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DIFFUSION APPROXIMATION FOR A PROCESSOR SHARING
QUEUE IN HEAVY TRAFFIC1

BY H. CHRISTIAN GROMOLL

EURANDOM

Consider a single server queue with renewal arrivals and i.i.d. service
times in which the server operates under a processor sharing service
discipline. To describe the evolution of this system, we use a measure valued
process that keeps track of the residual service times of all jobs in the system
at any given time. From this measure valued process, one can recover the
traditional performance processes, including queue length and workload.
We show that under mild assumptions, including standard heavy traffic
assumptions, the (suitably rescaled) measure valued processes corresponding
to a sequence of processor sharing queues converge in distribution to
a measure valued diffusion process. The limiting process is characterized as
the image under an appropriate lifting map, of a one-dimensional reflected
Brownian motion. As an immediate consequence, one obtains a diffusion
approximation for the queue length process of a processor sharing queue.

1. Introduction. Consider a queueing system which consists of a single
server with an infinite capacity buffer, to which jobs arrive according to a delayed
renewal process. Theith such arrival requires an amount of processing time that
is theith member of a sequence of independent and identically distributed strictly
positive random variables. The server, rather than providing service to just one
job at a time, operates under a processor sharing discipline; that is, it works
simultaneously on all jobs currently in the buffer, providing an equal fraction of its
attention to each. Thus, at any given time that the buffer is nonempty, each job in
the buffer is being processed at a rate that is the reciprocal of the number of jobs
in the buffer. When the server has fulfilled a given job’s service time requirement,
the job exits the buffer. This system is known as a processor sharing queue.

The processor sharing service discipline can be viewed as an idealization of
a round-robin or time-sharing protocol used in computer and communication
systems. There is a considerable literature on processor sharing queues (see [18]
for a survey up to 1987), much of which assumes either Poisson arrivals or
exponential service times. For a discussion of more recent work, including
a handful of results for the case of generally distributed interarrival and service
times (theGI/GI/1 processor sharing queue), see [6].

Received September 2002; revised June 2003.
1Supported in part by NSF Grants DMS-97-03891 and DMS-00-71408 and a gift from the David

and Holly Mendel fund.
AMS 2000 subject classifications. Primary 60K25; secondary 68M20, 90B22.
Key words and phrases. Processor sharing queue, heavy traffic, diffusion approximation, state

space collapse, measure valued process.

555



556 H. C. GROMOLL

In this paper, we present a heavy traffic diffusion approximation for a measure
valued process that keeps track of the “state” of aGI/GI/1 processor sharing
queue. A direct consequence of this is the existence of a diffusion approximation
for the queue length process. Note that since the workload process in aGI/GI/1
queue is the same for all nonidling service disciplines, the heavy traffic approx-
imation for the workload process under a processor sharing service discipline is
the same as the well-known approximation under a FIFO (first-in-first-out) service
discipline [9]. However, this simple relationship does not hold for the queue length
process.

The measure valued process that we study keeps track of theresidual service
times of jobs in the buffer. The residual service time at timet ≥ 0 of a job which has
entered the buffer by timet , is given by the amount of processing time originally
requested by the job minus the total amount of processing time it has received
by time t . Jobs with residual service times at timet equal to zero have received
enough processing time to fulfill their requirement and have departed the buffer.
Let MF denote the space of finite, nonnegative Borel measures onR+ = [0,∞).
The measure valued process{µ(t) : t ≥ 0} is such that for eacht ≥ 0, µ(t) is
the random element ofMF that has a unit of mass at the residual service time
of each job currently in the buffer at timet . From this process, one can recover
information about the performance of the system. For example, letZ(t) denote
the number of jobs in the buffer, or queue length, at timet ≥ 0. ThenZ(t) can
be recovered as the integral ofµ(t) against the function that is identically one:
Z(t) = 〈1,µ(t)〉, where 〈1,µ(t)〉 = ∫

R+ 1µ(t)(dx). Similarly, let W(t) denote
the sum of the residual service times of all jobs in the buffer, or workload,
at time t ≥ 0. Then W(t) = 〈χ,µ(t)〉, where 〈χ,µ(t)〉 = ∫

R+ χ(x)µ(t)(dx)

andχ(x) = x. Although the processµ(·) includes information about the queue
length and workload processes, it also provides a more detailed description of
the state of the system than is available from these one-dimensional performance
processes alone. It is this level of detail which facilitates our analysis. The process
µ(·) is called thestate descriptor for the processor sharing queue. Note that
this terminology is not intended to imply thatµ(·) is necessarily a Markovian
state descriptor (it may not be, since we do not include the residual interarrival
time, the time remaining until the next job arrives to the buffer, in the state
description). The processµ(·) has previously been used by Grishechkin [5], along
with other measure valued descriptors, in his heavy traffic analysis of the steady
state distribution of a processor sharing queue. It has also been used recently by
Gromoll, Puha and Williams [6], Puha and Williams [16] and Puha, Stolyar and
Williams [15] for obtaining fluid limit results. Similar measure valued descriptors
have also been used recently to describe other queueing systems. Doytchinov,
Lehoczky and Shreve [3] and Kruk, Lehoczky, Shreve and Yeung [11] have used
measure valued processes in the context of a queueing system with deadlines.
Limic [12, 13] has used measure valued processes in studying the heavy traffic
behavior of a LIFO (last-in-first-out) preemptive resume queue.
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In [6], a fluid (or law of large numbers) approximation for the state descriptor
µ(·) of a heavily loaded processor sharing queue was studied. It was conjectured
there that an understanding of the steady state behavior of this fluid approximation
would provide a key ingredient for establishing a heavy traffic diffusion approxi-
mation for the processµ(·). This is verified in the present paper and the role played
by fluid approximations is informally described in the following paragraphs. The
reader is referred to Sections 3 and 4 for the complete treatment.

For eachr > 0 in some sequence which tends to infinity, thefluid scaled and
diffusion scaled versions ofµ(·), denotedµ̄r(·) andµ̂r(·), are defined bȳµr(t) =
r−1µ(rt) andµ̂r(t) = r−1µ(r2t) for t ≥ 0. Sinceµ̂r(t) = µ̄r (rt) for eacht ≥ 0,
one can think of the diffusion scaled processµ̂r(·) over a finite time interval[0, T ],
whereT > 1, as corresponding to the fluid scaled processµ̄r(·) over the time
interval[0, rT ]. The latter interval grows without bound asr → ∞. To studyµ̄r(·)
over this “long” time interval, one considers it in sections by covering[0, rT ]
with the overlapping finite time intervals[m,m + L], wherem = 0, . . . , �rT � and
L > 1 is fixed (here�·� denotes the integer part). Theshifted fluid scaled processes
µ̄r,m(·) are then defined for eachm ≤ �rT � andt ∈ [0,L] by µ̄r,m(t) = µ̄r (m+ t).
Thus, we can study the diffusion scaled processµ̂r (·) over [0, T ] by studying
the family of shifted fluid scaled processes{µ̄r,m(·) :m ≤ �rT �} over [0,L].
By building on the techniques developed in [6], it is shown that asr → ∞, “good”
sample paths of the processes{µ̄r,m(·),m ≤ �rT �} can be uniformly approximated
on [0,L] by measure valued functionsζ̄ (·) : [0,∞) −→ MF known asfluid model
solutions (see Definition 4.2 in Section 4).By “good” sample paths, we mean
sample paths in a set whose probability approaches 1 asr → ∞.

Recently, Puha and Williams [16] have shown that under mild conditions, such
fluid model solutions̄ζ (·) converge to a steady state; that is, for any suchζ̄ (·),
there is aζ̄∞ ∈ MF such that ast → ∞, ζ̄ (t) −→ ζ̄∞ in the topology of weak
convergence of measures. Moreover,ζ̄∞ depends only on the limiting service time
distributionν, and on the first moment ofζ̄ (t), which remains constant int . Indeed,

ζ̄∞ = �ν〈χ, ζ̄ (t)〉 for all t ≥ 0,

where�ν :R+ −→ MF is the lifting map defined by�νw = w〈χ, νe〉−1νe and
νe denotes the residual excess lifetime distribution associated withν; that is,νe is
the probability measure onR+ satisfyingνe([0, x]) = 〈χ, ν〉−1 ∫ x

0 ν(y,∞) dy for
all x ∈ R+. In [16], conditions are also identified under which convergence to
steady state occursuniformly for certain collections of fluid model solutions.

In the present paper, the steady state results in [16] are combined with the fluid
approximations of{µ̄r,m(·) :m ≤ �rT �} described above to show that ifL > 1 is
sufficiently large andt ∈ [L − 1,L], then for “good” sample paths,

µ̄r,m(t) ≈ �ν〈χ, µ̄r,m(t)〉.(1.1)
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This fact is applied to the diffusion scaled state descriptors in the following way.
For anyt ∈ [(L − 1)r−1, T ], there is anm ∈ {0, . . . , �rT �} and ans ∈ [L − 1,L]
such that

µ̂r (t) = µ̄r(rt) = µ̄r(m + s) = µ̄r,m(s).(1.2)

Combining (1.2) with the approximation (1.1) yields that for “good” sample paths,
and fort ∈ [(L − 1)r−1, T ],

µ̂r(t) ≈ �ν〈χ, µ̂r(t)〉.(1.3)

It is shown that under mild conditions, including standard heavy traffic assump-
tions, the above approximation is valid on the entire interval[0, T ], with probabil-
ity approaching 1 asr → ∞. Recall that〈χ, µ̂r(t)〉 = r−1W(r2t) is the (diffusion
scaled) workload at timet , which we denote bŷWr(t). Thus, the essence of (1.3) is
that as the diffusion scaled processµ̂r(·) approaches the heavy traffic limit, it can
be recovered from the diffusion scaled workload processŴ r(·) on [0, T ] by an ap-
propriate lifting map. This phenomenon is known asstate space collapse. Since it
is known that under the assumptions we will impose, the processŴ r(·) converges
in distribution to a reflected Brownian motionW ∗(·) on R+, a diffusion approxi-
mation forµ̂r(·) follows quickly from state space collapse. (See Sections 3 and 4
for more details.) This yields a limiting measure valued diffusion process which is
confined to the one-dimensional subspace{cνe : c ≥ 0} of MF. It is given by

µ∗(·) = �νW
∗(·).

A consequence of the above diffusion approximation for the diffusion scaled
state descriptor̂µr(·) is the existence of a diffusion approximation for the diffusion
scaled queue length processẐr (·) = 〈1, µ̂r(·)〉. The limiting process is the one-
dimensional reflected Brownian motion

Z∗(·) = 〈1,µ∗(·)〉.
The precise form ofZ∗(·) is given in Corollary 2.4, which verifies a conjecture
of Harrison and Williams [8] in the case of a single processor sharing queue
with a single class of jobs. We note that in cases where the processZ∗(·) has
negative drift, the steady state distribution ofZ∗(t) as t → ∞ is consistent with
that obtained by Grishechkin [5] using other means (see Section 2.4).

The method outlined above for obtaining a heavy traffic diffusion approximation
using fluid approximations as an intermediate step is analogous to the method
developed by Bramson [2] and Williams [17] for proving diffusion approximations
for open multiclass networks with HL (head-of-the-line) service disciplines.
Indeed, the framework developed in [2, 17] serves as the primary motivation for the
approach taken here for the processor sharing discipline. Note that since processor
sharing is not an HL service discipline, a large part of the machinery needs to be
developed from first principles.
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The paper is organized as follows. In Section 2 we give a precise description of
our model and assumptions, and we state our main results. Section 3 is devoted to
fluid scale analysis, which prepares us for the proof of state space collapse. The
latter is given in Section 4.

1.1. Notation. The following notation will be used throughout the paper. Let
N = {1,2, . . . } and letR denote the set of real numbers. Fora, b ∈ R, we write
a ∨ b for the maximum ofa andb, a ∧ b for the minimum ofa andb, a+ for the
positive part ofa, �a� for the largest integer less than or equal toa, and�a� for the
smallest integer greater than or equal toa. The nonnegative real numbers[0,∞)

will be denoted byR+. For a functiong :R+ −→ R, let ‖g‖∞ = supx∈R+ |g(x)|
and‖g‖K = supx∈[0,K] |g(x)| for eachK ≥ 0.

For a setB ⊂ R+, we denote the indicator of the setB by 1B . We also define
the following real valued functions onR+ :χ(x) = x, for x ∈ R+, andϕ(x) = 1/x,
for x ∈ (0,∞) with ϕ(0) = 0. For a topological spaceA, denote byCb(A) the set
of continuous, bounded, real-valued functions defined onA. In addition, for an
interval I ⊂ R, C1

b(I ) is the set of once continuously differentiable, real-valued
functions defined onI that together with their first derivatives are bounded onI .

Recall thatMF is the set of finite, nonnegative Borel measures onR+. Consider
ζ ∈ MF and a Borel measurable functiong :R+ −→ R which is integrable with
respect toζ . We define〈g, ζ 〉 = ∫

R+ g(x)ζ(dx). Our equations will involve
expressions of the form

∫
[a,∞) g(x − a)ζ(dx) for a > 0. To ease notation

throughout, we write this as〈g(· − a), ζ 〉, making the convention that such ag is
always extended to be identically zero on(−∞,0). The spaceMF is endowed
with the topology of weak convergence of measures; that is, forζn, ζ ∈ MF,
n ∈ N, we haveζn

w−→ ζ if and only if 〈g, ζn〉 −→ 〈g, ζ 〉 as n → ∞ for all
g :R+ −→ R that are bounded and continuous. With this topology,MF is a Polish
space [14]. It will be convenient to deal with weak convergence onMF by means of
a suitable metric which we now define. First, choose a countable set of nonnegative
functions{gG

k }∞k=1 ⊂ C1
b(R+) that are each bounded by 1, and such that{gG

k }∞k=1 is

convergence determining forMF, that is, such thatζn
w−→ ζ in MF, asn → ∞, if

and only if for eachk ∈ N, 〈gG
k , ζn〉 −→ 〈gG

k , ζ 〉, asn → ∞. We refer the reader
to [4], Chapter 3, Section 4, for a possible construction. Note that the construction
in the proof of Proposition 4.2 in [4], Chapter 3, Section 4, can be modified to
require thatgG

k ∈ C1
b(R+) and‖gG

k ‖∞ ≤ 1 for k ∈ N. Next, for eachk ∈ N, let

h
G
k ∈ C1

b(R+) be a nonnegative function that is bounded by 1 and satisfiesh
G
k ≡ 0

on[0, k−1], hG
k ≡ 1 on[k,∞) and‖(hG

k )′‖∞ ≤ 2. LettingG = {gG
k }∞k=1∪{hG

k }∞k=1,
we define a metric onMF in terms ofG as follows. Forζ1, ζ2 ∈ MF, define

d[ζ1, ζ2] =
∞∑

k=1

2−k(∣∣〈gG
k , ζ1〉 − 〈gG

k , ζ2〉
∣∣∧ 1

)
(1.4) + sup

k∈N

∣∣〈hG
k , ζ1〉 − 〈hG

k , ζ2〉
∣∣.
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It is straightforward to see thatd[·, ·] is a complete metric onMF that induces the
topology of weak convergence of measures. Note that althoughd[·, ·] depends on
the setG, we do not indicate this explicitly in the notation. We denote the zero
measure inMF by 0 and the measure inMF that puts one unit of mass at the point
x ∈ R+ (or Dirac measure atx) by δx . We will useδ+

x to denote the following
truncated Dirac measure:

δ+
x =

{
δx, x ∈ (0,∞),

0, x = 0.

We use “�⇒” to denote convergence in distribution of random elements of
a metric space. For random elementsX,Y of a metric space,X ∼ Y will denote
equivalence in distribution. Following Billingsley [1], we will useP and E,
respectively, to denote the probability measure and expectation operator associated
with whatever space the relevant random element is defined on. All stochastic
processes used in this paper will be assumed to have paths that are right continuous
with finite left limits (r.c.l.l.). ForL ∈ (1,∞) and a Polish spaceS, we denote by
DL(S) = D([0,L],S) [resp.D∞(S) = D([0,∞),S)] the space of r.c.l.l. functions
from [0,L] (resp.[0,∞)) into S, and we endow this space with the usual Skorohod

J1-topology [4]. We use “
J1−→” to denote convergence in this topology.

2. The processor sharing queue. In this section we give a precise description
of the processor sharing queue, specify our assumptions and state our main
result. A formal definition of the processor sharing queue, as considered in this
paper, was previously given in [6]. The reader is referred there for a detailed
discussion. However, since the diffusion approximation presented here requires
stronger assumptions on the model than were made in [6], it is necessary to
briefly review the definition. This is the subject of Section 2.1, where we introduce
a sequence of processor sharing queueing models and the associated notation.
Section 2.2 describes the scaling and time shifts we will apply to this sequence
of models, and Section 2.3 specifies our asymptotic assumptions on the sequence.
The statement of our main result appears in Section 2.4.

2.1. A sequence of processor sharing queues. We now specify a sequence
of processor sharing queueing models indexed byr ∈ R, whereR ⊂ (0,∞)

is a sequence which increases to infinity. Each model in the sequence may be
defined on a separate probability space and we usePr andEr , respectively, for
the probabilityand expectation operator on each of these spaces. Ther th model
in the sequence consists of the following: A server, which processes jobs from
an infinite capacity buffer according to the processor sharing discipline, a pair of
stochastic primitive processesEr(·),V r· , which describe the arrival of work to the
buffer, and a random initial condition, which specifies the state of the system at
time 0. A measure valued processµr(·) together with a set of descriptive equations
describe the time evolution of the state of the system.



DIFFUSION APPROXIMATION FOR A PROCESSOR SHARING QUEUE 561

Theexogenous arrival process Er(·) is a rateαr delayed renewal process asso-
ciated with a sequence{ur

i }∞i=1 of finite nonnegativeinterarrival times. For t ≥ 0,
Er(t) represents the total number of jobs which have arrived to the buffer during
the time interval(0, t]. We refer to theith job to arrive to the buffer after time 0
simply as theith job. In contrast, jobs which are already in the buffer at time 0 will
always be referred to asinitial jobs. The quantityur

1 is the arrival time of the first
job, andur

i , i ≥ 2, is the elapsed time between the arrival of the(i − 1)st andith
jobs. Thus, fori ≥ 1, Ur

i = ∑i
j=1ur

j is the arrival time of theith job. We define
Ur

0 = 0. So fort ≥ 0,

Er(t) = sup{i ≥ 0 :Ur
i ≤ t}.(2.1)

It is assumed that{ur
i }∞i=1 is a sequence of independent random variables and that

{ur
i }∞i=2 is i.i.d. with mean(αr)−1 ∈ (0,∞) and standard deviationar < ∞. The

first elementur
1 of the sequence is assumed to be strictly positive with finite mean.

The service process {V r
i , i = 1,2, . . . } records the cumulative amount of

processing time required from the server by the firsti jobs. It is defined from
a sequence{vr

i }∞i=1 of strictly positiveservice times by

V r
i =

i∑
j=1

vr
j for i = 1,2, . . . .(2.2)

The quantityvr
i represents the amount of processing time that theith job requires

from the server. It is assumed that{vr
i }∞i=1 is a sequence of strictly positive

i.i.d. random variables with common distribution given by a Borel probability
measureνr on R+. We assumeνr has mean(βr)−1 ∈ (0,∞) and standard
deviationbr < ∞. Finally, we assume that the service processV r· is independent
of the exogenous arrival processEr(·).

The initial condition specifiesZr(0), the number of initial jobs present in the
buffer at time zero, as well as the service time requirement for each of these initial
jobs. We assumeZr(0) is a nonnegative, integer valued random variable. The
service times for initial jobs are taken to be the firstZr(0) elements of a sequence
{ṽr

j }∞j=1 of strictly positive random variables. The random variablesZr(0) and

{ṽr
j }∞j=1 are assumed to be independent of{ur

i }∞i=2 and{vr
i }∞i=1, but are not assumed

to be independent of one another. A convenient way to express the initial condition
is to define an initial random measureµr(0), which is the nonnegative, finite
random Borel measure onR+ given by

µr(0) =
Zr(0)∑
j=1

δṽr
j
.(2.3)

Recall thatδx denotes the Dirac measure atx ∈ R+. Henceforth,µr(0) will be
used as the initial condition. We assume thatµr(0) satisfies

Er [〈1,µr(0)〉] < ∞,(2.4)

Er [〈χ,µr(0)〉] < ∞.(2.5)
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Note that since〈1,µr(0)〉 = Zr(0) and 〈χ,µr(0)〉 = ∑Zr(0)
j=1 ṽr

j , assump-
tions (2.4) and (2.5) mean, respectively, that the expected initial queue length and
expected initial workload are finite.

The state descriptor is a performance process which describes the time
evolution of the state of the processor sharing queue. It is a measure valued process
µr(·) : [0,∞) −→ MF such that for eacht ≥ 0, the random Borel measureµr(t)

has one unit of mass located at theresidual service time of each job that is in the
buffer at timet . The residual service time at timet ≥ 0 of job i ≤ Er(t) [resp., of
initial job j ≤ Zr(0)], denotedRr

i (t) [resp.,R̃r
j (t)], is the remaining amount of

processing time required to fulfill the service time requirement of the job. If this
residual service time is zero, the job has completed service and has departed the
buffer. Thus att ≥ 0, the state descriptor is given by

µr(t) =
Zr(0)∑
j=1

δ+
R̃r

j (t)
+

Er (t)∑
i=1

δ+
Rr

i (t)
.(2.6)

Recall thatδ+
x is the Dirac measure atx for x ∈ (0,∞) with δ+

0 = 0, which ensures
in the above thatµr(t) has one unit of mass only for each job with nonzero residual
service time at timet ≥ 0. Let Zr(t) denote the number of jobs in the buffer,
or queue length, at timet ≥ 0. Then clearly,Zr(t) = 〈1,µr(t)〉 for all t ≥ 0. Thus,
under the processor sharing discipline, any job that is present in the buffer at time
t receives service at the instantaneous rate〈1,µr(t)〉−1. Note that if a job is present
in the buffer at timet , then〈1,µr(t)〉 �= 0. Thecumulative service per job provided
by the server up to timet ≥ 0 is defined by

Sr (t) =
∫ t

0
ϕ
(〈1,µr(s)〉)ds,(2.7)

whereϕ(x) = 1/x for x ∈ (0,∞) with ϕ(0) = 0. Then, since jobi ≤ Er(t) arrives
at time Ur

i ≤ t , the cumulative amount of processing time that jobi receives
by time t is equal tovr

i ∧ (Sr(t) − Sr (Ur
i )). Similarly, the cumulative amount

of processing time that an initial jobj ≤ Zr(0) receives by timet is equal
to ṽr

j ∧ Sr(t). Therefore, fort ≥ 0, the residual service times are given by the
equations

Rr
i (t) = (

vr
i − Sr(t) + Sr(Ur

i )
)+ for i = 1, . . . ,Er(t),(2.8)

R̃r
j (t) = (

ṽr
j − Sr(t)

)+ for j = 1, . . . ,Zr(0).(2.9)

Given the primitive processesEr(·),V r· , and the initial conditionµr(0), equa-
tions (2.6)–(2.9) determine the state descriptorµr(·), the processSr(·) and the
residual service times. This fact is not difficult, although somewhat tedious,
to show. We note that the definition of the state descriptor given here is equiva-
lent to the formulation in [6].
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Let Wr(t) denote the (immediate) workload in the buffer at timet ≥ 0. This is
defined as the amount of time the server would have to work in order to complete
the remaining service time requirements of all jobs in the buffer at timet , assuming
no new arrivals take place. Since this is given by the sum of the residual service
times of all jobs which are in the buffer at timet , we have

Wr(t) = 〈χ,µr(t)〉 for t ≥ 0.(2.10)

The cumulative service per job processSr (·) will play a particularly important
role in our analysis. We will find it convenient to have notation for the increments
of this process. Fort, h ≥ 0, define thecumulative service per job in [t, t + h] by

Sr
t,t+h = Sr(t + h) − Sr(t) =

∫ t+h

t
ϕ
(〈1,µr(s)〉)ds.(2.11)

Then forUr
i ≤ t , the amount of service received by theith job by timet can be

written asvr
i ∧ Sr

Ur
i ,t

, and the residual service time at timet can be written

Rr
i (t) = (

vr
i − Sr

Ur
i ,t

)+
.

2.2. Scaling. Our result concerns the asymptotic behavior of processor shar-
ing queues ondiffusion scale. In particular, the focus of our attention is the diffu-
sion scaled state descriptor, which is defined fort ≥ 0 by

µ̂r (t) = 1

r
µr(r2t).(2.12)

We will also be interested in diffusion scaled versions of the workload and queue
length processes, defined fort ≥ 0 by Ŵ r(t) = r−1Wr(r2t) = 〈χ, µ̂r(t)〉 and
Ẑr (t) = r−1Zr(r2t) = 〈1, µ̂r(t)〉, respectively. Much of our understanding of the
diffusion scaled state descriptorµ̂r(·) will be derived from results about thefluid
scaled state descriptor, which is defined fort ≥ 0 by

µ̄r(t) = 1

r
µr(rt).(2.13)

The relationshipµ̂r(t) = µ̄r(rt) is essential for bootstrapping results from fluid
scale up to diffusion scale. Recall that our approach for studying the diffusion
scaled procesŝµr(·) over a fixed finite time interval[0, T ], for T > 1, is to look
at the fluid scaled process̄µr(·) over the time interval[0, rT ]. Specifically, we
study overlapping sections ofµ̄r (·), each defined on a finite time interval of fixed
lengthL > 1. For eachr ∈ R, t ≥ 0 andm ∈ {0,1, . . . }, define

µ̄r,m(t) = µ̄r (m + t).(2.14)

Then since for eachr ∈ R, the time interval[0, rT ] is covered by the�rT � + 1
overlapping time intervals[m,m + L], for 0 ≤ m ≤ �rT �, we have that for
anyt ∈ [0, rT ], there is (at least one)m ≤ �rT � ands ∈ [0,L] such that

µ̄r(t) = µ̄r,m(s).(2.15)
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Much of Section 3 is devoted to extending results in [6] on the asymptotics
(as r → ∞) of µ̄r(·) over [0,L], so that they hold forµ̄r,m(·) over [0,L] for
all m ≤ �rT �. For this discussion, we define the following fluid scaled and shifted
fluid scaled processes. For allr ∈ R, t ≥ 0, h ≥ 0 andm ∈ {0,1, . . . }, let

Ēr(t) = 1

r
Er(rt), Ēr,m(t) = Ēr(m + t),(2.16)

Z̄r(t) = 1

r
Zr(rt), Z̄r,m(t) = Z̄r (m + t),(2.17)

W̄ r(t) = 1

r
Wr(rt), W̄ r,m(t) = W̄ r(m + t),(2.18)

S̄r
t,t+h = Sr

rt,r(t+h), S̄
r,m
t,t+h = S̄r

m+t,m+t+h.(2.19)

Note that by (2.19),

S̄
r,m
t,t+h = Sr

r(m+t),r(m+t+h) =
∫ r(m+t+h)

r(m+t)
ϕ
(〈1,µr(s)〉)ds

(2.20)

=
∫ t+h

t
ϕ
(〈1, µ̄r,m(s)〉)ds.

2.3. Heavy traffic assumptions. In this section, we specify the assumptions
under which the diffusion approximation will be proved. Letα > 0, a > 0 and
θ > 0 be fixed constants and letν be a probability measure onR+ that does not
charge the origin, and satisfies

〈χ4+θ , ν〉 < ∞.(2.21)

Then β = 〈χ, ν〉−1 is positive and finite andb = (〈χ2, ν〉 − 〈χ, ν〉2)1/2 is
finite. In order to obtain convergence in distribution of the diffusion scaled state
descriptorsµ̂r(·) to a diffusion process, we impose the following asymptotic
assumptions on the sequence of processor sharing queues defined in Section 2.1.
For the sequence of arrival processes, we assume that asr → ∞,

(αr, ar) −→ (α, a),(2.22)

Er [ur
1]/r → 0,(2.23)

lim sup
r→∞

Er [(ur
2)

2+θ ] < ∞.(2.24)

For the sequence of service processes, we assume that asr → ∞,

νr w−→ ν,(2.25)

(βr , br) −→ (β, b),(2.26)

lim sup
r→∞

〈χ4+θ , νr〉 < ∞.(2.27)
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Define thetraffic intensity parameter for the r th system byρr = αr/βr , and
let ρ = α/β. In addition to the above, our assumption that the sequence of
processor sharing queues approachesheavy traffic requires that

ρ = 1.(2.28)

We also require the sequence to approach heavy traffic at an appropriate rate and
assume that asr → ∞,

r(1− ρr) −→ λ for someλ ∈ R.(2.29)

Assumption (2.23) implies that the initial residual interarrival time vanishes on
diffusion scale. Assumptions (2.24) and (2.27) imply Lindeberg-type conditions,
which along with (2.22), (2.23) and (2.26), are needed to imply functional cen-
tral limit theorems for the triangular arrays{ur

i ; i = 1,2, . . . }r∈R and {vr
i ; i =

1,2, . . . }r∈R and ultimately, convergence in distribution of the diffusion scaled
workload processes to a reflected Brownian motion (see Proposition 3.1). Assump-
tion (2.27) is two moments stronger than what would normally be used for such
functional central limit theorems. The additional restriction is used in a separate
part of our analysis to estimate moments of the shifted fluid scaled state descriptors
{µ̄r,m(·), m ≤ �rT �} (see Lemma 3.6).

We also make assumptions on the asymptotic behavior of the diffusion scaled
initial measureµ̂r(0). Sinceµ̂r(0) = µ̄r(0), we make our assumptions in terms of
µ̄r(0) since they will be used in that form. The following definition is central to
these assumptions.

DEFINITION 2.1 (Invariant manifold). Letνe denote the excess lifetime
distribution associated withν, that is, νe is the probability measure onR+
satisfying〈1[0,x], νe〉 = β

∫ x
0 〈1(y,∞), ν〉dy for all x ∈ R+. Let

Mν = {cνe ∈ MF : c ∈ R+}.
Following usage in [2], we refer to the one parameter family of measures
Mν ⊂ MF as the invariant manifold associated withν.

Let � be a random measure taking values inMF, such that

� ∈ Mν a.s.,(2.30)

E[〈1,�〉] < ∞.(2.31)

Note that assumption (2.21) implies that〈χ, νe〉 < ∞ and 〈χk+θ , νe〉 < ∞, for
k = 1,2,3. Combining this with (2.30) and (2.31) implies that� also satisfies

E[〈χ,�〉] < ∞,(2.32)

E[〈χk+θ ,�〉] < ∞ for k = 1,2,3.(2.33)
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An important property of� that we will need is that it has no atoms a.s. This is
a trivial consequence of (2.30) sinceνe has a density function. This “no atoms”
property of� will be used in the following form:

lim
κ↓0

P
(

sup
x∈R+

〈
1[x,x+κ],�

〉
< ε

)
= 1 for all ε > 0.(2.34)

The equivalence of (2.34) to the fact that� has no atoms a.s. is proved in
[6], Lemma A.1.

For the sequence of (scaled) initial measuresµ̂r (0) = µ̄r(0), we assume that as
r → ∞,(

µ̄r (0), 〈χ, µ̄r(0)〉, 〈χ1+θ , µ̄r(0)〉) �⇒ (
�, 〈χ,�〉, 〈χ1+θ ,�〉).(2.35)

Note that for anyg ∈ Cb(R+), �g :MF −→ R defined by�g(ζ ) = 〈g, ζ 〉 is
a continuous function. So the first component of (2.35) implies by the continuous
mapping theorem ([1], Theorem 5.1) that for any suchg, 〈g, µ̄r(0)〉 �⇒ 〈g,�〉 as
r → ∞. The second component of (2.35) implies that the fluid/diffusion scaled
initial workload converges in distribution, that is,̂Wr(0) = W̄ r(0) �⇒ 〈χ,�〉
asr → ∞.

To simplify the statements of results for the remainder of the paper, we now
summarize our assumptions in the following.

(Q.1) There is a sequence of processor sharing queues defined in Section 2.1 such
that for some constantsθ > 0, α > 0, a > 0, some probability measureν
on R+ that does not charge the origin, and some random measure� taking
values inMF, (2.21)–(2.31) and (2.35) hold.

2.4. Main result. In order to state our main result, we will need the following
definition.

DEFINITION 2.2. Assume (Q.1). Let�ν :R+ −→ MF be the lifting map
associated withν given by

�νw = w

〈χ, νe〉νe for w ∈ R+.(2.36)

THEOREM 2.3. Assume (Q.1). Then as r → ∞, the sequence of diffusion
scaled state descriptors {µ̂r(·)} converges in distribution to the measure valued
process µ∗(·) = �νW

∗(·), where W ∗(·) is a reflected Brownian motion on R+ with
drift −λ, variance αa2 + βb2 and initial value W ∗(0) that is equal in distribution
to 〈χ,�〉.

COROLLARY 2.4. Assume (Q.1).Then as r → ∞, the sequence of diffusion
scaled queue length processes {Ẑr(·)} converges in distribution to the process
Z∗(·) = CνW

∗(·), where W ∗(·) is the reflected Brownian motion specified above,
and Cν = 2β(1+ β2b2)−1.
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PROOF. Since Ẑr(·) = 〈1, µ̂r(·)〉 and since�1 :MF −→ R defined by
�1(ξ) = 〈1, ξ 〉 is continuous, the result follows from Theorem 2.3 by the
continuous mapping theorem. The form of the constantCν follows from (2.36)
by rewriting the mean ofνe in terms of the meanβ−1, and standard deviationb,
of ν. �

Harrison and Williams [8] have conjectured that for a queue operating under
the processor sharing discipline (possibly with several different job classes which
may arrive to the buffer), a heavy traffic limit theorem should hold for the queue
length process associated with each job class. They predict that for each job
class, the limiting queue length process should be a constant multiple of the
reflected Brownian motion obtained as the limiting workload process for the
queue. Moreover, they specify the form of the constants for which the above claim
should hold (see A.58, A.60 and A.61 in [8]). Corollary 2.4 verifies this conjecture
in the case of a single job class. In particular, the constantCν validates (after some
rewriting) the prediction made in [8], A.60 and A.61.

In cases whereλ is positive, the processZ∗(·) has a steady state distribution
which can be computed as in [7] to be

lim
t→∞ P

(
Z∗(t) ≤ x

)
(2.37) = 1− exp

(−λ(β−2 + b2)(a2 + b2)−1x
)
.

It is interesting to note that in the caseβ = 1, this is consistent with the steady
state distribution obtained by Grishechkin [5]. Indeed, since the approach taken
in [5] was to first take the limit ast → ∞ to get the steady state distribution of
Ẑr (t) and then take the limit of the resulting steady state distributions asr → ∞,
the consistency with (2.37) suggests that an interchange of limits is possible in this
situation.

The strategy for proving Theorem 2.3 can be divided into two main tasks.
The first task is to establish a tightness property for the processes{µ̄r,m(·),
r ∈ R,m ≤ �rT �}. This is accomplished in Section 3. In Section 4, we undertake
the second task, which is to identify limit points obtained in Section 3 asfluid
model solutions (see Definition 4.2) and to show that, consequently, the process
µ̂r(·) can be approximated, asr → ∞, by “overlapping” fluid model solutions.
This will be done in such a way that asr → ∞, the random measurêµr(t)

is close to the steady state of some fluid model solution for allt ∈ [0, T ], with
arbitrarily high probability. Combined with a result in [16] which provides rates of
convergence to steady state for such fluid model solutions, this leads to the proof
of state space collapse. Finally, the proof of Theorem 2.3 collecting these results
appears at the end of Section 4.



568 H. C. GROMOLL

3. Compactness. The aim of this section is to prove a tightness property
for the shifted and fluid scaled state descriptors{µ̄r,m(·), r ∈ R,0 ≤ m ≤ �rT �}.
Specifically, our goal is to show in Corollary 3.16 at the end of this section that
sequences indexed byr ∈ R of “good” sample paths of the processes{µ̄r,m(·),
r ∈ R,m ≤ �rT �} are relatively compact inDL(MF), for L > 1. Here, sample
paths are “good” with arbitrarily high probability asr → ∞. The road to
Corollary 3.16 involves a detailed analysis of the behavior of the processor sharing
queue on fluid scale and we rely heavily on the ideas developed in [6], Section 5.
Nevertheless, many of the techniques developed there need to be refined and
several new ideas are needed for the present analysis. This is to account for the
fact that for eachr ∈ R, we are dealing with orderr measure valued processes
(one for eachm ∈ {0, . . . , �rT �}) instead of just one.

The section is organized similarly to [6], Section 5. In Sections 3.1 and 3.2
we describe a dynamic equation satisfied by the fluid scaled state descrip-
tors {µ̄r,m(·)} and a well-known heavy traffic limit theorem for the workload
processes{〈χ, µ̄r,m(·)〉}, respectively. Section 3.3 contains a generalization of
Lemma 5.3 in [6]. It states that under certain conditions, the fluid scaled queue
length process〈1, µ̄r(·)〉 can be bounded above over long time intervals. This
will yield an upper bound for the shifted fluid scaled queue length process
〈1, µ̄r,m(·)〉 on [0,L] for each m ≤ �rT �. Section 3.4 contains a functional
weak law of large numbers estimate, which is a refinement of Lemma A.2
in [6]. In Section 3.5, we obtain an upper bound for certain moments of the
processes{µ̄r,m(·)}. In Section 3.6, we state and prove Lemma 3.8. This lemma
combines the results of Sections 3.1–3.5 for subsequent easy reference. Lastly,
Section 3.7 contains further analysis of the fluid scaled processes{µ̄r,m(·)}. It con-
sists of four secondary lemmas which are consequences of the results summarized
in Lemma 3.8. These four lemmas lead up to an oscillation bound (Theorem 3.14)
for the processes{µ̄r,m(·)} as well as Corollary 3.16.

3.1. Dynamic equation. We begin by specifying a dynamic equation satisfied
by the processes{µ̄r,m(·)} for m ≤ �rT �. Starting with (2.6) and substituting
in the definition of the residual service times (2.8) and (2.9), one obtains, after
some simplification, that for eachr , a.s. for each Borel measurable function
g :R+ −→ R and allt, h ≥ 0,

〈g,µr(t + h)〉 = 〈(
1(0,∞)g

)
(· − Sr

t,t+h),µ
r(t)

〉
(3.1)

+
Er (t+h)∑

i=Er (t)+1

(
1(0,∞)g

)(
vr
i − Sr

Ur
i ,t+h

)
.

Recall that we always assumeg is extended to be identically zero on(−∞,0) so
that functions of the formg(· − a) are well defined onR+ for anya > 0.
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Equation (3.1) takes the following form for the shifted fluid scaled processes
µ̄r,m(·). For eachr ∈ R and eachm ≤ �rT �, a.s. for each Borel measurable
functiong :R+ −→ R, and allt, h ≥ 0,

〈g, µ̄r,m(t + h)〉 = 〈(
1(0,∞)g

)(· − S̄
r,m
t,t+h

)
, µ̄r,m(t)

〉
(3.2)

+ 1

r

rĒr,m(t+h)∑
i=rĒr,m(t)+1

(
1(0,∞)g

)(
vr
i − S̄

r,m

Ur
i r−1−m,t+h

)
.

We refer to (3.2) as thedynamic equation for µ̄r,m(·). Frequently we will setg ≡ 1
in this equation, in which case it will look like

〈1, µ̄r,m(t + h)〉 = 〈
1(S̄

r,m
t,t+h,∞), µ̄

r,m(t)
〉

(3.3)

+ 1

r

rĒr,m(t+h)∑
i=rĒr,m(t)+1

1(0,∞)

(
vr
i − S̄

r,m

Ur
i r−1−m,t+h

)
.

An important bound which we will use often is obtained from (3.3) by ignoring
any processing of jobs during the fluid scaled time interval[t, t + h]:

〈1, µ̄r,m(t + h)〉 ≤ 〈1, µ̄r,m(t)〉 + Ēr,m(t + h) − Ēr,m(t).(3.4)

3.2. Diffusion limit for the workload process. We will take advantage of the
following well-known result.

PROPOSITION3.1. Assume (Q.1).Then as r → ∞, the sequence of diffusion
scaled workload processes {Ŵ r(·)} = {〈χ, µ̂r(·)〉} converges in distribution to
a process W ∗(·), which is a reflected Brownian motion on R+ with drift −λ,
variance αa2 +βb2 and initial value W ∗(0) that is equal in distribution to 〈χ,�〉.

PROOF. It is well known that assumptions (Q.1) are sufficient to imply
the above result for the workload process of any single server, single class
queue operating under a work conserving service discipline (including processor
sharing). The use of functional central limit theorems and continuous mappings to
prove such results goes back to [9]. For a detailed account, see, for example, [17],
which covers a much more general setting than that considered here.�

COROLLARY 3.2. Assume (Q.1)and let T > 1 and 0< η′ < 1 be given. Then:

(i) There exists M > 1 such that for any L > 1,

lim inf
r→∞ Pr

(
sup

m≤�rT �
‖〈χ, µ̄r,m(·)〉‖L ≤ M

)
≥ 1− η′.(3.5)
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(ii) For any L > 1 and any γ > 0,

lim inf
r→∞ Pr

(
sup

m≤�rT �, t∈[0,L]
∣∣〈χ, µ̄r,m(t)〉 − 〈χ, µ̄r,m(0)〉∣∣ ≤ γ

4

)
≥ 1− η′.(3.6)

PROOF. By expanding the definition of̄µr,m(·) and rewriting it in terms of
diffusion scaling, we see that it suffices to show that:

(i) There existsM > 1 such that for anyL > 1,

lim inf
r→∞ Pr

(
sup

t∈[0,T +(L/r)]
|Ŵ r(t)| ≤ M

)
≥ 1− η′.(3.7)

(ii) For anyL > 1 and anyγ > 0,

lim inf
r→∞ Pr

(
sup

t∈[0,T ], h∈[0,L/r]
|Ŵ r(t + h) − Ŵ r(t)| ≤ γ

4

)
≥ 1− η′,(3.8)

both of which follow easily from Proposition 3.1, using the tightness of{Ŵ r(·)}r∈R

and the fact that the limiting processW ∗(·) is a.s. continuous. Note thatM can in-
deed be chosen independent ofL. �

3.3. Stability of the queue length process. The following lemma is a simple
generalization of Lemma 5.3 in [6]. It will be used in two separate places to bound
the total mass of the fluid scaled state descriptor over certain time intervals.

LEMMA 3.3. Assume (Q.1) and let T > 1 be given. Suppose that for a given
r ∈ R, there is an event Ar and there are constants t0 ∈ [0, rT ] and t1, c, l > 0
such that on Ar ,

(i) supt∈[t0,t0+t1] Ē
r(t + l) − Ēr(t) ≤ c

4,
(ii) supt∈[t0,t0+t1]〈χ, µ̄r(t)〉 ≤ l

4,

(iii) 〈1, µ̄r(t0)〉 ≤ c
2.

Then on Ar ,

sup
t∈[t0,t0+t1]

〈1, µ̄r(t)〉 ≤ c.(3.9)

PROOF. Cover[t0, t0 + t1] with the time intervalsIk = [t0 + kl, t0 + (k + 1)l],
wherek ∈ {0, . . . , �t1/l�}. We prove by induction onk that onAr ,

sup
t∈Ik

〈1, µ̄r(t)〉 ≤ c.(3.10)
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We first verify the casek = 0. We have onAr , for t ∈ I0,

〈1, µ̄r(t)〉 ≤ 〈1, µ̄r(t0)〉 + Ēr(t) − Ēr(t0)

≤ 〈1, µ̄r(t0)〉 + Ēr(t0 + l) − Ēr(t0)(3.11)

≤ c

2
+ c

4
< c,

by (3.4) (withm = 0), as well as (i) and (iii) above. We now proceed by induction
and assume that (3.10) holds onAr for some 0≤ k < �t1/l�. To show that the
statement holds with(k+1) in place ofk, we argue analogously to (3.11). We must
first show that〈1, µ̄r(t0 + (k + 1)l)〉 ≤ c/2. To this end, we use an argument
inspired in part by an idea of Grishechkin ([5], page 542). The idea is to consider
two cases separately: the case where the queue length becomes zero during the
intervalIk , and the case where it does not. If〈1, µ̄r(s)〉 is never zero fors ∈ Ik , we
can write

S̄r
t0+kl,t0+(k+1)l =

∫ t0+(k+1)l

t0+kl
ϕ
(〈1, µ̄r(s)〉)ds

=
∫ t0+(k+1)l

t0+kl
〈1, µ̄r(s)〉−1ds ≥ l/c,

since we have assumed that (3.10) holds for thisk. By Markov’s inequality and (ii)
above, this implies that〈

1(S̄r
t0+kl,t0+(k+1)l ,∞), µ̄

r (t0 + kl)
〉
≤ 〈

1(l/c,∞), µ̄
r(t0 + kl)

〉
(3.12)

≤ c

l
〈χ, µ̄r(t0 + kl)〉 ≤ c

4
.

If, on the other hand,〈1, µ̄r(s)〉 = 0 for somes ∈ Ik , then all mass present in the
system at timet0+kl is gone by times. More precisely, we have in this case, using
m = 0, t = t0 + kl andh = s − (t0 + kl) in (3.3), that〈

1(S̄r
t0+kl,s ,∞), µ̄

r(t0 + kl)
〉
= 0.

SinceS̄r
t0+kl,s ≤ S̄r

t0+kl,t0+(k+1)l , we again obtain the estimate〈
1(S̄r

t0+kl,t0+(k+1)l ,∞), µ̄
r(t0 + kl)

〉
= 0 <

c

4
.(3.13)

Thus, we have onAr ,〈
1, µ̄r

(
t0 + (k + 1)l

)〉 ≤ 〈
1(S̄r

t0+kl,t0+(k+1)l ,∞), µ̄
r(t0 + kl)

〉
+ Ēr(t0 + (k + 1)l

)− Ēr(t0 + kl)(3.14)

≤ c

4
+ c

4
,
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where in the first inequality, we have used (3.3) and ignored any processing of jobs
in the second term there. The second inequality follows by (3.12), (3.13) and (i)
above.

Now we can complete the proof in a similar manner to that for (3.11). By (3.4),
(3.14) and (i) above, we have onAr for anyt ∈ Ik+1,

〈1, µ̄r(t)〉 ≤ 〈
1, µ̄r

(
t0 + (k + 1)l

)〉+ Ēr(t) − Ēr
(
t0 + (k + 1)l

)
≤ 〈

1, µ̄r(t0 + (k + 1)l
)〉+ Ēr(t0 + (k + 2)l

)− Ēr(t0 + (k + 1)l
)

≤ c

2
+ c

4
< c. �

3.4. Weak law estimate. The following lemma provides a generalized func-
tional weak law of large numbers estimate, which will be used in several ways
throughout the paper.

LEMMA 3.4. Assume (Q.1).Let T,L > 1, l > 0 and 0 < ε′, η′ < 1. Suppose
that g :R+ −→ R+ is a Borel measurable function such that 〈g, ν〉 < ∞,

〈g, νr〉 −→ 〈g, ν〉 as r → ∞,(3.15)

and such that for some p′ > 0, lim supr→∞〈g2+p′
, νr 〉 < ∞. Then

lim sup
r→∞

Pr

(
sup

m≤�rT �

∥∥∥∥∥1

r

rĒr,m(·+l)∑
i=rĒr,m(·)+1

g(vr
i ) − αl〈g, ν〉

∥∥∥∥∥
L

> ε′
)

≤ η′.(3.16)

PROOF. Define

cg =
{ 〈g, ν〉, 〈g, ν〉 > 0,

1, 〈g, ν〉 = 0.
(3.17)

Let εg = ε′(2αcg)
−1 ∧ (l/2) and let l1 = l − εg and l2 = l + εg . Note that

for any t ∈ [0,L], we always have[t, t + l] ⊃ [k1εg, k1εg + l1] for somek1 ∈
{0, . . . , �L/εg�}, and[t, t + l] ⊂ [k2εg, k2εg + l2] for somek2 ∈ {0, . . . , �L/εg�}.
For anyr ∈ R, m ≤ �rT �, andt ∈ [0,L], consider the event{∣∣∣∣∣1r

rĒr,m(t+l)∑
i=rĒr,m(t)+1

g(vr
i ) − αl〈g, ν〉

∣∣∣∣∣ > ε′
}
.(3.18)

This event must be contained in the event{
1

r

rĒr,m(t+l)∑
i=rĒr,m(t)+1

g(vr
i ) > αl〈g, ν〉 + ε′

}

(3.19)

∪
{

1

r

rĒr,m(t+l)∑
i=rĒr,m(t)+1

g(vr
i ) < αl〈g, ν〉 − ε′

}
.
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Thus, for somek1, k2 ∈ {0, . . . , �L/εg�}, the event in (3.18) is contained in

{
1

r

rĒr,m(k2εg+l2)∑
i=rĒr,m(k2εg)+1

g(vr
i ) > αl2〈g, ν〉 + ε′

2

}

(3.20)

∪
{

1

r

rĒr,m(k1εg+l1)∑
i=rĒr,m(k1εg)+1

g(vr
i ) < αl1〈g, ν〉 − ε′

2

}
,

where we have used the definitions ofεg , l1, l2 andcg . Therefore, to prove (3.16),
it suffices to show that forj ∈ {1,2},

lim sup
r→∞

Pr

(
sup

m≤�rT �, k≤�L/εg�

∣∣∣∣∣1r
rĒr,m(kεg+lj )∑

i=rĒr,m(kεg)+1

g(vr
i )

(3.21)

− αlj 〈g, ν〉
∣∣∣∣∣ > ε′

2

)
≤ η′

2
.

Furthermore, by summing overm ≤ �rT � and k ≤ �L/εg�, it suffices to show
for j ∈ {1,2} that for all sufficiently larger , all m ≤ �rT � and allk ≤ �L/εg�,

Pr

(∣∣∣∣∣1r
rĒr,m(kεg+lj )∑

i=rĒr,m(kεg)+1

g(vr
i ) − αlj 〈g, ν〉

∣∣∣∣∣ > ε′

2

)

(3.22)

≤ η′

2(�L/εg� + 1)(�rT � + 1)
.

To this end, we now fixj ∈ {1,2} andk ∈ {0, . . . , �L/εg�} for the remainder of
the proof. For better readability, we will suppress notation indicating dependence
on k andj for certain objects, when it is clear from the definition.

For eachr ∈ R andm ≤ �rT �, let

Ar,m =
{∣∣∣∣∣1r

rĒr,m(kεg+lj )∑
i=rĒr,m(kεg)+1

g(vr
i ) − αlj 〈g, ν〉

∣∣∣∣∣ > ε′

2

}
(3.23)

be the event appearing in (3.22). For notational convenience, we defineEr,m =
rĒr,m(kεg) and Nr,m = rĒr,m(kεg + lj ) − rĒr,m(kεg). Define c+ = 1 +
ε′(8αljcg)

−1 andc− = 1− ε′(16(αlj cg ∨ 1))−1, and let

A
r,m
E = {�c−rαlj� ≤ Nr,m ≤ �c+rαlj�}.

Let Ăr,m
E denotes the complement ofA

r,m
E . For eachr ∈ R andm ≤ �rT �,

Pr(Ar,m) ≤ Pr
(
Ă

r,m
E

)+ Pr(Ar,m ∩ A
r,m
E ).(3.24)
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We will show that each of the two terms in (3.24) is bounded above by
η′[4(�L/εg� + 1)(�rT � + 1)]−1 for all sufficiently larger .

For the first term in (3.24), note that on̆Ar,m
E , eitherEr(r(m + kεg + lj )) −

Er(r(m + kεg)) < �c−rαlj� orEr(r(m+kεg + lj ))−Er(r(m + kεg)) > �c+rαlj�
by definition. Inversion of the renewal processEr(·) implies that onĂr,m

E , either

Er,m+�c−rαlj �∑
i=Er,m+1

ur
i > r(m + kεg + lj ) − r(m + kεg) = rlj(3.25)

or

Er,m+�c+rαlj �∑
i=Er,m+2

ur
i ≤ r(m + kεg + lj ) − r(m + kεg) = rlj .(3.26)

Sinceαr −→ α, asr → ∞ [see (2.22)], and since by definition, 0< c− < 1< c+,
(3.25) and (3.26) imply that on̆Ar,m

E , for somec2 > 0 and all sufficiently larger ,
either

Er,m+�c−rαlj �∑
i=Er,m+1

(
ur

i − 1

αr

)
> rlj − �c−rαlj�

αr
> rc2(3.27)

or

Er,m+�c+rαlj�∑
i=Er,m+2

(
ur

i − 1

αr

)
≤ rlj − �c+rαlj� − 1

αr
≤ −rc2.(3.28)

Define the random variables

xr
i = ur

i 1{ur
i ≤r1/8} and yr

i = ur
i 1{ur

i >r1/8},(3.29)

and let

X
r,m
− =

Er,m+�c−rαlj �∑
i=Er,m+1

(xr
i − Er[xr

i ]),(3.30)

Y
r,m
− =

Er,m+�c−rαlj �∑
i=Er,m+1

(yr
i − Er[yr

i ]),(3.31)

X
r,m
+ =

Er,m+�c+rαlj �∑
i=Er,m+2

(xr
i − Er[xr

i ]),(3.32)

Y
r,m
+ =

Er,m+�c+rαlj �∑
i=Er,m+2

(yr
i − Er[yr

i ]).(3.33)
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Then using (3.27)–(3.33), we have

Pr
(
Ă

r,m
E

) ≤ Pr(|Xr,m
− + Y

r,m
− | ≥ rc2) + Pr(|Xr,m

+ + Y
r,m
+ | ≥ rc2)

≤ Pr(|Xr,m
− | ≥ rc2/2) + Pr (|Xr,m

+ | ≥ rc2/2)

+ Pr(|Y r,m
− | ≥ rc2/2) + Pr(|Y r,m

+ | ≥ rc2/2)

≤ (rc2/2)−4(Er[(Xr,m
− )4] + Er [(Xr,m

+ )4])
+ (rc2/2)−2(Er[(Y r,m

− )2] + Er[(Y r,m
+ )2])

≤ (rc2/2)−4(�c−rαlj�2 + (�c+rαlj� − 1)2)(r1/8)4

+ (rc2/2)−2(�c−rαlj� + (�c+rαlj� − 1)
)
Er [(yr

2)
2](3.34)

≤ r−3/2(c2/2)−42(c+αlj )
2

+ r−1(c2/2)−22c+αlj Er[(ur
2)

2;ur
2 > r1/8]

≤ 1

�rT � + 1

(�rT � + 1

r

(
r−1/22(c+αlj )

2

(c2/2)4

+ 2c+αlj

(c2/2)2
r−θ/8Er [(ur

2)
2+θ ]

))
.

The fourth inequality above follows from independence of the members of the
sequence{xr

i } (resp.{yr
i }). The fifth inequality follows sincec− ≤ c+, and the last

uses Markov’s inequality in the final term. Lettingr → ∞ in (3.34), we see that the
quantity in the outer parentheses on the last line tends to zero uniformly inm [see
(2.24)], and is thus smaller thanη′[4(�L/εg� + 1)]−1 for all sufficiently larger .
SoPr (Ă

r,m
E ) is bounded as desired for all sufficiently larger and allm ≤ �rT �.

We handle the second term in (3.24) in a similar fashion. WriteAr,m = A
r,m
− ∪

A
r,m
+ , where

A
r,m
− =

{
Er,m+Nr,m∑
i=Er,m+1

g(vr
i ) − rαlj 〈g, ν〉 < −rε′

2

}
(3.35)

and

A
r,m
+ =

{
Er,m+Nr,m∑
i=Er,m+1

g(vr
i ) − rαlj 〈g, ν〉 >

rε′

2

}
.(3.36)

Define the random variables

gr
i = g(vr

i )1{g(vr
i )≤r1/8} and hr

i = g(vr
i )1{g(vr

i )>r1/8}(3.37)

and let

G
r,m
− =

Er,m+�c−rαlj �∑
i=Er,m+1

(gr
i − Er [gr

i ]),(3.38)
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H
r,m
− =

Er,m+�c−rαlj �∑
i=Er,m+1

(hr
i − Er [hr

i ]),(3.39)

G
r,m
+ =

Er,m+�c+rαlj �∑
i=Er,m+1

(gr
i − Er [gr

i ]),(3.40)

H
r,m
+ =

Er,m+�c+rαlj �∑
i=Er,m+1

(hr
i − Er [hr

i ]).(3.41)

Let c3 = ε′(8c+αlj )
−1 and note that by assumption,

|〈g, νr〉 − 〈g, ν〉| ≤ c3,(3.42)

for all sufficiently larger . So for all sufficiently larger , and allm ≤ �rT �,

Pr (Ar,m ∩ A
r,m
E )

= Pr (A
r,m
− ∩ A

r,m
E ) + Pr(A

r,m
+ ∩ A

r,m
E )

≤ Pr(Gr,m
− + H

r,m
− + �c−rαlj�〈g, νr〉 − rαlj 〈g, ν〉 < −rε′/2

)
+ Pr

(
G

r,m
+ + H

r,m
+ + �c+rαlj�〈g, νr〉 − rαlj 〈g, ν〉 > rε′/2

)
≤ Pr

(|Gr,m
− + H

r,m
− | + ∣∣�c−rαlj�(〈g, νr〉 − 〈g, ν〉)

+ 〈g, ν〉(�c−rαlj� − rαlj )
∣∣ > rε′/2

)
+ Pr(|Gr,m

+ + H
r,m
+ | + ∣∣�c+rαlj�(〈g, νr〉 − 〈g, ν〉)

+ 〈g, ν〉(�c+rαlj� − rαlj )
∣∣ > rε′/2

)
≤ Pr

(∣∣Gr,m
− + H

r,m
− | + c+rαlj c3 + 〈g, ν〉(|c− − 1|rαlj + 1) > rε′/2

)
+ Pr(|Gr,m

+ + H
r,m
+ | + c+rαlj c3 + 〈g, ν〉|c+ − 1|rαlj > rε′/2

)
(3.43)

≤ Pr(|Gr,m
− + H

r,m
− | > rε′/4) + Pr(|Gr,m

+ + H
r,m
+ | > rε′/4)

≤ Pr(|Gr,m
− | > rε′/8) + Pr(|Gr,m

+ | > rε′/8)

+ Pr(|Hr,m
− | > rε′/8) + Pr (|Hr,m

+ | > rε′/8)

≤ (rε′/8)−4(Er [(Gr,m
− )4] + Er [(Gr,m

+ )4])
+ (rε′/8)−2(Er[(H r,m

− )2] + Er[(H r,m
+ )2])

≤ (rε′/8)−4(�c−rαlj�2 + �c+rαlj�2)(r1/8)4

+ (rε′/8)−2(�c−rαlj� + �c+rαlj�)Er[(hr
1)

2]

≤ 1

�rT � + 1

(�rT � + 1

r

(
r−1/22(c+αlj )

2

(ε′/8)4 + 2c+αlj Er [(hr
1)

2]
(ε′/8)2

))
.



DIFFUSION APPROXIMATION FOR A PROCESSOR SHARING QUEUE 577

In the first inequality above, we have used (3.38)–(3.41), as well as the fact
that �c−rαlj� ≤ Nr,m ≤ �c+rαlj� on A

r,m
E . The third inequality uses (3.42) and

the fact thatc− < 1 < c+. The fourth inequality follows from the definitions of
c3, c−, c+ andcg , where for the first term it is necessary thatr > 16cg/ε

′. The
seventh inequality follows from independence of the elements of the sequence
{gr

i } (resp.{hr
i }). Using the definition ofhr

1 and Markov’s inequality,

Er[(hr
1)

2] = Er [g(vr
1)

2;g(vr
1) > r1/8]

(3.44) ≤ r−p′/8〈g2+p′
, νr

〉
,

which tends to zero asr → ∞ by assumption. Thus, lettingr → ∞ in (3.43), we
see that the quantity in the outer parentheses on the last line tends to zero uniformly
in m and is thus smaller thanη′[4(�L/εg� + 1)]−1 for all sufficiently larger . �

3.5. Moment estimates. We will need the following simple lemma.

LEMMA 3.5. Suppose ξk, ξ ∈ MF such that ξk
w−→ ξ , as k → ∞. Suppose

further that for some q ′ > 0 and 1 < M < ∞,

lim sup
k→∞

(〈1, ξk〉 ∨ 〈
χ1+q ′

, ξk

〉) ≤ M.(3.45)

Then for any q ∈ [0, q ′), there exists an Mq ∈ [M,∞) such that 〈χ1+q, ξ 〉 ≤ Mq

and

〈χ1+q, ξk〉 −→ 〈χ1+q, ξ 〉, k → ∞.(3.46)

Furthermore, Mq depends only on M , q ′ and q.

PROOF. Sinceξk
w−→ ξ , ask → ∞, (3.45) implies that for anyx ∈ R+,〈

1(x,∞), ξ
〉 ≤ 〈1, ξ 〉 = lim

k→∞〈1, ξk〉 ≤ M.(3.47)

For anyx ≥ 1, (3.45) and Markov’s inequality yield

lim sup
k→∞

〈
1(x,∞), ξk

〉 ≤ lim sup
k→∞

x−(1+q ′)〈χ1+q ′
, ξk

〉
(3.48) ≤ x−(1+q ′)M.

So by the Portmanteau theorem ([1], Theorem 2.1), for anyx ≥ 1,〈
1(x,∞), ξ

〉 ≤ lim sup
k→∞

〈
1(x,∞), ξk

〉 ≤ x−(1+q ′)M.(3.49)

Sinceχ1+q(0) = 0, we can use integration by parts together with (3.47) and (3.49)
to obtain

〈χ1+q, ξ 〉 =
∫ ∞

0
(1+ q)xq

〈
1(x,∞), ξ

〉
dx

(3.50)
≤ (1+ q)M

(
1+

∫ ∞
1

x−(1+q ′−q) dx

)
< ∞.
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We can take

Mq = (1+ q)M

(
1+

∫ ∞
1

x−(1+q ′−q) dx

)
(3.51)

< ∞,

which depends only onM , q ′ andq. To show (3.46), first chooseq1 ∈ (q, q ′) and
Mq1 ∈ [M,∞) such that

〈χ1+q1, ξ 〉 ≤ Mq1.(3.52)

For anyy ≥ 1 that is not an atom ofξ ,

|〈χ1+q, ξk〉 − 〈χ1+q, ξ 〉|
≤ ∣∣〈χ1+q1[0,y], ξk

〉− 〈
χ1+q1[0,y], ξ

〉∣∣
+ ∣∣〈χ1+q1(y,∞), ξk

〉− 〈
χ1+q1(y,∞), ξ

〉∣∣
(3.53)

≤ ∣∣〈χ1+q1[0,y], ξk

〉− 〈
χ1+q1[0,y], ξ

〉∣∣
+ ∣∣y−(q1−q)

〈
χ1+q11[1,∞), ξk

〉∣∣
+ ∣∣y−(q1−q)

〈
χ1+q11[1,∞), ξ

〉∣∣.
Sincey is not an atom ofξ , we see that the term on the fourth line of (3.53) tends
to zero ask → ∞. So sinceq1 < q ′ andM ≤ Mq1, (3.45), (3.52) and (3.53) imply

lim sup
k→∞

|〈χ1+q, ξk〉 − 〈χ1+q, ξ 〉| ≤ 2y−(q1−q)Mq1.(3.54)

Sinceξ can have at most countably many atoms,y can be chosen arbitrarily large.
�

The next lemma provides an upper bound for three of the moments of the
fluid scaled state descriptors{µ̄r,m(·)}. This estimate will be fundamental to many
subsequent proofs.

LEMMA 3.6. Assume (Q.1)and let T > 1 and 0 < η < 1 be given. Then there
exists p > 0 and MT > 1 such that for any L > 1,

lim inf
r→∞ Pr (�r

1) ≥ 1− η

6
,(3.55)

where

�r
1 =

{
sup

m≤�rT �
∥∥〈1, µ̄r,m(·)〉 ∨ 〈χ, µ̄r,m(·)〉 ∨ 〈χ1+p, µ̄r,m(·)〉∥∥L ≤ MT

}
.
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PROOF. Choosep > 0 such that 6p + 2p2 < θ . By (2.31)–(2.35) and
Corollary 3.2, usingη′ = η/36 there, there existsM0 > 1 such that for anyL > 1,

lim inf
r→∞ Pr (Ar

1) ≥ 1− η

12
,(3.56)

where

Ar
1 =

{
〈1, µ̄r(0)〉 ∨ sup

m≤�rT �
‖〈χ, µ̄r,m(·)〉‖L ∨ 〈χ1+p, µ̄r (0)〉 ≤ M0

}
.

Define

M1 = 32(α ∨ 1)M0,(3.57)

MT = M1 ∨ (
M0 + M

1+p
1 (1+ p−1)2α〈χ2+2p, ν〉 + 4α〈χ1+p, ν〉).(3.58)

Let L > 1 be fixed and letAr
2 be the event on which

sup
m≤�rT �

∥∥Ēr,m(· + 4M0) − Ēr,m(·)∥∥L ≤ 8αM0,(3.59)

sup
m≤�rT +L�

1

r

rĒr,m(1)∑
i=rĒr,m(0)+1

χ1+p(vr
i ) ≤ 2α〈χ1+p, ν〉,(3.60)

sup
m≤�rT +L�

1

r

rĒr,m(1)∑
i=rĒr,m(0)+1

χ2+2p(vr
i ) ≤ 2α〈χ2+2p, ν〉.(3.61)

DefineAr = Ar
1 ∩ Ar

2. We will apply Lemma 3.4 three times in order to obtain
a lower bound on the probability ofAr

2, and henceAr . By choice ofp, (2.27)
and Lemma 3.5 [withq ′ ∈ (p, θ) or q ′ ∈ (1 + 2p,3 + θ) there] imply that the
assumptions of Lemma 3.4 are satisfied for each of the three choicesg ≡ 1,
g ≡ χ1+p andg ≡ χ2+2p. Note that Lemma 3.4 still holds if, in (3.16), we replace
the supremum overm ≤ �rT � by the supremum overm ≤ �rT + L� (see proof
of Lemma 3.4). Thus, by applying Lemma 3.4 three times [resp., for(l, ε′, η′, g)

equal to(4M0,4αM0 ∧ (1/2), η/36,1), (1, α〈χ1+p, ν〉 ∧ (1/2), η/36, χ1+p) and
(1, α〈χ2+2p, ν〉 ∧ (1/2), η/36, χ2+2p)] and combining with (3.56) one obtains

lim inf
r→∞ Pr(Ar) ≥ 1− η

6
.(3.62)

Thus, by (3.56) and (3.62) it suffices to show that onAr , for all m ≤ �rT �,

‖〈1, µ̄r,m(·)〉 ∨ 〈χ1+p, µ̄r,m(·)〉‖L ≤ MT .(3.63)

Note that by (3.57) and (3.59),‖Ēr (·+4M0)−Ēr (·)‖�rT �+L ≤ M1/4 onAr . So
for c = M1, l = 4M0, t0 = 0 andt1 = �rT � + L, conditions (i)–(iii) of Lemma 3.3
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are satisfied onAr , which implies that onAr ,

sup
m≤�rT �

‖〈1, µ̄r,m(·)〉‖L = ‖〈1, µ̄r(·)〉‖�rT �+L

(3.64) ≤ M1 ≤ MT .

It remains to consider the(1 + p)th moment. First, consider any jobi ≥ 1
such thatUr

i r−1 ≤ t1 < t2 for some timest1, t2 ∈ [0, �rT � + L]. If µ̄r (t∗) = 0
for somet∗ ∈ [t1, t2], then

χ1+p
(
vr
i − S̄r

Ur
i r−1,t2

)
≤ χ1+p(vr

i − S̄r
Ur

i r−1,t∗
)

(3.65)

= 0 ≤ χ1+p

(
vr
i − t2 − t1

M1

)
,

where the equality above follows from (3.2), by settingg ≡ χ1+p, m = 0,
t = Ur

i r−1 andh = t∗ − Ur
i r−1 there. Ifµ̄r (s) �= 0 for all s ∈ [t1, t2], then onAr ,

S̄r
t1,t2

≥ (t2 − t1) inf
s∈[t1,t2]

ϕ
(〈1, µ̄r(s)〉)

≥ (t2 − t1)

(
sup

s∈[t1,t2]
〈1, µ̄r(s)〉

)−1

(3.66)

≥ (t2 − t1)M
−1
1 ,

where the last inequality is by (3.64). So in this case, onAr , we also have

χ1+p
(
vr
i − S̄r

Ur
i r−1,t2

)
≤ χ1+p

(
vr
i − S̄r

t1,t2

)
(3.67)

≤ χ1+p

(
vr
i − t2 − t1

M1

)
.

Combining (3.65) and (3.67) yields that onAr ,

χ1+p
(
vr
i − S̄r

Ur
i r−1,t2

)

≤ χ1+p

(
vr
i − t2 − t1

M1

)

≤ 1[(t2−t1)M
−1
1 ,∞)

(vr
i )χ

1+p(vr
i )(3.68)

≤ (
1[(t2−t1)M

−1
1 ,∞)

χ−(1+p)
)
(vr

i )χ
2+2p(vr

i )

≤
(

M1

t2 − t1

)(1+p)

χ2+2p(vr
i ).
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To complete the proof, we must show that〈χ1+p, µ̄r,m′
(s)〉 ≤ MT on Ar , for any

m′ ≤ �rT � and s ∈ [0,L]. Note that sinceL > 1, s > 1 implies thatµ̄r,0(s) =
µ̄r,1(s0) for somes0 ∈ [0,L − 1], andµ̄r,1(s) = µ̄r,2(s1) for somes1 ∈ [0,L − 1].
Thus, it suffices to consider the casem′ ∈ {0,1} and s ≤ 1 and the case
m′ ∈ {2, . . . , �rT �} ands ∈ [0,L]. If m′ ∈ {0,1} ands ≤ 1, we have onAr ,〈

χ1+p, µ̄r,m′
(s)

〉
= 〈χ1+p, µ̄r(m′ + s)〉
= 〈

χ1+p
(· − S̄r (m′ + s)

)
, µ̄r(0)

〉

+ 1

r

rĒr (m′+s)∑
i=1

χ1+p
(
vr
i − S̄r

Ur
i r−1,m′+s

)
(3.69)

≤ 〈χ1+p, µ̄r(0)〉 + 1

r

rĒr (m′+s)∑
i=1

χ1+p(vr
i )

≤ M0 +
m′∑

m=0

(
1

r

rĒr,m(1)∑
i=rĒr,m(0)+1

χ1+p(vr
i )

)

≤ M0 + 4α〈χ1+p, ν〉
≤ MT ,

where the second equality above uses (3.2), withg ≡ χ1+p, m = 0, t = 0 and
h = m′ + s there, the first inequality follows by simply ignoring any processing
which has taken place by timem′ + s, the second inequality follows from the
definition of Ar for the first term and by including additional summands in the
second term, and the third inequality is by (3.60) and the fact thatm′ ≤ 1.

Last, we consider the casem′ ∈ {2, . . . , �rT �} ands ∈ [0,L]. Let N = �m′ +
s� − 2 and note thatN ∈ {0, . . . , �rT + L� − 2}. Note also that by replacingm by
�m′ + s� − m − 1, the following estimate holds:

N∑
m=0

(
M1

�m′ + s� − m − 1

)1+p

=
N+1∑
m=1

(
M1

m

)1+p

(3.70)

≤ M
1+p
1

(
1+

∫ ∞
1

x−(1+p) dx

)

= M
1+p
1 (1+ p−1).
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Form′ ∈ {2, . . . , �rT �} ands ∈ [0,L] we have onAr ,〈
χ1+p, µ̄r,m′

(s)
〉

≤ M0 + 1

r

rĒr (m′+s)∑
i=1

χ1+p(vr
i − S̄r

Ur
i r−1,m′+s

)

≤ M0 +
N∑

m=0

(
1

r

rĒr,m(1)∑
i=rĒr,m(0)+1

χ1+p(vr
i − S̄r

Ur
i r−1,m′+s

))

+ 1

r

rĒr (m′+s)∑
i=rĒr (N+1)+1

χ1+p(vr
i )(3.71)

≤ M0 +
N∑

m=0

((
M1

�m′ + s� − m − 1

)(1+p) 1

r

rĒr,m(1)∑
i=rĒr,m(0)+1

χ2+2p(vr
i )

)

+
N+2∑

m=N+1

(
1

r

rĒr,m(1)∑
i=rĒr,m(0)+1

χ1+p(vr
i )

)

≤ M0 + M
1+p
1 (1+ p−1)2α〈χ2+2p, ν〉 + 4α〈χ1+p, ν〉

≤ MT ,

where the first inequality is obtained as in (3.69), the second follows by ignoring
any processing of jobs in the third term; the third inequality is by (3.68) (with
t1 = m + 1 and t2 = m′ + s) for the second term and by including additional
summands in the third term; the fourth inequality is by (3.60), (3.61) and (3.70)
and the last is by (3.58).�

3.6. Combining estimates. To aid the reader, we now provide a lemma that
combines several of the preliminary results obtained in Sections 3.2–3.5, such that
they hold simultaneously, with respect to specific choices of various constants.
It is analogous to Lemma 5.2 in [6], in that subsequent references to results
obtained thus far will predominantly reference this lemma. We will need one more
definition.

DEFINITION 3.7. LetC = {g ∈ C1
b(R+) :g(0) = g′(0) = 0}, and letC̃ = {g ∈

C :g has compact support}. Let V = {gV
k }k∈N ⊂ C̃ be a countable subset such that

for any g ∈ C̃, there is a sequence{gk}∞k=1 ⊂ V that together with{g′
k}∞k=1 is

uniformly bounded and satisfies

gk −→ g and g′
k −→ g′, k → ∞,(3.72)

pointwise onR+.
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An example of how such a setV ⊂ C̃ can be chosen is given in the proof of
property (iii) for Theorem5.1 in [6]. Recall thatMν is defined in Definition 2.1
and the metricd[·, ·] is defined in (1.4).

LEMMA 3.8. Assume (Q.1) and let T,L > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Then for each n ∈ N,
there exist strictly positive constants ln, p, MT , κn, γn, Nn, rn and events {Br

n}r∈R,
such that:

(i) Pr (Br
n) ≥ 1− η, for all r > rn,

(ii) rn+1 > rn and Br
n+1 ⊂ Br

n, and
(iii) for each r ∈ R and each m ≤ �rT �, on Br

n the following hold:

ln <
εn

32α
,(3.73)

sup
t∈[0,L]

Ēr,m(t + ln) − Ēr,m(t) ≤ εn

16
,(3.74)

sup
k≤n

j=1,...,�L/ln�

∣∣∣∣∣1r
rĒr,m(j ln)∑

i=rĒr,m(0)+1

gV
k (vr

i ) − αjln〈gV
k , ν〉

∣∣∣∣∣ ≤ εn,(3.75)

for gV
k ∈ V,

sup
t∈[0,L]

〈1, µ̄r,m(t)〉 ∨ 〈χ, µ̄r,m(t)〉 ∨ 〈χ1+p, µ̄r,m(t)〉 ≤ MT ,(3.76)

inf
ξ∈Mν

d[µ̄r (0), ξ ] ∨ ∣∣〈χ, µ̄r(0)〉 − 〈χ, ξ 〉∣∣ < εn,(3.77)

κn <
ln

2MT

,(3.78)

sup
x∈R+

〈
1[x,x+κn], µ̄r (0)

〉 ≤ εn

4
,(3.79)

γn <
κnεn

4
∧ ln

4
,(3.80)

sup
t∈[0,L]

∣∣〈χ, µ̄r,m(t)〉 − 〈χ, µ̄r,m(0)〉∣∣ ≤ γn

4
,(3.81)

Nn = �64M2
T /(κnε

2
n)� + 1,(3.82)

sup
t∈[0,L]

1

r

rĒr,m(t+ln)∑
i=rĒr,m(t)+1

1[kκn,(k+1)κn)(v
r
i )

(3.83)
≤ εn

8

〈
1[(k−1/2)κn,(k+3/2)κn), ν

〉
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for all k ∈ {0,1, . . . ,Nn}.

PROOF. Let η̃ = η/6. For eachn ∈ N, choose 0< ln < εn/(32α) such that
ln+1 < ln and let B̃r,m

n,1 be the event on which both (3.74) and (3.75) hold. Let

B̃r
n,1 = ⋂

m≤�rT � B̃
r,m
n,1 and letBr

n,1 = ⋂
ṅ≤n B̃r

ṅ,1. The first goal is to show that for
eachn ∈ N,

lim inf
r→∞ Pr(Br

n,1) ≥ 1− η̃.

Fix n ∈ N and consider anẏn ≤ n. Since (3.74) (withn = ṅ) holds onB̃r
ṅ,1 for

eachm ≤ �rT �, and since (3.75) (withn = ṅ) holds onB̃r
ṅ,1 for eachm ≤ �rT �,

we must apply Lemma 3.4 1+ ṅ�L/lṅ� times in order to estimate the asymptotic
probability of B̃r

ṅ,1. More precisely, we must apply it once to guarantee (3.74)
and also once for each casek ≤ ṅ and j ≤ �L/lṅ� in (3.75). Observe that
by (2.25), the assumptions of Lemma 3.4 are satisfied withl = lṅ, ε′ = εṅ/16,
η′ = η̃(n(1+ n�L/ln�))−1, p′ > 0 arbitrary andg ≡ 1. Also observe that for each
k = 1, . . . , ṅ andj = 1, . . . , �L/lṅ�, the assumptions of Lemma 3.4 are satisfied
with l = j lṅ, ε′ = εṅ, η′ = η̃(n(1 + n�L/ln�))−1, p′ > 0 arbitrary andg ≡ gV

k .
Thus, 1+ ṅ�L/lṅ� applications of Lemma 3.4 yield

lim inf
r→∞ Pr (B̃r

ṅ,1
) ≥ 1− (1+ ṅ�L/lṅ�) η̃

n(1+ n�L/ln�) ≥ 1− η̃

n
.(3.84)

This implies that for eachn ∈ N,

lim inf
r→∞ Pr (Br

n,1) ≥ 1−
n∑

ṅ=1

η̃

n
= 1− η̃.(3.85)

Note that by definition,Br
n+1,1 ⊂ Br

n,1 for n ∈ N.
Next, letp andMT be the constants given by Lemma 3.6 and letB

r,m
2 be the

event appearing in (3.76). LetBr
2 = ⋂

m≤�rT � B
r,m
2 . Then by Lemma 3.6,

lim inf
r→∞ Pr (Br

2) ≥ 1− η̃.(3.86)

For eachn ∈ N, let Br
n,3 be the event appearing in (3.77). Recall that “∼ ” de-

notes equivalence in distribution. By (2.35) and the Skorohod representation the-
orem, there exist random pairs(�r,Xr), (�̃, X̃), taking values inMF × R+
and defined on some common probability space(�,F ,P), such that(�̃, X̃) ∼
(�, 〈χ,�〉) and (�r,Xr) ∼ (µ̄r(0), 〈χ, µ̄r(0)〉) for eachr ∈ R and such that
asr → ∞,

(�r,Xr) −→ (�̃, X̃) a.s.(3.87)
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So by (2.30) and (3.87),

lim inf
r→∞ Pr(Br

n,3)

= lim inf
r→∞ P

(
inf

ξ∈Mν

d[�r, ξ ] ∨ |Xr − 〈χ, ξ 〉| < εn

)
(3.88)

≥ 1− η̃.

Since{εn} is a decreasing sequence,Br
n+1,3 ⊂ Br

n,3 for n ∈ N.
Next, for eachn ∈ N, we use (2.34) (withε = εn/4) and (2.31) to chooseκn > 0

andMn > 0 so that (3.78) holds,κn+1 < κn for n ∈ N and

P
(

sup
x∈R+

〈
1[x,x+2κn],�

〉∨ 〈
1[Mn,∞),�

〉
<

εn

4

)
≥ 1− η̃

4n2
.(3.89)

For k ∈ {0, . . . , �Mn/κn� − 1}, defineIk = [kκn, (k + 2)κn] and letI�Mn/κn� =
[Mn,∞). Note that for anyx ∈ R+, [x, x + κn] ⊂ Ik for some k ∈ {0, . . . ,

�Mn/κn�}. Consider the random measures�r, �̃ defined above such that (3.87)
holds. Since for eachn ∈ N, {Ik} is a finite set of closed intervals, a trivial
generalization of the Portmanteau theorem ([1], Theorem 2.1) to finite measures
yields for eachn ∈ N,

lim sup
r→∞

max
k≤�Mn/κn�

〈
1Ik

,�r 〉 ≤ max
k≤�Mn/κn�

〈
1Ik

, �̃
〉

a.s.(3.90)

Since�̃ ∼ �, (3.89) and (3.90) imply that for eachn ∈ N,

lim inf
r→∞ P

(
sup

x∈R+

〈
1[x,x+κn],�r 〉 ≤ εn

4

)

≥ lim inf
r→∞ P

(
max

k≤�Mn/κn�
〈
1Ik

,�r
〉 ≤ εn

4

)
(3.91)

≥ 1− η̃

2n2
.

Let B̃r
n,4 be the event appearing in (3.79). We have by (3.91),

lim inf
r→∞ Pr

(
B̃r

n,4
)

= lim inf
r→∞ P

(
sup

x∈R+

〈
1[x,x+κn],�r

〉 ≤ εn

4

)
(3.92)

≥ 1− η̃

2n2 .

LettingBr
n,4 = ⋂

i≤n B̃r
i,4, we see that for eachn ∈ N,

lim inf
r→∞ Pr (Br

n,4) ≥ 1−
n∑

i=1

η̃

2i2
≥ 1− η̃.(3.93)
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By definition,Br
n+1,4 ⊂ Br

n,4 for n ∈ N.
For eachn ∈ N, chooseγn > 0 such that (3.80) holds and such thatγn+1 < γn

for n ∈ N. LetBr,m
n,5 be the event appearing in (3.81) and letBr

n,5 = ⋂
m≤�rT � B

r,m
n,5 .

Then by Corollary 3.2, usingη′ = η̃ andγ = γn, we have for eachn ∈ N,

lim inf
r→∞ Pr(Br

n,5) ≥ 1− η̃.(3.94)

Since{γn} is a decreasing sequence,Br
n+1,5 ⊂ Br

n,5 for n ∈ N.
Finally, defineNn as in (3.82) for eachn ∈ N, and for k ∈ {0, . . . ,Nn},

choosegn
k ∈ Cb(R+) such thatgn

k is nonnegative and such that for allx ∈ R+,
1[kκn,(k+1)κn)(x) ≤ gn

k (x) ≤ 1[(k−1/2)κn,(k+3/2)κn)(x). Note that for k = 0 and
x ∈ R+, 1[(k−1/2)κn,(k+3/2)κn)(x) = 1[0,3/2κn)(x). Let B̃r,m,k

n,6 be the event in (3.83)

and letB̃r
n,6 = ⋂

k≤Nn

⋂
m≤�rT � B̃

r,m,k
n,6 . Define

Gr
n,6 =

Nn⋂
k=0

{
sup

m≤�rT �
sup

t∈[0,L]
1

r

rĒr,m(t+ln)∑
i=rĒr,m(t)+1

gn
k (vr

i ) ≤ εn

8
〈gn

k , ν〉
}
.(3.95)

Fix n ∈ N and considerṅ ≤ n. Observe that by (2.25), we have that for
eachk ∈ {0, . . . ,Nṅ}, the assumptions of Lemma 3.4 are satisfied withl = lṅ,
ε′ = (εṅ/16)〈gṅ

k , ν〉, η′ = η̃(n(Nn + 1))−1, p′ > 0 arbitrary, andg ≡ gṅ
k . Thus

Nṅ + 1 applications of Lemma 3.4 yield

lim inf
r→∞ Pr (Gr

ṅ,6) ≥ 1− η̃(Nṅ + 1)

n(Nn + 1)
≥ 1− η̃

n
,(3.96)

where we have used the fact thatlṅ < εṅ/(32α), and the second inequality follows
from (3.82) since{κn} and{εn} are decreasing sequences. SinceGr

ṅ,6 ⊂ B̃r
ṅ,6 for

eachṅ ≤ n, we have

lim inf
r→∞ Pr

(
B̃r

ṅ,6
) ≥ 1− η̃

n
.(3.97)

Letting Br
n,6 = ⋂

ṅ≤n B̃r
ṅ,6, we see thatBr

n+1,6 ⊂ Br
n,6 for n ∈ N, and

lim inf
r→∞ Pr (Br

n,6) ≥ 1−
n∑

ṅ=1

η̃

n
= 1− η̃.(3.98)

For eachr ∈ R, defineBr
n = Br

n,1 ∩ Br
2 ∩ Br

n,3 ∩ Br
n,4 ∩ Br

n,5 ∩ Br
n,6 and note

that by construction,Br
n+1 ⊂ Br

n for n ∈ N. Then by choice of̃η, we see that for
eachn ∈ N, there existsrn ∈ R such thatrn+1 > rn andr > rn implies

Pr(Br
n) ≥ 1− η.(3.99) �
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3.7. Fluid scale analysis. In this section we build on the results of Sec-
tions 3.1–3.6 to prove several important properties of the fluid scaled state descrip-
tors {µ̄r,m(·)}. These properties will be used at the end of the section to prove the
desired relative compactness property (see Corollary 3.16). Lemmas 3.9 and 3.10
give an upper bound for the amount of mass thatµ̄r,m(t) can have concentrated
near zero. They are analogous to Lemma 5.5 in [6]. In Lemmas 3.11 and 3.12 we
give an upper bound for the shifted fluid scaled queue length〈1, µ̄r,m(·)〉 when
the shifted fluid scaled initial workload〈χ, µ̄r,m(0)〉 is small, and a lower bound
for 〈1, µ̄r,m(·)〉 when〈χ, µ̄r,m(0)〉 is bounded away from zero. These two lemmas
are analogous to Lemmas 5.3 and 5.4 in [6]. We then combine the four aforemen-
tioned lemmas to prove Theorem 3.14 which provides an oscillation bound for
the sample paths of the processes{µ̄r,m(·)}, and yields Corollary 3.16 as a conse-
quence. We begin with the following technical lemma.

LEMMA 3.9. Assume (Q.1) and let T,L > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Let ln, p, MT , κn, γn,
Nn, rn be the constants, and {Br

n} be the events, given by Lemma 3.8.Fix n ∈ N,
r ∈ R, m ≤ �rT �, and t ∈ [m,m + L]. Define the following random times:

τεn = sup
{
s ∈ [0, t] : 〈1, µ̄r(s)〉 <

εn

8

}
,

τ = max
{
0, τεn, t − 8M2

T

εn

}
,

where we define τεn = −∞ for the supremum of the empty set. Then on Br
n,

〈
1(0,κn]

(· − S̄r
τ,t

)
, µ̄r (τ )

〉 ≤ εn

4
.(3.100)

PROOF. We only consider realizations inBr
n in the following. We treat each

possibility forτ separately, and suppose first thatτ = 0. Then by (3.79) we have
〈
1(0,κn]

(· − S̄r
τ,t

)
, µ̄r(τ )

〉 ≤ sup
x∈R+

〈
1[x,x+κn], µ̄r(0)

〉 ≤ εn

4
.(3.101)

Next supposeτ = τεn > 0. Then there exists aτ ′ ∈ [(τεn − ln) ∨ 0, τεn] such that
〈1, µ̄r(τ ′)〉 ≤ εn/8. This implies by (3.4) (withm = 0) and (3.74) that〈

1(0,κn]
(· − S̄r

τ,t

)
, µ̄r(τ )

〉 ≤ 〈1, µ̄r(τ )〉
≤ 〈1, µ̄r(τ ′)〉 + Ēr(τ ) − Ēr(τ ′)

(3.102)
≤ εn

8
+ Ēr(τ ′ + ln) − Ēr(τ ′)

≤ εn

8
+ εn

16
<

εn

4
.
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Lastly, supposeτ = t − (8M2
T /εn). Let τ ′′ = t − (4M2

T /εn). Then sinceτ ′′ > τεn ,
we have fors ∈ [τ ′′, t] that〈1, µ̄r(s)〉 ≥ εn/8. This implies by (3.76) that

S̄r
τ,t ≥ S̄r

τ ′′,t =
∫ t

τ ′′
〈1, µ̄r(s)〉−1ds ≥ t − τ ′′

MT

≥ 4MT

εn

.(3.103)

So by (3.103), Markov’sinequality and (3.76),〈
1(0,κn]

(· − S̄r
τ,t

)
, µ̄r(τ )

〉 ≤ 〈
1[0,∞)(· − S̄r

τ,t ), µ̄
r(τ )

〉
≤ 〈

1[4MT /εn,∞), µ̄
r(τ )

〉
(3.104)

≤ εn

4MT

〈χ, µ̄r(τ )〉

≤ εn

4
. �

The next lemma gives, onBr
n, an upper bound for the amount of mass that

µ̄r,m(t) can have concentrated near zero fort ∈ [0,L].

LEMMA 3.10. Assume (Q.1) and let T,L > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Let ln, p, MT , κn,
γn, Nn, rn be the constants, and {Br

n} be the events, given by Lemma 3.8.Then for
each n ∈ N, r ∈ R and each m ≤ �rT �, on Br

n,

sup
t∈[0,L]

〈
1[0,κn], µ̄r,m(t)

〉 ≤ εn

2
.(3.105)

PROOF. In this proof we only consider realizations inBr
n. Fix n ∈ N, r ∈ R,

m ≤ �rT � and t ∈ [m,m + L], and letτ be defined as in Lemma 3.9. We must
show that 〈

1[0,κn], µ̄r (t)
〉 ≤ εn

2
.(3.106)

If τ = t , then the result follows from Lemma 3.9, sinceµ̄r,m(t) does not charge{0},
andS̄r

τ,τ = 0. Thus, it suffices to consider the caseτ < t . Consider an arrivali such
thatUr

i r−1 ∈ (τ, t] andvr
i ≥ (64M2

T /ε2
n) + 2κn. Sincet − τ ≤ 8M2

T /εn, and since
〈1, µ̄r(s)〉 ≥ εn/8 for s ∈ (τ, t], we have

S̄r
Ur

i r−1,t
≤ S̄r

τ,t =
∫ t

τ
〈1, µ̄r(s)〉−1ds ≤ (t − τ )

8

εn

≤ 64M2
T

ε2
n

.(3.107)

Thus,vr
i − S̄r

Ur
i r−1,t

≥ (64M2
T /ε2

n) + 2κn − (64M2
T /ε2

n) > κn. Recalling thatNn =
�64M2

T /(κnε
2
n)� + 1, this implies that fork ≥ Nn + 1,

1[kκn,(k+1)κn)(v
r
i )1(0,κn]

(
vr
i − S̄r

Ur
i r−1,t

) = 0.(3.108)
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Next, consider two jobsi < j for which vr
i , v

r
j ∈ [kκn, (k + 1)κn) for some

integerk ∈ {0, . . . ,Nn}. If Ur
i r−1,Ur

j r−1 ∈ (τ, t] andUr
j r−1 − Ur

i r−1 ≥ ln, then,
using the fact that〈1, µ̄r(s)〉 > 0 for s ∈ (τ, t] again, we have at timet that(

vr
j − S̄r

Ur
j r−1,t

)− (
vr
i − S̄r

Ur
i r−1,t

)
= S̄r

Ur
i r−1,Ur

j r−1 + vr
j − vr

i

≥ Ur
j r−1 − Ur

i r−1

sups∈[0,t]〈1, µ̄r(s)〉 − κn

≥ ln

MT

− κn

> 2κn − κn = κn,

where the last two inequalities are by (3.76) and (3.78), respectively. This implies
that at most one of

1(0,κn]
(
vr
i − S̄r

Ur
i r−1,t

)
and 1(0,κn]

(
vr
j − S̄r

Ur
j r−1,t

)
is nonzero. So for eachk ∈ {0, . . . ,Nn}, all jobs i satisfying Ur

i r−1 ∈ (τ, t],
vr
i ∈ [kκn, (k + 1)κn) and vr

i − S̄r
Ur

i r−1,t
∈ (0, κn] must also satisfyUr

i r−1 ∈
(s, s + ln], for somes ∈ [τ, (t − ln) ∨ τ ]. (Note: s is random in general.) This
yields the following estimate at timet , for eachk ∈ {0, . . . ,Nn}:

1

r

rĒr (t)∑
i=rĒr (τ)+1

1[kκn,(k+1)κn)(v
r
i )1(0,κn]

(
vr
i − S̄r

Ur
i r−1,t

)

≤ sup
s∈[τ,(t−ln)∨τ ]

1

r

rĒr (s+ln)∑
i=rĒr (s)+1

1[kκn,(k+1)κn)(v
r
i )1(0,κn]

(
vr
i − S̄r

Ur
i r−1,t

)
(3.109)

≤ sup
m≤�rT �

sup
s∈[0,L]

1

r

rĒr,m(s+ln)∑
i=rĒr,m(s)+1

1[kκn,(k+1)κn)(v
r
i ).

Using (3.2) (withm = 0), we have that onBr
n,〈

1[0,κn], µ̄r(t)
〉

= 〈
1(0,κn]

(· − S̄r
τ,t

)
, µ̄r(τ )

〉+ 1

r

rĒr (t)∑
i=rĒr (τ)+1

1(0,κn]
(
vr
i − S̄r

Ur
i r−1,t

)

≤ εn

4
+

∞∑
k=0

1

r

rĒr (t)∑
i=rĒr (τ)+1

1[kκn,(k+1)κn)(v
r
i )1(0,κn]

(
vr
i − S̄r

Ur
i r−1,t

)
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≤ εn

4
+

Nn∑
k=0

sup
m≤�rT �

sup
s∈[0,L]

1

r

rĒr,m(s+ln)∑
i=rĒr,m(s)+1

1[kκn,(k+1)κn)(v
r
i )

≤ εn

4
+

Nn∑
k=0

εn

8

〈
1[(k−1/2)κn,(k+3/2)κn), ν

〉

≤ εn

4
+ εn

8

〈 ∞∑
k=0

1[(k−1/2)κn,(k+3/2)κn), ν

〉

= εn

4
+ εn

4
,

where the first inequality is by Lemma 3.9, the second inequality is by
(3.108) and (3.109), the third inequality is by (3.83) and the last line follows since
ν is a probability measure.�

The next lemma gives an upper bound on[0,L] for the process〈1, µ̄r,m(·)〉, on
the event that〈χ, µ̄r,m(0)〉 is below a threshold.

LEMMA 3.11. Assume (Q.1) and let T,L > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Let ln, p, MT , κn,
γn, Nn, rn be the constants, and {Br

n} be the events, given by Lemma 3.8.For each
n ∈ N, r ∈ R and m ≤ �rT �, define the event Dr,m

γn
= {〈χ, µ̄r,m(0)〉 ≤ γn/2}. Then

for each n ∈ N, r ∈ R and m ≤ �rT �, on Br
n ∩ Dr,m

γn
,

sup
t∈[0,L]

〈1, µ̄r,m(t)〉 ≤ 2εn.(3.110)

PROOF. Fix n ∈ N, r ∈ R, andm ≤ �rT �. We must show that onBr
n ∩ Dr,m

γn
,

sup
t∈[m,m+L]

〈1, µ̄r(t)〉 ≤ 2εn.(3.111)

Let Ar = Br
n ∩Dr,m

γn
, and lett0 = m, t1 = L, c = 2εn andl = ln. Then condition (i)

of Lemma 3.3 holds by (3.74) and condition (ii) holds by (3.80), (3.81) and the
definition ofDr,m

γn
. To see that condition (iii) holds, observe that onBr

n ∩ Dr,m
γn

,

〈1, µ̄r(m)〉 = 〈1, µ̄r,m(0)〉
= 〈

1[0,κn], µ̄r,m(0)
〉+ 〈

1(κn,∞), µ̄
r,m(0)

〉
≤ εn

2
+ 1

κn

〈χ, µ̄r,m(0)〉(3.112)

≤ εn

2
+ 1

κn

γn

2
≤ εn,
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where the first inequality is by Lemma 3.10 and Markov’s inequality, the second
uses the definition ofDr,m

γn
and the last is by (3.80). So the result follows by

Lemma 3.3. �

The next lemma provides for eachm ≤ �rT �, a lower bound for the process
〈1, µ̄r,m(·)〉 on the event where〈χ, µ̄r,m(0)〉 is above the thresholdγn/2.
A consequence of this is an upper bound, on this event, for the rate at whichS̄

r,m
t,t+h

can increase as a function ofh.

LEMMA 3.12. Assume (Q.1) and let T,L > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Let ln, p, MT , κn,
γn, Nn, rn be the constants, and {Br

n} be the events, given by Lemma 3.8. For
each n ∈ N, r ∈ R and m ≤ �rT �, let D̆r,m

γn
be the complement of Dr,m

γn
, that is,

D̆r,m
γn

= {〈χ, µ̄r,m(0)〉 > γn/2}. Then for each n ∈ N, there exists �n > 0 such that

for all r ∈ R and m ≤ �rT �, on Br
n ∩ D̆r,m

γn
,

inf
t∈[0,L]〈1, µ̄r,m(t)〉 ≥ 1

�n

(3.113)

and

sup
t∈[0,L−h]

S̄
r,m
t,t+h ≤ h�n(3.114)

for any 0< h < L.

PROOF. Fix n ∈ N, r ∈ R and m ≤ �rT �. We have for anyK > 0, on
Br

n ∩ D̆r,m
γn

,
γn

4
≤ inf

t∈[0,L]〈χ, µ̄r,m(t)〉

= inf
t∈[0,L]

(〈
χ1[0,K], µ̄r,m(t)

〉 + 〈
χ1(K,∞), µ̄

r,m(t)
〉)

≤ inf
t∈[0,L]

(
K
〈
1[0,K], µ̄r,m(t)

〉 + K−p〈χ1+p, µ̄r,m(t)
〉)

≤ inf
t∈[0,L]K〈1, µ̄r,m(t)〉 + K−pMT ,

where the first inequality is by (3.81) and the definition ofD̆r,m
γn

, and the third is

by (3.76). So for anyK > 0, onBr
n ∩ D̆r,m

γn
,

inf
t∈[0,L]〈1, µ̄r,m(t)〉 ≥ γn/4− K−pMT

K
.(3.115)

SettingK = Kn large enough so thatK−p
n MT < γn/5, and letting�n = Kn(

γn

4 −
γn

5 )−1 proves (3.113). To prove (3.114), we have by (3.113) onBr
n ∩ D̆r,m

γn
,
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for 0 < h < L,

sup
t∈[0,L−h]

S̄
r,m
t,t+h ≤ h sup

t∈[0,L]
ϕ
(〈1, µ̄r,m(t)〉)

≤ h

(
inf

t∈[0,L]〈1, µ̄r,m(t)〉
)−1

≤ h�n. �

We are now ready to apply the previous four lemmas to prove an oscillation
bound onBr

n for the sample paths of̄µr,m(·), m ≤ �rT �. We use Lemma 3.11 to

prove it onBr
n ∩ Dr,m

γn
and use Lemmas 3.10 and 3.12 to prove it onBr

n ∩ D̆r,m
γn

.
Recall thatDL(MF) is the Skorohod space of r.c.l.l. functions defined on[0,L]
and taking values inMF. In order to state the theorem, we define a modulus of
continuity onDL(MF), with respect to the metricd[·, ·] as follows.

DEFINITION 3.13. For anyL > 1, ζ(·) ∈ DL(MF) andδ > 0, define

wL

(
ζ(·), δ) = sup

t∈[0,L−δ]
sup

h∈[0,δ]
d[ζ(t + h), ζ(t)].(3.116)

THEOREM 3.14 (Oscillation bound). Assume (Q.1) and let T,L > 1 and
0 < η < 1 be given. Let {εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as
n → ∞. Let ln, p, MT , κn, γn, Nn, rn be the constants, and {Br

n} be the events,
given by Lemma 3.8.Then for each ε > 0 there exists δ > 0 and nε ∈ N such that
for all n > nε and all r ∈ R, on Br

n,

sup
m≤�rT �

wL

(
µ̄r,m(·), δ) ≤ ε.(3.117)

PROOF. Fix ε > 0. Choosekε ∈ N large enough so that
∑∞

k=kε+1 2−k ≤ ε/4,

and letKε = (maxkε

k=1‖(gG
k )′‖∞ ∨ 2). Recall thatG = {gG

k }∞k=1 ∪ {hG
k }∞k=1 is the

set of functions used to define the metricd[·, ·] [see (1.4)]. LetGε = {gG
k }kε

k=1 ∪
{hG

k }∞k=1 so that for anyf ∈ Gε, ‖f ‖∞ ≤ 1 and‖f ′‖∞ ≤ Kε. Choosenε ∈ N large
enough so thatεnε ≤ ε/(8kε), and let

δ = min
{

L

2
, lnε ,

ε

8�nεMT kε(Kε ∨ 1)
,
κnε

�nε

,1
}
.(3.118)

Fix n > nε , r ∈ R andm ≤ �rT �, and consider the eventDr,m
γnε

. OnBr
n ∩ Dr,m

γnε
, we

have for allf ∈ Gε,

sup
t∈[0,L−δ]

sup
h∈[0,δ]

∣∣〈f, µ̄r,m(t + h)〉 − 〈f, µ̄r,m(t)〉∣∣
≤ 2 sup

t∈[0,L]
|〈f, µ̄r,m(t)〉| ≤ 2‖f ‖∞ sup

t∈[0,L]
〈1, µ̄r,m(t)〉(3.119)

≤ 4εnε ≤ ε

2kε

.
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The third inequality above follows by Lemma 3.11, sinceBr
n ∩Dr,m

γnε
⊂ Br

nε
∩Dr,m

γnε

for n > nε [see Lemma 3.8(ii)], and by the fact that‖f ‖∞ ≤ 1 by definition.
The last inequality above follows by choice ofnε . We must show that the above
estimate also holds onBr

n ∩ D̆r,m
γnε

for all f ∈ Gε. First, observe that onBr
n ∩ D̆r,m

γnε
,

a first-order Taylor expansion off gives the following estimate for all 0< h < L,
t ∈ [0,L − h] andy ∈ (S̄

r,m
t,t+h,∞):∣∣f (

y − S̄
r,m
t,t+h

)− f (y)
∣∣ = ∣∣− S̄

r,m
t,t+hf

′(wy)
∣∣ ≤ h�nε‖f ′‖∞ ≤ h�nεKε,(3.120)

for somewy ∈ [y − S̄
r,m
t,t+h, y], where the first inequality follows by Lemma 3.12,

sinceBr
n ∩ D̆r,m

γnε
⊂ Br

nε
∩ D̆r,m

γnε
for n > nε , and the second inequality follows by

definition of Gε. Now subtracting〈f, µ̄r,m(t)〉 from both sides of equation (3.2)
and using the fact that(1(0,∞)f )(· − S̄

r,m
t,t+h) = 1(S̄

r,m
t,t+h,∞)(·)f (· − S̄

r,m
t,t+h) for

t ∈ [0,L − h] yields that onBr
n ∩ D̆r,m

γnε
,∣∣〈f, µ̄r,m(t + h)〉 − 〈f, µ̄r,m(t)〉∣∣

=
∣∣∣∣∣〈1(S̄

r,m
t,t+h,∞)(·)

(
f
(· − S̄

r,m
t,t+h

)− f (·)), µ̄r,m(t)
〉

− 〈
1[0,S̄

r,m
t,t+h]f, µ̄r,m(t)

〉

+ 1

r

rĒr,m(t+h)∑
i=rĒr,m(t)+1

(
1(0,∞)f

)(
vr
i − S̄

r,m

Ur
i r−1−m,t+h

)∣∣∣∣∣(3.121)

≤ 〈∣∣1(S̄
r,m
t,t+h,∞)(·)

(
f
(· − S̄

r,m
t,t+h

)− f (·))∣∣, µ̄r,m(t)
〉

+ ‖f ‖∞
〈
1[0,h�nε ], µ̄

r,m(t)
〉 + ‖f ‖∞

(
Ēr,m(t + h) − Ēr,m(t)

)
≤ h�nεKε〈1, µ̄r,m(t)〉 + 〈

1[0,h�nε ], µ̄r,m(t)
〉

+ (
Ēr,m(t + h) − Ēr,m(t)

)
,

where the first inequality is by Lemma 3.12 (again using the fact thatBr
n ∩ D̆r,m

γnε
⊂

Br
nε

∩ D̆r,m
γnε

for n > nε) and the second inequality is by (3.120) and the fact that
‖f ‖∞ ≤ 1. Taking the supremum overh ∈ [0, δ] and t ∈ [0,L − δ], we see that
onBr

n ∩ D̆r,m
γnε

,

sup
t∈[0,L−δ]

sup
h∈[0,δ]

∣∣〈f, µ̄r,m(t + h)〉 − 〈f, µ̄r,m(t)〉∣∣
≤ sup

t∈[0,L−δ]

(
δ�nεKε〈1, µ̄r,m(t)〉

+ 〈
1[0,δ�nε ], µ̄

r,m(t)
〉 + (

Ēr,m(t + δ) − Ēr,m(t)
))

(3.122)
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≤ sup
t∈[0,L−δ]

(
ε

8MT kε

〈1, µ̄r,m(t)〉

+ 〈
1[0,κnε ], µ̄r,m(t)

〉 + (
Ēr,m(t + lnε ) − Ēr,m(t)

))

≤ ε

8MT kε

MT + εnε

2
+ εnε

16

≤ ε

8kε

+ ε

16kε

+ ε

128kε

<
ε

2kε

,

where the second inequality is by (3.118) and the third is by (3.76), Lemma 3.10,
and (3.74) (once again using the fact thatBr

n ∩ D̆r,m
γnε

⊂ Br
nε

∩ D̆r,m
γnε

for n > nε).

So the desired estimate (3.119) holds on bothBr
n ∩ Dr,m

γnε
and Br

n ∩ D̆r,m
γnε

and
therefore onBr

n for all n > nε, r ∈ R andm ≤ �rT �. Thus, combining (3.119)
and (3.122) with the definitions (3.116), (1.4) and the definition ofGε, we have on
Br

n, for all n > nε andr ∈ R,

sup
m≤�rT �

wL

(
µ̄r,m(·), δ)

= sup
m≤�rT �

sup
t∈[0,L−δ]

sup
h∈[0,δ]

d[µ̄r,m(t + h), µ̄r,m(t)]

≤ sup
m≤�rT �

sup
t∈[0,L−δ]

sup
h∈[0,δ]

(
kε∑

k=1

2−k(∣∣〈gG
k , µ̄r,m(t + h)〉 − 〈gG

k , µ̄r,m(t)〉∣∣ ∧ 1
)

+
∞∑

k=kε+1

2−k + sup
k∈N

∣∣〈hG
k , µ̄r,m(t + h)〉

− 〈hG
k , µ̄r,m(t)〉∣∣

)

≤ kε

2

ε

2kε

+ ε

4
+ ε

2kε

≤ ε. �

The preceding theorem has the following important consequence, which will
be used to identify certain measure valued paths which approximate the sample
paths of the fluid scaled state descriptors{µ̄r,m(·)} on the eventsBr

n. This will
be the first important step in our state space collapse argument. We will need the
following definition.

DEFINITION 3.15. Assume (Q.1) and letT,L > 1 and 0< η < 1 be given.
Let {εn}∞n=1 ⊂ (0,1) be a sequence such thatεn ↓ 0, asn → ∞. Let ln, p, MT , κn,
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γn, Nn, rn be the constants, and{Br
n} be the events given by Lemma 3.8. Then for

eachr ∈ R, we define

n(r) =
{

sup{n ∈ N : rn < r}, r > r1,

1, r ≤ r1,
(3.123)

and we define

Br
L = {

ζ(·) ∈ DL(MF) : ζ(·) ≡ µ̄r,m(·)(ω) on [0,L],
(3.124)

for someω ∈ Br
n(r) andm ≤ �rT �}.

Note that sincern → ∞ asn → ∞ (see Lemma 3.8),n(r) is finite for eachr ∈ R.
Note also that forr > r1, Br

L is nonempty since by Lemma 3.8,Pr(Br
n(r)) ≥ 1−η.

COROLLARY 3.16 (Relative compactness).Assume (Q.1) and let T,L > 1
and 0 < η < 1 be given. Let {εn}∞n=0 ⊂ (0,1) be a sequence such that εn ↓ 0,
as n → ∞. Let R̃ ⊂ R be a subsequence and suppose {ζ r̃ (·)}

r̃∈R̃ ⊂ DL(MF)

is a sequence of paths such that for each r̃ > r1, ζ r̃(·) ∈ B r̃
L. Then {ζ r̃(·)}

r̃∈R̃ is
relatively compact in DL(MF). Moreover, any limit point ζ(·) of the sequence is
continuous.

PROOF. Define

C̃T = {
ζ ∈ MF : 〈1, ζ 〉 ∨ 〈χ, ζ 〉 ≤ MT

}
.

Since〈χ, ζ 〉 ≤ MT implies〈1[K,∞), ζ 〉 ≤ MT /K for anyK > 0, we have

sup
ζ∈C̃T

〈
1[K,∞), ζ

〉 → 0 asK → ∞,

which implies thatC̃T ⊂ MF is relatively compact ([10], Theorem A7.5). Let
CT be the closure of̃CT and observe that by Definition 3.15 and (3.76),ζ r̃ (t) ∈ CT

for all r̃ > r1 and t ∈ [0,L]. Sincen(r̃) → ∞ as r̃ → ∞, Theorem 3.14 implies
that

lim
δ→0

lim sup
r̃→∞

wL

(
ζ r̃ (·), δ) = 0.(3.125)

Thus, the relative compactness of{ζ r̃ (·)}r̃∈R̃ follows from [4], Chapter 3,
Theorem 6.3, by noting that the modulus of continuity used there is bounded above
by wL(·, ·), and that the result stated there still holds if one replacesD∞(MF)

by DL(MF) andT > 0 there byL. By (3.125) and the definition ofwL(·, ·), we
see that any limit pointζ(·) of the sequence must be continuous.�

4. Diffusion limit. Having established the desired relative compactness
property for sample paths of the processes{µ̄r,m(·)}, we now turn to the second
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main task in our strategy for proving Theorem 2.3. In Section 4.1, we identify
limit points of the sequences specified in Corollary 3.16 asfluid model solutions on
[0,L] (see Definition 4.2 and Lemma 4.3). We then show that for larger , sample
paths of the processes{µ̄r,m(·)}, can be uniformly approximated by fluid model
solutions which are arbitrarily close to being in steady state (see Lemma 4.4 and
Proposition 4.5). This leads us to the proof of state space collapse and finally to
the proof of Theorem 2.3, both of which are contained in Section 4.2.

4.1. Local fluid approximations.

DEFINITION 4.1. Assume (Q.1) and letT,L > 1 and 0< η < 1 be given.
Let {εn}∞n=1 ⊂ (0,1) be a sequence such thatεn ↓ 0, asn → ∞. DefineBL to
be the set of allζ(·) ∈ DL(MF) such that there exists a subsequenceR̃ ⊂ R and
a sequence{ζ r̃ (·)}

r̃∈R̃ ⊂ DL(MF) satisfyingζ r̃ (·) ∈ B r̃
L for eachr̃ ∈ R̃, and

ζ r̃ (·) J1−→ ζ(·) asr̃ → ∞.(4.1)

DEFINITION 4.2. Given 1< L < ∞, a fluid model solution on[0,L] for the
critical data(α, ν) is a functionζ(·) : [0,L] −→ MF such that:

(i) ζ(·) is continuous,
(ii) 〈1{0}, ζ(t)〉 = 0 for all t ∈ [0,L],
(iii) if ζ(0) �= 0, thenζ(t) �= 0 for all t ∈ [0,L] andζ(·) satisfies

〈g, ζ(t)〉 = 〈g, ζ(0)〉 −
∫ t

0

〈g′, ζ(s)〉
〈1, ζ(s)〉 ds + αt〈g, ν〉,(4.2)

for all t ∈ [0,L] and allg ∈ C = {g ∈ C1
b(R+) :g(0) = 0, g′(0) = 0} and

(iv) if ζ(0) = 0, thenζ(t) = 0 for all t ∈ [0,L].

We note that Definition 4.2 differs slightly from the definition of a fluid model
solution for critical data(α, ν) given in [6], Section 3.1. Besides the fact that we
only consider fluid model solutions defined over finite time intervals here, the
time t∗ used in [6] (the first time at which a fluid model solution reaches the zero
measure) is not present in our definition. In fact, it is shown in [6] that ifζ(0) �= 0,
then t∗ = ∞. Indeed, if we replace[0,L] by [0,∞) in Definition 4.2 above, we
obtain an equivalent definition to that given in [6]. Similarly, by restricting a fluid
model solution as defined in [6] to the finite interval[0,L], one obtains a fluid
model solution on[0,L] as defined here. The next lemma asserts that the elements
of BL are in fact fluid model solutions on[0,L].

LEMMA 4.3. Assume (Q.1) and let T > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Then there exists
q ∈ (0,p) and 1< Mq < ∞ such that for any L > 1 and any ζ(·) ∈ BL,
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(i) supt∈[0,L]〈1, ζ(t)〉 ∨ 〈χ, ζ(t)〉 ∨ 〈χ1+q, ζ(t)〉 ≤ Mq,

(ii) 〈χ, ζ(·)〉 is constant on [0,L] and
(iii) ζ(·) is a fluid model solution on [0,L] for the critical data (α, ν).

PROOF. Fix L > 1 and letln, p, MT , κn, γn, Nn, rn be the constants and
{Br

n} be the events given by Lemma 3.8. Fixζ(·) ∈ BL and let R̃ ⊂ R be
a subsequence and{ζ r̃ (·)}

r̃∈R̃ ⊂ DL(MF) be a sequence such thatζ r̃(·) ∈ B r̃
L

for eachr̃ ∈ R̃ andζ r̃(·) J1−→ ζ(·) as r̃ → ∞. Recall that for each̃r ∈ R̃, ζ r̃(·)
is a realization ofµ̄r̃,m(·) on Br̃

n(r̃)
for somem ≤ �r̃T �. This fact will be used

throughout the proof. By Corollary 3.16,ζ(·) is continuous, so as̃r → ∞, we
have ∥∥d

[
ζ r̃ (·), ζ(·)]∥∥L → 0.(4.3)

By (3.76),

lim sup
r̃→∞

sup
t∈[0,L]

〈
1, ζ r̃ (t)

〉 ∨ 〈
χ, ζ r̃ (t)

〉 ∨ 〈
χ1+p, ζ r̃ (t)

〉 ≤ MT .(4.4)

Combined with (4.3), this implies that

sup
t∈[0,L]

〈1, ζ(t)〉 ≤ MT .(4.5)

Similarly, combining (4.3) and (4.4) with two applications of Lemma 3.5 (with
q ′ = p andM = MT ) we see that there existsq ∈ (0,p) andMq ∈ [MT ,∞) such
that

sup
t∈[0,L]

〈χ, ζ(t)〉 ∨ 〈χ1+q, ζ(t)〉 ≤ Mq,(4.6)

and such that for eacht ∈ [0,L],∣∣〈χ, ζ r̃ (t)
〉 − 〈χ, ζ(t)〉∣∣ → 0 asr̃ → ∞.(4.7)

Together, (4.5) and (4.6) imply (i) above. Notice that the constantMq given
for p and MT by Lemma 3.5 does not depend onL, and thatMq ≥ MT > 1
[see (3.51) and Lemma 3.6].

Next, we have for anyt ∈ [0,L],∣∣〈χ, ζ(t)〉 − 〈χ, ζ(0)〉∣∣
≤ lim inf

r̃→∞
(∣∣〈χ, ζ(t)〉 − 〈

χ, ζ r̃ (t)
〉∣∣

+ ∣∣〈χ, ζ r̃ (t)
〉 − 〈

χ, ζ r̃ (0)
〉∣∣ + ∣∣〈χ, ζ r̃ (0)

〉− 〈χ, ζ(0)〉∣∣)(4.8)

≤ lim inf
r̃→∞

γn(r̃)

4

= 0,
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where the second inequality is by (4.7) for the first and third terms and (3.81) for
the second term. The last line follows sincen(r̃) → ∞, as r̃ → ∞, andγn → 0,
asn → ∞ (see Lemma 3.8). Thus〈χ, ζ(·)〉 is constant on[0,L], which proves (ii)
above.

We now show thatζ(·) is a fluid model solution on[0,L]. We have already
verified property (i) of Definition 4.2. For any fixedn ∈ N,

sup
t∈[0,L]

〈
1{0}, ζ(t)

〉 ≤ sup
t∈[0,L]

〈
1[0,κn), ζ(t)

〉

≤ sup
t∈[0,L]

lim sup
r̃→∞

〈
1[0,κn), ζ

r̃ (t)
〉

(4.9)
≤ lim sup

r̃→∞
sup

t∈[0,L]
〈
1[0,κn], ζ r̃ (t)

〉

≤ εn

2
,

where the second inequality follows by (4.3) and the Portmanteau theorem
([1], Theorem 2.1). The last inequality follows by Lemma 3.10, sincen(r̃) → ∞,
asr̃ → ∞, which implies thatBr̃

n(r̃)
⊂ Br̃

n for all sufficiently larger̃ . Sincen ∈ N

is arbitrary andεn ↓ 0 asn → ∞, this proves property (ii) of Definition 4.2.
It remains to verify properties (iii) and (iv) there. We must show that eitherζ(·) ≡ 0
on [0,L], or that for allt ∈ [0,L], ζ(t) �= 0 and (4.2) holds. Since we have shown
that 〈χ, ζ(·)〉 is constant on[0,L] and that property (ii) of Definition 4.2 holds,
it suffices to show that (4.2) holds whenζ(0) �= 0. For this, suppose thatζ(0) �= 0
and note that property (ii) of Definition 4.2 implies that〈χ, ζ(t)〉 = 〈χ, ζ(0)〉 > 0
for all t ∈ [0,L]. So sinceζ(·) is continuous,

inf
t∈[0,L]〈1, ζ(t)〉 > 0.(4.10)

To show (4.2), we follow the analogous proof in ([6], Section 5.3) closely. We first
restrict our attention to the caseg ∈ V (see Definition 3.7) and derive a prelimit
version of (4.2) which is satisfied byζ r̃(·) for all sufficiently larger̃ . We will then
pass to the limit in this relation to obtain (4.2) forζ(·) andg ∈ V. Finally, we make
a simple extension fromV to C.

Let g ∈ V and note that sinceV ⊂ C̃, g′ is uniformly continuous onR [recall
that we extendg to be identically zero on(−∞,0)]. So, there is a continuous
nondecreasing functionψg : [0,∞) −→ [0,∞) with ψg(0) = 0, such that for any
h ∈ R,

sup
x∈R

‖g′(x + h) − g′(x)‖ ≤ ψg(|h|).(4.11)

Recall that for each̃r ∈ R̃, ζ r̃ (·) is a realization of̄µr̃,m(·) for somem ≤ �r̃T � and
someω̃ ∈ Br̃

n(r̃)
. Since the sequence{ζ r̃ (·)}

r̃∈R̃ remains fixed for the remainder of

this proof, it is understood that all random objects indexed byr̃ ∈ R̃ andm ≤ �r̃T �
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are evaluated at the particularω̃ ∈ Br̃
n(r̃)

andm for which ζ r̃ (·) is a realization. Fix

t ∈ [0,L]. For anyN ∈ N andj ∈ {0,1, . . . ,N − 1}, definetj = j t
N

andtj = tj+1.
Then we have for each̃r ∈ R̃,

〈
g, ζ r̃ (t)

〉 − 〈
g, ζ r̃(0)

〉 = N−1∑
j=0

(〈
g, ζ r̃ (tj )

〉 − 〈
g, ζ r̃(tj )

〉)

=
N−1∑
j=0

(〈
g, ζ r̃ (tj )

〉 − 〈
g
(· − S̄

r̃,m

tj ,tj

)
, ζ r̃ (tj )

〉)

+
N−1∑
j=0

(〈
g
(· − S̄

r̃,m

tj ,tj

)
, ζ r̃ (tj )

〉− 〈
g, ζ r̃ (tj )

〉)
(4.12)

=
N−1∑
j=0

1

r̃

r̃Ēr̃,m(tj )∑
i=r̃ Ēr̃,m(tj )+1

g
(
vr̃
i − S̄

r̃,m

Ur̃
i r̃−1−m,tj

)

+
N−1∑
j=0

〈
g
(· − S̄

r̃,m

tj ,tj

)− g(·), ζ r̃ (tj )
〉
,

where the first term in the last equality is by (3.2) (usingt = tj , h = tj − tj

there) and the fact that(1(0,∞)g) ≡ g, sinceg(0) = 0 for g ∈ C̃. By (4.3), (4.4)
and (4.10), we have

lim sup
r̃→∞

∥∥〈1, ζ r̃ (·)〉∥∥L ≤ MT ,(4.13)

lim sup
r̃→∞

∥∥〈1, ζ r̃ (·)〉−1∥∥
L < ∞.(4.14)

By (4.13) and (4.14), we can assume for the remainder of the proof thatr̃ is large
enough so that for someMζ > 0,

sup
s∈[0,L]

〈
1, ζ r̃ (s)

〉∨ 〈
1, ζ r̃ (s)

〉−1 ≤ Mζ .(4.15)

We handle the two terms in (4.12) separately. To begin with, sinceg ∈ V ⊂ C̃
has been extended to be an element ofC1

b(R), we have the following first-order
Taylor expansion for eachj ∈ {0,1, . . . ,N − 1} and eachx ∈ R+:

g
(
x − S̄

r̃,m

tj ,tj

)− g(x) = g′(wx
j )hj ,(4.16)

wherehj = −S̄
r̃,m

tj ,tj
andwx

j ∈ R is in the interval[x − S̄
r̃,m

tj ,tj
, x]. Note that by (2.20)

and (4.15),

max
j=0,...,N−1

|hj | = max
j=0,...,N−1

∣∣S̄r̃,m

tj ,tj

∣∣ ≤ t

N

∥∥〈1, ζ r̃ (·)〉−1∥∥
L ≤ tMζ

N
.(4.17)
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For eachj ∈ {0, . . . ,N − 1}, let zj = sups∈[tj ,tj )〈1, ζ r̃ (s)〉−1 and defineh̃j =
−zj

t
N

. Then

N−1∑
j=0

|hj − h̃j | =
N−1∑
j=0

∣∣∣∣zj

t

N
− S̄

r̃,m

tj ,tj

∣∣∣∣

=
N−1∑
j=0

(
zj

t

N
− S̄

r̃,m

tj ,tj

)
(4.18)

=
N−1∑
j=0

(
zj

t

N

)
− S̄

r̃,m
0,t .

For eachN ∈ N and s ∈ [0, t), let fN(s) = ∑N−1
j=0 zj1[tj ,tj )(s) and define

fN(t) = 0. We can make the following estimate for the second term in (4.12):∣∣∣∣∣
N−1∑
j=0

〈
g
(· − S̄

r̃,m

tj ,tj

)− g(·), ζ r̃ (tj )
〉 − N−1∑

j=0

〈
g′(·)h̃j , ζ

r̃ (tj )
〉∣∣∣∣∣

≤
N−1∑
j=0

sup
x∈R+

∣∣g(x − S̄
r̃,m

tj ,tj

)− g(x) − g′(x)h̃j

∣∣〈1, ζ r̃ (tj )
〉
,

=
N−1∑
j=0

sup
x∈R+

|g′(wx
j )hj − g′(x)h̃j |〈1, ζ r̃ (tj )

〉

≤ ∥∥〈1, ζ r̃ (·)〉∥∥L

N−1∑
j=0

sup
x∈R+

(|g′(wx
j ) − g′(x)||hj |(4.19)

+ |g′(x)||hj − h̃j |),
≤ Mζ

(
Nψg

(
tMζ

N

)
tMζ

N
+ ‖g′‖∞

(
N−1∑
j=0

(
zj

t

N

)
− S̄

r̃,m
0,t

))

= Mζ

(
ψg

(
tMζ

N

)
tMζ

+ ‖g′‖∞
(∫ t

0
fN(s) ds −

∫ t

0

〈
1, ζ r̃ (s)

〉−1
ds

))
.

In the third line above we have used the Taylor expansion (4.16). The last
inequality then follows from (4.15), (4.11), (4.17) and (4.18). The substitution
of the second integral in the last line follows by (2.20) and (4.15). LetN → ∞
in the above inequality. By the continuity ofψg and the fact thatψg(0) = 0, we
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see that the first term in the outer parentheses tends to zero. Note thatfN(s) −→
〈1, ζ r̃ (s)〉−1, asN → ∞, for any s ∈ [0, t) at which 〈1, ζ r̃ (·)〉−1 is continuous.
Since it is continuous for almost everys [the pathζ r̃ (·) is r.c.l.l.], the second
term in the outer parantheses tends to zero by (4.15) and bounded convergence.
Furthermore, we note that

N−1∑
j=0

〈
g′(·)h̃j , ζ

r̃ (tj )
〉 = −

N−1∑
j=0

〈
g′, ζ r̃ (tj )

〉
zj

t

N
,

and that asN → ∞,

−
N−1∑
j=0

〈
g′, ζ r̃ (tj )

〉
zj

t

N
−→ −

∫ t

0

〈g′, ζ r̃ (s)〉
〈1, ζ r̃ (s)〉 ds,

also by (4.15) and bounded convergence, since the function〈g′, ζ r̃ (·)〉〈1, ζ r̃ (·)〉−1

is also continuous for almost everys. Together with the estimate (4.19), this
implies that asN → ∞,

N−1∑
j=0

〈
g
(· − S̄

r̃,m

tj ,tj

)− g(·), ζ r̃ (tj )
〉 −→ −

∫ t

0

〈g′, ζ r̃ (s)〉
〈1, ζ r̃ (s)〉 ds.(4.20)

We handle the first term of (4.12) in a similar (although simpler) fashion. Once
again we can use a first-order Taylor expansion for each summand appearing in
this term:

g
(
vr̃
i − S̄

r̃,m

Ur̃
i r̃−1−m,tj

) = g(vr̃
i ) + g′(wi

j )h
i
j ,(4.21)

wherehi
j = −S̄

r̃ ,m

Ur̃
i r̃−1−m,tj

, andwi
j ∈ [vr̃

i − S̄
r̃ ,m

Ur̃
i r̃−1−m,tj

, vr̃
i ]. Since

∣∣tj − (U r̃
i r̃−1−

m)
∣∣ ≤ t/N for each pairj, i in the first term of (4.12), we have by (2.20) and (4.15)

as before that

max
j,i

|hi
j | ≤

t

N

∥∥〈1, ζ r̃ (·)〉−1∥∥
L ≤ tMζ

N
.(4.22)

Using the Taylor expansion (4.21) along with (4.22), we have
∣∣∣∣∣
(

N−1∑
j=0

1

r̃

r̃Ēr̃,m(tj )∑
i=r̃ Ēr̃,m(tj )+1

g
(
vr̃
i − S̄

r̃,m

Ur̃
i r̃−1−m,tj

)) − 1

r̃

r̃Ēr̃,m(t)∑
i=r̃ Ēr̃,m(0)+1

g(vr̃
i )

∣∣∣∣∣

=
∣∣∣∣∣
N−1∑
j=0

1

r̃

r̃Ēr̃,m(tj )∑
i=r̃ Ēr̃,m(tj )+1

g′(wi
j )h

i
j

∣∣∣∣∣(4.23)

≤ Ēr̃,m(t)‖g′‖∞
tMζ

N
,
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which tends to zero asN → ∞. By combining (4.20) and (4.23) above, we can let
N → ∞ in (4.12) to obtain the relation

〈
g, ζ r̃ (t)

〉 = 〈
g, ζ r̃ (0)

〉− ∫ t

0

〈g′, ζ r̃ (s)〉
〈1, ζ r̃ (s)〉 ds + 1

r̃

r̃Ēr̃,m(t)∑
i=r̃ Ēr̃,m(0)+1

g(vr̃
i ),(4.24)

for all sufficiently larger̃. We would like to letr̃ → ∞ in this relation to obtain

〈g, ζ(t)〉 = 〈g, ζ(0)〉 −
∫ t

0

〈g′, ζ(s)〉
〈1, ζ(s)〉 ds + αt〈g, ν〉.(4.25)

By (4.3), we have that the left-hand side, as well as the first term on the right-
hand side of (4.24), converges to the corresponding term in (4.25). Similarly, (4.3),
(4.13), (4.14) and (4.10) imply that the integrands in the second term on the right-
hand side of (4.24) are uniformly bounded, and converge pointwise on[0, t] to the
integrand in the second term on the right-hand side of (4.25). Thus the integrals
converge by bounded convergence. To see that the third term on the right-hand
side converges, note that sinceg ∈ V, g ≡ gV

k for somek ∈ N (see Definition 3.7).
So for anyr̃ ∈ R̃ large enough so thatn(r̃) ≥ k,

∣∣∣∣∣1r̃
r̃Ēr̃,m(t)∑

i=r̃ Ēr̃,m(0)+1

gV
k

(
vr̃
i

)− αt〈gV
k , ν〉

∣∣∣∣∣

≤
∣∣∣∣∣1r̃

r̃Ēr̃,m(�t/ ln(r̃)�ln(r̃))∑
i=r̃ Ēr̃,m(0)+1

gV
k

(
vr̃
i

)− α
⌊
t/ ln(r̃)

⌋
ln(r̃)〈gV

k , ν〉
∣∣∣∣∣

+
∣∣∣∣∣1r̃

r̃Ēr̃,m(t)∑
i=r̃ Ēr̃ ,m(�t/ ln(r̃)�ln(r̃))+1

gV
k

(
vr̃
i

)− α
(
t − ⌊

t/ ln(r̃)

⌋
ln(r̃)

)〈gV
k , ν〉

∣∣∣∣∣
≤ εn(r̃) + ‖gV

k ‖∞
((

Ēr̃,m(t) − Ēr̃,m
(⌊

t/ ln(r̃)

⌋
ln(r̃)

))+ αln(r̃)

)
(4.26)

≤ εn(r̃) + ‖gV
k ‖∞

(
sup

t∈[0,L]
(
Ēr̃,m

(
t + ln(r̃)

)− Ēr̃,m(t)
)+ αln(r̃)

)

≤ εn(r̃) + ‖gV
k ‖∞εn(r̃),

where the second inequality is by (3.75), and the last inequality follows [after re-
laxing the bound toεn(r̃)] by (3.74) and (3.73). Since (4.26) holds for allr̃ ∈ R̃
sufficiently large, and sinceεn(r̃) ↓ 0 asr̃ → ∞, we obtain (4.25) from (4.24) by
letting r̃ → ∞.

We have shown that ifζ(0) �= 0, then (4.2) holds for allt ∈ [0,L] andg ∈ V.
We now extend to the caseg ∈ C, using the caseg ∈ C̃ as an intermediate step.
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Supposeg ∈ C̃ and choose functionsgk ∈ V, k ∈ N, such that{gk}∞k=1 and{g′
k}∞k=1

are uniformly bounded, and such that ask → ∞,

gk −→ g and g′
k −→ g′,(4.27)

pointwise onR+ (see Definition 3.7). We have established that for eachk ∈ N and
t ∈ [0,L],

〈gk, ζ(t)〉 = 〈gk, ζ(0)〉 −
∫ t

0

〈g′
k, ζ(s)〉

〈1, ζ(s)〉 ds + αt〈gk, ν〉.(4.28)

It then follows by (4.27) and bounded convergence that, ask → ∞, the left-hand
side as well as the first and third terms on the right-hand side of (4.28) converge
respectively to the corresponding terms of (4.2). Similarly, sinceζ(·) is continuous
andζ(t) �= 0 for all t ∈ [0,L], the integral term also converges by (4.27) and two
applications of bounded convergence. Thus, we obtain (4.2) from (4.28) by letting
k → ∞.

Finally, fix g ∈ C. For k ∈ N, choose a functionψk ∈ C1
b(R+) such that

ψk(x) ∈ [0,1] and |ψ ′
k(x)| ≤ 2 for all x ∈ R+, ψk ≡ 1 on [0, k] and ψk ≡ 0

on [k + 1,∞). Let gk = ψkg, and note that{gk}∞k=1 and {g′
k}∞k=1 are uniformly

bounded and thatgk −→ g, andg′
k −→ g′ are pointwise onR+ ask → ∞. Since

gk has compact support, we see thatgk ∈ C̃ for eachk ∈ N. Therefore, (4.2) holds
for all t ∈ [0,L] and for each of the functionsgk . By the same argument as that
appearing after (4.28), this implies that (4.2) also holds forg. This completes the
proof. �

The next lemma asserts that for larger , the fluid scaled processesµ̄r,m(·) can be
uniformly approximated on[0,L] by paths inBL. This fact, together with a result
due to Puha and Williams [16] about the uniform convergence to steady state for
elements ofBL (see Proposition 4.5) constitutes the second main ingredient for
proving state space collapse.

LEMMA 4.4. Assume (Q.1) and let T,L > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Let ln, p, MT , κn, γn,
Nn, rn be the constants, and {Br

n} be the events given by Lemma 3.8.Then for each
n ∈ N, there exists r ′

n > rn such that for every r > r ′
n and ζ r(·) ∈ Br

L, there exists
ζ(·) ∈ BL such that

‖d[ζ r (·), ζ(·)]‖L ≤ εn,(4.29)

‖〈χ, ζ r(·)〉 − 〈χ, ζ(·)〉‖L ≤ εn.(4.30)

PROOF. We follow the proof of ([2], Lemma 4.1). Suppose on the contrary that
there existsn ∈ N, a subsequencẽR ⊂ R, and a sequence{ζ r̃ (·)}r̃∈R̃ ⊂ DL(MF),
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such thatζ r̃ (·) ∈ B r̃
L for eachr̃, and such that either

inf
r̃∈R̃

inf
ζ(·)∈BL

∥∥d
[
ζ r̃(·), ζ(·)]∥∥L > εn or

(4.31)
inf
r̃∈R̃

inf
ζ(·)∈BL

∥∥〈χ, ζ r̃(·)〉 − 〈χ, ζ(·)〉∥∥L > εn.

By Corollary 3.16 and Definition 4.1, there exists aζ(·) ∈ BL and a further
subsequence{r̃j }j∈N ⊂ R̃ such that asj → ∞,

ζ r̃j (·) J1−→ ζ(·).(4.32)

By Lemma 4.3,ζ(·) is continuous. So asj → ∞,∥∥d
[
ζ r̃j (·), ζ(·)]∥∥L → 0,(4.33)

which implies by Lemma 3.5 and (3.76) that for eacht ∈ [0,L],∣∣〈χ, ζ r̃j (t)
〉 − 〈χ, ζ(t)〉∣∣ → 0 asj → ∞.(4.34)

Since〈χ, ζ(·)〉 is constant by (ii) of Lemma 4.3, we have by (4.34) and (3.81) that
in fact, ∥∥〈χ, ζ r̃j (·)〉 − 〈χ, ζ(·)〉∥∥L → 0 asj → ∞.(4.35)

Together, (4.33) and (4.35) contradict (4.31).�

We now apply a result obtained in [16], on the rate at which fluid model
solutions converge to their steady state, to chooseL > 1 large enough so that
elements ofBL are nearly in steady state fort ∈ [L − 1,L]. We first recall the
definition of the mapping� :Mc

F −→ D∞(MF) introduced in [6], Lemma 4.9.
Recall that the setMc

F ⊂ MF consists of all nonatomicξ ∈ MF, that is, allξ ∈ MF
satisfying〈1{x}, ξ 〉 = 0, for all x ∈ R+. Givenξ ∈ Mc

F, we define�(ξ)(·) = ζ̄ξ (·),
whereζ̄ξ (·) ∈ D∞(MF) is the unique fluid model solution for critical data(α, ν)

(defined on[0,∞) as in [6], Section 3.1), such thatζ̄ξ (0) = ξ . The following
proposition is a direct consequence of Theorem 1.3 in [16]. Recall that the lifting
map�ν was defined in Definition 2.2.

PROPOSITION4.5. Assume (Q.1) and let T > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Then for any ε > 0,
there exists L∗ > 1 such that for all ζ(·) ∈ BL∗ , t ∈ [L∗ − 1,L∗] implies

d[ζ(t),�ν 〈χ, ζ(t)〉] ≤ ε.(4.36)

PROOF. Let ln, p, MT , κn, γn, Nn, rn be the constants, and{Br
n} be the events

given by Lemma 3.8. Letq andMq be the constants given by Lemma 4.3, and
define

S = {
ξ ∈ Mc

F : 〈1, ξ 〉 ∨ 〈χ, ξ 〉 ∨ 〈χ1+q, ξ 〉 ≤ Mq

}
.(4.37)
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Let B ⊂ D∞(MF) be the set of all fluid model solutions̄ζ (·) for critical data
(α, ν) (defined on[0,∞) as in [6], Section 3.1) such thatζ̄ (0) ∈ S. Then as a direct
consequence of Theorem 1.3(i) in [16] (withM = Mq andε = q there), we have
that givenδ > 0, there existsL∗ > 1 such that

sup
ζ̄ (·)∈B

ρ
(
ζ̄ (t),�ν〈χ, ζ̄ (0)〉)≤ δ for all t ≥ L∗ − 1,(4.38)

whereρ(·, ·) is the Prohorov metric onMF defined in [16], Section 1. Note that
for any ζ̄ (·) ∈ B, �ν〈χ, ζ̄ (0)〉 ∈ Mq

ν , where

Mq
ν = {ξ ∈ Mν : 〈χ, ξ 〉 ≤ Mq}.(4.39)

Thus, to replaceδ and ρ(·, ·) with the givenε and the metricd[·, ·] in (4.38)
above, it suffices to show that there existsδ > 0 such that for allξ ∈ Mq

ν , the
ρ-ball Bρ(ξ, δ) of radiusδ centered atξ , is contained in thed-ball Bd(ξ, ε) of
radiusε centered atξ . To this end, letξq = Mq〈χ, νe〉−1νe be the element ofMq

ν

with the greatest mass. Note that the metricsρ(·, ·) and d[·, ·] both induce the
same topology onMF. So, we can chooseδ > 0 such thatBρ(ξq, δ) ⊂ Bd(ξ

q, ε).
Suppose thatξ ∈ Mq

ν andρ(ζ, ξ) < δ for someζ ∈ MF. SinceMq
ν = {cνe : c ∈

[0,Mq〈χ, νe〉−1]}, there is aξ ′ ∈ Mq
ν such thatξ +ξ ′ = ξq , where for two elements

ξ1, ξ2 ∈ MF, we defineξ1 + ξ2 ∈ MF by (ξ1 + ξ2)(A) = ξ1(A) + ξ2(A), for any
Borel setA ⊂ R+. Using the definition of the metricρ(·, ·), it is not difficult to
verify that

ρ(ζ + ξ ′, ξ + ξ ′) ≤ ρ(ζ, ξ) < δ,

which implies thatζ +ξ ′ ∈ Bρ(ξq, δ) ⊂ Bd(ξq, ε). By the definition (1.4) ofd[·, ·],
this yields

d[ζ, ξ ] = d[ζ + ξ ′, ξ + ξ ′] < ε.

Thus, we can chooseL∗ > 1 so that

sup
ζ̄ (·)∈B

d
[
ζ̄ (t),�ν〈χ, ζ̄ (0)〉] ≤ ε for all t ≥ L∗ − 1.(4.40)

Let BL∗ be given by Definition 4.1 of this section. In [6], it was shown that
for a fluid model solution̄ζ (·) ∈ D∞(MF), ζ̄ (t) has no atoms for allt ≥ 0 ([6],
Lemma 4.3 and equation (4.33) ff.). This result carries over to fluid model solutions
on [0,L∗] in a straightforward manner. So by Lemma 4.3 of this section, we have
for anyζ(·) ∈ BL∗ , thatζ(t) ∈ S ⊂ Mc

F for all t ∈ [0,L∗]. For anyζ(·) ∈ BL∗ , let
ζ̄ (·) ∈ D∞(MF) be defined by

ζ̄ (t) =
{

ζ(t), t ∈ [0,L∗],
�(ζ(L∗))(t − L∗), t ∈ (L∗,∞).

(4.41)

Note that ifζ(0) = 0, then by Lemma 4.3, Definition 4.2 and [6], Theorem 3.1,
ζ̄ (t) = 0 for all t ≥ 0. If ζ(0) �= 0, then ζ(·) satisfies (4.2) for allt ∈ [0,L∗]
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and�(ζ(L∗))(·) satisfies (4.2) for allt ≥ 0. It is not difficult to see that in this
caseζ̄ (·) must also satisfy (4.2) for allt ≥ 0. So, ζ̄ (·) is a fluid model solution
for critical data(α, ν) on [0,∞) such thatζ̄ (t) = ζ(t) for all t ∈ [0,L∗]. Since
ζ(0) ∈ S for all ζ(·) ∈ BL∗ , we haveζ̄ (·) ∈ B for all ζ(·) ∈ BL∗ . Thus, by
Lemma 4.3(ii) and (4.40), for anyt ∈ [L∗ − 1,L∗],

sup
ζ(·)∈BL∗

d[ζ(t),�ν 〈χ, ζ(t)〉] ≤ ε.(4.42)
�

4.2. State space collapse. Before proceeding to the proof of state space
collapse, we will need the following technical lemma, which provides a uniform
continuity property for the mapping� :Mc

F −→ D∞(MF) on a set of measures
ξ ∈ Mc

F that are close to the truncated invariant manifoldMq
ν . Recall that for any

ξ ∈ Mc
F, ζ̄ξ (·) = �(ξ)(·) is the unique fluid model solution defined on[0,∞) such

that ζ̄ξ (0) = ξ .

LEMMA 4.6. Assume (Q.1) and let T,L > 1 and 0 < η < 1 be given. Let
{εn}∞n=1 ⊂ (0,1) be a sequence such that εn ↓ 0, as n → ∞. Let ln, p, MT , κn, γn,
Nn, rn be the constants, and {Br

n} be the events given by Lemma 3.8,and let q and
Mq > 1 be the constants given by Lemma 4.3.Let M1 ≥ Mq and define

M1
ν = {ξ ∈ Mν : 〈χ, ξ 〉 ≤ M1}.(4.43)

Then for any ε > 0, there exists δ > 0 such that for all ζ(·) ∈ BL and ξ ∈ M1
ν

satisfying

d[ζ(0), ξ ] ∨ |〈χ, ζ(0)〉 − 〈χ, ξ 〉| ≤ δ,(4.44)

we have

sup
t∈[0,L]

d[ζ(t), ζ̄ξ (t)] ≤ ε.(4.45)

PROOF. Fix ε > 0 and choosen0 such thatεn0 ≤ ε/4. Let

δ0 = ε(κn0 ∧ 1)(〈χ, νe〉 ∧ 1)

8
.(4.46)

Note that by (4.9), anyζ(·) ∈ BL satisfies

sup
t∈[0,L]

〈
1[0,κn0), ζ(t)

〉 ≤ εn0

2
≤ ε

8
.(4.47)

Note also that for anyζ(·) ∈ BL, ζ(t) = �(ζ(0))(t) for all t ∈ [0,L]. By Theo-
rem 3.8 in [15],� is continuous onMc

F. Let ξ1 = M1〈χ, νe〉−1νe. Sinceξ1 ∈ Mc
F,

we can choose 0< δ1 < 1 such that for anyξ ∈ Mc
F satisfyingd[ξ, ξ1] ≤ δ1, we

have

sup
t∈[0,2M1L/δ0]

d
[
ζ̄ξ (t), ζ̄ξ1(t)

] ≤ ε.(4.48)
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Define

δ = δ0δ1

2M1
,(4.49)

and consider anyζ(·) ∈ BL such that for someξ ∈ M1
ν , (4.44) holds. The argument

splits into two cases. First, suppose that〈χ, ζ(0)〉 < δ0. Then, by (4.44), (4.49)
and the fact thatM1 > 1, 〈χ, ξ 〉 ≤ 2δ0. This implies by (4.46) that〈1, ξ 〉 =
〈χ, ξ 〉〈χ, νe〉−1 ≤ ε/4. Thus,

sup
t∈[0,L]

d[ζ(t), ζ̄ξ (t)]

≤ sup
t∈[0,L]

d[ζ(t),0] + d[0, ξ ]

≤ sup
t∈[0,L]

2〈1, ζ(t)〉 + 2〈1, ξ 〉(4.50)

≤ 2 sup
t∈[0,L]

(〈
1[0,κn0), ζ(t)

〉 + 〈
1(κn0,∞), ζ(t)

〉)+ ε

2

≤ ε

4
+ 2

κn0

〈χ, ζ(t)〉 + ε

2

≤ ε,

where the first inequality uses the fact thatζ̄ξ (t) = ζ̄ξ (0) = ξ for all t ≥ 0, since
ξ is on the invariant manifold ([16], Theorem 1.1). The second inequality uses de-
finition (1.4), the fourth uses (4.47) and Markov’s inequality, and the last inequal-
ity uses (4.46) and the fact that sinceζ(·) is a fluid model solution,〈χ, ζ(t)〉 =
〈χ, ζ(0)〉 < δ0 for all t ∈ [0,L] ([6], Theorem 3.1). This establishes (4.45) in the
first case.

For the second case, suppose that〈χ, ζ(0)〉 ≥ δ0. Sinceδ1 < 1 < M1, (4.44)
and (4.49) imply that〈χ, ξ 〉 ≥ δ0/2. Soξ �= 0. Let c1 = M1〈χ, ξ 〉−1 and define the
transformed functioñζ (·) : [0, c1L] −→ MF by

ζ̃ (t) = c1ζ(t/c1), t ∈ [0, c1L].(4.51)

Using a change of variables, it is not difficult to verify thatζ̃ (·) satisfies (4.2)
for all t ∈ [0, c1L] and is therefore a fluid model solution on[0, c1L]. Note that
ζ̃ (0) = c1ζ(0), and thatc1ξ = ξ1. Also note that sinceξ ∈ M1

ν , we havec1 ≥ 1.
Thus, using definition (1.4), we have

d[ζ̃ (0), ξ1] = d[c1ζ(0), c1ξ ]
≤ c1 d[ζ(0), ξ ]

(4.52)

≤ 2M1

δ0
δ

= δ1.
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This implies that

sup
t∈[0,L]

d[ζ(t), ζ̄ξ (t)] ≤ sup
t∈[0,L]

d[c1ζ(t), c1ξ ]

= sup
t∈[0,c1L]

d
[
ζ̃ (t), ζ̄ξ1(t)

]
(4.53)

≤ ε.

The first line in the above inequality uses (1.4), the fact thatc1 ≥ 1 and the fact that
ζ̄ξ (t) = ξ , sinceξ ∈ M1

ν . The second line follows by definition ofζ̃ (·), and the fact
thatc1ξ = ξ1 ∈ M1

ν . The last line then follows by (4.52) and (4.48) [withξ = ζ̃ (0)

there] by noting thatc1L ≤ 2M1L/δ0. �

We are now ready to prove state space collapse for the sequence of diffusion
scaled state descriptors{µ̂r(·)}. This leads directly to the proof of Theorem 2.3,
which appears at the end of the section.

THEOREM 4.7 (State space collapse).Assume (Q.1) and let T > 1 be given.
Then as r → ∞, ∥∥d

[
µ̂r (·),�νŴ

r(·)]∥∥T �⇒ 0.(4.54)

PROOF. We must show that for any 0< ε∗, η < 1, there existsr∗ ∈ R such
thatr > r∗ implies

Pr (∥∥d
[
µ̂r(·),�νŴ

r(·)]∥∥T ≤ ε∗) ≥ 1− η.(4.55)

Fix 0< ε∗, η < 1. We first note that by definition of the metricd[·, ·] and the lifting
map�ν ,

d[�νw1,�νw2] ≤ cν |w1 − w2|, w1,w2 ∈ R+,(4.56)

for some constantcν ≥ 1. Choose a sequence{εn}∞n=1 such thatεn ↓ 0 asn → ∞.
By Proposition 4.5, usingε = ε∗/3 there, we can chooseL∗ > 1 such that for all
ζ(·) ∈ BL∗ , t ∈ [L∗ − 1,L∗] implies

d[ζ(t),�ν 〈χ, ζ(t)〉] ≤ ε∗

3
.(4.57)

Let ln, p, MT , κn, γn, Nn, rn be the constants, and{Br
n} be the events given by

Lemma 3.8. Letq and Mq > 1 be the constants given by Lemma 4.3, and let
δ > 0 be given by Lemma 4.6 forL = L∗, M1 = 2Mq andε = ε∗/12. Fixn∗ ∈ N

large enough so that

εn∗ ≤ δ

2
∧ ε∗

12cν

.(4.58)

Chooser∗ large enough so thatn(r∗) ≥ n∗ andr∗ ≥ r ′
n∗ , wherer ′

n∗ > rn∗ is given
by Lemma 4.4. Fixr > r∗ for the remainder of the proof. The argument splits into
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two cases. We first consider the processµ̄r,0(·) on Br
n(r), and then consider the

processes̄µr,m(·) for m ∈ {1, . . . , �rT �} onBr
n(r).

For the first case, consider any realizationζ r(·) ∈ Br
L∗ of the process̄µr,0(·) on

the eventBr
n(r). By (3.77), there exists aξ ∈ Mν such that

d[ζ r(0), ξ ] ∨ ∣∣〈χ, ζ r(0)〉 − 〈χ, ξ 〉∣∣< εn(r) ≤ εn∗ .(4.59)

By (3.76) and the fact thatεn∗ < 1 < MT ≤ Mq < M1, we see thatξ ∈ M1
ν =

{ξ ∈ Mν : 〈χ, ξ 〉 ≤ 2Mq}. Let ζ̄ξ (·) = �(ξ)(·) and note that sinceξ is on the
invariant manifold,ξ = ζ̄ξ (0) = ζ̄ξ (t) for all t ∈ [0,L∗] ([16], Theorem 1.1). So
by definition ofMν and�ν ,

ζ̄ξ (t) = �ν〈χ, ζ̄ξ (t)〉 for all t ∈ [0,L∗].(4.60)

Let ζ(·) ∈ BL∗ be given by Lemma 4.4 forζ r(·) and n = n∗. Note that since
ζ̄ξ (·) andζ(·) are fluid model solutions on[0,L∗], we have for allt ∈ [0,L∗] ([6],
Theorem 3.1),

〈χ, ζ̄ξ (t)〉 = 〈χ, ζ̄ξ (0)〉 and 〈χ, ζ(t)〉 = 〈χ, ζ(0)〉.(4.61)

By combining the result of Lemma 4.4 cited above with (4.59) and (4.58), one
obtains

d[ζ(0), ξ ] ≤ d[ζ(0), ζ r (0)] + d[ζ r(0), ξ ]
≤ 2εn∗(4.62)

≤ δ,

and also ∣∣〈χ, ζ̄ξ (0)〉 − 〈χ, ζ(0)〉∣∣
≤ ∣∣〈χ, ζ̄ξ (0)〉 − 〈χ, ζ r(0)〉∣∣+ ∣∣〈χ, ζ r(0)〉 − 〈χ, ζ(0)〉∣∣

(4.63) ≤ 2εn∗

≤ δ.

This implies, by choice ofδ and Lemma 4.6, that for anyt ∈ [0,L∗],
d[ζ(t), ζ̄ξ (t)] ≤ ε∗

12
.(4.64)

Sincer > r∗, we have for anyt ∈ [0,L∗],
d
[
ζ r(t),�ν〈χ, ζ r(t)〉]

≤ d[ζ r(t), ζ(t)] + d[ζ(t), ζ̄ξ (t)] + d
[
ζ̄ξ (t),�ν〈χ, ζ̄ξ (t)〉]

+ d
[
�ν〈χ, ζ̄ξ (t)〉,�ν〈χ, ζ(t)〉]+ d

[
�ν〈χ, ζ(t)〉,�ν〈χ, ζ r(t)〉]

(4.65)

≤ εn∗ + ε∗

12
+ 0+ cν2εn∗ + cνεn∗

≤ ε∗

2
,
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where the first estimate in the second inequality above follows by Lemma 4.4, the
second estimate follows by (4.64), the third by (4.60), the fourth by (4.56), (4.61)
and (4.63), and the fifth estimate uses (4.56) and Lemma 4.4. The last inequality
follows by (4.58) and the fact thatcν ≥ 1.

We now proceed to the second case. Letζ r(·) ∈ Br
L∗ be a realization of the

processµ̄r,m(·) on Br
n(r), wherem ∈ {1, . . . , �rT �}. Let ζ(·) ∈ BL∗ be given by

Lemma 4.4 forζ r(·) andn = n∗. Sincer > r∗, we have for anyt ∈ [L∗ − 1,L∗],
d
[
ζ r(t),�ν〈χ, ζ r(t)〉]

≤ d[ζ r(t), ζ(t)] + d
[
ζ(t),�ν 〈χ, ζ(t)〉]

+ d
[
�ν〈χ, ζ(t)〉,�ν〈χ, ζ r(t)〉](4.66)

≤ εn∗ + ε∗

3
+ cνεn∗

≤ ε∗

2
,

where the three estimates in the second inequality are by Lemma 4.4, (4.57), (4.56)
and Lemma 4.4, and the last inequality is by (4.58) and the fact thatcν ≥ 1.

Finally, combining the estimates (4.65) and (4.66), we have onBr
n(r), for r > r∗,

∥∥d
[
µ̂r(·),�νŴ

r(·)]∥∥T

= sup
t∈[0,rT ]

d
[
µ̄r(t),�ν 〈χ, µ̄r(t)〉]

≤ sup
t∈[0,L∗]

d
[
µ̄r,0(t),�ν 〈χ, µ̄r,0(t)〉](4.67)

+ sup
1≤m≤�rT �, t∈[L∗−1,L∗]

d
[
µ̄r,m(t),�ν〈χ, µ̄r,m(t)〉]

≤ ε∗

2
+ ε∗

2
.

SincePr(Br
n(r)) ≥ 1− η for r > r∗, (4.55) is proved. �

PROOF OFTHEOREM 2.3. By Proposition 3.1, we have thatŴ r(·) �⇒ W ∗(·)
as r → ∞, whereW ∗(·) is a reflected Brownian motion inR+ with drift −λ,
varianceαa2 + βb2 and initial conditionW ∗(0) equal in distribution to〈χ,�〉.
Since�ν :R+ −→ MF is continuous, the continuous mapping theorem implies
that �νŴ

r(·) �⇒ µ∗(·) = �νW
∗(·) as r → ∞. Thus, Theorem 4.7, combined

with the “converging together lemma” ([1], Theorem 4.1), implies thatµ̂r (·) �⇒
µ∗(·) asr → ∞. �
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