l‘)

Tg ()
= Vz\ﬂ(ot Q)

pngintNe
=Vigey ©

,011+ (t) + Z Vp,+e()
JELAG @)
<M\ FDO|x/N

<Xx

’

contradicting the initial supposition.
In the stationary regime, for an§, ¢ > 0 sufficiently small andy, using
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independence
P{V > x}
cp—38 PINETS
<P{VF¥ " +Vpp >xforall E€A,
Vﬁﬁs >x/N orV’f-’% > x/N forall j € S for someS € )
<PV > x—y orVﬁ{fJF > yforall E € A,
\/pﬂl+€ pj+ .
by >x/NorV *> x/N forall j € S for someS € Q}

< S PVET s x -y} 4PV s k)
EecA

+ 3 PV s x/N forallj e, V'K\EE > yforall E € A}
SeQ

< Y PVET > x =y} + PV s x/ )
EeA

+ PV s/ forall j e ELVAET > )

EeA
+ Y PV s x/w forall j e E)
E€Q\A
< Y PVET s x—y} PV s x )
EeA
+5 i+
+ 3 PVRE T =y TPV > x/)
EeA JjeE
i+
+ > I1 IP’{V?’ ‘> x/N).
E€Q\A jeE U

4.2. Sationary workload representation. We now give a convenient represen-
tation for the stationary workload$., with E C {, an arbitrary set of heavy-tailed
On-Off flows. We start from the definitioVig (1) := sugy,,{Ae(s, 1) —c(t — )}
[assumingV£(0) = 0]. Since the procesa (-, -) has stationary and reversible
increments, we have

SUP{AE(s, 1) —c(t — )} L sup{Ag(,s) — cs).

O<s<t O<s=<t
In the sequel, we simply use the latter expression asddfieition of V. (1).
Accordingly, forc > pg, the stationary workload as— oo may be represented as

V% :=sufAg(0,1) — ct}.

t>0
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Explicit constructions of4; (0, ¢) (satisfying the stationarity condition) may be
found in [15, 19]. For completeness, we review the construction in [19], which
will be extensively used in Section 6.

Let {A;;,, m > 0} be a sequence of i.i.d. random variables representing On
periods of flowi. Similarly, let {U;,,m > 1} be Off periods. Define three

additional random variables;,, U/, andB; such thatA\}, < Al UL < U; and

E{A;
P(B; =1} = Wil _ 1 pg =0
E{A;i1} + E{U;1}
Note thatB; = 1 corresponds to flowbeing On (in stationarity).
To obtain a stationary alternating renewal process, we define the delay random

variableD;q by

Dio = B;Ajp+ (1 —B;)(Uig+ Ajo).
Then the delayed renewal sequence

n
{Zin.n =0} =1{Dj0.Dio+ D> (Uim +Aim).n > 1

m=1

is stationary.
Next, we define the proces$s; (r), t > 0} as follows.J; (¢) is the indicator of the
event that flowi is On at timer. Formally, we have

Ji(1) =Bily<aryy + (1 — B Ljur <r<ug+Ai0}

0
+ Z UZ; Ui 1<t <Zipsa) -
n=0

The On-Off processJ; (), r > 0} is strictly stationary; see [19], Theorem 2.1. The
procesqA; (0, 1), t > 0} is defined by

A; (0, 1) :=r; /(;t Ji(u)du.

Finally, note that the number of elapsed Off periods dufidg] which started
after time O is given by

(4.5) NA@) :=max(n:Z;,_1+ U, <1}.
We conclude this section with the following useful lemma.

LEMMA 4.5. LetSC fr.IfA;j()eRforall jeSandc e (rg—minjes{r;—
pjl.rs), then

P{sup- v {As(0, ) — (c —
lim limsup (SUR=pxtAsO.1) = (¢ = &)1} > x} =0,
M—00 x—o00 ]P’{Vg > x}

forany e € [0, rs — ).
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PROOFE Fort > Mx, write
As(0,1) — (c — &)t
=As(0,Mx)—(c—e)Mx +As(Mx,t) — (c — &)t — Mx),
and observe thadg(Mx, 1) 4 Ags(0,t — Mx) since the procesais(0,¢) is
stationary. Thus, fos > 0 sufficiently small,

IP{ sup{As(0,1) — (c — &)t} > x}

t>Mx

:IP{ sup{As(0, Mx) — (c — e)Mx

t>Mx

+As(Mx,1) — (c —e)(t — Mx)} > x}
:IP{AS(O, Mx)—(c—&e)Mx

+ sup{As(Mx,1) — (c —&)(t — Mx)} >x}

t>Mx
<P{Ags(0, Mx) — (c —e)Mx > —8(c — e)Mx}

+P ZSUMp{AS(O, t—Mx)—(c—e)(t—Mx)} > (1+8(c—¢e)M)x
- IP{AS(E), Mx) > (1—8)(c — &) Mx)

+ P! sup{As(0,t — Mx) — (c — &)t — Mx)} > (1L +8(c — e)M)x

t>Mx

< P{sup{AS(O, 1) — (1—28)(c — &)t} > 8(c — E)Mx}

t>0
+ P{sup{AS(O, N —(c—en}>1+8(c— s)M)x}
t>0
=P{V{§ P S s(c —e)Mx} + P{VSE > (14 8(c — &) M)x).
Using Corollary 4.2, fob > 0 sufficiently small,
P{sup- y{As(0,1) — (c — &)t} > x}

P{V§ > x}
_ K@PgS(c—e)Mx) KD Pg((1+8(c—e)M)x)
= KD Py(x) K@ Pg(x) '

Now letx — oo and thenM — oo [use the fact thaPg(-) is of regular variation].
O
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5. Reduced-load equivalence. In this section we provide the proofs of the
various reduced-load equivalence results stated in Section 3. The proofs of
the complementing results for the reduced system are presented in Section 6.
Section 5.1 treats the case of several weakly dominant sets, culminating in a
proof of (3.4). See Theorem 5.1; this also gives the proof of the special case
in Theorem 3.1. In Section 5.2 we extend the results to the case of additional
instantaneous, heavy-tailed input.

5.1. Proof of (3.4). Recall thatY denotes the collection of all weakly
dominant sets, and th& represents the collection of all minimally critical sets.

ASSUMPTIONS.1. For anyy ands > 0,

PV > x +y)
P{V$ > x)

is independent of. In addition, liny o F§(5) = 1.

Fg(8) := Iixm_)ipof

ASSUMPTIONS.2. For anyy ands > 0,

, . PV§ ™ > x —
<(8) :=limsup Vs >x -yl
X—>00 ]P){ng > x}

is independent of. In addition, liny 0 G(8) = 1.

ASSUMPTIONS.3. Foranyg > 0,

|' PV > /) .
m = U.
oo PV > x)

ASSUMPTIONS.4. Forany > 0,

j+e
Ties PV > x /M)
HS(e) :=Ilim J ] .
s(e) Ix sup PVE = ] <00

ASSUMPTIONS.5. For any pairof setSe T, E € Q\ T, for anye > 0,

i e PVE™ = x/n)

, 0.
x=>00 P{V§ > x}

THEOREM 5.1 (Generalized reduced-load equivalence; weakly dominant sets).
Supposethe sets S € A satisfy Assumptions 5.1-5.5.Then

PV >x}~ > P{V§ >x}.
SeA
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PROOF As before, the proof consists of a lower bound and an upper
bound which asymptotically coincide. For compactness, dengte) :=

ZSEA ]P){V(:Svs > x}.
(Lower bound.) From Lemma 4.3, for agy> 0 andy > 0,

PV > x> SRV s x4 y}I[D{zj;{\;“S <)
SeA

- ¥ [T PV > x/n).

851,526 A,51#82 jeS1US2

Note that if S1, S2 € A, 51 # S», thenS1 U S cannot be a minimally critical set,
sothatS; U So ¢ A.
Thus, using Assumptions 5.1 and 5.4, and the inequality

for a;, b; > 0, we obtain

liminf LY > ¥
X—00 Q(X)
L 5 PVET s x )
> liminf S° P{z? 7 < §
- Xx—00 S%;\ { IS —y} Q(x)
+
- Y lm supﬂjeslus2 P(VY" > x/N)
X—00 0(x)

851,526 A,51#S2

]P’{Vgs+8 > x + y}

> liminf minP{z?\$ ™ <
= MnP{Zyns =) PVE > x}

X—>00

. - o PVST
zmlnIP’{Z'K\SS 6§y}llm|nf Vs c>x+y}
SeA =00 PV > x}

—minFS@PZ ™ < y).
Seh s (8) { IS <y}
Letting y — oo, thens | 0, we obtain

liminf LY > X g
X—00 Q(X)

which completes the proof of the lower bound.
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(Upper bound.) From Lemma 4.4, for afiy- 0 andy,

PV >x) < YO PV > x -y} + PV > /)
SeA
+ Y BV S ) TRV ™ > 5]
SeA jes
pjt+e
+ > I1 PV > x /N
EeQ\A jeE
Thus, using Assumptions 5.2-5.5, and the inequality
2i%
Zi bi i bl
fora;, b; > 0,
+&
PV > x — PV, > /N
PV > x} <limsup Vy > y}+limsup Vi, dad
X—>00 ¢ n Q(x) X—>00 Q(x)

[Tjes POV > x/N)

+> ]P’{V?{\SH‘s > y}limsup

SeA X— 00 Q(x)
+ Y IimsupnjeEP{V?l =X/
EeQ\A ¥~ Q(x)

: PVG T > x —
< lim supmax Vs Cs>x )
x—00 SEA ]P){VS > x}

i+e
[Ties PV > x /M)
PPt lim sup—2 J
+ 5%;\ { hs - y} x—>oop ]P){Vgs > x}

PVE ™ > x —
< maxlim sup Vs >x—yl

Pa\s+E
SeEA x—o00 P{Vcs > x} + Z HS(S)]P){VI\S = y}
S

SeA
= MaxG§'®) + ) Hs@PVs ™ > ).
SeA
Letting y — oo, thend | 0, we obtain
P{V
lim sup{7>x} <1,
X—00 Q(x)

which completes the proof.[

In order to complete the proof of the reduced-load equivalence result (3.1), it
remains to be shown that a dominant §&tC {, with A;(-) € R for all j € §*
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satisfies Assumptions 5.1-5.5. That is done in the following two propositions
for § = S*.

PROPOSITIONS.1. Let S C o. If Aj(-) € R for all j € S, then Assump-
tions5.1and 5.2are satisfied for any c € (rg — min;cs{r; — p;},rs).

PrROOF We first prove that Assumption 5.2 is satisfied. It follows from
Theorem 6.4 (see also Corollary 6.1; it is important to note here that results from
Section 6 do not rely on the results of this section) that it-) € R for all j € S,
thenP{V§ > x} € R. Sinced R C L, it suffices to prove that the assumption is
satisfied fory = 0.

Lete €[0,rg —c), and lets € (0, g]. Then

P{V$ > x) = P{sup{As(O, 1) —(c —8)t) > x}

t>0

< IP{ sup {As(0,1) — (¢ — &)t} > x}

t<x§-1/2

+IP’{ sup {As(0,1) — (c — &)t} > x}

t>x8"12

< ]P’{ sup {As(0,7) —ct} > (1— 31/2)x}

t<x8—1/2

+]P’{ sup {As(0,1) — (c — &)t} >x}.

r>x8=Y2
Thus,
P{V§° P{V§ > (152
lim supM < limsupYs > (C )x}
x—oo  P{V§ > x} x—00 P{V§ > x}
+lim SupP{SUszafl/z{As(Q, H—(c—etp>x}
xX—>00 P{V§ > x}

The fact thafP{V§ > x} € 4R implies that the first term tends to 1 &4 0, while

Lemma 4.5 (withM = §—1/2) shows that the second term then goes to 0.
The proof that Assumption 5.1 holds is similar, and therefore omitted.

PROPOSITIONS.2. Let S C o. If Aj(-) € R for all j € S, then Assump-
tions5.3and 5.4aresatisfied for any ¢ > pg. If, inaddition, S isaweakly dominant
set, then Assumption 5.5is satisfied as well.

PrROOF Using Lemma 4.1,

X
P{V > PIA” .
{ S>X}_]11p] { ]>rs—c}




924 B. ZWART, S. BORST AND M. MANDJES

Assumption 5.3 then follows from combining Assumption 2.1 and the assumption
thatA;(-) e Rforall j €S.

Theorem 2.1 gives

PV = /W)~ - pp LAy -
& ry—pj— &

forall j € 45.

Assumption 5.4 then follows from the assumption that-) € R for all j € S,
and so does Assumption 5.5 in casis a weakly dominant set.[]

5.2. Additional instantaneous input. So far we have considered a scenario
with only fluid heavy-tailed input. We now extend the reduced-load equivalence
to the case with additionahstantaneous, heavy-tailed input. We thus allow for
an additional subset of flowsz C 4 which generate instantaneous traffic bursts
according to independent renewal processes. The interarrival times between bursts
of flow i are generally distributed with meapX;. The burst sizeB; have a heavy-
tailed distributionB; (-) with meang; < oo. Thus the traffic intensity of flow is
pi = AiBi.

For each flowi € 43, we assume that the burst size distribution is regularly
varying of index—v;, thatis,B; (-) € R_,, for somey; > 1. The next result which
is due to [32] then gives the tail behavior of the workload distribution for a single
flow i € 43 served in isolation.

THEOREMS.2. If B/ (-) € 8, pi < c, then
Pi
C—pi

(5.1) P{V{ > x} ~ P{B} > x}.

In order to formulate the results, we need to extend the concept of dominance
introduced in Section 3. A flow e 43 is said to (weakly) dominate a floyve {3

if v <(=2)v;. Aflow i € 43 is said to (weakly) dominate a critical S&tC J, if

vi —1<(2)Yjes(vj —1). Acritical setS C > is said to (weakly) dominate a
flowiedzif v —1> (=)} jes(v; —1).

A flow i € 43 is called (weakly) dominant if it (weakly) dominates all other
flows j € 43 as well as all critical set§ C {,. A critical setS C J{» is called
(weakly) dominant if it (weakly) dominates any other critical e {1, as well
as all flows;j € 43.

THEOREM 5.3. Let X C I3 and T C 22 be the collection of all weakly
dominant flows and all weakly dominant sets, respectively. If B;(-) € R for all
ieXK,andA;(-)eRforal jeS,SeT,then

(5.2) PV > x}~ > PV >x}+ Y P{V§ > x},
ieX SeT

with P{V{" > x} and P{V§’ > x} asin (5.1)and (3.2), (3.3)respectively.
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The proof of the above theorem is similar to that of Theorem 5.1 after a few
modifications to Lemmas 4.3 and 4.4.

It may be worth mentioning that Theorem 5.3 continues to hold under the
condition B/ () € 4 for all i € X, provided there are no weakly dominant sets
of On—Off flows (the concept of dominance may be extended to subexponential
distributions in a straightforward way). In particular, when there are simply no
On-Off flows at all, one obtains the extension of Theorem 5.2 to the single-server
gueue fed by a superposition of renewal processes (which is not a renewal process).
This result was obtained as Theorem 4.1 in [4], using a different approach.

Theorem 5.3 also provides an extension of a recent result in [11], who study
anM/G/1 queue with two different speeds of service using an analytic approach.
A queue with two service speeds fits into our framework by the observation that
the varying service capacity can be regulated by an On—-Off source.

6. Tail asymptotics for the reduced system. In this section we derive the
tail asymptotics for the reduced system. In particular, we give a proof of (3.2)
and (3.3).

For notational convenience, letbe the capacity of the reduced system, let the
set of flows be indexed ag = {1,..., N}, and denote :=rg and A(0,1) :=
Ag4(0,1). By definition, the reduced system satisfies the following two properties:

() The On period distribution of flowis regularly varying of index-v; < —1,
thatis,A;(-) € R—,,.

(ii) All flows must be On for the drift of the workload process to be positive,
thatis,c € (r — minizle{ri —pil,r).

We now state our main theorem.
THEOREM 6.1. Consider a queue of capacity ¢ fed by N On-Off flows.

If c € (r —min=1__n{ri — pi},r) with r = SN 7y, and A;() € R for all
j=1,...,N,then

N
P{Vc>x}~(1_[pj> > Py,

j=1 Jo<{L,....N}
where Pg,(x) isgiven by (with J1 ={1,..., N}\ Jo)
pgo(x) — #
[Ticg, E{A:}
(6.1) X/ , H]P’{(F—C)Ai> Zyj(rj—/)j)_(r—c)yi+x}
yie(o»oo)legliegl j€da

X 1_[ ]P’{(r—c)Af > Z yj(rj —,oj)—l—x} H dy;.

i€do JEF1 i€d1



926 B. ZWART, S. BORST AND M. MANDJES

An asymptotic characterization &%, (x) which may be useful for further analysis

is provided in Section 6.4. This characterization also showslthdt > x} and
Pg,(x) are regularly varying, and gives an expression for the pre-factor in the
asymptotic expansion @f{V¢ > x}.

The remainder of this section is organized as follows. Detailed heuristic
arguments are given in Section 6.1. In Section 6.2, we prove some preliminary
results on the most probable behavior of the prodes®,t) — ct}. The proof
of Theorem 6.1 is then completed in Section 6.3. Section 6.4 deals with the
asymptotic behavior oPg,(x).

6.1. Heuristic arguments. The proof of Theorem 6.1 is quite lengthy. Nev-
ertheless, it is based on a simple intuitive argument: the most likely way for
V¢ =sup.o{A(0,t) — ct} to reach a large value is that all flows have been si-
multaneously On for a long time. Specifically, each flow is likely to contribute
throughexactly one “long” On period; apart from these long On periods, the flows
show typical behavior.

The above heuristic argument may be used for computing. (0, 1) — ct}.

Let us say that the long On period of flawegins at time; and ends at time +7;.
Define
t* = i:T.I.QN{SI + 1}

as the time epoch at which the first of the long On periods finishes. One may also
interpretr* as the time epoch at which the proc¢4s0, ) — ct} reaches its largest
value. Note thati; (0, s;) ~ p;si, Ai(si, s; +1;) =rit;, andA; (s; +1;, 5; +1; +1) ~
pit, t > 0. One thus obtains, using the fact that (r — min;=1._ y{ri — pi}, 1),

SUgA(0,1) — ct} ~ A0, t*) — ct*

t>0

N
(6.2) ~ Y Lpisi +ri(t* —sp)] —ct*
i=1

N
= (pi —ri)si+ (r — o)™,
i=1

The problem is thus reduced to calculating

.....

N
(6.3) P ;(pi —r)si + (r—c) i:rlnlnN{s,- +t}>xq.

Although the proof is based on the representafén= sup.o{A (0, 1) — ct},
it is useful to keep the original workload processoﬂ;p,{A(s,_t) —c(t—s)}in
mind as well. Figure 1 shows a typical scenario leading to a large workload level
(so small fluctuations are ignored) in the case of two On—Off flows.
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Ve(t)

w3 wWa Ws i

=—- -
o
—____E_
€
¥

FiGc. 1. Typical overflow scenario for two On-Off flows.

At a certain timeawo, the first long On period begins. Before that time, both flows
show average behavior. The queue starts to build (atriater, — ¢) at time w1
when the second long On period begins, and reaches its largest level adtime
Levelx is crossed at time;.

Between timesws and w4, the queue drains at rate— r1 — p2: flow 1 is
still in the middle of its long On period, and flow 2 shows average behavior
(remember small fluctuations are neglected). The process is still abovexlevel
between times4 andws. However, here both flows show average behavior again,
causing a negative dritt— p1 — p2.

The figure illustrates why the analysis of the reduced system is still quite
complicated:

(i) Although the long On periods must significantly overlap, the difference
between the finishing times of these On periods can be quite large (of .order
hence not negligible).

(i) Given that the observed workload is larger tharit is not necessarily the
case that all flows are in the middle of their long On periods. In Figure 1, this is
only the case in the time intervéb,, w3). In fact, for any given flow, its long On
period may have finished a long time ago. Consequently, there®awdiferent
possibilities (corrgsonding to which subsets of the flows are still in the middle of
their long On periods). Sample-path wise, therere 1 different time intervals
in which the workload may be larger thar{depending on how many of the flows
are still in the middle of their long On periods).

(iii) Specifically, given that the observed workload is larger thait may still
have been even larger at an earlier time epoch. In Figure 1, this is the case in the
time intervals(ws, ws) and(was, ws).



928 B. ZWART, S. BORST AND M. MANDJES

These complications do not arise if one considers a related problem, which
concerns the overflow probability in a fluid queue witfirgte buffer of sizex. As
is shown in [23], the analysis of the reduced system is then considerably simpler.
It suffices to use bounds which are similar to Lemmas 4.1 and 4.2, and to combine
these with the asymptotic results for a single On-Off flow in [21, 40].

6.2. Characterization of most probable behavior. In this section we prove
some preliminary results characterizing the most probable behavior of the process
{A(0O, t) — ct} given that it reaches a large value. In particular, we formalize the
following two heuristic statements, resulting in a formal version of (6.2).

() Each flow contributes to sypy{A(0, ) — ct} through exactly one “long”
On period.
(ii) Apart from these long On periods, the flows show typical behavior.

An On period is referred to as “long” when larger than with ¢ some small but
positive constant. In order to formalize the above statements, we need to keep track
of how many such long On periods occur.

With that in mind, we definew; (A, B), for intervals A, B C [0, c0), as the
number of On periods of flow of which the length is contained ia and which
overlap (in time) withB. For compactness, denote

Ni(u, t) = N; ((u, 00), [0, 1]).

We now proceed with a few preparatory lemmas.

First we show how to obtain an upper bound for the workload process in terms
of a simple random walk. As in (4.1), we haVé(z) < Vl.d" (tH)foralli=1,..., N,
with di:=c— rgtiy=c¢ —r +r;. Recall thatVl.d" () i SUQ)<S<,{A,'(0, s) —d;s}.
Now let, for fixedi, S, = Xj1 + --- + X, be a random walk with step sizes
Xim = (ri —d)A;n —d; Ui, With A;,,, andU;,, i.i.d. random variables distributed
as the On and Off periods of floiy respectively.

Sincec € (r — min;=1, . n{ri — pi},r), we havep; <d; foralli =1,..., N,
so thatE{X;1} < 0, that is, the random walk has negative drift. Because of the
sawtooth nature of the proceds(0, s) — d;s, we have

sup{A;(0,s) —djs} < (ri —d;)(BiAly+ (1—Bi)Ajo) + sup S,

O<s<t n<NA(t)

with NiA(t) denoting the number of Off periods of floivelapsed duringO, ]
which started after time O [for a formal definition see (4.5)].
The above observations are summarized in the following auxiliary lemma.
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LEMMA 6.1. Forall ¢ >0, and x,

P{Ve(t) > x, N;(ex, 1) =0}

s]P’{ sup Sl-n>x(1—£(ri—di)),M(sx,t)=0}.

n<NA@)

PrROOE We have
P{Ve(t) > x, Ni(ex,1) =0}
<P{V{"(t) > x, Ni(ex, 1) = 0}

< P{(ri — ) (BiAly + (1— B)A)

4 SUP Sin > x, Ni(ex.1) =0}

n<NA()

< IP’{ sup Sy, >x(1—e@rj —d;)), Ni(ex,t) = 0}.
n<NA ()

The last inequality follows from the fact that; andA;o must be smaller thasx
if Ni(ex,1)=0. O

To obtain upper bounds for probabilities as in Lemma 6.1, we will frequently
apply the following key lemma, which is a trivial modification of Lemma 3 in [34].

LEMMA 6.2. LetS, =X1+---+ X, bearandomwalk with i.i.d. step sizes
such that E{X1} < 0 and E{(X{)”} < oo for some p > 1. Then, for any 8 < oo,
thereexistsan ¢* > 0 and a function ¢ (-) € R_g suchthat, for ¢ € (0, *],

P{S,>x|Xj<ex,j=1....n} <o),

for all » and all x.

Note that if X; can be represented as the difference of two nonnegative
independent random variable(s} and Xf, then the lemma remains valid if the
X;'s are replaced by }.

The final preparatory lemma is a simple consequence of Corollary 4.2, which
will be used several times in combination with Lemma 6.2 that probabilities of
certain events are @f(P{V¢ > x}). Define

N N
P(x) 2=1_[]P’{A;->x}€eﬂ_p_, W= Z(vj_l)'
j=1 j=1
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LEMMA 6.3.

. P(x)
limsup———— <
X—>00 IP){VC > x}

We now show that, with overwhelming probability (as— o), the rare event
{V¢ > x} occurs as follows:

(i) The process{A(0,t) — ct} reaches levek before time Mx for some
large M.

(i) Up to time Mx, each flow generatesactly one long On period, that is,
MNi(ex,t)=1fori=1,...,N.

PrROPOSITIONG.1.

P{V(Mx) >x} 1

lim liminf -
M—o00 X—>0 P{V¢ > x}

PROOF By definition,

P{V¢ > x} = ]P’{SU[IA(O, 1) —ct} > x}

t>0

< IP{ sup {A(O, 1) —ct} > x} +IP>{ Sup{A(0, ) — ct} > x}
0<t<Mx t>Mx

=P{V‘(Mx) > x}+ IP’{ sup{AQ, 1) —ct} > x}.
t>Mx
Thus, it suffices to show

P{sup-,,,{A(O,t) —ct
lim limsup (SUR (‘ ) C}>x}20,
M—>00 x—00 IP){VL >x}

which, however, follows directly from Lemma 4.50]

Now suppose that the workload reaches leweBy the previous proposition,
we may assume that this occurs before titde (for M sufficiently large). The
next two propositions show that we may restrict the attention to a scenario where
each flow irtiatesexactly one long On period before timé/ x.

The first proposion indicates tlat each flow haat least one long On period.

PrROPOSITIONG.2. For all i and all M, there exists an ¢* > 0 such that, for
all ¢ € (0, 7],

P{V¢(Mx) > x, Nj(ex, Mx) = 0} = o(P{V® > x}),

asx — o0.
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ProOF.  Define NV (1) := max{n:Y}_; U;; <t} + 1. Note thatN/ (1) <
NY(@).
Using Lemma 6.1, taking= Mx,
P{V‘(Mx) > x, N;(ex, Mx) = 0}

<P} sup Sy >x(1—e(r —di)),a\/i(ex,Mx)=0}
n<N/(Mx)

<P} sup S,-n>x(1—8(r,-—d,-))|,/\/,-(ex,Mx)=0}
n<N#(Mx)

=P{ sup Sy >x(A—c(r—d))|Aij <ex,
n<NA(Mx)

j:l,...,NiA(Mx)}

=P sup S,-,,>x(l—8(r,-—d,-))|A,-j <8x,j21}
n<NA(Mx)

<P sup Sin >x(1—8(}’i—dl'))|Al‘j<8x,j21}
n<NY (Mx)

=P} sup S, >x(1—s(;—d))|A; <ex,
n<NY (Mx)

j:l,...,NiU(Mx)}

EP{ sup S,n >x(1—e(r,- —d,')) |A,‘j < ex,j > 1}

n<Mox
+P{NY (Mx) > Max).
The second term decays exponentially fast iii M2 > A; M. The first term can
be bounded by

Mox

> P{Sim>x(1—e(ri —dp))|Aij <ex,j=1,....,m}.

m=1
According to Lemma 6.2, there exists af > 0 and a functiong(-) € R_g
with 8 > u + 1, such that, foe € (0, £*], the last quantity is upper bounded by
M>ox¢(x). The latter function is regularly varying of index18 < —u. Invoking
Lemma 6.3 then completes the proof.]

The next propasion shows tlat each flow haat most one long On period.
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PrRopPOSITIONG6.3. Forall i, all M andall ¢ > 0,
P{V¢(Mx) > x, N;(ex, Mx) > 2} = o(P{V° > x}),
asx — oQ.
PROOF  Without loss of generality we may take= 1. By Proposition 6.2 it
suffices to show that
P{V(Mx) > x, Ni(ex, Mx) > 2, Ni(ex, Mx) > 1,i > 2} = o(P{V > x}).
Note that the left-hand side is bounded by

N
P{N1(ex, Mx) > 2} [ [ P{Ni(ex, Mx) > 1}.
i=2

Thus, invoking Lemma 6.3, it suffices to show that:

(i) P{N;(ex, Mx) > 1} is bounded by a function which is regularly varying of
index 1— v;.
(i) P{Ni(ex, Mx) > 2} = o(P{N;(ex, Mx) > 1}).

We will prove both assertions fér= 1. For assertion (i), note that
P{N1(ex, Mx) > 1}
< p1IP(A] > ex} +P{#{j e {1,..., NV (Mx)}:Aqj > ex} > 1}.
The first term is inR1_,,. By conditioning uponN{](Mx), the second term can

be bounded bjE{N{](Mx)}]P’{Al > ex}, which is also regularly varying of index
1— vy. To prove assertion (i), note that

P{N1(ex, Mx) > 2}
< p1P{A] > ex}P{N1((ex, 00), (0, Mx]) > 1}
+P{Ni((ex, 00), (0, Mx]) = 2},

Using P{N1((ex, o0), (0, Mx]) > 1} < P{N1(ex, Mx) > 1} and assertion (i), it
follows that the first term is a(P{-N1(ex, Mx) > 1}). To bound the second term,
condition (again) orN{/ (Mx). This yields

P{N1((ex, 00), (0, Mx)) > 2} < E{NY (Mx)?)P{A; > ex}2.
Finally, note thafe{ NV (M x)?} is quadratic inx for x — co. [
We have now shown that, with overwhelming probability, each flow contributes
to a large value of sypy{A(0, t) — ct} through exactly one long On period. We

thus proceed with the second statement (as indicated at the beginning of this
section), implying that apart from these long On periods, the flows show typical
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behavior. In order to formalize that statement, we need to introduce some notation.
Define

t(y):=inf{t > 0:A(0,¢t) — ct = y}

as the first time at which the procelss(0, t) — ct} reaches levey.
For fixede > 0 andx, let 7, ;(ex) andz;;(ex) be the respective starting and
finishing times of the first On period of floivexceeding lengthx. Denote

To(ex) ;= max 7, ;(ex)
i=1,...,.N
and
Tr(ex):= min t¢;(ex).
f( x) 1y f,l( X)

.....

Note that all flows are in the middle of their long On periods between
times 7,(ex) and tr(sx). We will show that the fluctuations of the process
{A(O, 1) — ct} away from the mean before timg(ex) and after timer(ex) can
be neglected.

More formally, the next two propositions show that, given that the workload
reaches levet before timeMx, there exists for any smadl> 0 anes such that,
forall ¢ € (0, g5),

Ty(ex) < T(8x) < T((1—8)x) < Ty (ex).

Thus, the workload remains small up to timé&sx), and reaches a level closeito
before timer s (ex), as depicted in Figure 2.

The first proposition indicates that it is most unlikely that the pro¢as6, ) —
ct} reaches levetx before timer; (ex).

PrROPOSITIONG6.4. For any § > 0, there exists an ¢* > 0 such that, for all
g€ (0, %],

P{t(8x) < 15(ex)} = o(P{V® > x}).

PROOF For compactness, denate= t,(¢x), 75,; = 75, (¢x). Then

N
P{r(8x) < 75} =P{V°(1y) > 8x} < Y P{V (1) > x}.
i=1
We bound each term in the last summation.
Define N;(ex) := NiA(rSfi) as the number of On periods initiated by flaw
before the first On period exceeding length. Note that N;(ex) + 1 is
geometrically distributed with paramefBfA; > ex}.
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A0, 1)- ct |
(1= 8) X frmmmmmmmm e o
Ox fo-mommmee i , i i

1,(ex) T(8x) (- 9)x) ey |

FiG. 2. Typical path to overflow.

Using Lemma 6.1, taking= , ;,
P{V(y,i) > dx}
=P{V(t;.1) > 8x, N ((ex,00), [0, 75.1)) = O}

S]P){ sup S, >x(5 —&(r; —dl')),Aij <ex,j =1, ...,Ni(sx)}
n<N;(ex)

< 3" P{N(ex) = m)

m=1

x]P’{SupSn >x(8—£(ri _di)),Aij 58x,j=1,...,m}

n<m

< Y P{Ni(ex) =m}

m=1
X ]P’{SupSn >x(8 —e(r; —di)) |Aij <eéex,j =1, ...,m}.
n<m
According to Lemma 6.2, there exists ah> 0 and a functiorp(-) € R_g with
B > 2v + 1, such that, foe € (0, £*), the last quantity is upper bounded by
¢ (0)P{A; < ex}

E{N;(ex)}¢ (x) = P{A; > ex}
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which is regularly varying ofindex; — 8 <u+1— 2u+1) = —pu.
Invoking Lemma 6.3 then completes the proof.]

The next proposition shows that, given that the pro¢es®, r) — ct} reaches
level x before time Mx, most probably level(1 — §)x is crossed before
time 77 (sx).

PROPOSITIONG6.5. For any § > 0 and M < oo, there exists an ¢* > 0 such
that, for all ¢ € (0, £*),
P{r((1—8)x) > t7(ex), VS (Mx) > x} = o(P{V® > x}).
PROOF.  For conciseness, denotg = t(ex), tr; = 74,;(ex). By Proposi-
tions 6.2 and 6.3, it suffices to show that
P{r((1—8)x) > ¢, Vi (Mx) > x, Ni(ex, Mx)=1foralli=1,..., N}
=o(P{V® > x}).
Note that
P{r((1—-8)x) > s, V< (Mx) > x, N;(ex, Mx)=1foralli=1,..., N}
=P{V(ty) > (1—8)x, V< (Mx) > x,
Ni(ex, Mx)=1foralli =1,..., N}

N
<Y P{V(rsi) > (1—8)x, VE(Mx) > x, Nj(ex, Mx) = 1}.
i=1

As before, we bound each term in the last summation:
P{V (tsi) > (1—8)x, VE(Mx) > x, N;(ex, Mx) =1}

5[[”{ sup {A0,1) —ct} < (1—98)x, sup {A(Q,1)—ct}>x,

O<t<ty,; 0<t<Mx

Ni((ex,00), (tyi, Mx]) = 0}

<P sup (AGcin) — et - 1) > o,

Tri<t<Mx

Ni((ex, 00), (tfi, Mx]) = O}

< IP{ SUP {Ai(tsint) —dilt —T70)) > 5%,

‘L'f',,‘ftﬁMx

Ni((ex, 00), (tyi, Mx]) = O}.
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The first inequality follows from the definitions. The second inequality follows
from properties of the sup operator, and the last inequality is obtained by assuming
that all flows but are On between times,; andMx.

Note that the last probability is upper bounded by

IP’{ sup S: — Sni(ex)+1 > 6x,
N;(ex)+2<n<N(Mx)

Aj <ex,Nij(ex)+2<j< N,.A(Mx)}.

The latter probability can be upper bounded by a function which is regularly
varying of index—g < —u in a similar fashion as in the proof of Propositions
6.2 and 6.4.

The proof is complete by invoking Lemma 6.3

Propositions 6.4 and 6.5 may be used to obtain the following result.
COROLLARY 6.1. IfAj()eRforall j=1,...,N,thenP{V‘ > x} € IR.

The above result suffices to prove the reduced-load equivalence. (See Section 5,
in particular Proposition 5.1, for the details.) However, determining the exact
asymptotic behavior ofP{V¢ > x} requires further analysis, to be found in
Sections 6.3 and 6.4. In particular, the analysis in Section 6.4 will lead to a sharper
version of Corollary 6.1, showing th&{V° > x} € R (which is a strict subset
of LR).

Nevertheless, we sketch a direct proof of Corollary 6.1 which we believe is of
independent interest. For the formal proof details we refer to [41].

SKETCH OF PROOF OFCOROLLARY 6.1. The idea of the proof is as follows.
If V¢ > x, then Propositions 6.4 and 6.5 show that the pro¢ds®, r) — ct}
reaches the levdll — §)x after all flows have been On for at le _2‘2)" time

units. Sinced ;(-) e R C AR forall j =1,..., N, with high probability, all flows
remain On for at Ieas;?f—’g more time units. This yields

limliminf P{V° > (1+8)x |V  >x} =1,
8}0 x—>o0
implying the desired statement (by definition).]

6.3. Proof of Theorem 6.1 In this section we give a proof of Theorem 6.1.
First we consolidate the key results from the previous section in the following
theorem.



FLUID QUEUES WITH HEAVY TAILS 937

THEOREM 6.2. For any § > 0, there exists an ¢* > 0 such that, for all
g€ (0, &%),
P{A(0, t¢(ex)) — cTr(ex) > x} < P{V® > x}
SP{A(O, tr(ex)) —ctp(ex) > (1 —&)x}.

PrROOF The lower bound is trivial. The upper bound follows from Proposi-
tions 6.1, 6.4 and 6.5.0J

In order to obtain tight bounds for the probabilities in Theorem 6.2, we condition
uponrt,; for all i. Hence, for anylo C 7, define the evenbg, (sx) by

Dg,(ex) :={ty,i(ex) =0foralli € Jo; 5,i(ex) > O foralli ¢ go}.

The eventDg, (sx) implies that the flows € g started their long On period before
time O (remember that we consider the system in stationarity). The fleng;
start their long On period at a later time epoch.

DenotePg,{-} = P{- | Dg,(ex)}. The following two lemmas will be useful for
providing tight upper and lower bounds for the probabilities in Theorem 6.2.

LEMMA 6.4 (Upper bound). For any § > 0, there exists an 5 > 0 such that,
for all £ € (O, &3),

Pgo{A(0, Tf(ex)) —cTp(ex) > (1—8)x} [ P{A] > ex}
i€do
S Pro(@=8)x) [T pi,
i€fa

with Pg,((1—8)x) asin (6.1).

LEMMA 6.5 (Lower bound). Thereexistsan ¢ > 0 such that
Pgo{A(0, Tf(ex)) — cTp(ex) > x} [ PAA] > ex}
i€edo
< Pg) [ pis
i€fr
with Pg,(x) asin (6.1).
The proofs of these lemmas are quite technical, and are deferred to Appen-

dices A and B. A brief sketch of the proofs is given at the end of this section.
We now have gathered all the ingredients for the proof of Theorem 6.1.
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PROOF OFTHEOREM6.1. The lower bound in Theorem 6.2 may be written
as

P{A(0, t¢(ex)) — cTf(ex) > x}

= > Pg{A(0 ts(ex)) — cTy(ex) > x}P{Dgy(ex)}.
Fo<{L.....N}
Note that
P{Dgy(ex)} ~ [ | piP{A] > ex}.
i€do
Using Lemma 6.5, we then obtain
P{A(0, f(ex)) — cT(ex) > x}

Z(ﬁm) >, P

Jj=1 Fo&{l,....N}
Similarly, using Lemma 6.4,
Pgo{A(0, Tp(ex)) —cty(ex) > (1—8)x}

5(]%,;,-) > Pg((A-d)x).

j=1 JoC{1,....N}
Theorem 6.2 then gives
N
(H p,.) > Pgp
j=1 Fo<{L,....N}
SP{VE > x}
N
N (H Pj) Y. Pgp(—d)x),
J=1 7 Jo<il,...N}
which implies Theorem 6.1, sinc@y,(x) € R as will be shown in Theorem 6.3.
O

In preparation for the proofs of Lemmas 6.4 and 6.5, we give a convenient
representation foA (0, ) — ct; under the evenDg, (sx).

LEMMA 6.6. Under theevent Dg,(ex), A(O, T7) — cty can berepresented as
A(O, Tf) —CTy

= min{min F;, minG; }
i€do i€d1
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where g1 = ¢ \ Jo- TherandomvariablesF; and G; are given by

Fi = (r — c)Al (ex)

Ni(ex)
- Z Ik |:BkA/';(8x) + (1 —Bp)[Ax(ex) + U] + Z Ukji|,
kegy j=1

G; = (r — o)A (ex)

Ni(ex)
+(r—c) |:B,-Af(8x) + (1 —B)A;(ex) + Z A,‘j (8x)i|

j=1
Ni (ex) Ni(ex)

—d, [(1— BHU/ + Y Uij:| - > ”k|:(1— BoU; + > Ukj:|-
j=1 kega\{i} j=1

Here A, (ex) = Ai|A; > ex, Al (ex) = AT|AT > ex, Aj(ex) £ A;;|A;; < ex and
A (ex) L ATIAT < ex.

PROOF.  Under the evenDg,(¢x), the random variables, ;, i € g1, can be
represented as

Ni(ex)
75,0 = BiAl(ex) + (1= B)[U] + Ai(ex)]+ Y [Uij +Aij(ex)]. i€ da.
j=1

Combined with the identities

N;i(ex)
Ai(O,75)=r; |:BiAf(8x) + (A —-B)A;(ex) + Z A;j (b‘x)i|,
=1

T = min{minAf(ex), min{A; (ex) + rs,,-}},
’ i€do i€d1
Ai(Ts,i, Tp) =ri(Tf — Tg,i)s
the representation fot (0, ) — ctf then easily follows. [
We now give a brief sketch of the proofs of Lemmas 6.4 and 6.5. Both rely on

the above representation fdr0, 7s) — cts in terms of the variableB; andG;.
The proofs of the lemmas have a similar structure.

(i) The expressions foF; and G; are quite complicated, so an attempt to
obtain the exact joint distribution does not seem promising. Therefore, the first
step is to show that all random variabRs (ex) andU;; can be replaced by their
means.
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(i) The above pointindicates th&t andG; may be approximated as follows:

Fi~ (r — oA} (ex) + Y rkB{Ui} Ni(ex),
ke

G; ~ (r — o)A (ex) + [(r — OE{A;} — d;E{U;}]Ni (ex)

— Y nE{UgNi(ex).
kega\{i}

It will be useful to keep these approximations in mind. The formulas in
Appendixes A and B look much more cumbersome by the appearance of many
additional but small constants.

(i) The only random variables appearing in the above expressions;&e),
B! (ex) andN; (ex), of which the distributions are known. What thus remains is a
straightforward computation.

The first point causes the most technical difficulties. It requires a separate treatment
in the proofs of Lemmas 6.4 and 6.5. Details may be found in the Appendices.

6.4. Asymptotic behavior of Py, (x) and P{V® > x}. Inthis section we give an
asymptotic characterization dy,(x), which may be useful for further analysis.
In particular, we establish thadty (x) andP{V¢ > x} are both regularly varying.

Assume thaffg is a proper subset gf, observing

13@)=rpﬂA;>rfc}
icd

For every seffo, define thg g1|-vectorg by

g:=<rj_pj) :
F=C¢ Jjeq

Let G be a (square) matrix with identical rows and letG := G — I, with I the
identity matrix of dimensiongs|.

It can easily be shown thaG is invertible; denote its inverse by.
A straightforward computation yieldd = g%_lG —1,withe=(1,...,1), which
implies thatgH = 1_1g. A further straightforward computation shows| =

ge

eg — 1.
Definey = (yi)g, anddy = [];cg, dy:. Then we may write
Pgy(x) !
X)=———
T Mieq, EA)

- X X
P1A; Gy)i+—— PIAL —}d.
Xfpol_[ { > ( y)+r_c}]_[ { [ > gyt ——dy

=Yiega iedo
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If we integrate w.r.tz := Gy (note thatG is a positive matrix), then we obtain
[definingAg, = (A])icg,]

1
Pg,(x) = —
0 T G ieg, BAAY)
/ I {A>zl+—}H]P’{Af>gHZ+ x }dz
Z>0 . r —=c¢
ied1 iedo
1 X
LTI e e )
eg 1 Z>Oleg -1 r—c ieds r—c
1 X
eg —1 { v —c’le%

X 1 X
Al — > A’ k
k r—c_eg—lg( T ) egl}
We conclude thaPy,(x) can be written (up to a constant) as the probability that
(A?)icg belongs to a certain set. We now show tifgt (x) is regularly varying
of index —u [recall thatu = Z,N:l(vi —1)]. If A; is regularly varying of index
—v; < —1, then it is well known and elementary to show that

Al — 1-v;
P{liyx>y|Af>yx}—><l+Z) ,
X 14

asx — oo. Let Z; be a random variable with the above limiting distribution,
with y = % such that theZ;, i € g1, are independent. The above computations
are summarized in the following theorem.

THEOREM6.3.

N
X
Pgo(x)NKgon]P{A{ > },
i=1 r—c

with kg = 1 and

1
eg—1

1 .
]P’{Zi > - 1gzg1,l € go}

if Jo isaproper subset of . Inparticular, Pg,(x) isregularly varying of index — .

Kgo=

Combining Theorems 6.1 and 6.3, we obtain:

THEOREM6.4.

N
PVE > x} ~k ]‘[pl-]P{A; > }

i=1 r—=c¢
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with

K = Z Kdg-

J0<{1,....,N}

In particular, P{V¢ > x} isregularly varying of index — .

The above theorem is used in proving the reduced-load equivalence (see
Section 5), and may be potentially useful for computational purposes.

In particular, in the case of two On-Off flows, the computatior &fas difficult
as the computation af; and«». Using the probabilistic interpretation of these
constants readily leads to an integral expression, which can be solved explicitly
when bothv, andv, are integer-valued. We omit the details.

7. K heterogeneousclasses. proofs. In this section we provide the proofs of
the results in Section 3.5 for the case wRhheterogeneous classes of On—Off
flows. In particular, we present a proof of Theorem 3.3.

We start with the regime where we first let> oo and them — oo. For everyn
we have, using Theorem 3.2,

()

’

 PV® > px)
lim ———— =
X—00 logx

with 1™ denoting the optimal value of the criterion function of the associated
knapsack problem. It thus remains to be shown that

(n)

(7.1) lim

n—oo n'u

=1

First observe that the optimal value of the continuous relaxation of the knapsack
problem isn ., yielding a lower bound fop ™. On the other hand, the continuous
relaxation may be used to construct a feasible solution of the knapsack problem.
Take (use the notation of Section 3§)= ny = nay for k <1, g = ny =0 for
k > 1, andg; = |n;| + 1. This is a feasible solution with a value at magt + y;,
giving an upper bound fgu™. In conclusion, we have

np < 1™ <nu+y,

from which (7.1) directly follows.
We now turn to the regime where we first let> oo and thenx — oo (i.e., the
many-sources regime). Define the “decay rate”

1
I(x):= —nll_)mOO - logP{V® > nx}.

It needs to be shown thdtx) ~ nlogx asx — oo.
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The above decay rate equals ([8], page 300)

K
I(x)=inf Sur(@(x +1) — Zak |0gE{e€Ak(f)}>’
t>0 ¢ =
with A (¢) := Ak (0, 1) representing the amount of traffic generated by a single

classk flow in atime interval of length in steady state. Replacimgby 6 (logr) /1,
we obtain an alternative variational problem,

X
inf logt- J,| —+1
106 109 t(t+)

K
log E{ef (l0gn A1)/t
Q.X—Zak g { } ,

k=1 logs

(7.2)

whereJ;(x) :=su
0

for x € (O, Z,leakrk). The latter variational problem allows direct asymptotic
analysis £ — oo) as in [29], which yields Theorem 7.1.
First, however, we state an auxiliary lemma. Recall thate 5% a,rm +

anf:k ampm, and that theK classes are indexed in nondecreasing order of the
ratiosyx = (v — 1)/ (rk — px)-

LEMMA 7.1. For6 >0,
logE{ef 109D Ak (1)/1
jim 29 }
1—00 logt¢
so that the cumulant function of the superposition is piecewise linear :

= max{0pk, Ory — v + 1},

K logt) A (t)/t K
 logE{&lognAx)/
Zak lim gl } =Zakmax{9,ok,9rk—vk+1}.
=1 logr k=1
Further,
I(x)-1 K
(7.3) lim J:(x) = yicnx — S akviwmrk —vi+1) — D avien pr
k=1 k=I(x)

for x € (0, =K _, ayr), where(x) issuch that x € (07(x)—1, 01(x))-
The function lim,_, », J;(+) isincreasing.

The proof of the above lemma is analogous to that of Theorem 3.6 and Lemma 3.7
of [29].

THEOREM 7.1 (Large-buffer asymptotics).

.
lim ) =,
X—00 |ng

with o =Y S ap(e = D + A — o)y and 1 :=1(D).
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PrROOF The proof consists of deriving an upper bound and a lower bound
which asymptotically coincide.
(Upper bound.) Using the representation (7.2),

lim supL = limsupinf II 9: J;(f + 1).

x—oo lOgx x—oo0 t>01l0gx t
Substitutingr = x/s, s € (0, Z,leakrk — 1), to obtain an upper bound, and
using (7.3),
lo
lim supinf og¢ J,( +1>
x—oo t>0 |ng t
<limsup log(x/s)
X—00 [ gx

<lim suplog(x/s)

xX—00 ogx

Jx/s(s +1)

limsupJ,/s(s +1)
X—>00

<limsupJ,/s(s + 1)
X—> 00

=Y+ +1)
I(s+1)—-1 K
- Z (axvis+pnre — v+ 1) — Z Ak Yi(s+1) Pk -
k=1 k=I(s+1)

The above inequality holds for any € (O, Z,leakrk — 1). According to
Lemma 7.1, the last term is increasingsis 1. Lettings | O to obtain the sharpest
possible upper bound, we obtain
1(x) -1 K
lim Supy — =V — Yaktyire— v+ D =D akvipr =1
x—oo 100X =1 —
(Lower bound.) Using the representation (7.2), and takirgy;, we obtain
the lower bound

K |ogE{e(9(logt)Ak(t)/t}>

I[(x)= |nf Iogt sup( ( ) Zak iog7
K vi(logH) Ak (1) /1
> inf log: - VI(E +1) _ Zakng{e } .
120 ! k=1

logt

The optimizing value of in the above variational problemas|east linear inx,
for largex. Formally, there exists @ such that the above infimum need be taken
only overt > dx, for largex. This may be proven analogously to case (iii) of [14],
page 258. Thus,

K |OgE{en(logt)Ak(t)/t}>

I(x)> |nf logt - ( ( +1> > a og7

k=1



FLUID QUEUES WITH HEAVY TAILS 945

Using (7.3), we find that for any > 0, andx large enough, we have, for al dx,

K logrAy(r)/t K
|0gE{e)/Z gt A (t)/ }
> a I <A+e) ) axmaXypr. virk — vk + 1}.
k=1 og? k=1
Thus,
1
liminf ﬂ
x—>0o0 logx
.. ... logt
> liminf inf g <y1<£ + 1)
x—>00 r>dx logx t
K
—(A+e) ) axmaXypr. virk — vk + 1}>
k=1
..., logt .
> liminf inf g inf (yl<f +1>
X—=>00 t>dx |ng t>dx t
K
—(A+8) ) axmaXyipr. virk — vk + 1}>
k=1
K
>y — (1+8) Yy axmaxypx, yirk — vk + 1}.
k=1
Lettinge | O, we obtain
1
liminf L%
X—>00 |ng
K
>y — Y agmaxXyipr. virk — vk + 1}
k=1

K
=y — Y_ ak(yipx +maxo, yi(rx — px) — vk + 1})
k=1

K
=y — Y _ ak(yipx +maxo, (i — yi) (rk — pr)})
k=1
-1 K
=vi— Y. akrk— v+ =) avipk
k=1 k=l
=U. [l

As shown above, Theorem 3.3 implies that the limits> oo andn — oo
commute, as long as one considers “rough” (i.e., logarithmic) asymptotics.
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However, in case of “more refined” asymptotics, the limits do not necessarily
commute. This may be seen as follows. Consider the casel@imogeneous
On-Off flows with Paret®) distributed On periods. In [28], it is proven that

= Vi _
xll_)moo nll_)moo - IogIP’{ >nx}+ (v 1)( ) log(x logx) =
for some constantl < (0, co). Now reverse the limits. Denote &y the number

of flows sending at peak rate in the reduced-load approximation (in the notation of
Section 3.4, we have, = N*):

Now with Theorem 3.1, we have, for any finkeandx — oo,
]P’{V(”) >nx}~ fn)x~ =Dk

for some functionf (-). Hence,

lim —Iog]P’{V(”) >nx) 4+ @ — 1)( )Iog(x logx)

x—oop

c_

=log f(n) + fim (v - 1)<;” . ) logx — (v — 1)% loglogx.

Since this limit does not exist iR, we conclude that the limits do not necessarily
commute.

8. Concluding remarks. We have characterized the asymptotic behavior of
the workload distribution in a fluid queue fed by multiple heavy-tailed On—-Off
flows. The results extend previous work, like the bounds derived in [15], and
the exact asymptotics in [9, 22] which rely on strong peak-rate conditions. As
a by-product, the proofs lead to several important insights like the extension of
the reduced-load equivalence established in [1] (see Section 5), and a detailed
understanding of the typical overflow behavior (see Section 6). In the analysis,
we excluded the case where the drift may be zero during the path to overflow (see
Section 3.1 for a brief discussion), which appears particularly interesting from a
theoretical perspective.

There are several other interesting topics for further research. We expect that the
methodology of Section 6 is also suitable to study other similar problems, such as
fluid queues withM / G /oo input, multiserver queues, and Generalized Processor
Sharing queues. A further avenue for research is the extension of the results to the
case of On—Off flows with more general subexponential On periods, for example,
Weibull. Partial results in [1] indicate that the typical overflow behavior may then
actually be quite different.
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APPENDIX A

Proof of Lemma 6.4.

LEMMA 6.4 (Upper bound). For any § > 0, there exists an s > 0 such that,

for all £ € (O, g3),
Pgo{A(0, T (ex)) — cty(ex) > (1—8)x} [ | P{A] > ex}
i€do
S Pgo((L=8)x) [ pi
i€fa

with Pg,((1—8)x) asin (6.1).

PROOF As mentioned earlier, the first step is to replace all random variables

A;; andU;; by their means. Let ands be two|g1|-vectors, of which the elements
are positive but arbitrarily small. Note that, for fixgd,

Fi < (r — o)A (ex) — Y reNi(ex)[E{Ur) — ]

ke
Ny (ex) _
+ Y ey [E{Uk} — & — Uil
ked1 j=1
Gi < (r — A (ex) + (r — ©)ex + (r — ) Ni (ex)[E{A;} + 5]
N;(ex)
+(r—c) Y [Aij(ex) —E{A;} = §i]1 — di Ni(ex)[E{U;} — §;]
j=1
N (ex) . ~
+di Y [E{U} =8 — Uil D reNe(ex)E{Ug} — 8]
j=1 kega\fli}
Ni(ex)

+ Z Tk Z [E{Ux} — 8 — Uy

kedi\{i} j=1
Define the evenE(y, 8, 8, ¢, x) by

Ni(ex)
{ > [E{U;} —min{s;, §;} — Uil < yx/(2r).i € 5!1}
j=1

N;(ex)
U { > [Aij(ex) — E{A;} — min{s;, §;}]
j:l

<yx/(2r)—(r—c)ex,i € glli.
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A straightforward application of Lemma 6.2 (analogously to the proofs of
Propositions 6.2, 6.4 and 6.5) shows that, for any, 6 > 0, there exists ag* > 0
such that, for alk € (0, £*],

(A1) Pgo{E1(y, 8,8, %)} = 0o(P(x)),

asx — oo with P (x) =[]_; P{A’, > x}, as defined earlier.
From (A.1) and Lemma 6.6, we conclude that, using the upper bounds for
andG;,

Pgo{A, 7)) —ctp > (1—8)x}
=P3o{A©, 7f) — ety > (1= 8)x; Ea(y, 3,8, &, %))
+Pgo{AO, /) — ety > (1—8)x; E1(y, 8,8, ¢, %))

<P (r —c)Al(ex)

— > reNe@)[E{U} — &1 > (L—y — 8)x,i € Jo;
keda

(r — o)A (ex) + (r — ) N; (ex)[E{A;} + &1
— d; Ni(ex)[E{U;} — &1

— Y nNe(ED)[E{U = &) > A—y —dx.ic
kega\{i}

+o(P(x)).
The last probability equals [condition A% (ex), i € 1]

2 (H P{N;(ex) = ”i})

ni>1lied1 \ied1
X ]P’{(r — ¢)Al(ex)

— > nlB{U) = &k > AL —y = 8)x,i € Jo;
ked1

(r — A (ex) + (r — O)[E{A;} + &;1n;
— d;[E{U;} — §;1n;

— Y nlEB{U} = &dne > A—y — 8)x,i € Jag.
kega\{i}
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Deconditioning upor; andA (i.e., dividing by[T;c 4, P{A] > x}[1;cq, P{A; >
ex}), and noting thaP{N; (ex) = n;} < P{A; > ex}, we obtain that

Pgo{AQ©, 7f) — ety > (1— 8)x)
X 1_[ P{A} > ex}
i€do

is upper bounded by [up t@( P (x))]

Z (H ]P’{(F—C)Af>(l—y—8)x

niz0,i€d1 \iefo

+ > rlE{Ug} — Sk]”k})

ke

x |1 ]P’{(r—c)Al- >A—y—¥8)x

i€eda

+ [diE{U;} — (r — ) E{A;} — ri6;]n;

+ > rlE{Ug} - Sk]”lk}-
kega\{i}
It is important to note that this expression is independent of
Since all probabilities appearing in the right-hand side are decreasing functions
of n; (for § andé small enough), the latter term is bounded by [With= (y;);cg,

anddy :=[];cq, dyi]

/ OP{(V — oA} > 1 —y —8)x+ Y nlE{Ui) — Sk])’k}
=

keg1

x [1 ]P’{(r—c)Al- >A—y—¥8)x
(A.2) i .
+[diE{U) = (- = OB{A:) — ri&i ]y

+ Y nlE(Ug} - Sk])’k} dy.
kegi\{i}

We will rewrite this expression in terms @f;,(x). Apply the change of variables
zi '= yi/(E{A;} + E{U;}). Redefing; := §; /(E{A;} + E{U;}) and similarlys; :=
8i /(E{A;} + E{U;}). Note that
1 _ P and n E{U;} _
E{A;} +E{U;}  E{A} E{A;} +E{U;}

rill—pi)=ri—pi.
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Then we obtain that (A.2) equals

1—[ Pi )
(ieﬂl E{Al}
/ np{r_c)A’>(1 y—8)x+Z(}’k— k—3k)1k}
= leﬂo ke

xIIPhr—@k»%l—y—&x+ah—m—&ni

i€ed1

+ Y (= —Sk)Zk}d

kega\{i}
If we takes; = p’ 8 and integrate w.r.tz; # then we obtain
(1—[ ri—pi P )
iegy i — Pi — & B{A)
/ HﬂM%W>ﬂy—m+Zm—mﬂ
= lego kega

x HIP’{(r—c)A,->(1—y—8)x

i€ed

+(di—p)zi+ Y, (— ,Ok)Zk}dZ
kega\{i}

= H Pl g Pgo((1—y — &)x).
i€fa !

Together with the fact thaPy, () is regularly varying (see below), this completes
the proof of the upper bound after dividing B, (x), lettingx — oo, and noting
thats, § andy may be chosen arbitrarily small[]

APPENDIX B

LEMMA 6.5 (Lower bound). Thereexistsan ¢ > 0 such that
Pgo{A(0, 7/ (ex)) — cTy(ex) > x} 1_[ P{A] > ex} 2 Pg,(x) 1_[ Di»
i€do i€d1

with Pg,(x) asin (6.1).
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PROOFE As in Appendix A, the first step is to replace the random variables
A;(ex) andU; by their means. Adding and subtracting appropriate means, it is
easy to see that, for fixefb,

Fi=( — oA (ex) = Y reNe(ex)[E{Ur) + &1

keg1
Ni(ex) B
+ Z Tk Z [E{Ux} — Ugj + 8]
kegr  j=1
— 2 r[BrAL(ex) + (1= Bi) (Ar(ex) + U )],

keg1
G; = (r — o)A (ex) + (r — O)[B;Al (ex) + (1 — B)A; (ex)]
—d1-B)U — Y n(1—BpU;

ked1\{i}
Ni(ex) _
+(r—co) Y [Aijex) —E{A;} + 5]
j=1

+ (r — )N (ex)[E{A;} — &1
—d; N; (ex)[E{U;} + &;]

N;(ex) N
+d; Y [B{U;} —Uj; + 5]

j=1
— > reNe(Ex)[E{Ui} + 5]

kegi\{i}
Ni (ex)

+ > e Y [E{Ur}— Uy + &l

kega\li}  j=1

Define the evenEx(y, 8, 8, ¢, x) by

N;(ex)
[ > [E{U;} — Uy + min{§;, §;}] = —yx/(3r).i € zl}
j=1
N;(ex) o
U { Z [Aij(ex) — E{A;} + min{s;, 31'}] >—yx/@3r),i € %1}
j=1

] { > [BrAj(ex) + (1 — Br)(Ak(ex) 4+ Up)] < yx/(3r)}.
kegd1
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We have the lower bound
Pgo{AQO, Tf) —cTp > x}
=Pgo{Fi >x,i € J0:G; > x,i € 1}
>P{F; > x,i € J0;G; >x,i € J1; E2(y, 3,8, ¢,x)}

>P{ (r — o)A (ex) — Y riNe(ex)[E{Up} + 8] > (14 y)x.i € Jo:
ke

(r — A (ex) + (r — O)N; (ex)[E{A;} — ;1 — di N;i (ex)[E{U;} + &1

— Y nNeEO[E(U) + 81> (L4 y)x.i € §1: Ea(y. 8.5, 6, x) {.
kega\li}
This probability is lower bounded by, for ady[condition onN; (sx)],

Y. P{Exy.8.5.6.x) | Ni(ex) =n,.i € g1}

O<n;<Lx,ied1

x [T PNi(ex) =n3}

i€fr
(B.1) x P (r — c)Al (ex)

— D reNe@)[E{UL} + 8] > (L4 y)x,i € du;
keda

(r — O)Ai(ex) + (r — ) Ni(ex)[E{A;} — §;]

— d; Ni (ex)[E{U;} + &;]

— Y nNe(En[E{U 4 8] > 1+ y)x,
kedga\{i}

i€ 1| Ni(ex)=n;,i € J1g.

Before proceeding, we first state a useful lemma (a proof is given at the end of this
section). O

LEMMA B.1. Foralle,y,8,6>0,
(B.2) P{E2(y,$8,8,e,x) | Ni(ex) =n;,i € §1} — 1,
asx — oo uniformlyinn; >0,i € 41, and
P{N;(ex) = n;}
P{A; > ex}
for all i € g1 asx — oo uniformlyin0O<n; < Lx.

(B.3) -1
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Equations (B.2) and (B.3) imply that, for afly< co andn > 0, one can lower
bound (B.1) forx large enough by

A=n > Pyl —o)A](ex)

n;<Lx,ieg;

— > nmlE{U} + 8dn > (L4 y)x, i € do;
keda

(r — o)A (ex) + (r — o) [E{A;} — ;]
— din; [E{U;} + ;]
— Y nmlE{Ug} + 8] > L+ y)x,
keda\{i}
i€eJ1|Ni(ex)=n;,ie€ g

X 1_[ P{A; > ex}.

iegda

As before, deconditioning upoA; and A7 and applying a similar change of
variables as in Appendix A, we obtain the lower bound

u"”( I E{lz,-})

i€eda

x/ _ H IP’{(r—c)Af >14+y)x+ Z(i’k—pk+5k)wc}
1SYﬁSLXJ€51i€gO ked

x [ P{(r —OA; > L+ y)x + (di — pi +8)i

i€fa
+ > ("k—Pk"‘Sk)yk}d)’-
kega\li}

Now write

a-mn "'=(1—77)/ ..._(1_,7)[
1<yi<Lx,ieds vi=0,ieds {1<yi<Lx,i€d1}c

(the complement taken with respect to the nonnegative orthant). The first term in
the right-hand side can be handled as in the proof of the upper bound (the only
difference is the factor 4 y instead of - y — §). The next lemma shows that the
second term can be neglected.
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LEMMA B.2.

1
lim limsu Pl — AT > (14 9)x
L—o0 x—)oopP(x) {15%'514%!'631}01-16;[0 [( ) i ( V)

+ > = +(§k))’k}

ke

x [ ]P’{(F — A > L+ y)x + (di — pi +8)yi

iegda

+ Y k-t Sk))’k} dy
kega\{i}

=0.

PrRoOOF The integral over the regions in which at least gnis smaller than 1
is easily shown to be of (@ (x)), so we concentrate on the &t < y; < Lx,
i € g1}¢. The integral

/ H]P’[(r—c)A{>(l+y)x+ Z(”k‘ﬂk"‘gk))’k}
{0<yi=<Lx,iega}¢ iedo keda

<[] P{(r — A > L+ y)x + (di — pi +8)yi

i€d1
+ Y (k—m+ Sk))’k}dy
kega\{i}
is bounded from above by

( []PlGr—oA] > 1+ )/)x})

i€cdo
X P (r —o)A;
j%l/yjzu,yizo,iemi# ,-le;ll [ ’

> L+ y)x +(di — pi +8)yi

+ Y (k= 8)ykei € Jagdy.
kega\{i}
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Observing that the integrals can be separated, we obtain the upper bound

0( [T PA; >x}) Y O®A,>Lx) [] 0( [ PA] >x}>

i€do Jj€d1 i€d1,i#] i€do
P{A’, > Lx}
=0(P(x)) Y —-——.
Jj€d1 P{Aj > X}

The result then follows immediately.]

PROOF OF LEMMA B.1l. Equation (B.2) follows immediately from the
following result. LetS, = X1 + --- + X,, be a random walk with i.i.d. step sizes
with E{X1} < 0. Then

limsupsupP{S, > x} < Ilim IP’{ sups, > x} =0,
X—>00 p>1 X—=>00 n>1

since sup..1 S, is a proper random variable. Apply this result wkh = U;; —
E{U;} — min{3;, 5;} andX; = E{A;} — A;;(ex) — min{5;, &;}.
In order to prove (B.3), note that, far < Lx,
P{N;(ex) =n;}
P{A; > ex}
asx — oo. The last equality holds becau&e has finite mean. (O

1 Lx
—P(A; < ex) < P(A; < ex)L¥ = (1— @) 1,
X
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