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DIFFUSION APPROXIMATION FOR A PROCESSOR SHARING
QUEUE IN HEAVY TRAFFIC!

By H. CHRISTIAN GROMOLL
EURANDOM

Consider a single server queue with renewal arrivals and i.i.d. service
times in which the server operates under a processor sharing service
discipline. To describe the evolution of this system, we use a measure valued
process that keeps track of the residgexvice times of all jobs in the system
at any given time. From this measure valued process, one can recover the
traditional performance processes, including queue length and workload.
We show that under mild assumptions, including standard heavy traffic
assumptions, the (suitably rescaled) measure valued processes corresponding
to a sequence of processor sharing queues converge in distribution to
a measure valued diffusion process. The limiting process is characterized as
the image under an appropriate lifting map, of a one-dimensional reflected
Brownian motion. As an immediate consequence, one obtains a diffusion
approximation for the queue length process of a processor sharing queue.

1. Introduction. Consider a queueing system which consists of a single
server with an infinite capacity buffer, to which jobs arrive according to a delayed
renewal process. Thigh such arrival requires an amount of processing time that
is theith member of a sequence of independent and identically distributed strictly
positive random variables. The server, rather than providing service to just one
job at a time, operates under a processor sharing discipline; that is, it works
simultaneously on all jobs currently in the buffer, providing an equal fraction of its
attention to each. Thus, at any given time that the buffer is nonempty, each job in
the buffer is being processed at a rate that is the reciprocal of the number of jobs
in the buffer. When the server has fulfilled a given job’s service time requirement,
the job exits the buffer. This system is known as a processor sharing queue.

The processor sharing service discipline can be viewed as an idealization of
a round-robin or time-sharing protocol used in computer and communication
systems. There is a considerable literature on processor sharing queues (see [18]
for a survey up to 1987), much of which assumes either Poisson arrivals or
exponential service times. For a discussion of more recent work, including
a handful of results for the case of generally distributed interarrival and service
times (theG1/G1/1 processor sharing queue), see [6].

Received September 2002; revised June 2003.

lSupported in part by NSF Grants DMS-97-03891 and DMS-00-71408 and a gift from the David
and Holly Mendel fund.

AMS 2000 subject classifications. Primary 60K25; secondary 68M20, 90B22.

Key words and phrases. Processor sharing queue, heavy traffic, diffusion approximation, state
space collapse, measure valued process.

555



556 H. C. GROMOLL

In this paper, we present a heavy traffic diffusion approximation for a measure
valued process that keeps track of the “state” a¥ B/ G1/1 processor sharing
gueue. A direct consequence of this is the existence of a diffusion approximation
for the queue length process. Note that since the workload processin@17 /1
gueue is the same for all nonidling service disciplines, the heavy traffic approx-
imation for the workload process under a processor sharing service discipline is
the same as the well-known approximation under a FIFO (first-in-first-out) service
discipline [9]. However, this simple relationship does not hold for the queue length
process.

The measure valued process that we study keeps track oédiuieial service
times of jobs in the buffer. The residual service time at tirrre 0 of a job which has
entered the buffer by timg is given by the amount of processing time originally
requested by the job minus the total amount of processing time it has received
by time ¢. Jobs with residual service times at timequal to zero have received
enough processing time to fulfill their requirement and have departed the buffer.
Let Mg denote the space of finite, nonnegative Borel measuré®,oa [0, co).

The measure valued proce§s(z):t > 0} is such that for each > 0, u(?) is

the random element aMg that has a unit of mass at the residual service time

of each job currently in the buffer at tinte From this process, one can recover
information about the performance of the system. For exampl€ (et denote

the number of jobs in the buffer, or queue length, at time 0. ThenZ(¢) can

be recovered as the integral afr) against the function that is identically one:
Z(t) = (1, u(1)), where (1, u(t)) = fIR<+ 1u(t)(dx). Similarly, let W(¢) denote

the sum of the residual service times of all jobs in the buffer, or workload,
at timer > 0. Then W) = (x, u(®)), where (x, u(t)) = [R+X(x)u(t)(a’x)
and x (x) = x. Although the procesg. (-) includes information about the queue
length and workload processes, it also provides a more detailed description of
the state of the system than is available from these one-dimensional performance
processes alone. Itis this level of detail which facilitates our analysis. The process
w(-) is called thestate descriptor for the processor sharing queue. Note that
this terminology is not intended to imply thai(-) is necessarily a Markovian
state descriptor (it may not be, since we do not include the residual interarrival
time, the time remaining until the next job arrives to the buffer, in the state
description). The procegs(-) has previously been used by Grishechkin [5], along
with other measure valued descriptors, in his heavy traffic analysis of the steady
state distribution of a processor sharing queue. It has also been used recently by
Gromoll, Puha and Williams [6], Puha and Williams [16] and Puha, Stolyar and
Williams [15] for obtaining fluid limit results. Similar measure valued descriptors
have also been used recently to describe other queueing systems. Doytchinov,
Lehoczky and Shreve [3] and Kruk, Lehoczky, Shreve and Yeung [11] have used
measure valued processes in the context of a queueing system with deadlines.
Limic [12, 13] has used measure valued processes in studying the heavy traffic
behavior of a LIFO (last-in-first-out) preemptive resume queue.
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In [6], a fluid (or law of large numbers) approximation for the state descriptor
w () of a heavily loaded processor sharing queue was studied. It was conjectured
there that an understanding of the steady state behavior of this fluid approximation
would provide a key ingredient for establishing a heavy traffic diffusion approxi-
mation for the process(-). This is verified in the present paper and the role played
by fluid approximations is informally described in the following paragraphs. The
reader is referred to Sections 3 and 4 for the complete treatment.

For eachr > 0 in some sequence which tends to infinity, thed scaled and
diffusion scaled versions ofu(-), denotedi” (-) andi” (), are defined byi" (r) =
rlurt) and @/ (r) = r 1 (r?r) for 1 > 0. Since’ (t) = i’ (rt) for eachs > 0,
one can think of the diffusion scaled procggs-) over a finite time intervdl0, 7],
whereT > 1, as corresponding to the fluid scaled proces6) over the time
interval[O, »T]. The latter interval grows without boundas> co. To studyi” (-)
over this “long” time interval, one considers it in sections by covelfiog 7]
with the overlapping finite time intervalg:, m + L], wherem =0, ..., [T | and
L > 1is fixed (herg -] denotes the integer part). THaifted fluid scaled processes
u""(-) are then defined foreaelh < |rT | andr € [0, L] by i~ (¢t) = 1" (m +1).
Thus, we can study the diffusion scaled procgsé) over [0, T] by studying
the family of shifted fluid scaled processés™™(-).:m < |[rT]} over [0, L].

By building on the techniques developed in [6], it is shown that-as oo, “good”
sample paths of the proces$@$™(-), m < |rT |} can be uniformly approximated
on [0, L] by measure valued functiogs-) : [0, co) — Mg known asfluid model
solutions (see Definition 4.2 in Section 4By “good” sample paths, we mean
sample paths in a set whose probability approaches Faso.

Recently, Puha and Wams [16] have shown that under mild conditions, such
fluid model solutions; (-) converge to a steady state; that is, for any sgich,
there is alo, € Mg such that as — oo, £(f) —> (s In the topology of weak
convergence of measures. Moreovgs,depends only on the limiting service time
distributionv, and on the first moment gf(r), which remains constant inindeed,

Coo=Ay(x,c(t))  forallz >0,

where A, :R;. — Mg is the lifting map defined by\,w = w(y, v.) "1y, and
v, denotes the residual excess lifetime distribution associatedwyitiat is,v, is
the probability measure dR. satisfyingv, ([0, x]) = (x, v)~* Jo v(y, 00)dy for
all x € Ry. In [16], conditions are also identified under which convergence to
steady state occurmiformly for certain collections of fluid model solutions.

In the present paper, the steady state results in [16] are combined with the fluid
approximations of i (-):m < |rT]} described above to show that/if> 1 is
sufficiently large and € [L — 1, L], then for “good” sample paths,

(1.1) RoT () A~ Ay (X, 177(D)).
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This fact is applied to the diffusion scaled state descriptors in the following way.
For anyt € [(L — 1)r~1, T, thereisanm € {0, ..., [rT]}andans € [L — 1, L]
such that

1.2) At =p (rt) =" (m+s) = pmg""(s).

Combining (1.2) with the approximation (1.1) yields that for “good” sample paths,
and forr e [(L — 1)r~1, T,

(1.3) A (@) ~ Ay (x, A7 (1))

It is shown that under mild conditions, including standard heavy traffic assump-
tions, the above approximation is valid on the entire intef@al"], with probabil-

ity approaching 1 as — oco. Recall that(y, 7 (1)) = r ~1W (r?r) is the (diffusion
scaled) workload at time which we denote bﬁ/’(t). Thus, the essence of (1.3) is
that as the diffusion scaled procesy-) approaches the heavy traffic limit, it can
be recovered from the diffusion scaled workload prod&ss) on [0, T by an ap-
propriate lifting map. This phenomenon is knowrstate space collapse. Since it

is known that under the assumptions we will impose, the proB&ss converges

in distribution to a reflected Brownian motid#i*(-) on R, a diffusion approxi-
mation for i’ (-) follows quickly from state space collapse. (See Sections 3 and 4
for more details.) This yields a limiting measure valued diffusion process which is
confined to the one-dimensional subspgae : ¢ > 0} of Mg. It is given by

W) = AWHC).

A consequence of the above diffusion approximation for the diffusion scaled
state descriptofi” () is the existence of a diffusion approximation for the diffusion
scaled queue length procegs(-) = (1, 2’ (-)). The limiting process is the one-
dimensional reflected Brownian motion

ZF() = (L, 1" ().
The precise form oZ*(-) is given in Corollary 2.4, which verifies a conjecture
of Harrison and Williams [8] in the case of a single processor sharing queue
with a single class of jobs. We note that in cases where the pré€&se has
negative drift, the steady state distributionZf(¢) ast — oo is consistent with
that obtained by Grishechkin [5] using other means (see Section 2.4).

The method outlined above for obtaining a heavy traffic diffusion approximation
using fluid approximations as an intermediate step is analogous to the method
developed by Bramson [2] and Williams [17] for proving diffusion approximations
for open multiclass networks with HL (head-of-the-line) service disciplines.
Indeed, the framework developedin [2, 17] serves as the primary motivation for the
approach taken here for the processor sharing discipline. Note that since processor
sharing is not an HL service discipline, a large part of the machinery needs to be
developed from first principles.
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The paper is organized as follows. In Section 2 we give a precise description of
our model and assumptions, and we state our main results. Section 3 is devoted to
fluid scale analysis, which prepares us for the proof of state space collapse. The
latter is given in Section 4.

1.1. Notation. The following notation will be used throughout the paper. Let
={1,2,...} and letR denote the set of real numbers. ko € R, we write
a Vv b for the maximum ot andb, a A b for the minimum ofa andb, a™ for the
positive part ofz, |a | for the largest integer less than or equati@nd[a] for the
smallest integer greater than or equaktolhe nonnegative real numbe& oo)
will be denoted byR. . For a functiong : Ry — R, let | gllcc = SUP.cr, 18(x)]
and||gllxk =SUp.¢(0 x18(x)| for eachk > 0.
For a setB C R, we denote the indicator of the sBtby 1. We also define
the following real valued functions dR : x (x) = x, for x e Ry, andp(x) = 1/x,
for x € (0, co) with ¢(0) = 0. For a topological spacé, denote byC;(A) the set
of continuous, bounded, real-valued functions defineddoin addition, for an
interval I C R, C,}(I) is the set of once continuously differentiable, real-valued
functions defined ot that together with their first derivatives are bounded on
Recall thatME is the set of finite, nonnegative Borel measure®aqn Consider
¢ € Mg and a Borel measurable functign R — R which is integrable with
respect to¢. We define(g,¢) = [R+ g(x)¢(dx). Our equations will involve
expressions of the forn}f[a,oo)g(x — a)t(dx) for a > 0. To ease notation
throughout, we write this a& (- — a), ¢), making the convention that suclgds
always extended to be identically zero ¢noo, 0). The spaceMr is endowed
with the topology of weak convergence of measures; that isgfot € Mg,
n € N, we have(, LN ¢ if and only if (g, ¢,) — (g, ¢) asn — oo for all
g R, — R that are bounded and continuous. With this topology,is a Polish
space [14]. It will be convenient to deal with weak convergencaby means of
a suitable metric which we now define. First, choose a countable set of nonnegative

functlons{gk Joeq C Cb(R+) that are each bounded by 1, and such tg%pk 11s
convergence determining fowr, that is, such thas, LN ¢ in Mg, asn — oo, if

and only if for eachk € N, (g,?, L) —> (g,?, z), asn — oo. We refer the reader
to [4], Chapter 3, Section 4, for a possible construction. Note that the construction
in the proof of Proposition 4.2 in [4], Chapter 3, Section 4, can be modified to

require thatg,? € C%(RQ and ||g,?||OQ <1 for k € N. Next, for eachk € N, let
hf € Ci(R4) be a nonnegative function that is bounded by 1 and satiisfieso

on[0, k—1], 1# = 1 on[k, 00) and||(h])' [l < 2. Lettingg = {g7}12°, U{hf}2
we define a metric ot in terms ofg as follows. Forcy, ¢2 € Mg, define

di1, g2l = 22 gl c1) — (g] . 22| A D)

+ sup| (hd, c1) — (h?, 22)].
keN

(1.4)
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It is straightforward to see thdlf-, -] is a complete metric om(r that induces the
topology of weak convergence of measures. Note that althd{igl] depends on
the setg, we do not indicate this explicitly in the notation. We denote the zero
measure inMg by 0 and the measure (g that puts one unit of mass at the point
x € R, (or Dirac measure at) by §,. We will uses; to denote the following
truncated Dirac measure:

" {SX, x € (0, 00),
6)6 =
0, x=0.

We use =" to denote convergence in distribution of random elements of
a metric space. For random elemeftsYy of a metric spaceX ~ Y will denote
equivalence in distribution. Following Billingsley [1], we will use and E,
respectively, to denote the probability measure and expectation operator associated
with whatever space the relevant random element is defined on. All stochastic
processes used in this paper will be assumed to have paths that are right continuous
with finite left limits (r.c.l.l.). ForL € (1, oo) and a Polish spac&, we denote by
Dz (8) =D([0, L], 8) [resp.Dso(8) = D([0, o0), 4)] the space of r.c.Ll. functions
from [0, L] (resp.[0, c0)) into 4, and we endow this space with the usual Skorohod

Ji-topology [4]. We use “’%” to denote convergence in this topology.

2. Theprocessor sharingqueue. In this section we give a precise description
of the processor sharing queue, specify our assumptions and state our main
result. A formal definition of the processor sharing queue, as considered in this
paper, was previously given in [6]. The reader is referred there for a detailed
discussion. However, since the diffusion approximation presented here requires
stronger assumptions on the model than were made in [6], it is necessary to
briefly review the definition. This is the subject of Section 2.1, where we introduce
a sequence of processor sharing queueing models and the associated notation.
Section 2.2 describes the scaling and time shifts we will apply to this sequence
of models, and Section 2.3 specifies our asymptotic assumptions on the sequence.
The statement of our main result appears in Section 2.4.

2.1. A sequence of processor sharing queues. We now specify a sequence
of processor sharing queueing models indexedrhy R, where R C (0, c0)
is a sequence which increases to infinity. Each model in the sequence may be
defined on a separate probability space and weRisendE", respectively, for
the probabilityand expectation operatonaach of these spaces. Tih model
in the sequence consists of the following: A server, which processes jobs from
an infinite capacity buffer according to the processor sharing discipline, a pair of
stochastic primitive processé® (-), V", which describe the arrival of work to the
buffer, and a random initial condition, which specifies the state of the system at
time 0. A measure valued procgs¥-) together with a set of descriptive equations
describe the time evolution of the state of the system.
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Theexogenous arrival process E” (-) is a ratex” delayed renewal process asso-
ciated with a sequenda; }7°, of finite nonnegativenterarrival times. Forz > O,
E’ (t) represents the total number of jobs which have arrived to the buffer during
the time interval(0, t]. We refer to theth job to arrive to the buffer after time O
simply as theth job. In contrast, jobs which are already in the buffer at time 0 will
always be referred to asitial jobs. The quantity:] is the arrival time of the first
job, andu!, i > 2, is the elapsed time between the arrival of the- 1)st andith

jobs. Thus, fori > 1, U = ’/-:11//- is the arrival time of theth job. We define
Uy =0. Sofort > 0, S
(2.1) E"(t)=supi >0:U] <t}.

It is assumed that! }7°, is a sequence of independent random variables and that

{ui}725 is i.i.d. with mean(a’) 1 € (0, o0) and standard deviatio#i’ < co. The

first element) of the sequence is assumed to be strictly positive with finite mean.
The service process {V/,i = 1,2,...} records the cumulative amount of

processing time required from the server by the firgbbs. It is defined from

a sequencév; }7°, of strictly positiveservice times by

l
(2.2) vi=) o fori=12...
=1

The quantityv! represents the amount of processing time thattingob requires
from the server. It is assumed thai/}7°, is a sequence of strictly positive
i.i.d. random variables with common distribution given by a Borel probability
measurev” on R,. We assume” has mean(g”)~! e (0,00) and standard
deviationd” < co. Finally, we assume that the service proc€sdss independent

of the exogenous arrival proceBs(-).

Theinitial condition specifiesZ”(0), the number of initial jobs present in the
buffer at time zero, as well as the service time requirement for each of these initial
jobs. We assume&’(0) is a nonnegative, integer valued random variable. The
service times for initial jobs are taken to be the firs{0) elements of a sequence
{ﬁ; ‘/?":1 of strictly positive random variables. The random variabt$0) and

{17;}7.0:1 are assumed to be independentudf; 2, and{v; }72,, but are not assumed
to be independent of one another. A convenient way to express the initial condition

is to define an initial random measuré€ (0), which is the nonnegative, finite
random Borel measure diy. given by

Z'(0

(2.3) WO =3 8.

j=1
Recall thats, denotes the Dirac measurexat R,. Henceforth,u” (0) will be
used as the initial condition. We assume that0) satisfies

(2.4) E"[{(1, 1" (0))] < o0,
(2.5) E"[(x, 1" (0))] < oo.
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Note that since(l, u"(0)) = Z"(0) and (x, u"(0)) = ZJZ_(f) vj assump-
tions (2.4) and (2.5) mean, respectively, that the expected initial queue length and
expected initial workload are finite.

The state descriptor is a performance process which describes the time
evolution of the state of the processor sharing queue. It is a measure valued process
" (+): [0, 00) —> Mg such that for each > 0, the random Borel measuré ()
has one unit of mass located at #esidual service time of each job that is in the
buffer at timer. The residual service time at time> 0 of jobi < E” () [resp., of
initial job j < Z"(0)], denotedR; (¢) [resp.,R;(t)], is the remaining amount of
processing time required to fulfill the service time requirement of the job. If this
residual service time is zero, the job has completed service and has departed the
buffer. Thus at > 0, the state descriptor is given by

Z'(0) E" (1)

Recall thas; is the Dirac measure atfor x € (0, co) with Sar = 0, which ensures

in the above that” () has one unit of mass only for each job with nonzero residual
service time at time > 0. Let Z"(¢+) denote the number of jobs in the buffer,

or queue length, at time> 0. Then clearlyZ” (¢+) = (1, u"(¢)) forall t > 0. Thus,
under the processor sharing discipline, any job that is present in the buffer at time
t receives service at the instantaneous tate’ (1)) ~1. Note that if a job is present

in the buffer at time, then(1, u"(z)) # 0. Thecumulative service per job provided

by the server up to time> 0 is defined by

t
@2.7) S (1) = /O o((L 1 ())) ds

wherep(x) = 1/x for x € (0, co) with ¢(0) = 0. Then, since job < E" (¢) arrives

at time U] < t, the cumulative amount of processing time that jobeceives
by time ¢ is equal tov; A (S (t) — S"(U])). Similarly, the cumulative amount
of processing time that an initial jop < Z"(0) receives by timer is equal

to ﬁ; A 8" (). Therefore, forr > 0, the residual service times are given by the
equations

(2.8) R)=0 -8 @0)+SWH)*Y fori=1,....E @),
(2.9 R’(t) = (”’ S’(t)) forj=1,...,Z"(0).

Given the primitive processeB’ (), V', and the initial conditionu”(0), equa-
tions (2.6)—(2.9) determine the state descripto(-), the processs”(-) and the
residual service times. This fact is not difficult, although somewhat tedious,
to show. We note that the definition of the state descriptor given here is equiva-
lent to the formulation in [6].
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Let W (¢) denote the (immediate) workload in the buffer at tinpe 0. This is
defined as the amount of time the server would have to work in order to complete
the remaining service time requirements of all jobs in the buffer attjrmgsuming
no new arrivals take place. Since this is given by the sum of the residual service
times of all jobs which are in the buffer at timgwe have

(2.10) W (@) = (x, u" (1)) forz > 0.

The cumulative service per job proce®s-) will play a particularly important
role in our analysis. We will find it convenient to have notation for the increments
of this process. Far, & > 0, define theeumulative service per jobin [¢, t + k] by

t+h
(2.11) Stiwn =58t +h)—S"(t) =/t e((1, 1" (5))) ds.

Then forU; < t, the amount of service received by tia job by timer can be
written asv; A Syr and the residual service time at timean be written

RI(D) = (] = Sgr.) "

2.2. Scaling.  Our result concerns the asymptotic behavior of processor shar-
ing queues owliffusion scale. In particular, the focus of our attention is the diffu-
sion scaled state descriptor, which is defined far0 by

1
(2.12) A = ;u’(rzw.

We will also be interested in diffusion scaled versions of the workload and queue
length processes, defined for> 0 by W’(t) =r= YW’ (r%) = (x, i (1)) and

7" (1) =r~17"(r%) = (1, i (1)), respectively. Much of our understanding of the
diffusion scaled state descriptf () will be derived from results about tHkid
scaled state descriptor, which is definedder 0 by

1
(2.13) pnr) = ;u’(rt).

The relationshipi” (1) = " (rt) is essential for bootstrapping results from fluid
scale up to diffusion scale. Recall that our approach for studying the diffusion
scaled proces8’ () over a fixed finite time intervdl0, T'], for T > 1, is to look

at the fluid scaled procegs (-) over the time intervalO, »T]. Specifically, we
study overlapping sections @f (-), each defined on a finite time interval of fixed
lengthL > 1. Foreachr € R,t>0andm € {0, 1, ...}, define

(2.14) () =" (m ).

Then since for each € R, the time intervalO, rT] is covered by thérT | + 1
overlapping time interval§m,m + L], for 0 < m < |rT], we have that for
anyt € [0, rT], thereis (at least on@) < | T | ands € [0, L] such that

(2.15) A = p""(s).
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Much of Section 3 is devoted to extending results in [6] on the asymptotics
(asr — oo) of " (-) over [0, L], so that they hold fog""(-) over [0, L] for

allm < |rT|. For this discussion, we define the following fluid scaled and shifted
fluid scaled processes. Foralk R,t >0,k >0andm {0, 1, ...}, let

(2.16) E'(t) = %E’(rt), E"™(t) = E"(m +1),
(2.17) Z'(t) = % Z"(r1), 7'M =Z"(m + 1),
(2.18) W (t) = %W’(rt), W (1) = W' (m +1),
(2.19) Stien = Steraany Siten = Sttt

Note that by (2.19),

r(m+t+h)

St teh = Srmtt) otk = /r(mm e((L, 1" (s))) ds

(2.20) "
:/t o((L, A" (5))) ds.

2.3. Heavy traffic assumptions. In this section, we specify the assumptions
under which the diffusion approximation will be proved. leet- 0, a > 0 and
6 > 0 be fixed constants and letbe a probability measure di, that does not
charge the origin, and satisfies

(2.21) (x* 1) < o0o.

Then B = (x,v)~! is positive and finite andb = ((x2,v) — (x,v)D)¥? is

finite. In order to obtain convergence in distribution of the diffusion scaled state
descriptorsit”(-) to a diffusion process, we impose the following asymptotic
assumptions on the sequence of processor sharing queues defined in Section 2.1.
For the sequence of arrival processes, we assume thataso,

(2.22) (@, a") — (a,a),
(2.23) E"[u}]/r — O,
(2.24) lim supE’ [(u5)?7] < oo.

For the sequence of service processes, we assume that as,

(2.25) v,
(2.26) (B".b") — (B, D),
(2.27) lim sup(x %, v") < oc.

r—0oQ
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Define thetraffic intensity parameter for the rth system byo” = /8", and
let p = @/B. In addition to the above, our assumption that the sequence of
processor sharing queues approadisasy traffic requires that

(2.28) p=1.

We also require the sequence to approach heavy traffic at an appropriate rate and
assume that as— oo,

(2.29) r(l—p") — A for somei e R.

Assumption (2.23) implies that the initial residual interarrival time vanishes on
diffusion scale. Assumptions (2.24) and (2.27) imply Lindeberg-type conditions,
which along with (2.22), (2.23) and (2.26), are needed to imply functional cen-
tral limit theorems for the triangular arraya;i =1,2,...},cg and{v/;i =
1,2,...},ex and ultimately, convergence in distribution of the diffusion scaled
workload processes to a reflected Brownian motion (see Proposition 3.1). Assump-
tion (2.27) is two moments stronger than what would normally be used for such
functional central limit theorems. The additional restriction is used in a separate
part of our analysis to estimate moments of the shifted fluid scaled state descriptors
{@""(),m < |rT]} (see Lemma 3.6).

We also make assumptions on the asymptotic behavior of the diffusion scaled
initial measurgi” (0). Sinceit” (0) = " (0), we make our assumptions in terms of
1" (0) since they will be used in that form. The following definition is central to
these assumptions.

DEFINITION 2.1 (Invariant manifold). Letv, denote the excess lifetime
distribution associated withy, that is, v, is the probability measure o
satisfying(Lio 1, ve) = B /g (L(y,00), v) dy forall x e Ry. Let

M, ={cv, € Mp:c e R,}.
Following usage in [2], we refer to the one parameter family of measures
M, C Mg as the invariant manifold associated with
Let ® be a random measure taking valuesMig, such that
(2.30) ®eM, a.s.,
(2.312) E[(1, ®)] < cc.

Note that assumption (2.21) implies thit, v.) < oo and (x**?, v,) < oo, for
k=1, 2, 3. Combining this with (2.30) and (2.31) implies tl@talso satisfies

(2.32) El(x, ©)] < oo,
(2.33) E[(x*T?, ®)] <00  fork=1,2,3.



566 H. C. GROMOLL

An important property of9 that we will need is that it has no atoms a.s. This is
a trivial consequence of (2.30) sineg has a density function. This “no atoms”
property of® will be used in the following form:

(2.34) lim P( SUp(Lix,x 1«1, ©) < 3) =1 foralle > 0.
K‘l’o XER+
The equivalence of (2.34) to the fact th@ has no atoms a.s. is proved in
[6], Lemma A.1.
For the sequence of (scaled) initial measyre€) = " (0), we assume that as
r — 00,

(2.35) (2"(0), (x, 2" 0), (x*0, 3" (0)) = (O, x,0), (x}, o).

Note that for anyg € C,(Ry), W, : M —> R defined byW,(¢) = (g,¢) is
a continuous function. So the first component of (2.35) implies by the continuous
mapping theorem ([1], Theorem 5.1) that for any sgckyg, ii” (0)) — (g, ®) as
r — oo. The second component of (2.35) implies that the fluid/diffusion scaled
initial workload converges in distribution, that I8 (0) = W (0) = (x,©)
asr — oo.

To simplify the statements of results for the remainder of the paper, we now
summarize our assumptions in the following.

(Q.1) There is a sequence of processor sharing queues defined in Section 2.1 such
that for some constants> 0, « > 0, a > 0, some probability measure
on R, that does not charge the origin, and some random meé&staking
values inMg, (2.21)—(2.31) and (2.35) hold.

2.4. Mainresult. In order to state our main result, we will need the following
definition.

DEFINITION 2.2. Assume (Q.1). Len,:R, — Mg be the lifting map
associated witlv given by
w

(2.36) Ayw =
(X’ Ue)

Ve forweR,.

THEOREM 2.3. Assume (Q.1). Then as r — oo, the sequence of diffusion
scaled state descriptors {i"(-)} convergesin distribution to the measure valued
processp*(-) = A, W*(-), where W*(-) isareflected Brownian motion on R with
drift —A, variance aa? 4+ b? and initial value W*(0) that is equal in distribution
to (x, ®).

COROLLARY 2.4. Assume (Q.1). Then as r — oo, the sequence of diffusion
scaled queue length processes (Z" () converges in distribution to the process
Z*(-) = C,W*(-), where W*(.) is the reflected Brownian motion specified above,
and C, = 28(1+ B%? 1.



DIFFUSION APPROXIMATION FOR A PROCESSOR SHARING QUEUE 567

PROOF Since Z7(-) = (1, 4"(-)) and since¥;: Mg —> R defined by
Wy(§) = (1,&) is continuous, the result follows from Theorem 2.3 by the
continuous mapping theorem. The form of the const@nfollows from (2.36)
by rewriting the mean of, in terms of the meap—1, and standard deviatid
ofv. O

Harrison and Williams [8] have conjectured that for a queue operating under
the processor sharing discipline (possibly with several different job classes which
may arrive to the buffer), a heavy traffic limit theorem should hold for the queue
length process associated with each job class. They predict that for each job
class, the limiting queue length process should be a constant multiple of the
reflected Brownian motion obtained as the limiting workload process for the
gueue. Moreover, they specify the form of the constants for which the above claim
should hold (see A.58, A.60 and A.61 in [8]). Corollary 2.4 verifies this conjecture
in the case of a single job class. In particular, the congtanalidates (after some
rewriting) the prediction made in [8], A.60 and A.61.

In cases where is positive, the procesg*(-) has a steady state distribution
which can be computed as in [7] to be

. JNim P(Z*(r) <x)
(2.37) =1—exp(—A (872 +b?)(a® 4 b*) " Lx).

It is interesting to note that in the cage= 1, this is consistent with the steady
state distribution obtained by Grishechkin [5]. Indeed, since the approach taken
in [5] was to first take the limit ag — oo to get the steady state distribution of

Z" (1) and then take the limit of the resulting steady state distributioms-asso,

the consistency with (2.37) suggests that an interchange of limits is possible in this
situation.

The strategy for proving Theorem 2.3 can be divided into two main tasks.
The first task is to establish a tightness property for the procegses(.),
reR,m < |rT]}. Thisis accomplished in Section 3. In Section 4, we undertake
the second task, which is to identify limit points obtained in Section 8ud
model solutions (see Definition 4.2) and to show that, consequently, the process
4" (-) can be approximated, as— oo, by “overlapping” fluid model solutions.
This will be done in such a way that as— oo, the random measurg’ (r)
is close to the steady state of some fluid model solution for all0, T'], with
arbitrarily high probability. Combined with a result in [16] which provides rates of
convergence to steady state for such fluid model solutions, this leads to the proof
of state space collapse. Finally, the proof of Theorem 2.3 collecting these results
appears at the end of Section 4.
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3. Compactness. The aim of this section is to prove a tightness property
for the shifted and fluid scaled state descriptgr§™(-),r € R,0<m < [rT]}.
Specifically, our goal is to show in Corollary 3.16 at the end of this section that
sequences indexed bye R of “good” sample paths of the procesdgg~"(.),
reR,m < |rT]} are relatively compact iD; (M), for L > 1. Here, sample
paths are “good” with arbitrarily high probability as — co. The road to
Corollary 3.16 involves a detailed analysis of the behavior of the processor sharing
queue on fluid scale and we rely heavily on the ideas developed in [6], Section 5.
Nevertheless, many of the techniques developed there need to be refined and
several new ideas are needed for the present analysis. This is to account for the
fact that for eachr € R, we are dealing with order measure valued processes
(one for eachm € {0, ..., [»T]}) instead of just one.

The section is organized similarly to [6], Section 5. In Sections 3.1 and 3.2
we describe a dynamic equation satisfied by the fluid scaled state descrip-
tors {ix""(-)} and a well-known heavy traffic limit theorem for the workload
processeq(y, n"™(-)}}, respectively. Section 3.3 contains a generalization of
Lemma 5.3 in [6]. It states that under certain conditions, the fluid scaled queue
length procesgl, 1" (-)) can be bounded above over long time intervals. This
will yield an upper bound for the shifted fluid scaled queue length process
(1, a~™()) on [0, L] for eachm < [rT]. Section 3.4 contains a functional
weak law of large numbers estimate, which is a refinement of Lemma A.2
in [6]. In Section 3.5, we obtain an upper bound for certain moments of the
processesi”~™(-)}. In Section 3.6, we state and prove Lemma 3.8. This lemma
combines the results of Sections 3.1-3.5 for subsequent easy reference. Lastly,
Section 3.7 contains further analysis of the fluid scaled proc¢a$€g-)}. It con-
sists of four secondary lemmas which are consequences of the results summarized
in Lemma 3.8. These four lemmas lead up to an oscillation bound (Theorem 3.14)
for the processegi~" (-)} as well as Corollary 3.16.

3.1. Dynamic equation. We begin by specifying a dynamic equation satisfied
by the processe§i~™(-)} for m < [rT]. Starting with (2.6) and substituting
in the definition of the residual service times (2.8) and (2.9), one obtains, after
some simplification, that for each, a.s. for each Borel measurable function
g:Ry — Randallr, h >0,

(g. 1" (t + 1) =((L0,0008) - = 5[ 14n)s 1" (D))

E" (t+h)

+ Z (ﬂ(O,OO)g)(Uir_S;J[,Hh)'
i=E"()+1

(3.1)

Recall that we always assurgds extended to be identically zero ¢a oo, 0) so
that functions of the forng (- — a) are well defined ofR ;. for anya > 0.
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Equation (3.1) takes the following form for the shifted fluid scaled processes
" (). For eachr € R and eachm < |rT|, a.s. for each Borel measurable
functiong: R, — R, and allz, h > 0,

(g, A" (t + 1)) = ((L0,0008) (- = S ), 7™ (1))

(32) 1 rE_r,m (l‘-‘rh) )
r,m
+- Z (ﬂ(o*oo)g)(v{ o SU{r*l—m,H-h)'
i=rErm(n)+1

We refer to (3.2) as thdynamic equation for i~ (-). Frequently we will sep =1
in this equation, in which case it will look like

(L") = (L, ooy A7)

(33) 1 rEMh)
or.m
T2 Lol =S, )
i=rErm(f)+1

An important bound which we will use often is obtained from (3.3) by ignoring
any processing of jobs during the fluid scaled time intefual + 4]:

(3.4) (L, @™t + h)) < (L, 2" @) + E"" (¢t + h) — E"™(t).

3.2. Diffusion limit for the workload process. We will take advantage of the
following well-known result.

PROPOSITION3.1. Assume(Q.1).Thenasr — oo, the sequence of diffusion
scaled workload processes (W)} = {{x, A7 ()} converges in distribution to
a process W*(-), which is a reflected Brownian motion on R, with drift —A,
varianceaa?+ Bb2 and initial value W*(0) that isequal in distributionto (x, ©).

PrROOF It is well known that assumptions (Q.1) are sufficient to imply
the above result for the workload process of any single server, single class
gueue operating under a work conserving service discipline (including processor
sharing). The use of functional central limit theorems and continuous mappings to
prove such results goes back to [9]. For a detailed account, see, for example, [17],
which covers a much more general setting than that considered hére.

COROLLARY 3.2. Assume(Q.1l)andlet T > 1and0 < n’ < 1 begiven. Then:
() Thereexists M > 1 suchthat for any L > 1,

(3.5) lim inf P’( sup ||<x,/:e”’"<->>||L5M)zl—n/.
r—0o0 mSI_rTJ
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(i) ForanyL >l1landanyy >0,

(3.6) liminf Pr( sup [(x, 1M (0) — (x, 1°™(0)] < Z) >1-—17.
r—00 m<[rT|, t€[0,L] 4

PROOF By expanding the definition of”"(-) and rewriting it in terms of
diffusion scaling, we see that it suffices to show that:

() There existsV > 1 such that for any. > 1,

(3.7) liminf P’( sup W' (n)| < M) >1—1.
e 1e[0,T+(L/r)]

(i) ForanyL > 1 and anyy > 0,

(3.8) liminf P’( sup (W' (t 4+ h) — W (1)] < Z) >1—17,
r—>00 1€[0,T1, hel0,L/r] 4

both of which follow easily from Ryposition 31, using the tightness 6" (-)},c 2
and the fact that the limiting proce®8*(-) is a.s. continuous. Note thaf can in-
deed be chosen independentof [J

3.3. Sability of the queue length process. The following lemma is a simple
generalization of Lemma 5.3 in [6]. It will be used in two separate places to bound
the total mass of the fluid scaled state descriptor over certain time intervals.

LEMMA 3.3. Assume (Q.1)and let T > 1 be given. Suppose that for a given
r € R, thereis an event A” and there are constants 7p € [0, #T] and 1, ¢,l > 0
such that on A",

(I) Sun‘e[l‘o,l‘o—&-q] Er(t —J’_l) - Er(t) =< £1

(if) Supte[to,to+tl]<X7 w' (1)) < %;

(i) (1,2 (t0)) <%.
Thenon A",
(3.9) sup (14" (1) <c.

te(to,to+11]

PrRoOOFR Coverlrg, 1o + 1] with the time intervaldy, = [rg + ki, 1o + (k + 1)I],
wherek € {0, ..., |t1/1]}. We prove by induction ok that onA",

(3.10) sup(l, 7’ (1) <c.

tely
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We first verify the casé = 0. We have o’ for ¢ € I,
(L") < (1, a" (to)) + E" (1) — E" (10)

(3.11) < (L (to)) + E"(to + 1) — E" (t0)

< C C

_2+4<a
by (3.4) (withm = 0), as well as (i) and (iii) above. We now proceed by induction
and assume that (3.10) holds @i for some 0< k < |#1/1]. To show that the
statement holds wittk + 1) in place ofk, we argue analogously to (3.11). We must
first show that(l, 1" (r0 + (k + 1)I)) < ¢/2. To this end, we use an argument
inspired in part by an idea of Grishechkin ([5], page 542). The idea is to consider
two cases separately: the case where the queue length becomes zero during the
interval I, and the case where it does not{1f i (s)) is never zero fos € I, we
can write

_ to+(k+1)!

Skl to+ (k1) = " e((L A" (s))) ds

to+(k+1)! 1
= (1, 1" (s)) "ds > 1/c,
to+kl
since we have assumed that (3.10) holds forthBy Markov’s inequality and (ii)
above, this implies that
<]l(§zro+kz,ro+<k+1>z’oo)’ (o + kl)> = {Lase.c0s 1 (t0 + kD))
C

(3.12) c
< 7(x, i (to+ kD)) < 2

If, on the other hand(l, 1" (s)) = 0 for somes € I, then all mass present in the
system at timeg + k! is gone by time. More precisely, we have in this case, using
m=0,t=tg+kl andh =5 — (g + kl) in (3.3), that

_ i —
<]]-(Str0+kl,s’oo)’ s (to + kl)> - 0
SinceS; .41, < Si k1104 k+1)» WE 2gaIN obtain the estimate

(3.13) ’(to+kl)>=0<£.

1. _
< (Sto+kt i+ (4 1)1209) H

4
Thus, we have o’
—=r _ el
<1’ ® (to + k4 1)1)) = <1(Sfro+kl,to+(k+l)l’oo)’ o+ kl)>
(3.14) + E"(to+ (k+ 1)) — E"(to + kl)
C C
< -+ -

_4 47
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where in the first inequality, we have used (3.3) and ignored any processing of jobs
in the second term there. The second inequality follows by (3.12), (3.13) and (i)
above.

Now we can complete the proof in a similar manner to that for (3.11). By (3.4),
(3.14) and (i) above, we have otf for anys € I 1,

(L") <(1, " (to+ (k+ D))+ E"(t) — E" (to + (k + 1))

<(L @' (to+ (k + D))+ E" (10 + (k + 2)I) — E" (10 + (k + 1)I)
C C

3.4. Weak law estimate. The following lemma provides a generalized func-
tional weak law of large nhumbers estimate, which will be used in several ways
throughout the paper.

LEMMA 3.4. Assume(Q.1).Let7,L >1,/>0and0< ¢, n’ <1.Suppose
that g : Ry — R, isa Borel measurable function such that (g, v) < oo,
(3.15) (g, vy —> (g, v) asr — oo,
and such that for some p’ > 0, limsup_, . (g2T7", V") < co. Then

r M (41
(3.16) IimsupP’( sup |- Z gl —al(g,v) >e’)§n’.
r—00 m<|rT| ri:rEr’”7(-)+l L
ProOF Define
9 9 9 0!
(3.17) o= { (g,v) (g, v) >
1, (g,v)=0.

Let e, = &'(2acg) L A (1/2) and letly =1 — &, andlp = [ + &,. Note that
for any r € [0, L], we always havét,t + I] D [kieg, ki, + [1] for somek; e
{0,...,TL/eg1}, and[z, t 4+ 1] C [koeg, koey + I2] for somek, € {0, ..., [L/e,1}.
Foranyr e R, m < |rT], andr € [0, L], consider the event
> 8/}.
This event must be contained in the event
{ 1 rE"M (t4+1)

- > g >al(g,v) + s’}

i=rErm(f)+1

)
U[— Z g(vir)<al(g,v)—e’}.
r

i=rErm(t)+1

(3.18) Y. W) —al(g,v)

[ ‘ 1 rE"™ (t41)
i=rEmm(1)+1

(3.19)
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Thus, for someky, ko € {0, ..., [L/g,41}, the eventin (3.18) is contained in

rE_r’m(kzsg-Hz) ¢

{; > g(Uf)>Otlz(g,V)+§}
i=rE"m (kpeg)+1

(3.20)

rE™ (kyeg+l1) ¢
u{— > ) <alg, v>—5},
i=r Erm(kyeg)+1

where we have used the definitionssgf /1, [ andc,. Therefore, to prove (3.16),
it suffices to show that foj € {1, 2},

1 rE™ (keg+l;)
IimsupP’( sup - > g(l)
700 AmsUTLRSTLE T prn )41
(3.21)
l ( ) 8/ - 77/
—ali{g, V> =] <—=.
i'8 2)=2

Furthermore, by summing ovex < |[rT] andk < [L/e,], it suffices to show

for j € {1, 2} that for all sufficiently large, allm < [rT | and allk < [L/s,7,
rEV (keg+l ;)

=) gD —ali(g.v)

1 &'
P > —
( 7 L 2 )
i=r Erm (keg)+1

r

(3.22) /

< il .
T 2([L/eg 1+ D(rT]1 + 1)
To this end, we now fiy € {1, 2} andk € {0, ..., [L /e, 1} for the remainder of
the proof. For better readability, we will suppress notation indicating dependence

onk andj for certain objects, when it is clear from the definition.
Foreachr e R andm < [rT |, let
8/
> JR—
2 }

be the event appearing in (3.22). For notational convenience, we défifie=
rE"(key) and N™" = rE""(ke, + ;) — rE""(ke,). Define cy = 1 +
&'(8aljcg)tande_ =1 —¢&'(16(aljce v 1))71, and let

A" ={lcralj] < N"™ < |cyralj]}.

rE™" (keg+H )
(3.23) AP = H; > gi) —alj(g,v)
i=rErm (keg)+1

Let A" denotes the complement af;” . For eachr € R andm < |r T,

(3.24) P(A™™) < P(AR") + PP(A™" 0 A",
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We will show that each of the two terms in (3.24) is bounded above by
n'[4([L/eg] + 1) (lrT] + 1172 for all sufficiently larger.

For the first term in (3.24), note that off”, either E" (r(m + key +1;)) —
E"(r(m+keg)) < [c_ralj] or E"(r(m+keg+1;))— E"(r(m + keg)) > |cyral;|

r,m

by definition. Inversion of the renewal process(-) implies that onAE , either

E"" 4 |c-ral;]

(3.25) Z u; >r(m-+keg+1;) —r(m-+keg) =rl;
i=Erm41
or
E"" 4 |cqral;)
(3.26) Z u; <r(m+key+1;)—r(m+key)=rl;.
i=Erm42

Sincea” — «, asr — oo [see (2.22)], and since by definition<0c_ <1 < ¢4,

(3.25) and (3.26) imply that oA’;", for somec, > 0 and all sufficiently large,
either

E"" 4 |c-ralj]

1 _ral;
(3.27) Z <ul’ — —) >rlj— Le-ral;] >rco
. - o’ o’
i=Erm41
or
E"" 4 |cqral;]
1 li|—1
(3.28) ) (u; _ _) S el et S,
. n ai" ar
i=Erm42

Define the random variables

(3.29) xl-r:u?]l{ulrgl/s} and y{:uf]l{u;yl/s},
and let
E""M+|cral;]
(3.30) XM= 3 (] —E'xD.
i=Erm 41
E"M 4 c_ralj]
(3.31) Y= 3 (o —E'y/D,
i=Erm 41
E"" 4 |cqral;)
(3.32) X" = > ] —E'x]]
. + = i il
i=Erm42

E""M | cqral;]

(3.33) Y= > O] —E'yD.
i=E"m42
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Then using (3.27)—(3.33), we have
P (A") < PP (X2 + Y0 = rep) + PLUXY" + Y™ = rep)
<P (X" = rea/2) + P (IX" | = re2/2)
+P (Y2 = re2/2) + PT(IY" | = re2/2)
< (re2/ M E' XM + EI(XE™M)
+ (re2/2 2B L[(YE™MA + ETL(Y ™))
< (rea/2) H(leral; )2 + (leyralj] — D?) V84
(3.34) + (rea/2)"2(Le—ral;] + (Lesral; | — 1)E'[(v5)?]
<1 ¥2(cp/2) 2cyal))?
+r Nep/2)722c al jE [(uh)?; ulhy > rY/8)
- 1 ( rT]+1 (r_l/z 2(c+ozlj)2
T Tl +1 r (c2/2)%

26+O(lj —0/8rrs,,r\2+0 ))
+ 7(C2/2)2r E' [ 1) ).
The fourth inequality above follows from independence of the members of the
sequencéx; } (resp.{y;}). The fifth inequality follows since_ < c, and the last
uses Markov’s inequality in the final term. Letting> oo in (3.34), we see that the
guantity in the outer parentheses on the last line tends to zero uniformlysee
(2.24)], and is thus smaller thar‘l[4(rL/eg] + 1)1~ for all sufficiently larger.
So P’(Aﬁ;’") is bounded as desired for all sufficiently largand allm < |[rT].

We handle the second term in (3.24) in a similar fashion. WAit& = A™" U
A", where

ENM g N /
(3.35) AR = { Z g(v)) —ralj(g,v) < —%}
i=Erm41
and
E"M LN re
(3.36) A" = { Z g(v;) —ralj{g,v) > 7}
i=Erm41
Define the random variables
(3.37) 8 = g(”{)]l{g(ul’f)grl/s} and h; = g(vir)]l{g(u{)>rl/8}
and let

E""M+|cralj]

(3.38) G""= > (g —FEgD.
i=Erm41
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E" 4 |cralj]

(3.39) H™= Y (b —E"[R]]),
i=Erm41
E"" 4 |cqral;)

(3.40) G"= > (¢ —-FElgD,
i=Erm41

E""M | cqralj]
(3.41) H"= Y (hj —E'[A]]).
i=E"»"m41

Letez= e’(8c+ozl‘,-)_l and note that by assumption,

(3.42) (g, V") — (g, v)| < c3,
for all sufficiently larger. So for all sufficiently large-, and allm < [rT],
P (A" N A"
=P (A" N A" +PI(AL N AR
<P (G- + H'" + |c_ralj](g,v") —ralj(g,v) < —r&'/2)
+P(GY"+ HY" + |cqraljl(g, V') —ralj(g,v) > re'/2)
<P (IGE" + H ™| + [Le-ralj]({g, V") — (g, V)
+ (g, v)(le—ralj] —ralj)| > re'/2)
+P(IGY" + HY" |+ [Leqralj] (g, v") — (g, v))
+ (g, v)(leyralj] —ralj)| > re'/2)
<P (|GZ" + H:" |+ cyraljez+ (g, v)(le— — Lralj + 1) > re'/2)
(3.43) +P (IG5 + HY" |+ cqraljez+ (g, v)|cy — Lralj > re'/2)
<P (G +H"|>re' /& + P (IG" + H™| > re' /4)
<P (IG-"|>re'/8) + P (IG}"| > re'/8)
+ P (|H:" | > re'/8) + P (|H™ | > re’/8)
< (re'/8)"HE' (G2 + E'I(GT™™)
+ (re' /&) A (E"[(HL™)?] + ET[(HE™)?))
< (re'/8) le—ral;|* + Lcpral;)?) (r1/8)*
+ (re’ /8) (Le_ral;] + Leqral; ) E[(h)?]

_ 1 (LrTJ+1(r_1/22(C+alj)2 2c+az<,-E’[<ha>21>>
S UTI+1 (e'/8)% (c'/8)7 '

r
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In the first inequality above, we have used (3.38)—(3.41), as well as the fact
that [c_ral;] < N™™ < [cyral;] on A%™. The third inequality uses (3.42) and
the fact thatc_ < 1 < c4. The fourth inequality follows from the definitions of
3, c—, c4 andcg, where for the first term it is necessary that 16c,/¢’. The
seventh inequality follows from independence of the elements of the sequence

{g/'} (resp.{A!}). Using the definition ofj and Markov’s inequality,
544 E'T(hD% = E'[g(w)? g(vp) > r/?]
349 < R ),

which tends to zero as— oo by assumption. Thus, letting— oo in (3.43), we
see that the quantity in the outer parentheses on the last line tends to zero uniformly
in m and is thus smaller thayi[4([L /e, + 1)1~ for all sufficiently larger. O

3.5. Moment estimates. We will need the following simple lemma.

LEMMA 3.5. Suppose &, £ € Mg such that & — &, as k — co. SUppose
further that for someq¢’ > 0and1 < M < oo,

(3.45) limsup((1, &) v (X”q', &) < M.
k— 00
Then for any ¢ € [0, ¢), there exists an M,, € [M, co) such that (x1+4, &) < M,
and
(3.46) M E) — (xME), k> o

Furthermore, M, dependsonlyon M, ¢" and g.

PROOF  Sincef, — &, ask — oo, (3.45) implies that for any € R,
(3.47) (Lo §) < (L.§) = lim (L&) <M.
For anyx > 1, (3.45) and Markov’s inequality yield

lim SUPL (.0, &) < limsupx =3+ (114" &)
k— 00 k— 00

(3.48) - -y

So by the Portmanteau theorem ([1], Theorem 2.1), foraaryl,
(3.49) (Lir.00)- &) < liMSURL (x,00). k) < WOy

— 00
Sincex 1t4(0) = 0, we can use integration by parts together with (3.47) and (3.49)
to obtain

(M gy = / (L4 @)x9 {1y o0, £)dx
(3.50) 0 -
1

< (1+q)M<1+/ x_(1+‘1,_‘1)dx) < 0.
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We can take

oo /
M, = (1+q)M(1+/ x~ A= dx)
(3.51) 1
< 00,

which depends only oM, ¢’ andg. To show (3.46), first choosg € (¢, ¢’) and
M, € [M, oo) such that

(3.52) (X E) < My,.
For anyy > 1 that is not an atom ¢,
[ &) — (XM, 8)
< |(x**110,y1, &) — (x 110,11, €]
+ (0,00 8 = (X L0004 €]
< |(x**110,y1, &) — (x 110,11, €]
+ [y BT g o), &)
+ [y BTy o), ).

(3.53)

Sincey is not an atom of, we see that the term on the fourth line of (3.53) tends
to zero as — oo. So sinceyy < ¢’ andM < My, (3.45), (3.52) and (3.53) imply

(3.54) Ii]r€n supl(x*, &) — (x19, &) <2y~ @Dy,
—00

Since¢ can have at most countably many atomsan be chosen arbitrarily large.
O

The next lemma provides an upper bound for three of the moments of the
fluid scaled state descriptofg”™" (-)}. This estimate will be fundamental to many
subsequent proofs.

LEMMA 3.6. Assume(Q.l)andlet 7 > 1and O < n < 1 begiven. Then there
exists p > 0and My > 1 suchthat forany L > 1,

Ao v (OF n
(3.55) I&nllorlf P (Q)>1- 5
where
Qi =1{ sup [(L, A"V (x,Z"" () Vv (X1+”,/1”m('))HL <Mr .

m=<|rT]
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PROOF Choosep > 0 such that § + 2p2 < 6. By (2.31)—(2.35) and
Corollary 3.2, using)’ = /36 there, there exist®y > 1 such that for any. > 1,

A

(3.56) I'rnl'orlf P (A >1- 5

where

Ar=4(L " O)Vv StJIE;J 1, & )l v (P, 77 (0)) < Mo

Define
(3.57) M1 =32(xV 1)My,
(3.58) My =M1V (Mo+M; P (1+ p~H2a(x?+27, v) + da (x 17, v)).

Let L > 1 be fixed and lefA}, be the event on which

(3.59) EFF;J |E""™ (- +4Mo) — E"" ()|, < 8aMo,
m=\|r
1 rE_vr,m(l)
(3.60) sup = Yoo XM < 20(x M),
mUrTHLL Ty frm (0) 41
1 rE™m (1)
(3.61) sup = Yo PP < 20 (37T v).
mUrTHLL T frm 0)41

Define A” = A] N A%. We will apply Lemma 3.4 three times in order to obtain
a lower bound on the probability oi’, and hencedA”. By choice of p, (2.27)
and Lemma 3.5 [withy” € (p,0) or ¢’ € (1 + 2p, 3 + 0) there] imply that the
assumptions of Lemma 3.4 are satisfied for each of the three chgice§,

g = xtP andg = x2t27. Note that Lemma 3.4 still holds if, in (3.16), we replace
the supremum oven < |rT | by the supremum overn < [rT + L] (see proof
of Lemma 3.4). Thus, by applying Lemma 3.4 three times [resp.(/faf, ', g)
equal to(4Mo, 4a Mo A (1/2), /36, 1), (1, a(x P, v) A (1/2), /36, x11P) and

(L, a(x2+2P, v) A (1/2), n/36, x2t2P)] and combining with (3.56) one obtains

B Or AT n
(3.62) |Irnllol’!)f P(A")y>1- 3
Thus, by (3.56) and (3.62) it suffices to show thatdnforallm < [rT],
(3.63) (L @™ () v (P, @™ ()L < My

Note that by (3.57) and (3.59)E" (- +4Mo) — E" ()|l ;1) +1 < M1/4 0nA”". SO
forc = M,,1 =4Mp, to=0andt, = |rT | + L, conditions (i)—(iii) of Lemma 3.3
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are satisfied om”, which implies that omA”,

SUF; 1L, 2™ (Ml = L & O+
(3.64) =t
<M; < Mry.

It remains to consider thé€l + p)th moment. First, consider any jab> 1
such thatU/r 1 <4 <1, for some timesy, 1 € [0, [rT] + L]. If @7 (t*) =0
for somer™* € [11, t2], then

(3.65) <X = S
—n
0< 1+1’< r ),
X v; My

where the equality above follows from (3.2), by settipg= x1+?, m = 0,
t=Ur"tandh =1* — U/r~L there. Ifii" (s) # O for all s € [11, 2], then onA”,

Szrl = (2 —11) lnlftz]@(ﬂ, " (s)))
-1
(3.66) > (tr — tl)( sup (1, [L’(s)))
s€lr, 2]
> (ta — )My,
where the last inequality is by (3.64). So in this caseAbnwe also have
1 r
(0 = Sprps)
(3.67) <x"PWi -5,
1+p f2 — tl)
=X ( My )
Combining (3.65) and (3.67) yields that a@n,

1+p(,r aor
X (vi o Uirril,f2>

< y14p U_r_tz_tl
=X i M

(3.68) <1

ryy, 4p oo
(2=t M5 ooy VDX (V})

“EP) DX W)

IA

(Tt 00) X

My (1+p)
( ) X2+2p(vli’)
h—1

IA
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To complete the proof, we must show tHat?, 2™ (s)) < My on A”, for any
m' < |rT] ands € [0, L]. Note that sincel > 1, s > 1 implies thatia”%(s) =
i L(so) for somesg € [0, L — 1], andi”1(s) = "-2(s1) for somesq € [0, L — 1].
Thus, it suffices to consider the cas€ € {0,1} and s < 1 and the case
m €{2,...,|rT]}ands € [0, L]. If m’ € {0, 1} ands < 1, we have om’,

(Xl—&-p’ /lr’m/(s)>
= (xP, @ (m +5))
=(xMP(- = 5" (m' +9)), " (0))

1 rE" (m'+s)
1 _
+ ; 2; X ‘H’(Ulf' - SZ/{rfl,m/—Fs)
i=
(3.69) 1 rE" (m'+s)
SO RO+ Y XD
i=1

m’ 1 rE"M(1) L
<o+ 3 (2TF T ap)

m=0\""j=p Erm (0)+1
< Mo+ 4o (x M7, v)
<Mr,

where the second equality above uses (3.2), with xt?, m =0, + =0 and
h =m’ + s there, the first inequality follows by simply ignoring any processing
which has taken place by time’ + s, the second inequality follows from the
definition of A" for the first term and by including additional summands in the
second term, and the third inequality is by (3.60) and the factthat 1.

Last, we consider the cas€ € {2,...,[rT]} ands € [0, L]. Let N = |m' +
s| —2andnote thay € {0, ..., |[rT + L| — 2}. Note also that by replacing by
lm’ +s] —m — 1, the following estimate holds:

S (e )

N+1 Ml>1+p

-2

m
(3.70)

[e.e]
§M11+p<l+/ x~@4P) dx)
1

=M@+ p7h.
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Form’ €{2,...,|rT]} ands € [0, L] we have oA’
<Xl+p’ —r,m’(s)>

rE" (m'+s)

SMot Y aMPO =8
i=1

N Er,m 1
<M 1‘ ' - 1+p(,r _ Qr
= Mo+ Z r Z X (Ui U{r‘l,m’—&-s)

m=0\" j—pErm0)+1
rE"(m'+s)
(3.71) +- oo Mo
i=rE" (N+1)+1
N 1+p) rE™™(1)
M, Pl 242
_ P ("
S1‘4(’+Z<<Ln1/+sj—m—1> ;2 e
m=0 i=r E"m (0)+1

N+2 1 rE™™ (1) .
r Y (P X )
m=N+1\" j_p frm(0)41

< Mo+ M7+ p~H2a (%27, v) + 4o (x 1P, v)
<Mr,

where the first inequality is obtained as in (3.69), the second follows by ignoring
any processing of jobs in the third term; the third inequality is by (3.68) (with
t1 =m + 1 andr, = m’ + s5) for the second term and by including additional
summands in the third term; the fourth inequality is by (3.60), (3.61) and (3.70)
and the last is by (3.58).0

3.6. Combining estimates. To aid the reader, we now provide a lemma that
combines several of the preliminary results obtained in Sections 3.2-3.5, such that
they hold simultaneously, with respect to specific choices of various constants.
It is analogous to Lemma 5.2 in [6], in that subsequent references to results
obtained thus far will predominantly reference this lemma. We will need one more
definition.

DEFINITION 3.7. LetC = {g e CL(R}):g(0) = g/(0) = 0}, and letC = (g €
C: g has compact supporiLet v = {g;’}keN C C be a countable subset such that

for any g € G, there is a sequendg ), C V that together with{g;}?° , is
uniformly bounded and satisfies

(3.72) gr—> g and g — ¢, k — oo,
pointwise onR ..
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An example of how such a s8t c ¢ can be chosen is given in the proof of
property (iii) for Theorenb.1 in [6]. Recall thatM, is defined in Definition 2.1
and the metrid[-, -] is defined in (1.4).

LEMMA 3.8. Assume (Q.1)and let 7,L > 1 and 0 < n < 1 be given. Let
{€,}524 C (0, 1) be asequencesuchthat e, | 0,asn — oco. Thenfor eachn e N,
there exist strictly positive constants/,,, p, Mr, kn, Yn, Nn, 1, and events {B} },c ®,
such that:

(i) P(B)=1—n,foralr>r,,
(i) rp41>ryand B, ,CB,, and
(iii) for eachr € R andeachm < [rT ], on B;, the following hold:

&n
3.73 l —
( ) n < 3%
(3.74) sup E™™(t +1,) — E""™(t) < &n
1€[0,L] 16
rE™™(jly)
(3.75) sup |- Y. g ) —ajlu(gl v)| < e,
ksno AT )41
j=1.. L/ T
for g¥ eV,
(3.76) sup (1, &"™ (1) V {x, &™) v (x TP, i"" (1)) < M,
t€[0,L]
(3.77) Eienl\; dl"(0), E1V [(x, 2" (0)) — (x,&)| < e,
In
3.78 _n_
( ) Kn < 2MT7
_, en
(379) SUp(ﬂ-[x,x—H(n]’ 1% (0)> < Z’
X€R+
Knen I
3.80 n —,
(3.80) Vo< Ny
_r - Y
(3.81) sup |(x, &"" (@) — (x, n""(0))] < Z"
te[0,L]
(3.82) N, = [64M2/(kye2)] + 1,
1 rEMH)
SUP = Y Tk kD) (V)
telOL T 1y 41
(3.83)

&n
< g (Lk-1/26,. k43726 V)
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forallke{0,1,..., N,}.

PROOF Let# = n/6. For eachn € N, choose O< I, < ¢,/(32x) such that
l,,+1 <1, and IetB 1 be the event on Which both (3.74) and (3.75) hold. Let

By 1 =m=ir1) Bn 1 and letB, | = =(Ni<n B %.1- The first goal is to show that for
eachn €N,

1 H A r 4
Ilrrglor!)f P (B, 1) >1—1.

Fix n € N and consider any < n. Since (3.74) (wittw = 71) holds onénﬂl for

eachm < |rT], and since (3.75) (witlk = ») holds onénf’l for eachm < |rT],

we must apply Lemma 3.4-& | L/1;]| times in order to estimate the asymptotic
probability of 32,1- More precisely, we must apply it once to guarantee (3.74)
and also once for each case<n and j < |L/l;] in (3.75). Observe that
by (2.25), the assumptions of Lemma 3.4 are satisfied with/;;, ¢’ = ¢,,/16,

n =7m@+n|L/1L,])" p’ > 0 arbitrary anc; = 1. Also observe that for each
k=1,...,nandj=1,...,|L/l;], the assumptions of Lemma 3.4 are satisfied
with I = jl;, & = ey, n' = fj(n(L+n|L/1,]))"L, p’ > 0 arbitrary andg = g}’ .
Thus, 1+ i | L/1;] applications of Lemma 3.4 yield

(3.84) liminf P (B} ) > 1 (l—l—flLL/lﬁJ)m >1— Z
This implies that for each € N,
-
(3.85) liminf P (B} ;) > 1~ Zlg —1-7.
iz

Note that by definitionp; ,, ; C B; ; forn e N.
Next, let p and M7 be the constants given by Lemma 3.6 andBé&t" be the
event appearing in (3.76). L& =, |, 7| B;™. Then by Lemma 3.6,

(3.86) liminf P (B3) > 1— i

For eachn € N, let B, 3 be the event appearing in (3.77). Recall that™de-
notes equivalence in dlstrlbutlon By (2.35) and the Skorohod representation the-
orem, there exist random pai®’, X"), (©, X), taking values inMg x R,
and defined on some common probability sp&@e.#, P), such that(®, X) ~
(®, {x,0)) and (©", X") ~ (1" (0), {x, 7" (0))) for eachr € R and such that
asr — 0o,

(3.87) ©,X")— (0,X) as.
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So by (2.30) and (3.87),
liminf P’ (B;, 3)

(3.88) = liminf P( inf d[O®",&]V X" — (x,&)] <£n)
r—0o0 EGMI)
>1—1.
Since{e,} is a decreasing sequend,, ; ; C B, gforn e N.
Next, for eachn € N, we use (2.34) (witls = ¢,,/4) and (2.31) to choosg, > 0
andM,, > 0 so that (3.78) hold%;,+1 < «,, for n e N and

€n
(389) P(xilﬂigﬁl[x,x_;_z,cn], ®> Vv <]l[Mn,oo)’ @) < Z) > 1-— #
Fork € {0,...,[M,/k,] — 1}, define Iy = [kk,, (k + 2)«,] and letIy, /1 =
[M,, c0). Note that for anyx € Ry, [x,x + «,] C I} for somek € {0,...,
[M,/k,]}. Consider the random measur@$, ® defined above such that (3.87)
holds. Since for eacl € N, {I;} is a finite set of closed intervals, a trivial
generalization of the Portmanteau theorem ([1], Theorem 2.1) to finite measures
yields for eachz € N,

3.90 limsup max (1;,,0")< max (1,,0 a.s.
( ) r—)OOpkEan/K,,]< Ik )_kS[Mn/Kﬂ( fk )

Since® ~ ©, (3.89) and (3.90) imply that for eaehe N,

Lo r En
it P supliessen )< )

o r_ En
(3.91) = timinf P(,_max (1,,.6") =)
A
2n2’
Let 32,4 be the event appearing in (3.79). We have by (3.91),

>1-

liminf P’ (B}, ,)

r—0o0
o €n
(3.92) = liminf P( SUP(Lix, xtx,] ©) < —)
r—00 xeR4 4
n
>1-—.
- 2n2

Letting B;, , =<, B 4, We see that for eache N,

n ~

o ] N

(3.93) ||rnllorlf P (Bn,4) >1- E 1% >1—1.
i=
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By definition, B, ., , C B, 4 forn e N.

For eachm € N, choosey,, > 0 such that (3.80) holds and such that 1 < y,
forn e N. Let B’ be the event appearing in (3.81) andBts = N,,< | 7| B, 5
Then by Corollary 3.2, using’ = 7 andy = y,,, we have for each € N,

(3.94) liminf P"(B, 5) = 1—17.

Since{yx} is a decreasing sequend,, ; s C B, g forn e N.

Finally, defineN,, as in (3.82) for eacm e N, and fork € {0,..., N,},
chooseg; € C,(Ry) such thatg; is nonnegative and such that for alle R,
T ki, (k+ D) (X)) = 8L (X) < L[(k—1/2)k. (k+3/2)k,) (X). Note that fork = 0 and
x € Ry, Lik—1/2)kn, (k+3/2)k) (X) = 1[0,3/2,) (x). Let Brm ** be the event in (3.83)
and letB, ¢ = Mi<y, Nm<\rr) Br8*. Define

Ny rE™ (t+1,)

En
(395) Gie=[)] sup sup = 3 )= gl vy

r _
k=0 Um=UrTHEOLTT ) from 1y 41

<

Fix n € N and consideri: < n. Observe that by (2.25), we have that for
eachk € {0,.. N;}, the assumptions of Lemma 3.4 are satisfied yl/ith Ly,

= (e/16) (g, v), ' = fi(n(N, + 1)), p’ > 0 arbitrary, andg = g?. Thus
N; + 1 applications of Lemma 3.4 yield

NNy +1) U

3.96 Im an’ G, —>1——,
(3.96) M F (Gie) = n(N,+1) =" =n
where we have used the fact thiat< ¢, /(32¢), and the second inequality follows
from (3.82) sincelx, } and{e,} are decreasing sequences. Sitkg; C B}, ¢ for
eachn < n, we have

<

(3.97) liminf P’ (B} ¢) > 1— —.

r—00

S

Letting B!, ¢ =<, Bl 5. We see thaB!_, ; C B/ sforn e N, and

(3.98) liminf P"(B; ¢) = 1 - Z — 7.
n= l

For eachv € R, defineB;, = B ;N B, N B) ;N B, ,N B N B, c and note
that by constructionB,_, C B, for n € N. Then by choice ofj, we see that for
eachn € N, there exists, € R such that,,+1 > r, andr > r, implies

(3.99) P’(B))>1—n. 0
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3.7. Fluid scale analysis. In this section we build on the results of Sec-
tions 3.1-3.6 to prove several important properties of the fluid scaled state descrip-
tors{iu~™(-)}. These properties will be used at the end of the section to prove the
desired relative compactness property (see Corollary 3.16). Lemmas 3.9 and 3.10
give an upper bound for the amount of mass th@at (r) can have concentrated
near zero. They are analogous to Lemma 5.5 in [6]. In Lemmas 3.11 and 3.12 we
give an upper bound for the shifted fluid scaled queue lekgth™"(-)) when
the shifted fluid scaled initial workloag, "> (0)) is small, and a lower bound
for (1, n"™(-)) when{x, 1" (0)) is bounded away from zero. These two lemmas
are analogous to Lemmas 5.3 and 5.4 in [6]. We then combine the four aforemen-
tioned lemmas to prove Theorem 3.14 which provides an oscillation bound for
the sample paths of the proces$gs™(-)}, and yields Corollary 3.16 as a conse-
guence. We begin with the following technical lemma.

LEMMA 3.9. Assume (Q.1)and let 7,L > 1 and 0 < n < 1 be given. Let
{e4}02 1 C (0, 1) beasequencesuchthat e, | 0,asn — oco. Letl,, p, M7, kn, Vn,
N,, r, be the constants, and {B;,} be the events, given by Lemma 3.8.Fix n € N,
reR,m=<|rT],andt € [m,m + L]. Define the following randomtimes:

T, = sup{s e[0,1]:(1, 1" (5)) < %’}

8M?

r=max{0,r£n,t— T},
&n

where we define t,, = —oo for the supremum of the empty set. Then on B,

_ _, &
(3.100) (L1 (- = S2,), " (D)) < Z”.

PROOF We only consider realizations iR in the following. We treat each
possibility fort separately, and suppose first that 0. Then by (3.79) we have

- —r —r 8
(3.101)  (Liou,i(-— SL,). (D)) < SUP(Lix, x4, A7 (0)) < —-.
XER+ 4
Next suppose = t,, > 0. Then there exists & € [(z,, — [,) vV 0, 7, ] such that
(1, 1" (t)) < &,/8. This implies by (3.4) (withn = 0) and (3.74) that
(Lose1(- = S7,). 7 (D) < (1, " (1))

<(LAE@EN+E(x)-E(*)

(3.102)
€n org./ oro._/
§§+E (T +1h)—E(T)
b B _En
-8 16 4
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Lastly, suppose =t — (8MZ2 /e,). Lett” =t — (4M? /e,). Then since” > z,,,
we have fors € [t”, ¢] that(1, i"(s)) > &,/8. This implies by (3.76) that
o
r—7 > 4My
T &n

_ _ t
(3103) &, >3, =/ (LA ()" Yds =

T

So by (3.103), Markov'snequality and (3.76),
(Louk1( = S7.0)s &7 (D)) = {L0.00) - = 87 ), 2 (D)

<(Liamy 6,00, " (7))

(3.104)

&n

<
= MT

(x, 1" (1))

N

O

IA
IR

The next lemma gives, oB;, an upper bound for the amount of mass that
"™ (t) can have concentrated near zerorfar[O, L].

LEMMA 3.10. Assume(Q.l)andlet T,L > 1and 0 < n < 1 be given. Let
{en}o2 1 C (0,1) be a sequence such that ¢, | 0, asn — oo. Let I,, p, Mr, ky,
Yn, Nau, rn bethe constants, and { B} be the events, given by Lemma 3.8. Then for
eachn eN,r e R andeachm < |rT|,on By,

(3.105) SUP (10,1, 27" (1)) < 2.
te[0,L] 2

PROOF.  In this proof we only consider realizations Bj,. Fixn e N, r € R,
m < |rT] andz € [m,m + L], and lett be defined as in Lemma 3.9. We must
show that

_, En
(3.106) (o1 A" (D) = =

If ¢ =¢, then the result follows from Lemma 3.9, sing&” () does not chargg},
andsS? . =0. Thus, it suffices to consider the case ¢. Consider an arrivalsuch
thatU!r~1 € (7, ] andv > (64M? /¢2) + 2«,. Sincet — r < 8M2/¢,, and since
(1, i"(s)) > ¢,/8 fors € (z, t], we have

. _ t 8 64M>
(3.107)  Syr,1, <57, =/ (L") ds<(t—-1)—<—5T.
i 4 ’ T 8}’1 En
Thus,vf — 87, > (64M2/e2) + 2, — (64M% /£2) > k,. Recalling thatV, =

[64M2/(k,e2)] + 1, this implies that fok > N, + 1,

(3.108) Likiey, (kL) (V) L0,1,1 (V] — S[’i/irr—l’,) =0.
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Next, consider two jobg < j for which v}, v; € [kk,, (k + 1)k,) for some
integerk € {0, ..., N,,}. If U/'r 71, UJ’.r—l € (1,1] andUl’.r‘l —U'r~1>1,, then,
using the fact thatl, " (s)) > O for s € (t, ¢] again, we have at timethat

r Qr r Qr
(vj - U;rfl,t) — (v - U{r*l,t)
= SZ/i’r*l,U;r*l + U; B U{
r.—1 r.—1
- Ujr -U/r
~ SUR¢(o,(L A7 (s))
In

My

_Kn

> 2k, — Kn = Ky,

where the last two inequalities are by (3.76) and (3.78), respectively. This implies
that at most one of

Lunl(VF = Sprp-1,) @A L0 (v = Sy )

is nonzero. So for each € {0, ..., N,}, all jobsi satisfying Ul.’r—1 € (t,1t],
v/ € [kcn, (k + D) and vf — 87, 1 € (0,k,] must also satisfyy;r~* e

(s,s + 1], for somes € [z, (t — [,,) v ]. (Note: s is random in general.) This
yields the following estimate at time for eachk € {0, ..., N,,}:

1 rE’(t) )
= 2 Dke 0o DT (0 = Sprpa,)
i=rE"(t)+1
rE" (s+ly) )
(3.109) < sup = D> kb (WD L1 (0 = Spra )
se[r,t=l)vt] ¥ i=r BT (s)+1 !

1 rE"M (s+1,)

< sup sup = Y Lipey (kD) (V).
m=|rT]|se[0,L] r i=prEnm (5)+1

Using (3.2) (withm = 0), we have that oB’,

(Lio,k,1, A (D))
_ rE" (1) _
={low( = S) @)+~ 30 Lowl (0 = Spp,1,)
i=rE"(1)+1

rE" (1)

o0
£ 1 _
< Zn +> - > Mk et i) 0D L0 (0 = S, 1)
k=0" j=rEr(r)+1
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€, N, 1 rE"M (s4+-)
= 7 + Z sup  sup - Z Lk (k+2yr) (V)
k=0m=lrT]sel0,L] i=r B (5)+1
N,
Zn X;J L{(k—1/2kr, (k+3/Dn)s V)

o0
En En
Z § Z [(k_l/z)Kna(k+3/2)Kn)’v>

En En

4 t2 4°

where the first inequality is by Lemma 3.9, the second inequality is by
(3.108) and (3.109), the third inequality is by (3.83) and the last line follows since
v is a probability measure.lJ

The next lemma gives an upper bound[OnL] for the processl, i (-)), on
the event thaty, i (0)) is below a threshold.

LEMMA 3.11. Assume(Q.l)andlet T,L > 1 and O < n < 1 be given. Let
{en}o2 1 C (0,1) be a sequence such that ¢, | 0, asn — oo. Let I,, p, Mr, ky,
Yn: N, rn bethe constants, and {B]} be the events, given by Lemma 3.8.For each
neN,reRandm < [rT|, definetheevent D" = {(x, ©""(0)) < ya/2}. Then
foreachn e N,r e R andm < |rT], on B, N D™,

(3.110) sup (1, "™ (1)) < 2¢,.
1€[0,L]

PROOF FixneN,r e R,andm < [rT]. We must show that oB; N D;nm,

(3.111) sup (1, i (1)) < 2.
te[m,m+L)

LetA” =B, N D}’;nm, and letto=m, t1 = L, c = 2¢,, andl = [,,. Then condition (i)
of Lemma 3.3 holds by (3.74) and condition (ii) holds by (3.80), (3.81) and the
definition of D;™. To see that condition (iii) holds, observe thatBhn D},

(1, 7" (m)) = (1, "™ (0))
= (L{0,6,1, 2" (0)) + (L(c,,00), ™ (0))

1
(3.112) =5+ 7" (0))
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where the first inequality is by Lemma 3.10 and Markov’s inequality, the second
uses the definition oD} and the last is by (3.80). So the result follows by
Lemma 3.3. [J

The next lemma provides for eaeh < [T |, a lower bound for the process
(1, #~™()) on the event whergyx, u™(0)) is above the threshold,,/2.

A consequence of this is an upper bound, on this event, for the rate at §Hfch
can increase as a function fof

LEMMA 3.12. Assume(Q.l)andlet T,L > 1 and O < < 1 be given. Let
{€4}°21 C (0, 1) be a sequence such that ¢, | 0, asn — oo. Let I, p, Mr, ky,
Yn,» Nn, rn be the constants, and {B/} be the events, given by Lemma 3.8. For
eachneN,reRandm < [rT], let D;ﬂm be the complement of D;ﬂm, that is,
Drm = {(x. ""™(0)) > y,/2}. Thenfor eachn € N, there exists I, > 0 such that

for all » € R andm < [rT], on B, N D™,

1
3.113 inf (1, "™ @)) > —
(3.113) At (LA ) =
and
(3.114) sup S;7y, <hly,
te[0,L—h]

foranyO<h < L.

PROOF Fix neN, r e R andm < [rT|. We have for anyk > 0, on
Br m Dr,m
n Yn !

]/n . _
< f r,m
7=, I[g L]<x, wo ()

_,E[ofL]((X]l[O K1 7" 0) + (X Lk .00y, 7™ (1))

< inf (K1 =r,m K~P 1+p ~rom
<, dnf (K{Lo.xy. &7 O) + K=P(x 77, 1" (1))

< inf K@, """ K "M
L (L n>" () + T,

where the first inequality is by (3.81) and the definitionz2if”, and the third is
by (3.76). So for anyk > 0, on B, N DI,
Yn/4— K PMr

~ .

(3.115) nf (14" (1) =

SettingK = K,, large enough so that, " Mr < y,/5, and lettingl', = K, (— —
7’5") ! proves (3.113). To prove (3.114), we have by (3.113) BN D;nm,
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forO<h <L,
sup Sy, <h sup e((1, 2" (1))
t€[0,L—h] te[0,L]
-1
<h| inf (1, A" <hTl,.
<h( inf @) <hr, -

We are now ready to apply the previous four lemmas to prove an oscillation
bound onB;, for the sample paths i (-), m < |rT|. We use Lemma 3.11 to
prove it onB;, N D™ and use Lemmas 3.10 and 3.12 to prove itRjm D;ﬂm.
Recall thatD; (MF) is the Skorohod space of r.c.L.l. functions defined[@nL]

and taking values inMg. In order to state the theorem, we define a modulus of
continuity onDy (M), with respect to the metrid[-, -] as follows.

DEFINITION 3.13. Foranyl > 1,¢(-) € Dy (Mp) andé > 0, define

(3.116) W (¢(-),8) = sup sup dl¢(r +h), £ (@0)].
te[0,L—38] hel0,5]

THEOREM 3.14 (Oscillation bound). Assume (Q.1) and let 7, L > 1 and
0 <n <1 begiven. Let {g,}°°, C (0,1) be a sequence such that ¢, | 0, as
n — oo. Letl,, p, Mt, ky, yn, Ny, rn b€ the constants, and { B} be the events,
given by Lemma 3.8. Then for each ¢ > O there exists § > 0 and n, € N such that
for all n > n, andall r € R, 0n B/,

(3.117) sup wg (""" (-),8) <e.
m<|rT]
PROOF  Fix ¢ > 0. Choose, € N large enough so thaf;2, ., 27k <¢/4,
and letk, = (maXx™_, [(¢7) |l v 2). Recall thatg = {g71>°, U {r#}22, is the
set of functions used to define the metdi, -] [see (1.4)]. Letg® = {g,?}',?zl U

{h,%},‘jil so that for anyf € §°, || fllo <1 and|| f'||s < K. Choose:, € N large
enough so that,, <¢/(8k.), and let

L £ Kn
3.118 §=min}{ =, [, , , ——,1¢.
( ) { 2 " 8anMTke (Ke Vv 1) an }

Fixn >ng,r e R andm < |rT], and consider the evem;’n’f. OnB;, N D;LT’ we
have for all f € §¢, ' '

sup  sup [(f, @"" (@t +h)) — (f. A" (1))
te[0,L—8] hel0,68]

(3.119) <2 sup [(f, """ O) =2l flls sUp (1, "™ (1))
t€[0,L] 1€[0,L]

e
< 4 < —.
=% = o1
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The third inequality above follows by Lemma 3.11, sirgjen D™ C B, N D"

for n > n, [see Lemma 3.8(ii)], and by the fact thf | < 1 by deflnltlon
The last inequality above follows by choice of. We must show that the above
estimate also holds oB;, N D)™ for all f € G°. First, observe that o, N D™,

a first-order Taylor expansion gf gives the following estimate forall@ 4 < L,
t€[0,L —h]andy e (S,’fih,oo)

(3.120) |f(y=Srin) = fOD| =1 =S f wy)| < ATw, )l f'lloo < hTy Ko,

rm

for somew, € [y — S;'/;,, v, where the first inequality follows by Lemma 3.12,
sinceB;, N D”” CB, N D”” for n > n., and the second inequality follows by
definition of ge Now subtractlng(f g™ (1)) from both sides of equation (3.2)
and using the fact thatl o o) f)(- — ”Jrh) = ]l(S P ON G t,t+h) for

t € [0, L — h] yields that onB’ N b’v’”,

[(f, 7™+ h)) — (f, 17" (1))

Jg+he

= <]l(5‘”mh,oo)(')(f( tt+h) S )) rm(t))

11+

— <]l[07§;':[r1h]f, ﬁr,m(t»

PP ) )
(3.121) o 2 e O =S )
i=rE""(t)+1

< (L, o0y O(f( = Srivn) = FO) 2™ 0)

+ 1 flloo{Lo,ar,,15 @™ )+ 11 f lloo (E™™ (¢ 4 h) — E™™ (1))
< hTn Ke(1, 0" (@) +(Ljo,ar,,1, £~ 1))
(Er’m(t +h) _ E‘vr,m(t))

where the first inequality is by Lemma 3.12 (again using the factBtjatD’ "

By N D’m for n > n,) and the second inequality is by (3.120) and the fact that
||f||OO < 1 Taking the supremum ovére [0, §] andt € [0, L — 3], we see that
onB) N D;n’?,

sup  sup [(f, Z""(t +h)) = (f, @i (1))
te[0,L—8] hel0,5]

< sup (8T, Ke(L, i™" (1)
te[0,L—4]

(3.122) + {1051, 1 7" O) + (B (0 4 8) — E™™(1)))
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< su T ()]
[OLpS](SMTk 1, ®)

(o1 A O) 4 (BP0 4 1) — E”"(r)))

Eng

&n
< M £
= e T2 T 16

< i 4 & &
— 8k, 16k, 128,

&

2k’
where the second inequality is by (3.118) and the third is by (3.76), Lemma 3.10,
and (3.74) (once again using the fact tigjtN D”" C B, N D’m for n > n,).

So the desired estimate (3.119) holds on bBt,hﬂ D”” and Br N D”” and
therefore onB’ for all n > n,, r € R andm < [rT]. Thlus comblnlng (3.119)
and (3.122) Wlth the definitions (3.116), (1.4) and the definitiog‘gfwe have on

B;, foralln > n, andr € R,

sup wg (""" (), 9)
m<|rT]

= sup sup sup d[pa""( +h), """ ()]
m<|rT|te[0,L—8] he[0,5]

<

ke
< sup sup SUP(ZZ (g "t + ) — (g A" )] A )
m=|rT|t€[0,L—8]he[0,8] \ f

o0
+ Y 24 sup(], @+ )
k=ke+1 keN

— (h?, /1’*'"<r>>|)

<k58 +e+ I3
— 22k, 4 2k
<e. O

The preceding theorem has the following important consequence, which will
be used to identify certain measure valued paths which approximate the sample
paths of the fluid scaled state descriptf#s” (-)} on the eventss;. This will
be the first important step in our state space collapse argument. We will need the
following definition.

DEFINITION 3.15. Assume (Q.1) and I4t, L > 1 and O< 5 < 1 be given.
Let{s,};241 C (0,1) be a sequence such that|, 0, asn — oo. Letl,, p, M1, ky,
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Yn» Nu, rn D€ the constants, ari@; } be the events given by Lemma 3.8. Then for

eachr € R, we define
(3.123) n(r):{suqneN:rn<r}, r>ri,

1, r<ri,

and we define

By ={t(-) € DL(MFp) £ () = """ ()(w) on[0, L],
for somew € By, andm < |rT]}.

n(r

(3.124)

Note that since,, — co asn — oo (see Lemma 3.8);(r) is finite for eachr € R.
Note also that for > r1, %} is nonempty since by Lemma 3B.(By) = 1—n.

COROLLARY 3.16 (Relative compactness)Assume (Q.1)and let T, L > 1
and 0 < n < 1 be given. Let {¢,}°°, C (0,1) be a sequence such that ¢, | O,
asn — oo. Let R C R be a subsequence and suppose {é';(‘)};eﬁ C Dp(Mp)
is a sequence of paths such that for each 7 > r1, ¢"(-) € %} . Then (¢ ()}; 4 is
relatively compact in Dy (Mg). Moreover, any limit point ¢(-) of the sequenceis
continuous.

ProoE Define
Cr={¢eMr:(1,¢)V(x.¢) < Mr}.
Since(x, ¢) < M7 implies(1jk ), ) < Mr/K foranyK > 0, we have

sup(lix.cc), £) = 0 askK — oo,
teCr

which implies thatCr ¢ Mg is relatively compact ([10], Theorem A7.5). Let
Cr be the closure of 7 and observe that by Definition 3.15 and (3.78)¢) € Cr
for all 7 > r1 andt € [0, L]. Sincen(F) — oo as7 — oo, Theorem 3.14 implies
that

(3.125) lim lim supw,, (¢ (-), 8) = 0.

=0 700
Thus, the relative compactness ();f’(-)};eﬁ follows from [4], Chapter 3,
Theorem 6.3, by noting that the modulus of continuity used there is bounded above
by wy (-, -), and that the result stated there still holds if one repldaggMF)
by Dy (Mg) andT > 0 there byL. By (3.125) and the definition ok, (-, -), we
see that any limit poing(-) of the sequence must be continuous!

4. Diffusion limit. Having established the desired relative compactness
property for sample paths of the proces§e$™ (-)}, we now turn to the second
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main task in our strategy for proving Theorem 2.3. In Section 4.1, we identify
limit points of the sequences specified in Corollary 3.18wad model solutionson

[0, L] (see Definition 4.2 and Lemma 4.3). We then show that for largample
paths of the process¢a’~"(-)}, can be uniformly approximated by fluid model
solutions which are arbitrarily close to being in steady state (see Lemma 4.4 and
Proposition 4.5). This leads us to the proof of state space collapse and finally to
the proof of Theorem 2.3, both of which are contained in Section 4.2.

4.1. Local fluid approximations.

DEFINITION 4.1. Assume (Q.1) and l&t, L > 1 and O< n < 1 be given.
Let {e,};21 C (0,1) be a sequence such thgt | 0, asn — oo. Define %, to
be the set of alt(-) € Dy (M) such that there exists a subsequesice R and
asequenc’ ()}; 4 C D (Mp) satisfyings” () € 2} for eachi € R, and

(4.1) OB ) asF— oco.

DEFINITION 4.2. Given 1< L < oo, a fluid model solution ofi0, L] for the
critical data(e, v) is a function¢ (+) : [0, L] —> Mg such that:

(i) ¢(-) is continuous,
(i) (Lo, ¢(r)) =0forallr [0, L],
(i) if ¢(0) #£0, then¢(r) 2 0forall r € [0, L] and¢(-) satisfies
3 ErR)
4.2) (8. £0) = (8,50 — [ 3 S ds Far(s. ),
forallz € [0, L] and allg € € = {g € C}(R;):g(0) =0, ¢’(0) =0} and
(iv) if £(0) =0, thenz(r) =0forall ¢ [0, L].

We note that Definition 4.2 differs slightly from the definition of a fluid model
solution for critical dataw, v) given in [6], Section 3.1. Besides the fact that we
only consider fluid model solutions defined over finite time intervals here, the
time r* used in [6] (the first time at which a fluid model solution reaches the zero
measure) is not present in our definition. In fact, it is shown in [6] tha{G) # O,
thent* = co. Indeed, if we replacg0, L] by [0, co) in Definition 4.2 above, we
obtain an equivalent definition to that given in [6]. Similarly, by restricting a fluid
model solution as defined in [6] to the finite intery&l L], one obtains a fluid
model solution o0, L] as defined here. The next lemma asserts that the elements
of %, are in fact fluid model solutions d, L].

LEMMA 4.3. Assume (Q.1)and let T > 1 and 0 < n < 1 be given. Let
{en}ne1 C (0, 1) be a sequence such that ¢, | 0, as n — oo. Then there exists
g€ (0, p)andl< M, <oosuchthatforany L > 1andany¢(-) € %y,
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() sUpco (L )V (x, ) Vv (X1, £(1)) < My,
(i) {(x,<¢())isconstanton[0, L] and
(i) ¢(-) isafluid model solution on [0, L] for the critical data («, v).

PROOE Fix L > 1 and letl,, p, My, ky, Yn, Ny, rn be the constants and
{B]} be the events given by Lemma 3.8. Fjx:) € %4, and letR C R be
a subsequence ang’(})}-_s C D.(MF) be a sequence such thal(-) € %}

for eachi € R and’ () N £(-) asF — oo. Recall that for eachi e R, ()

is a realization ofi"™(-) on B;(;) for somem < [FT]. This fact will be used
throughout the proof. By Corollary 3.16(-) is continuous, so aé — oo, we

have

(4.3) ld[¢" (). ¢O]], —O.
By (3.76),
(4.4) limsup sup (1, ¢"(0) Vv (x, ") v (x*TP, 7 (1)) < My.

F—oo te[0,L]
Combined with (4.3), this implies that
(4.5) sup (1, ¢(1)) < Mr.
1€[0,L]

Similarly, combining (4.3) and (4.4) with two applications of Lemma 3.5 (with
q' = p andM = Mr) we see that there exisse (0, p) andM, € [M7, 0o) such
that

(4.6) sup (x,¢®) v (x™, c(0) < My,
te[0,L]

and such that for eaahe [0, L],

(4.7) 6. 27 (1) = (. £@)| -0  asi — oo.

Together, (4.5) and (4.6) imply (i) above. Notice that the constdptgiven
for p and M7 by Lemma 3.5 does not depend @n and thatM, > M7 > 1
[see (3.51) and Lemma 3.6].

Next, we have for any e [0, L],

[0 £@) = (x. O]
<liminf(|(x, £)) = (x, ¢" )]

(4.8) +(x. &7 @) = (x. £ O)] + [{x. £ @) = (x. £(0)])

< liminf 222

r—00

=0,
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where the second inequality is by (4.7) for the first and third terms and (3.81) for
the second term. The last line follows sine@) — oo, as¥ — oo, andy,, — 0,
asn — oo (see Lemma 3.8). Thug, ¢(+)) is constant o0, L], which proves (ii)
above.

We now show that (-) is a fluid model solution o0, L]. We have already
verified property (i) of Definition 4.2. For any fixede N,

sup (Lioy, £(1)) < sup (Ljo,,), £ (1))
te[0,L] te[0,L]

< sup limsup(Ljo.,), ¢ (1))
te[0,L] F—oo

< limsup sup (Ljo,q,1, ¢ (1))
F—oo te[0,L]

(4.9)

&n

>

where the second inequality follows by (4.3) and the Portmanteau theorem
([1], Theorem 2.1). The last inequality follows by Lemma 3.10, sim¢g — oo,
asr — oo, which implies thatB,’;(;) C B,i for all sufficiently larger. Sincen € N

is arbitrary ande,, | 0 asn — oo, this proves property (ii) of Definition 4.2.
It remains to verify properties (iii) and (iv) there. We must show that eiligr= 0
on|[0, L], or that for allz € [0, L], ¢(t) # 0 and (4.2) holds. Since we have shown
that (x, ¢(-)) is constant ori0, L] and that property (ii) of Definition 4.2 holds,
it suffices to show that (4.2) holds whe0) £ 0. For this, suppose thg{0) # 0
and note that property (ii) of Definition 4.2 implies that, ¢(¢)) = (x, ¢(0)) > 0
forall r € [0, L]. So since; (+) is continuous,

(4.10) tel[rg),fL]u’ () > 0.

=

To show (4.2), we follow the analogous proof in ([6], Section 5.3) closely. We first
restrict our attention to the cagec 'V (see Definition 3.7) and derive a prelimit
version of (4.2) which is satisfied kyf (-) for all sufficiently largeF. We will then
pass to the limit in this relation to obtain (4.2) fo) andg € V. Finally, we make
a simple extension fror¥ to C.

Let g € V and note that sinc® c €, g’ is uniformly continuous ofR [recall
that we extend; to be identically zero or{—oo, 0)]. So, there is a continuous
nondecreasing functiot, : [0, co) — [0, co) with v, (0) = 0, such that for any
helR,

(4.11) Su]gllg/(x +h) = &' Il < g (Ih]).

Recall that for each € R, 7()isa realization ofi”™(-) for somem < |FT | and
someo € BZ(;)- Since the sequenge’ (-)};_ remains fixed for the remainder of

this proof, it is understood that all random objects indexed byR andm < |7T |
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are evaluated at the particulare B’ andm for which 7 (-) is a realization. Fix
t €[0, L]. ForanyN e N andj € {0, 1 .., N —1}, definet; = JW’ andz/ =1j41.
Then we have for eache R,

(g.27 (1)) —(g.£7(0) = Z 8. ") —(g.¢" (1))

j=0
N-1
= (g.c7a)) = (s(-= 5] SN
j=0
N-1
(4.12) + 2 (g(-=5 S/ ), (1)) — (g, 7 (2))
j=0

N-14 FETmM (1))
7 or.m
-~ Z 8(v; SUfF*l—m,z/)
J=0" i=FE"m(t;)+1
N—1
_.l_
/=0

Sy =887 )),

where the first term in the last equality is by (3.2) (using t;, h =t/ —t;

there) and the fact thatlo,«)g) = g, sinceg(0) =0 for g € C. By (4.3), (4.4)
and (4.10), we have

(4.13) limsup|(1, ¢ )], < Mr,
(4.14) limsup|(L, £ ()Y, < oo

By (4.13) and (4.14), we can assume for the remainder of the proof tkdarge
enough so that for som#, > 0,

(4.15) sup (1,77 () v (L7 () <M
s€[0,L]
We handle the two terms in (4.12) separately. To begin with, sine& c €
has been extended to be an elemerﬁ:b@R), we have the following first-order
Taylor expansion for eache {0,1,..., N — 1} and eachx e R,.:

(4.16) glx = 5") —g(0) = g’(wj?)h i
whereh ; = St o andw e Risinthe mterva[x— ﬂ, x]. Note that by (2.20)
and (4.15),
tM,
4.17 | = Shml < — g
(4.17) _max_ lhjl=__max |87 < ||< O =
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For eachj € {0,..., N — 1}, let z; = suR¢y, (L, ¢"(s))"* and definer; =

—zj+. Then
N—1 3 N1
2 hj=hil= 3 lziy =S
7
j=0 j=0
N-1
! or.m
(4.18) = ;(Z‘jﬁ - Stjﬂ)
_N‘1<Z_ r) S
- Y 0,
j=0 N

For eachN € N and s € [0,¢), let fn(s) = Zfl.vz‘olzjll[,h,j)(s) and define
fn (1) = 0. We can make the following estimate for the second term in (4.12):

N-1 N-1 o
> (g - ”,) g(). ")) = D (g Ohy, ¢ )
j=0 j=0

<Z suplg(x — 5") = g(x) — &' (Wh; (L. 7 1))

J 0 XER+
N-1 _ B
—Z sup lg'(whhj — g ()hjl(L, ¢ (1))
oxE +
) N-1
(4.19) <@ o), > sup(lg'(wj) = g'lih,|
j=0 XeR4

+1g' )|k —hjl),

<M (M(%)% " ||g/||oo<§(zj%) _ sg;;"))
= e
gl [ vras— [ as))

In the third line above we have used the Taylor expansion (4.16). The last
inequality then follows from (4.15), (4.11), (4.17) and (4.18). The substitution
of the second integral in the last line follows by (2.20) and (4.15).Alet> oo

in the above inequality. By the continuity gf, and the fact thaty, (0) = 0, we
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see that the first term in the outer parentheses tends to zero. Notgytat—
(1,¢7(s))~ 1, asN — oo, for anys € [0, 1) at which (1, ¢7(-))~1 is continuous.

Since it is continuous for almost evesy[the path¢”(-) is r.c.l.l], the second

term in the outer parantheses tends to zero by (4.15) and bounded convergence.
Furthermore, we note that

N-1 N-1

1N 7 I !
D& Ohy e ap) == g & e

j=0 j=0
and that agv — oo,

(g, " (s))
_JX%g el (t] >ZJN_)__/0 md&

also by (4.15) and bounded convergence, since the funggion’ (-))(1, ¢7(-)) "1
is also continuous for almost evesy Together with the estimate (4.19), this
implies that agv — oo,

N-1 t (g’ 7 (s))
4.20 o rm 22 Vg
(4.20) ]go@( S5 — 80 ¢ ) — /0 (L))

We handle the first term of (4.12) in a similar (although simpler) fashion. Once
again we can use a first-order Taylor expansion for each summand appearing in
this term:

(4.21) (0] = Syrt s, ) =8 (D) + & Wi,
i or.m r ,m -1 _
whereh’j = _SUfF*l—m, andw € [v U“*l ai? Vi V. Slnce|t1 — (Ur

m)| <t/N for each pairj, i in the first term of (4.12), we have by (2.20) and (4.15)
as before that

. 1t ~ 1 tMé‘
4.22 hi| < — |1 ¢ L
(4.22) rggxl ,|5N||(,§()> I, < N

Using the Taylor expansion (4.21) along with (4.22), we have

N-1 1 E" I’I7(t_/) _ . 1 FEr,m(t) )
(5275 wi-sp,0)-1 %

J=0" i=fFE"m(t;)+1 i=F EF-m(0)+1

FET™ (1)) o
Z— D, g wphj

j=0" - FETm(¢)+1

(4.23)

— tM
< Eﬂ’”(z)ng/noon

’
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which tends to zero a¥ — oo. By combining (4.20) and (4.23) above, we can let
N — o0 in (4.12) to obtain the relation

N 1 TEM® )
(8. ¢ (S»ds—l-; Y sGh

i=F EFm(0)+1

- . t
(4'24) (g’fr(t»:(g’;r(o))_/(; 1 (F(S))

for all sufficiently larger. We would like to letr — oo in this relation to obtain

t /
(4.25) (8. ¢(®)) =(g.2(0)) —/ Mdsﬂxt(g,v).

0o (1,4(s))
By (4.3), we have that the left-hand side, as well as the first term on the right-
hand side of (4.24), converges to the corresponding term in (4.25). Similarly, (4.3),
(4.13), (4.14) and (4.10) imply that the integrands in the second term on the right-
hand side of (4.24) are uniformly bounded, and converge pointwi$@,ohto the
integrand in the second term on the right-hand side of (4.25). Thus the integrals
converge by bounded convergence. To see that the third term on the right-hand
side converges, note that singe V, g = g;’ for somek € N (see Definition 3.7).

So for anyF € R large enough so that(7) > k,

1 TEMO i
= > ) g
i=F ET-m(0)+1
175F’m(LZ/ln(f)Jln(f)) )
=z g (W) = &t/ bucs) Jlury (81 V)
i=FETm(0)+1
~E_7,m )
E ng D) —al(t = [t/ L [y ) (82
s 8k (V) —«a [ ni) [ n ) )8k 5 V)
i=FETM ([ by ln ) +1
(4.26) < ) + 180 lloo (E™"0) = E™™ [/ 1ty Jlns))) + tlnii))

<eni + I8¢ ||oo(t s{gg}(ﬁf””(r +lary) — E7(0) + alna))
[SIAVA

< eni) + 182 lootn)s

where the second inequality is by (3.75), and the last inequality follows [after re-
laxing the bound te, ] by (3.74) and (3.73). Since (4.26) holds for ale R
sufficiently large, and since, ) | 0 asr — oo, we obtain (4.25) from (4.24) by
letting 7 — oo.

We have shown that if (0) # O, then (4.2) holds for alt € [0, L] andg € V.
We now extend to the cagee €, using the casg € € as an intermediate step.
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Supposg € € and choose functiong € 'V, k € N, such thatgr )72, and{g; 172 4
are uniformly bounded, and such thatkas> oo,

(4.27) gk—> g and g — ¢/,

pointwise onR ;. (see Definition 3.7). We have established that for daeN and
t [0, L],
t /
@28) (g c) = (o050 — [ I gt arg v,
o (1,¢()

It then follows by (4.27) and bounded convergence that, as oo, the left-hand
side as well as the first and third terms on the right-hand side of (4.28) converge
respectively to the corresponding terms of (4.2). Similarly, sgeeis continuous
and¢(¢) £ 0for all ¢ € [0, L], the integral term also converges by (4.27) and two
applications of bounded convergence. Thwe obtain (4.2) from (4.28) by letting
k — o0.

Finally, fix ¢ € €. For k € N, choose a functiony; € C%(RQ such that
Yr(x) € [0,1] and [y (x)] < 2 for all x € Ry, ¥ =1 on[0,k] and ¢ =0
on [k + 1,00). Let g = Y g, and note thafg,};2,; and{g;}7>, are uniformly
bounded and thafy — g, andg, — g’ are pointwise ofiR ask — oo. Since
g« has compact support, we see tgak € for eachk € N. Therefore, (4.2) holds
for all r € [0, L] and for each of the functiong,. By the same argument as that
appearing after (4.28), this implies that (4.2) also holdsefoFhis completes the
proof. [

The next lemma asserts that for largeéhe fluid scaled processg$™ (-) can be
uniformly approximated of0, L] by paths in#; . This fact, together with a result
due to Puha and Williams [16] about the uniform convergence to steady state for
elements of#; (see Proposition 4.5) constitutes the second main ingredient for
proving state space collapse.

LEMMA 4.4. Assume (Q.1)and let 7,L > 1 and 0 < n < 1 be given. Let
{€4}°21 C (0, 1) beasequencesuchthat e, | 0,asn — oo. Letl,, p, M7, kn, Vn,
N,, r, bethe constants, and { B;,} be the events given by Lemma 3.8. Then for each
n € N, thereexists r;, > r, such that for every r > r, and ¢"(-) € 4}, there exists
¢(+) € Ay, such that

(4.29) I1dlg" (), ¢OIllL < €n,
(4.30) 1x, 7)) = (X, ML < én.

PrROOF.  We follow the proof of ([2], Lemma 4.1). Suppose on the contrary that
there exists: € N, a subsequenc® C R, and a sequendé’ (-)}:. 5 C Dr(MF),
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such that’(-) € %} for each?, and such that either

inf inf Jd[¢70).cO), > en or

(4.31) FeRr¢()e
inf inf 10 £7O) = e EOMl > en.

By Corollary 3.16 and Definition 4.1, there exists¢c&) € %, and a further
subsequencg;}jen C R such that ag — oo,

(4.32) £Ti() 5 ).

By Lemma 4.3£(-) is continuous. So ag— oo,

(4.33) ld[¢™ (), ¢l =0,

which implies by Lemma 3.5 and (3.76) that for each[O, L],
(4.34) 6, £ () = (x, ()| =0  asj — oc.

Since(y, ¢(+)) is constant by (ii) of Lemma 4.3, we have by (4.34) and (3.81) that
in fact,

(4.35) [ ¢ O) = e, =0 asj—co.
Together, (4.33) and (4.35) contradict (4.31)]

We now apply a result obtained in [16], on the rate at which fluid model
solutions converge to their steady state, to chabse 1 large enough so that
elements of#; are nearly in steady state fore [L — 1, L]. We first recall the
definition of the mappingg : Mg — Do (MF) introduced in [6], Lemma 4.9.
Recall that the seM{ C Mr consists of all nonatomig € MF, that is, alls € Mr
satisfying(1y), &) =0, for allx e R;.. Given& € Mg, we defineE(£)(-) = Eg(-),
Whereg:g(-) € Doo(MF) is the unique fluid model solution for critical data, v)
(defined on[0, o0) as in [6], Section 3.1), such thég(O) = £. The following
proposition is a direct consequence of Theorem 1.3 in [16]. Recall that the lifting
mapA, was defined in Definition 2.2.

PrROPOSITION4.5. Assume(Q.1l)andlet T > 1 and O < < 1 be given. Let
{en}n2 1 C (0, 1) be a sequence such that ¢, | 0, asn — oo. Then for any ¢ > 0,
thereexists L* > 1 suchthat for all ¢(-) € Z«,t € [L* — 1, L*] implies

(4.36) diz(®), Av{x.c@)] <e.
PROOF Letl,, p, M7, kn, ¥n, Nn, rn D€ the constants, ari@; } be the events

given by Lemma 3.8. Ley and M, be the constants given by Lemma 4.3, and
define

(4.37) S={se ME:(L &)V (x.6) Vv (x4, 8) < M,).
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Let Z C Doo(Mg) be the set of all fluid model solutions(-) for critical data

(a, v) (defined or{0, co) as in [6], Section 3.1) such that0) € S. Then as a direct
consequence of Theorem 1.3(i) in [16] (withh = M, ande = g there), we have
that givens > 0, there existd.* > 1 such that

(4.38) sup p(¢(), Av(x,¢(0)) <8  forallr>L*—1,

(B
wherep(-, -) is the Prohorov metric ot defined in [16], Section 1. Note that
foranys(-) € B, A, (x,c(0)) e M}, where

(4.39) MY ={& eM,:(x,§) < My}

Thus, to replacé and p(-, -) with the givene and the metricd[-, -] in (4.38)
above, it suffices to show that there exidts- O such that for alE € M{, the
p-ball B,(¢,6) of radiuss centered ak, is contained in thel-ball By(&, ¢) of
radiuse centered a§. To this end, le€? = M, (x, v.) "1, be the element df1?
with the greatest mass. Note that the metpgs -) andd[-, -] both induce the
same topology ooMr. So, we can choose> 0 such thatB,(£7,8) C By(§9, ¢).
Suppose that € MY andp(¢, &) < & for some: € Mg. SinceM?{ = {cv.:c €
[0, M, (x, ve) "1}, thereis &’ € M? such that + &' = £9, where for two elements
&1, &2 € Mg, we defineéy + & € Mg by (61 + &2)(A) = £1(A) + &2(A), for any
Borel setA C R,. Using the definition of the metrip(:, -), it is not difficult to
verify that

p(&+EE+E)<p, ) <8,
which implies that +&’ € B,(£%,8) C Bq(£, ¢). By the definition (1.4) ofi[-, -],
this yields
d[é‘v E] - d[{ + 5/’5 + E/] <E€.
Thus, we can chooskE* > 1 so that
(4.40) sup d[¢(1), Ay(x,¢0)] <e forallz > L* — 1.
O

Let A+ be given by Definition 4.1 of this section. In [6], it was shown that
for a fluid model solutiort () € Doo(ME), £ (¢) has no atoms for al > 0 ([6],
Lemma 4.3 and equation (4.33) ff.). This result carries over to fluid model solutions
on [0, L*] in a straightforward manner. So by Lemma 4.3 of this section, we have
forany¢(-) € B+, that¢ (1) € SC Mg forall r € [0, L*]. For anys () € %+, let

() € Doo(MF) be defined by

) t €[0, L*],
(4.41) “’)‘{a@(L*))(r—L*), r € (L%, 00).

I_\lote that if£(0) = 0, then by Lemma 4.3, Definition 4.2 and [6], Theorem 3.1,
¢(@)=0for all r > 0. If £(0) #0, then¢(-) satisfies (4.2) for alk € [0, L*]
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and E(¢(L*))(-) satisfies (4.2) for alt > 0. It is not difficult to see that in this
case( (-) must also satisfy (4.2) for all > 0. So,¢(-) is a fluid model solution
for critical data(a, v) on [0, co) such that; (1) = ¢(¢) for all r € [0, L*]. Since

z(0) € Sfor all ¢(-) € %+, we havec(-) € £ for all ¢(-) € B« Thus, by

Lemma 4.3(ii) and (4.40), for anye [L* — 1, L*],

(4.42) sup d¢(®), Av(x,¢@)] <e.
C()EB O

4.2. State space collapse. Before proceeding to the proof of state space
collapse, we will need the following technical lemma, which provides a uniform
continuity property for the mapping : Mg — Do (MF) On a set of measures
& € Mg that are close to the truncated invariant manifeldl. Recall that for any
& e Mg, Eg(-) = E(&)(-) is the unique fluid model solution defined @) co) such
thatg: (0) = &.

LEMMA 4.6. Assume (Q.1)andlet T,L > 1 and 0 < n < 1 be given. Let
{en}o2 1 C (0, 1) beasequencesuchthat e, | 0,asn — oo. Letl,, p, M7, kn, Vn,
N,, r, bethe constants, and { B, } be the events given by Lemma 3.8,and let ¢ and
M, > 1 be the constants given by Lemma 4.3.Let M; > M, and define

(4.43) MI={(£eM,:(x.&) < My}.

Then for any ¢ > 0, there exists § > 0 such that for all ¢(-) € £, and & € M,%
satisfying

(4.44) diz(0), &1V I{x,¢(0) — (x,&) <4,

we have

(4.45) sup d[z(0), & ()] <e&.
te[0,L]

PROOFE Fix e > 0 and chooseg such that,, < ¢/4. Let

e(kng AN (X, ve) A1)
So= .
8
Note that by (4.9), any(-) € 4, satisfies

(4.46)

Eng _ &
4.47 sSup (Lo, (1)) < — < =.

( ) te[o,rl)l]( [ K 0) ; > 2 8

Note also that for any (-) € %, ¢(t) = E(¢(0))(¢) for all # € [0, L]. By Theo-
rem 3.8 in [15],8 is continuous oM. Let&; = M1 (x, ve) " Lv,. Since&; € ME,
we can choose & 81 < 1 such that for ang € Mg satisfyingd[&, &1] < 81, we
have

(4.48) sup  d[g (), &, (D] <e.
te[0,2M1L /50]
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Define
. 8081
B 2M1’

and consider ang(-) € %, such that for somé € M1, (4.44) holds. The argument
splits into two casedFirst, suppose thaty, ¢(0)) < do. Then, by (4.44), (4.49)
and the fact thatM1 > 1, (x,&) < 289. This implies by (4.46) thatl, &) =
<X7 E)(X’ Ue>_1 S 8/4 ThUS,

sup d[¢ (), & (1)]

te[0,L]

< sup d[z(z),0]+d[O0, &]
te[0,L]

(4.50) < sup 2(1, (1) +2(1,¢)
te[0,L]

(4.49) 8

&€
<2 8Up ({L10.6,): £ (1) + (Lixsg00): £ (D) + 5
te[0,L]

<t 2+
=T g, Wity

<e

’

where the first inequality uses the fact th}g(t) = Zg (0) =& for all + > 0, since
& is on the invariant manifold ([16], Theorem 1.1). The second inequality uses de-
finition (1.4), the fourth uses (4.47) and Markov's inequality, and the last inequal-
ity uses (4.46) and the fact that singé) is a fluid model solution{y, ¢(¢)) =
{x,¢(0) < do forall ¢ € [0, L] ([6], Theorem 3.1). This establishes (4.45) in the
first case.

For the second case, suppose thats(0)) > §p. Sinced; < 1 < M1, (4.44)
and (4.49) imply thaty, &) > 80/2. So¢ # 0. Leter = M1(x, €)1 and define the
transformed functiog (-) : [0, c1L] —> Mg by

(4.51) 7(t) = c12(t/c1), t €10, c1L].

Using a change of variables, it is not difficult to verify that) satisfies (4.2)
for all r € [0, ¢c1L] and is therefore a fluid model solution ¢ ¢1L]. Note that
¢(0) = c1£(0), and thaic1& = £;. Also note that sincé € M1, we havec; > 1.
Thus, using definition (1.4), we have

d[£(0), £1] = d[c1£(0), c1£]

< c1d[¢(0), ]
(4.52)
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This implies that

sup d[z(1), & ()] < sup dlc1g (1), c1€]
te[0,L] te[0,L]

(4.53) = sup d[Z®), 2, (0)]
tel0,c1L]
<e&.

The first line in the above inequality uses (1.4), the factthat 1 and the fact that
Ze (1) =&, sinceg e ML. The second line follows by definition gf-), and the fact
thatciE =& eM ,% The last line then follows by (4.52) and (4.48) [wigh= £ (0)
there] by noting that1L < 2M1L /8. O

We are now ready to prove state space collapse for the sequence of diffusion
scaled state descriptofa’ (-)}. This leads directly to the proof of Theorem 2.3,
which appears at the end of the section.

THEOREM 4.7 (State space collapse)Assume (Q.1) and let T > 1 be given.
Thenasr — oo,

(4.54) [d[2" (), AW O] = 0.

PrROOF We must show that for any @ ¢*, n < 1, there exists* € R such
thatr > r* implies

(4.55) P (Jd[a" (). AW )] %) = 1= 1.

Fix 0 < £*, n < 1. We first note that by definition of the metd¢-, -] and the lifting
mapA,,

(456) d[A, w1, Aywz] < cylwg — wa, w1, W2 € R—&-,

for some constant, > 1. Choose a sequeng¢s, }°° ; such that, | 0 asn — oo.
By Proposition 45, usinge = ¢*/3 there, we can choode* > 1 such that for all
() e PBrx,t € [L* — 1, L*] implies

(4.57) A2 (1), Ay (x. £(1))] < %

Letl,, p, Mr, kn, yn, Nn, rn be the constants, ar{d/} be the events given by
Lemma 3.8. Lety and M, > 1 be the constants given by Lemma 4.3, and let
8 > 0 be given by Lemma 4.6 fak = L*, M1 = 2M, ande =¢*/12. Fixn* e N
large enough so that

*

1) e
4.58 » < = A .
(4.58) =5 1o,

Choose* large enough so that(r*) > n* andr* > r/ ., wherer,. > r, is given

n*1

by Lemma 4.4. Fix > r* for the remainder of the proof. The argument splits into
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two cases. We first consider the procgg<(-) on B’, ., and then consider the

n(r)’
processefs”" (-) form € {1,..., [rT]} on By,,.

For the first case, consider any realizatigie-) € % . of the procesg”2(-) on
the events, ,,. By (3.77), there existsae M, such that
(4.59) diZ"(0), €1V [{x, £"(0) = (x, §)] < &n(r) < &n=.
By (3.76) and the fact that,- <1 < My < M, < M1, we see that e M} =
£ eM,:(x.&) <2M,}. Let ¢:(-) = E(§)(-) and note that sincg is on the
invariant manifold £ = ¢:(0) = ¢ (¢) for all # € [0, L*] ([16], Theorem 1.1). So
by definition ofM, andA,,,

(4.60) Ce(t) = Ay (X, L (1)) forall t € [0, L*].

Let ¢(-) € B+ be given by Lemma 4.4 fot"(-) andn = n*. Note that since
e () and¢ () are fluid model solutions of®), L*], we have for alk [0, L*] ([6],
Theorem 3.1),

(4.61) (X, 8e()) = (x, 2(0) and (x,z(®)=(x,¢(0)).

By combining the result of Lemma 4.4 cited above with (4.59) and (4.58), one
obtains

d[z(0), £] < d[£(0), " (0)] 4+ d[¢"(0), €]
(4.62) < 2+
<3,
and also
(X, 2(0)) — (x. £(0)]
< (X, 2 (0) — (x, £ Q)|+ [(x. ¢ (0) — (x., £(0))]

4.63
(4.63) <2
<.
This implies, by choice o and Lemma 4.6, that for anye [0, L*],
_ e*
(4.64) dig (@), ¢e(] = —

Sincer > r*, we have for any < [0, L*], e
df¢" (@), Av(x. ¢ ()]
<di¢" (1), ¢ +dIE (), Ze D] +d[Z (1), Av(x, & ()]
+d[ A (X e (0), Ay (X E )]+ A[AL (XL £(0), Ay(x. £7 ()]

*

<&+ + I + 0+ ¢, 28, + cpepx

(4.65)

8*
SE’
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where the first estimate in the second inequality above follows by Lemma 4.4, the
second estimate follows by (4.64), the third by (4.60), the fourth by (4.56), (4.61)
and (4.63), and the fifth estimate uses (4.56) and Lemma 4.4. The last inequality
follows by (4.58) and the fact that, > 1.

We now proceed to the second case. L&t) € #}. be a realization of the
processi”™(-) on B,’l(r), wherem € {1, ..., |rT]}. Let¢(-) € B+ be given by
Lemma 4.4 forz” () andn = n*. Sincer > r*, we have forany € [L* — 1, L*],

dg" (1), Avlx, " ()]

<d[¢" (), cO1+d[¢(@®), Av{x, £ (1))]
(466) +d[Av<X’§(I)>’AV(X’;-r(t)”

*
< é&px + § + cyép

8*
E?
where the three estimates in the second inequality are by Lemma 4.4, (4.57), (4.56)

and Lemma 4.4, and the last inequality is by (4.58) and the facttmatl.
Finally, combining the estimates (4.65) and (4.66), we havB,’lQ,r}, forr > r*,

=

ld[2" (), AW O] 7

= Ssup d[lzr(t),Av<X’ﬁr(t)>]
1€[0,rT]

(4.67) < sup d[a"%(), A, (x, 2"°()]
te[0,L*]

+ sup d["™ (1), Ay (s 1™ (1))]
l<m<|rT], te[L*—1,L*]

g* ¥
< — 4 —.
- 2+ 2

SinceP’(B,’l(r)) >1—nforr>r* (4.55)is proved. O

PROOF OFTHEOREM2.3. By Proposition 3.1, we have that (-) = W*(-)
asr — oo, whereW*(.) is a reflected Brownian motion iR with drift —2,
variancexa? 4+ b2 and initial conditionW*(0) equal in distribution tax, ©).
Since A, :R; — Mg is continuous, the continuous mapping theorem implies
that A, W’ (-) = u*(-) = A,W*(-) asr — oo. Thus, Theorem 4.7, combined
with the “converging together lemma” ([1], Theorem 4.1), implies that) —
ur() asr - oo. [
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