Bayesian Analysis (2010) 5, Number 4, pp. 683-690

Comment on Article by Vernon et al.

Earl Lawrence* and David M. Higdon'

1 General Comments

We congratulate the authors on an excellent example of collaborative work that com-
bines Bayesian statistics with computational and observational cosmology. We appre-
ciate the effort it takes to grow this collaboration into a relationship that can produce
the results shown in this paper. In particular, the process of determining the likelihood,
eliciting the form of a discrepancy, or visualizing the results is easy enough to put in
a paper, but the time and effort to get to that point is substantial. This has certainly
been our experience in cosmological applications.

Like Vernon, Goldstein and Bower (VGB) describe, we have also invested much
effort over the past few years collaborating with cosmologists at Los Alamos National
Laboratory. Our approach uses a more fully Bayesian formulation and carries out the
multivariate emulation using a basis representation. We make an initial comparison
of the posterior distribution produced by our approach to the non-implausible regions
in the input space presented in this paper. We then go on to describe the approach
we have developed for emulating the dark matter power spectrum. In particular, we
consider two ways in which our handling of the output differs from that of VGB.

2 Comparison to the Posterior Distribution using a Fully
Bayesian Approach

First, we compare a part of the VGB analysis to the fully Bayesian approach described
in Higdon et al. (2008). Briefly, our approach decomposes the multivariate computer
output using principal components. Independent, constant-mean Gaussian processes
with a squared-exponential covariance function are fit to the weights for each basis
function. The observed data are assumed to follow a Gaussian distribution with spec-
ified covariance and mean given the by the simulation model plus discrepancy. In this
case, rather than estimate the discrepancy as described by Higdon et al. (2008), we fix
the discrepancy at the values estimated and provided by VGB in the the form shown
in VGB’s Equation (20). This likelihood, plus flat priors on the inputs and other ap-
propriate priors on nuisance parameters, provides a way to calibrate simulator inputs
that produce best-fitting simulator outputs. Estimation proceeds using MCMC. The
methodology is applied to VGB’s Wave 2 suite. The resulting posterior distribution for
the model parameters are given in Figure 1.
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Figure 1: Posterior distribution of the input parameters using the fully Bayesian for-
mulation of Higdon et al. (2008). Here the observational data are combined with the
wave 2 simulations. Compare this figure with Figure 11 from VGB which gives the
plausibility region of the input parameters using the same information. Here the lines
show an estimated 95% hpd region for each of the bivariate margins of the posterior;
the diagonal shows estimates of the univariate marginal densities.

Our fully Bayesian approach appears to more strongly constrain the parameters,
but the results are fairly similar. Any conclusions made from this comparison should
be tentative since there are major differences between the two formulations. The fully
Bayesian approach uses an emulator with a constant mean, with most of the structure
captured by using the covariance function, as opposed to the VGB approach which
captures structure mostly with the mean. Also, the multivariate emulator is constructed
using basis functions, as opposed to the carefully chosen function locations in VGB.
Perhaps most importantly, our full Bayesian specification assumes that the observations
have a Gaussian distribution around the simulation, which could produce very different
results than the implausibility function used by VGB. We haven’t explored how these
differences affect the resulting posterior.

The results suggest that a fully specified Bayesian approach can be applied to VGB’s
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problem, although we note that the computational burden is quite significant. Never-
theless, as we are sure VGB can attest, the vast majority of the effort in this type of
problem is not spent in deriving or implementing a particular model, but in understand-
ing the scientific issues well enough to represent them statistically. Further, we were
able to implement the fully Bayesian procedure quickly only because our own similar
efforts have given us extensive experience and resulted in the creation of a software
package that readily handles this type of problem.

3 Emulating the Dark Matter Power Spectrum

Lawrence et al. (2010) is also interested in estimating or constraining cosmological
parameters, particularly the dark energy equation of state. To achieve this goal, we use a
large simulation suite called the Coyote Universe. This suite contains nearly 1000 n-body
gravitational simulations of dark matter for 37 cosmologies that span that currently
acceptable ranges of five cosmological parameters. The goal is to produce an emulator
that captures the best available theory for comparison with upcoming observations
from new probes. For output, Lawrence et al. (2010) considers the nonlinear dark
matter power spectrum. Like the luminosity functions from VGB, the power spectrum
summarizes the distribution of objects in space, making it useful for evaluating models
of structure formation. Here we describe the approach taken in Lawrence et al. (2010)
for handling the output and how it differs from the methodology described in VGB.

3.1 Modeling the Output

Figure 1 from VGB shows the luminosity results from the initial set of runs. These runs
demonstrate a large variance and lack of smoothness, both of which present potential
difficulties for emulator fitting. Further, smoothness is an expected property in the
actual Universe. Similarly, our Figure 2 demonstrates the same issues from the Coyote
Universe. This plot shows the power spectra (on a transformed scale) for the high
resolution simulations of 37 cosmologies at six redshifts. The large variation and lack
of smoothness arise from uncertainty in initial conditions and numerical issues related
to the finite size of the simulation. These issues do not appear to be a detriment to
the scientific goals from VGB. In our case, these issues wash out important features
in the output, notably a series of systematic bumps in the vicinity of ¥ = 0.1 known
as the baryonic acoustic oscillations (BAO) that are very important in understanding
structure formation. As such, we need to spend some effort in resolving these issues.

In order to overcome these difficulties, we use the simulations to estimate the smooth
power spectra, which are then used to build the emulator. The estimation uses replicate
simulations for each set of cosmological parameters at three levels of resolution starting
from different draws of the initial condition. Figure 3 shows the results for a single
cosmology. The red line is the spectrum from the single high resolution run (higher
resolution runs have larger volumes and more particles), the black lines are from the
four medium resolution runs, and the gray lines are from the 16 low resolution runs.
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Figure 2: Transformed power spectra from the high resolution Coyote Universe simula-
tions. The simulations span 37 cosmological parameter settings and 6 redshift values.
The spectra are very jagged with large variation, particularly at low k. This is both
unrealistic and a detriment to answering important scientific questions.

The lower two resolutions have limited or no utility at high k values (accordingly, this
part has already been removed), but do provide information in the low k region where
the variance is large and the mid k regions where the important features are located.

Lawrence et al. (2010) describes the power spectrum estimation in detail, so we only
give a brief overview here. The smooth power spectrum is assumed to be a process con-
volution (Higdon 2002): a smooth class of functions built by kernel smoothing a random
process. Because this model can be specified constructively, it allows great flexibility.
In particular, the kernel can be changed over the domain to create a nonstationary
function. The function class for the smooth power spectrum estimates is specified as
process convolution built out of Brownian motion observed on a fixed grid and smoothed
by a Gaussian kernel whose width is allowed to vary smoothly over the domain. The
kernel width function is described by a second process convolution built from Gaussian
impulses on a small grid, smoothed by a Gaussian kernel with a fixed width, and as-
sumed to be common across cosmologies. The observed simulated power spectra are
assumed to be normally distributed with a smooth mean given by the power spectrum
process convolution and known variances. Priors on the variances for the latent random
processes (the Brownian motions and the Gaussian impulses) and the kernel width of
the second process convolution complete the specification. The Brownian motions are
integrated out of the posterior and estimation proceeds using MCMC to sample from
the posteriors of the parameters and the impulses comprising the kernel-width process
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Figure 3: Replicate outputs for a fixed cosmology and redshift at three resolutions. Red
is high resolution, black is medium resolution, and gray is low resolution.

convolution. The results, as shown in Figure 4, are more realistic, less influenced by
random fluctuations in the initial condition, and easier to model. Importantly, the
estimation procedure is able to pick out the BAO.

Ultimately, this approach is one choice for balancing a number of considerations.
Estimating the BAO would have been impossible without replicates, but we might
have reduced the replication and explored a larger number of parameters, used larger
parameters ranges, and/or more thoroughly filled in the design space. This choice is, of
course, governed most strongly by the scientific questions at hand.

3.2 Decomposing the Output

Many of the luminosity plots in VGB show vertical lines indicating the points along the
luminosity functions that were used to compare observation and simulation. For the
Wave 1 analysis, seven points (three from the bj curves and four from the K curves)
are used as outputs for the emulator and for history matching. The number of points
is increased as the analysis progresses.

Lawrence et al. (2010) uses the approach discussed in Higdon et al. (2008) of a prin-
cipal component decomposition on the smooth power spectra estimates. In this case,
the first five principal components capture 99.99% of the variation. Figure 5 shows the
resulting basis functions (the nearly repeating patterns in this plot are created by com-
bining the 6 redshifts for each cosmology in order to simplify the emulator estimation).
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Figure 4: Estimates of the unknown smooth power spectra. Compare to Figure 2 and
note the BAO near k£ = 0.1.

Five independent emulators are built to model the weights for each of the five basis
functions. This approach achieves a similar size reduction to the VGB approach, but
still attempts to model the entire functional output. In part, this decomposition is aided
by the earlier estimation of the smooth spectra which greatly reduces the variance.

4 Conclusion

We spent much of our computational effort on finding a more ideal, smooth represen-
tation of the power spectrum, while VGB spent their computational effort on better
exploration of the parameter space. These different approaches put different demands
on the emulator. Thus, it is not surprising that we have different emulation strategies.
The more general issue of determining how best to use limited computational resources
is an open question in the general topic of simulation-aided inference. As the authors
point out, this general topic has no shortage of open research directions. We thank
the authors for their bold effort. The paper is full of new ideas and perspectives for
augmenting statistical inference with physically-based computational models.
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Basis Functions

Figure 5: Basis functions used for emulation. The emulator is built by combining the
six redshift spectra for each cosmology. This causes the sawtooth effect in this plot as
the spectra change subtly across redshifts.
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