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MISSING DATA IN VALUE-ADDED MODELING OF TEACHER
EFFECTS!

By DANIEL F. MCCAFFREY AND J. R. LOCKWOOD
The RAND Corporation

The increasing availability of longitudinal student achievement data has
heightened interest among researchers, educators and policy makers in using
these data to evaluate educational inputs, as well as for school and possibly
teacher accountability. Researchers have developed elaborate “value-added
models” of these longitudinal data to estimate the effects of educational in-
puts (e.g., teachers or schools) on student achievement while using prior
achievement to adjust for nonrandom assignment of students to schools and
classes. A challenge to such modeling efforts is the extensive numbers of stu-
dents with incomplete records and the tendency for those students to be lower
achieving. These conditions create the potential for results to be sensitive to
violations of the assumption that data are missing at random, which is com-
monly used when estimating model parameters. The current study extends
recent value-added modeling approaches for longitudinal student achieve-
ment data Lockwood et al. [J. Educ. Behav. Statist. 32 (2007) 125-150] to
allow data to be missing not at random via random effects selection and pat-
tern mixture models, and applies those methods to data from a large urban
school district to estimate effects of elementary school mathematics teachers.
We find that allowing the data to be missing not at random has little impact
on estimated teacher effects. The robustness of estimated teacher effects to
the missing data assumptions appears to result from both the relatively small
impact of model specification on estimated student effects compared with
the large variability in teacher effects and the downweighting of scores from
students with incomplete data.

1. Introduction.

1.1. Introduction to value-added modeling. Over the last several years testing
of students with standardized achievement assessments has increased dramatically.
As a consequence of the federal No Child Left Behind Act, nearly all public school
students in the United States are tested in reading and mathematics in grades 3-8
and one grade in high school, with additional testing in science. Again spurred
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by federal policy, states and individual school districts are linking the scores for
students over time to create longitudinal achievement databases. The data typically
include students’ annual total raw or scale scores on the state accountability tests in
English language arts or reading and mathematics, without individual item scores.
Less frequently the data also include science and social studies scores. Additional
administrative data from the school districts or states are required to link student
scores to the teachers who provided instruction. Due to greater data availability,
longitudinal data analysis is now a common practice in research on identifying
effective teaching practices, measuring the impacts of teacher credentialing and
training, and evaluating other educational interventions [Bifulco and Ladd (2004);
Goldhaber and Anthony (2004); Hanushek, Kain and Rivkin (2002); Harris and
Sass (2006); Le et al. (2006); Schacter and Thum (2004); Zimmer et al. (2003)].
Recent computational advances and empirical findings about the impacts of in-
dividual teachers have also intensified interest in “value-added” methods (VAM),
where the trajectories of students’ test scores are used to estimate the contribu-
tions of individual teachers or schools to student achievement [Ballou, Sanders
and Wright (2004); Braun (2005a); Jacob and Lefgren (2006); Kane, Rockoff and
Staiger (2006); Lissitz (2005); McCaffrey et al. (2003); Sanders, Saxton and Horn
(1997)]. The basic notion of VAM is to use longitudinal test score data to adjust
for nonrandom assignment of students to schools and classes when estimating the
effects of educational inputs on achievement.

1.2. Missing test score data in value-added modeling. Longitudinal test score
data commonly are incomplete for a large percentage of the students represented
in any given data set. For instance, across data sets from several large school sys-
tems, we found that anywhere from about 42 to nearly 80 percent of students were
missing data from at least one year out of four or five years of testing. The se-
quential multi-membership models used by statisticians for the longitudinal test
score data [Raudenbush and Bryk (2002); McCaffrey et al. (2004); Lockwood et
al. (2007)] assume that incomplete data are missing at random [MAR, Little and
Rubin (1987)]. MAR requires that, conditional on the observed data, the unob-
served scores for students with incomplete data have the same distribution as the
corresponding scores from students for whom they are observed. In other words,
the probability that data are observed depends only on the observed data in the
model and not on unobserved achievement scores or latent variables describing
students’ general level of achievement.

As noted in Singer and Willet (2003), the tenability of missing data assump-
tions should not be taken for granted, but rather should be investigated to the extent
possible. Such explorations of the MAR assumption seem particularly important
for value-added modeling given that the proportion of incomplete records is high,
the VA estimates are proposed for high stakes decisions (e.g., teacher tenure and
pay), and the sources of missing data include the following: students who failed
to take a test in a given year due to extensive absenteeism, refused to complete
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the exam, or cheated; the exclusion of students with disabilities or limited Eng-
lish language proficiency from testing or testing them with distinct forms yielding
scores not comparable to those of other students; exclusion of scores after a student
is retained in grade because the grade-level of testing differs from the remainder
of the cohort; and student transfer. Many students transfer schools, especially in
urban and rural districts [US General Accounting Office (1994)] and school dis-
trict administrative data systems typically cannot track students who transfer from
the district. Consequently, annual transfers into and out of the educational agency
of interest each year create data with dropout, drop-in and intermittently miss-
ing scores. Even statewide databases can have large numbers of students dropping
into and out of the systems as students transfer among states, in and out of private
schools, or from foreign countries.

As a result of the sources of missing data, incomplete test scores are asso-
ciated with lower achievement because students with disabilities and those re-
tained in a grade are generally lower-achieving, as are students who are habit-
ually absent [Dunn, Kadane and Garrow (2003)] and highly mobile [Hanushek,
Kain and Rivkin (2004); Mehana and Reynolds (2004); Rumberger (2003); Strand
and Demie (2006); US General Accounting Office (1994)]. Students with incom-
plete data might differ from other students even after controlling for their observed
scores. Measurement error in the tests means that conditioning on observed test
scores might fail to account for differences between the achievement of students
with and without observed test scores. Similarly, test scores are influenced by mul-
tiple historical factors with potentially different contributions to achievement, and
observed scores may not accurately capture all these factors and their differences
between students with complete and incomplete data. For instance, highly mobile
students differ in many ways from other students, including greater incidence of
emotional and behavioral problems, and poorer health outcomes, even after con-
trolling for other risk factors such as demographic variables [Wood et al. (1993);
Simpson and Fowler (1994); Ellickson and McGuigan (2000)].

However, the literature provides no thorough empirical investigations of the
pivotal MAR assumption, even though incomplete data are widely discussed as
a potential source of bias in estimated teacher effects and thus a potential threat
to the utility of value-added models [Braun (2005b); McCaftrey et al. (2003);
Kupermintz (2003)]. A few authors [Wright (2004); McCaffrey et al. (2005)] have
considered the implications of violations of MAR for estimating teacher effects
through simulation studies. In these studies, data were generated and then deleted
according to various scenarios, including those where data were missing not at ran-
dom (MNAR), and then used to estimate teacher effects. Generally, these studies
have found that estimates of school or teacher effects produced by random effects
models used for VAM are robust to violations of the MAR assumptions and do
not show appreciable bias except when the probability that scores are observed is
very strongly correlated with the student achievement or growth in achievement.
However, these studies did not consider the implications of relaxing the MAR
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assumption on estimated teacher effects, and there are no examples in the value-
added literature in which models that allow data to be MNAR are fit to real student
test score data.

1.3. MNAR models. The statistics literature has seen the development and ap-
plication of numerous models for MNAR data. Many of these models apply to lon-
gitudinal data in which participants drop out of the study, and time until dropout is
modeled simultaneously with the outcome data of interest [Guo and Carlin (2004);
Ten Have et al. (2002); Wu and Carroll (1988)]. Others allow the probability of
dropout to depend directly on the observed and unobserved outcomes [Diggle and
Kenward (1994)]. Little (1995) provides two general classes of models for MNAR
data: selection models, in which the probability of data being observed is modeled
conditional on the observed data, and pattern mixture models, in which the joint
distribution of longitudinal data and missing data indicators is partitioned by re-
sponse pattern so that the distribution of the longitudinal data (observed and unob-
served) depends on the pattern of responses. Little (1995) also develops a selection
model in which the response probability depends on latent effects from the out-
come data models, and several authors have used these models for incomplete lon-
gitudinal data in health applications [Follmann and Wu (1995); Ibrahim, Chen and
Lipsitz (2001); Hedeker and Gibbons (2006)], and modeling psychological and at-
titude scales and item response theory applications in which individual items that
contribute to a scale or test score are available for analysis [O’Muircheartaigh and
Moustaki (1999); Moustaki and Knott (2000); Holman and Glas (2005); Korobko
et al. (2008)]. Pattern mixture models have also been suggested by various authors
for applications in health [Fitzmaurice, Laird and Shneyer (2001); Hedeker and
Gibbons (1997); Little (1993)].

Although these models are well established in the statistics literature, their use
in education applications has been limited primarily to the context of psychologi-
cal scales and item response models rather than longitudinal student achievement
data like those used in value-added models. In particular, the MNAR models have
not been adapted to sequential multi-membership models used in VAM, where
the primary focus is on random effects for teachers (or schools), and not on the
individual students or in the fixed effects which typically are the focus of other
applications of MNAR models. Moreover, in many VAM applications, including
the one presented here, when students are missing a score they also tend to be
missing a link to a teacher because they transferred out of the education agency of
interest and are not being taught by a teacher in the population of interest. Again,
this situation is somewhat unique to the setting of VAM and its implications for
the estimation of the teacher or school effects is unclear.

Following the suggestions of Hedeker and Gibbons (2006) and Singer and Wil-
let (2003), this paper applies two alternative MNAR model specifications: random
effects selection and a pattern mixture model to extend recent value-added model-
ing approaches for longitudinal student achievement data [Lockwood et al. (2007)]
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to allow data to be missing not at random. We use these models to estimate teacher
effects using a data set from a large urban school district in which nearly 80 percent
of students have incomplete data and compare the MNAR and MAR specifications.
We find that even though the MNAR models better fit the data, teacher effect es-
timates from the MNNAR and MAR models are very similar. We then probe for
possible explanations for this similarity.

2. Data description. The data contain mathematics scores on a norm-
referenced standardized test (in which test-takers are scored relative to a fixed
reference population) for spring testing in 1998-2002 for all students in grades 1—
5 in a large urban US school district. The data are “vertically linked,” meaning that
the test scores are on a common scale across grades, so that growth in achievement
from one grade to the next can be measured. For our analyses we standardized
the test scores by subtracting 400 and dividing by 40. We did this to make the
variances approximately one and to keep the scores positive with a mean that was
consistent with the scale of the variance. Although this rescaling had no effect on
our results, it facilitated some computations and interpretations of results.

For this analysis, we focused on estimating effects on mathematics achievement
for teachers of grade 1 during the 1997-1998 school year, grade 2 during the 1998—
1999 school year, grade 3 during the 1999-2000 school year, grade 4 during the
2000-2001 school year and grade 5 during the 2001-2002 school year. A total of
10,332 students in our data link to these teachers.” However, for some of these stu-
dents the data include no valid test scores or had other problems such as unusual
patterns of grades across years that suggested incorrect linking of student records
or other errors. We deleted records for these students. The final data set includes
9,295 students with 31 unique observation patterns (patterns of missing and ob-
served test scores over time). The data are available in the supplemental materials
[McCaffrey and Lockwood (2010)].

Missing data are extremely common for the students in our sample. Overall,
only about 21 percent of the students have fully observed scores, while 29, 20,
16 and 14 percent have one to four observed scores, respectively. Consistent with
previous research, students with fewer scores tend to be lower-scoring. As shown
in Figure 1, students with five observed scores on average are often scoring more
than half a standard deviation higher than students with one or two observed scores.

Moreover, the distribution across teachers of students with differing numbers of
observed scores is not balanced. Across teachers, the proportion of students with
complete test scores averages about 37 percent® but ranges anywhere from 0 to

2Students were linked to the teachers who administered the tests. These teachers might not always
be the teachers who provided instruction but for elementary schools they typically are.

3The average percentage of students with complete scores at the teacher level exceeds the marginal
percentage of students with complete data because in each year, only students linked to teachers in
that year are used to calculate the percentages, and missing test scores are nearly always associated
with a missing teacher link in these data.
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FIG. 1. Standardized score means by grade of testing as a function of a student’s number of ob-
served scores.

100 percent in every grade. Consequently, violation of the MAR assumption is
unlikely to have an equal effect on all teachers and could lead to differential bias
in estimated teacher effects.

3. Models. Several authors [Sanders, Saxton and Horn (1997); McCaffrey
et al. (2004); Lockwood et al. (2007); Raudenbush and Bryk (2002)] have pro-
posed random effects models for analyzing longitudinal student test score data,
with scores correlated within students over time and across students sharing either
current or past teachers. Lockwood et al. (2007) applied the following model to
our test score data to estimate random effects for classroom membership:

Yie = ue + Z el 0 + 8i + €ir,
<t

ii.d.
3.1) 0 = O1,....005.), O SN, TR),

5 X NO,V, e NN, 0D,
The test score Y;; for student i in year ¢, t =1, ..., 5, depend on u,, the annual
mean, as well as random effects 8, for classroom membership for each year. The
vectors ¢;,, with ¢;;; equal to one if student i was taught by teacher j in year ¢ and
zero otherwise, link students to their classroom memberships. In many VAM ap-
plications, these classroom effects are treated as “teacher effects,” and we use that
term for consistency with the literature and for simplicity in presentation. However,
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the variability in scores at the classroom level may reflect teacher performance as
well as other potential sources such as schooling and community inputs, peers and
omitted individual student-level characteristics [McCaffrey et al. (2003, 2004)].

Model (3.1) includes terms for students’ current and prior classroom assign-
ments with prior assignments weighted by the o+, allowing correlation among
scores for students who shared a classroom in the past, that can change over time
by amounts that are determined by the data. By definition, o+ = 1 for t* =¢. Be-
cause student classroom assignments change annually, each student is a member
of multiple cluster units from which scores might be correlated. The model is thus
called a multi-membership model [Browne, Goldstein and Rasbash (2001)] and
because the different memberships occur sequentially rather than simultaneously,
we refer to the model as a sequential multi-membership model.

The §; are random student effects. McCaffrey et al. (2004) and Lockwood et
al. (2007) consider a more general model in which the residual error terms are as-
sumed to be multivariate normal with mean vector 0 and an unstructured variance—
covariance matrix. Our specification of (§; + &;;) for the error terms is consistent
with random effects models considered by other authors [Raudenbush and Bryk
(2002)] and supports generalization to our MNAR models.

When students drop into the sample at time ¢, the identities of their teachers
prior to time ¢ are unknown, yet are required for modeling Y;; via Model (3.1).
Lockwood et al. (2007) demonstrated that estimated teacher effects were robust to
different approaches for handling this problem, including a simple approach that
assumes that unknown prior teachers have zero effect, and we use that approach
here.

Following Lockwood et al. (2007), we fit Model (3.1) to the incomplete math-
ematics test score data described above using a Bayesian approach with relatively
noninformative priors via data augmentation that treated the unobserved scores as
MAR. We refer to this as our MAR model. We then modify Model (3.1) to con-
sider MNAR models for the unobserved achievement scores. In the terminology of
Little (1995), the expanded models include random effects selection models and a
pattern mixture model.

3.1. Selection model. The selection model makes the following additional as-
sumption to Model (3.1):

+B3;
1. Pr(n; <k) = %, where n; =1, ..., 5, equals the number of observed

mathematics test scores for student i.

Assumption 1 states that the number of observed scores n; depends on the unob-
served student effect §;. Students who would tend to score high relative to the mean
have a different probability of being observed each year than students who would
generally tend to score lower. This is a plausible model for selection given that mo-
bility and grade retention are the most common sources of incomplete data, and, as
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noted previously, these characteristics are associated with lower achievement. The
model is MNAR because the probability that a score is observed depends on the
latent student effect, not on observed scores. We use the notation “SEL” to refer to
estimates from this model to distinguish them from the other models.

Because n; depends on §, by Bayes’ rule the distribution of § conditional on n;
is a function of n;. Consequently, assumption 1 implicitly makes »; a predictor of
student achievement. The model, therefore, provides a means of using the num-
ber of observed scores to inform the prediction of observed achievement scores,
which influences the adjustments for student sorting into classes and ultimately the
estimates of teacher effects.

As discussed in Hedeker and Gibbons (2006), the space of MNAR models is
very large and any sensitivity analysis of missing data assumptions should consider
multiple models. Per that advice, we considered the following alternative selection
model. Let r;; equal one if student i has an observed score in year t = 1,...,5
and zero otherwise. The alternative selection model replaces assumption 1 with
assumption 1la.

et +Pté;

la. Conditional on §;, r;; are independent with Pr(r;; = 1|6;) = Troa ¥B -

Otherwise the models are the same. This model is similar to those considered
by other authors for modeling item nonresponse in attitude surveys and multi-
item tests [O’Muircheartaigh and Moustaki (1999); Moustaki and Knott (2000);
Holman and Glas (2005); Korobko et al. (2008)], although those models also
sometimes include a latent response propensity variable.

3.2. Pattern mixture model. Let r; = (ri1,...,r;s), the student’s pattern of
responses. Given that there are five years of testing and every student has at least
one observed score, r; equals r, for k =1, ..., 31 possible response patterns. The
pattern mixture model makes the following assumption to extend Model (3.1):

2. Givenr; = rk,

Yie = Wit + Z e 0 + 8; + Lir,
t*<t
iid. 5 iid. 5
(32) 5i ~ N(Oa vk)s é-l't ~ N(Os O'k[)v
6 " N (O, 7).
We only estimate parameters for #’s corresponding to the observed years of data for
students with pattern k. By assumption 2, teacher effects and the out-year weights
for those effects (o, 1% < t) do not depend on the student’s response pattern. We
use “PMIX” to refer to this model.
Although all 31 possible response patterns appear in our data, each of five pat-
terns occurs for less than 10 students and one pattern occurs for just 20 students.
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We combined these six patterns into a single group with common annual means
and variance components regardless of the specific response pattern for a student
in this group. Hence, we fit 25 different sets of mean and variance parameters cor-
responding to different response patterns or groups of patterns. Combining these
rare patterns was a pragmatic choice to avoid overfitting with very small sam-
ples. Given how rare and dispersed students with these patterns were, we did not
think misspecification would yield significant bias to any individual teacher. We
ran models without these students and even greater combining of patterns and had
similar results. For each of the five patterns in which the students had a single ob-
served score, we estimated the variance of §k; + Cxi; without specifying student
effects or separate variance components for the student effects and annual residu-
als.

3.3. Prior distributions and estimation. Following the work of Lockwood et
al. (2007), we estimated the models using a Bayesian approach with priors chosen
to be relatively uninformative: i, or pus are independent N (0, 106), t=1,...,5,
k=1,...,25 ay ~ N(O,10°), 1 = 1,...,5, 1" = 1,...,1; 0, "N (0, 1), j =
1,....J;, w,t =1,...,5, are uniform(0, 0.7), (Sil'kfi'N(O, v2), v is uniform(O0, 2),
and o;’s are uniform(0, 1). For the selection model, SEL, the parameters for the
models for number of responses (a, B) are independent N (0, 100) variables. For
the alternative selection model the a;’s and B;’s are N (0, 10) variables. All para-
meters are independent of other parameters in the model and all hyperparameters
are independent of other hyperparameters.

We implemented the models in WinBUGS [Lunn et al. (2000)]. WinBUGS code
used for fitting all models reported in this article can be found in the supplement
[McCaffrey and Lockwood (2010)]. For each model, we “burned in” three inde-
pendent chains each for 5000 iterations and based our inferences on 5000 post-
burn-in iterations. We diagnosed convergence of the chains using the Gelman—
Rubin diagnostic [Gelman and Rubin (1992)] implemented in the coda package
[Best, Cowles and Vines (1995)] for the R statistics environment [R Development
Core Team (2007)]. The 5000 burn-in iterations were clearly sufficient for con-
vergence of model parameters. Across all the parameters including teacher eftects
and student effects (in the selection models), the Gelman—Rubin statistics were
generally very close to one and always less than 1.05.

4. Results.

4.1. Selection models. The estimate of the model parameters for MAR and
SEL other than teacher and student effects are presented in Table 1 of the Ap-
pendix. The selection model found that the number of observed scores is related
to students’ unobserved general levels of achievement §;. The posterior mean and
standard deviation for 8 were —0.83 and 0.03, respectively. At the mean for §,
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tion model (8sgr,) and the MAR model (5pmaR)- All effects are standardized by the posterior means
for their respective standard deviations (v). Distributions are presented by the number of observed
mathematics scores.

a student with an effect of 6 = (.72 (one standard deviation above the prior mean
of zero) would have a probability of 0.31 of completing all five years of testing,
whereas the probability for a student with an effect of 6 = —0.72 (one standard
deviation below the mean) would be only 0.12.

Figure 2 shows the effect that modeling the number of observed scores has on
estimated student effects. We estimated each student’s effect using the posterior
mean from the selection model (§sgr.) and we also estimated it using the posterior
mean from Model (3.1) assuming MAR (6maRr). For each student we calculated the
difference in the two alternative estimates of his or her effect (6sgr. — Smar) Where
the estimates were standardized by the corresponding posterior mean for the stan-
dard deviation in student effects. The left panel of Figure 2 plots the distribution
of these differences by the number of observed scores.

The figure clearly shows that modeling the number of observed scores provides
additional information in estimating each student’s effect, and, as would be ex-
pected, the richer model generally leads to increases in the estimates for students
with many observed scores and decreases in the estimates for students with few
observed scores. Although modeling the number of test scores provides additional
information about the mean of each student’s effect, it does not significantly reduce
uncertainty about the student effects. Across all students the posterior standard de-
viation of the student effect from SEL is 99 percent as large as the corresponding
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posterior standard deviation from the MAR model and the relative sizes of the
posterior standard deviations do not depend on the number of observed scores.

We used the Deviance Information Criterion [DIC; Spiegelhalter et al. (2002)]
as calculated in WinBUGS to compare the fits of the MAR and the selection model.
DIC is a model comparison criterion for Bayesian models that combines a measure
of model fit and model complexity to indicate which, among a set of models being
compared, is preferred (as indicated by the smallest DIC value). Apart from a nor-
malizing constant that depends on only the observed data and thus does not affect
model comparison, DIC is given by —4L 4 2L(®), where L is the posterior mean
of the log-likelihood function and L () is the log-likelihood function evaluated at
the posterior mean @ of the model parameters. We obtained DIC values of 40,824
for the MAR model and 40,658 for the selection model. As smaller values of DIC
indicate preferred models, with differences of 10 or more DIC points generally
considered to be important, the selection model is clearly preferred to the MAR
alternative.

Although the selection model better fits the data and had an impact on the esti-
mates of individual student effects, it did not have any notable effect on estimates
of teacher effects. The correlation between estimated effects from the two mod-
els was 0.99, 1.00, 1.00, 1.00 and 1.00 for teachers from grade 1 to 5, respec-
tively. The left panel of Figure 3 gives a scatter plot of the two sets of estimated
effects for grade 4 teachers and shows that two sets of estimates were not only
highly correlated but are nearly identical. Scatter plots for other grades are sim-
ilar. However, the small differences that do exist between the estimated teacher
effects from the two models are generally related to the amount of information
available on teachers’ students. As shown in the left panel of Figure 4, relative to
those from the MAR model, estimated teacher effects from the selection model
tended to decrease with the proportion of students in the classroom with complete
data. This is because student effects for students with complete data were gener-
ally estimated to be higher with the selection model than with the MAR model

r=1 r=0.98 r=0.99
E i |
= 0 2] 0 2]
5 £, £,
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2 15} 5]
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FI1G. 3. Scatter plots of posterior means for fourth grade teacher effects from selection, pattern
mixture and MAR models.
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FI1G. 4. Scatter plots of differences in posterior means for fourth grade teacher effects from se-
lection and MAR model (left panel) or pattern mixture and MAR model (right panel) versus the
proportion of students with five years of test scores.

and, consequently, these students’ higher than average scores were attributed by
the selection model to the student rather than the teacher, whereas the MAR model
attributed these students’ above-average achievement to their teachers. The differ-
ences are generally small because the differences in the student effects are small
(i.e., differences for individual students in posterior means from the two models
account for about one percent of the overall variance in the student effects from
the MAR model).

The results from the alternative selection model (assumption 1a) are nearly iden-
tical to those from SEL with estimated teacher effects from this MINAR model
correlated between 0.97 and 1.00 with the estimate from SEL and almost as highly
with the estimates from MAR (details are in the Appendix).

4.2. Pattern mixture model. The results from the pattern mixture models were
analogous to those from the selection model: allowing the data to be MNAR
changed our inferences about student achievement but had very limited effect on
inferences about teachers. Because of differences in the modeling of student ef-
fects, the DIC for the pattern mixture model is not comparable to the DIC for the
other models and we cannot use this metric to compare models. However, as shown
in Figure 5 which plots the estimates of the annual means by pattern, the pattern
mixture model clearly demonstrates that student outcomes differ by response pat-
tern. As expected, generally, the means are lower for patterns with fewer observed
scores, often by almost a full standard deviation unit. The differences among pat-
terns are fairly constant across years so that growth in the mean score across years
is relatively similar regardless of the pattern.

The student effects in the pattern mixture model are relative to the annual pat-
tern means rather than the overall annual means like the effect in MAR and SEL
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models and the effects from PMIX cannot be directly compared with those of the
other models. However, combining the student effects with the pattern effect yields
estimates that are generally similar to the student effects from MAR.

As with the selection model, the estimated teacher effects from the pattern mix-
ture and the MAR models were highly correlated and generally very similar. The
center panel of Figure 3 shows close agreement of the PMIX and MAR posterior
mean teacher effects for the grade 4 teacher effects. The correlations between the
two sets of estimates range from 0.98 to 1.00 across grades. The small differences
that do exist are related to the average number of observed scores for students in
the teachers’ classes. Again, because greater numbers of scores result in patterns
with generally higher mean scores, scores for those students are adjusted down-
ward by the PMIX model relative to the MAR model and teacher effects are cor-
respondingly adjusted down for teachers with more students with complete data.
The student effects compensate for the adjustment to the mean, but, as demon-
strated for grade 4 teachers in the right panel of Figure 4, effects for teachers with
proportionately more students with complete data tend to be somewhat lower for
the PMIX model than the MAR model.

As the high correlations between estimated teacher effects from MAR and the
selection and pattern mixture models would suggest, the estimated teacher effects
from the two alternative MNAR models are also highly correlated (0.99 or 1.00
for every grade), as demonstrated in the right panel of Figure 3.
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5. Discussion. We applied models allowing data to be missing not at random
in a new context of estimating the effects of classroom assignments using longitu-
dinal student achievement data and sequential multi-membership models. We con-
sidered both random effects selection models and a pattern mixture model. Com-
pared with the existing MAR models, allowing the number or pattern of observed
scores to depend on a student’s general level of achievement in the selection mod-
els decreased our estimates of latent effects for students with very few observed
scores and increased our estimates for students with complete data. The pattern
mixture model found mean achievement was lower for students with the fewest
observed scores and increased across response patterns as a function of the num-
ber of observed scores. Allowing the data to be MNAR changed teacher effects in
the expected directions: compared with the estimates from the MAR model, esti-
mated teacher effects from the MNAR models generally decreased with the pro-
portion of students in the classroom with complete data because the MAR model
overestimated the achievement of students with few scores and underestimated the
achievement of students with many scores.

However, the changes to the estimated teacher effects were generally tiny, yield-
ing estimates from alternative models that correlate at 0.98 or better, and inconse-
quential to inferences about teachers. This paradoxical finding is likely the result of
multiple factors related to how student test scores contribute to estimated teacher
effects.

To understand how student test scores contribute to posterior means for the
teacher effects, we treat the other parameters in the model as known and consider
a general expression for the posterior means. For a given set of values for the other
model parameters, the teacher effects are given by 6 = AR e, where e is a vector
of adjusted scores, e;; = Y;; — s or ej; = Yi; — sk for PMIX, R is the block diago-
nal covariance matrix, ({R;}), of the student-level residuals, and A depends on the
inverse of the variance—covariance matrix of the vector of scores and classroom
assignments [Searle, Casella and McCulloch (1992)]. Results on inverse covari-
ance matrices [Theil (1971)] yield that for student i, element ¢ of R;” le,- equals
the residual from a regression of ¢;; on the other e values for the student divided
by its variance. The variance of these residuals declines with the number of ob-
served scores, as more scores yield a more precise prediction of e;;. Consequently,
adjusted scores for students with more complete data get larger weights and have
more leverage on estimated teacher effects than those for students with more miss-
ing data.

The differences in weights can be nontrivial. For example, we calculated R
using the posterior means of v> and the crtz for the MAR model and compared
the resulting weights for students with differing numbers of observed scores. The
weight given to any adjusted score depends on both the number of observed scores
and the grades in which they were observed. We calculated the weight for every
observed score in every pattern of observed scores and averaged them across all re-
sponse patterns with the same number of responses. For records from students with
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one observed score the average weight across the five possible response patterns
is 1.41. For records from students with two observed scores the average weight
on the two scores across all 10 possible response patterns is 2.99. The average of
the weights for records from students with three, four or five observed scores are
3.69, 4.08 and 4.33, respectively. Thus, scores from a student with five scores will
on average have about three times the weight as a score from a student with just
one score. Thus, in the MAR model, students with few scores are naturally, sub-
stantially downweighted. We believe it is this natural downweighting that resulted
in MAR estimates being robust to violations of MAR in the simulation studies on
missing data and value-added models [Wright (2004); McCaffrey et al. (2005)].

Another potential source for the robustness of teacher effect estimates is the
relatively small scale of changes in student effects between SEL and MAR. For
instance, changes in estimated student effects were only on the scale of about two
to four percent of variance among the classroom average of the adjusted scores,
whereas variation among classrooms or teachers was large, explaining between 63
and 73 percent of the variance in the adjusted scores from SEL, depending on the
grade.

By allowing the means to differ by response patterns, the pattern mixture model
adjusts student scores differentially by their pattern of responses. However, as dis-
cussed above, the estimated student effects mostly offset these adjustments, so that
the final adjustments to student scores are similar between the MAR and PMIX.
Scores from students with a single score receive a larger adjustment with PMIX
than MAR, but the downweighting of these scores dampens the effect of differen-
tial adjustments for these students on estimated teacher effects.

Another factor that potentially contributed to the robustness of teacher effects
to assumptions about missing data is the fact that scores are observed for the years
students are assigned to the teachers of interest but missing scores in other years. If
observed, the missing data primarily would be used to adjust the scores from years
when students are taught by the teachers of interest. Our missing data problem is
analogous to missing covariates in linear regression. It is not analogous to trying to
impute values used to estimate group means. In our experience, estimates of group
means from an incomplete sample tend to be more sensitive to assumptions about
missing data than are estimates of regression coefficients from data with missing
covariate values. We may be seeing a similar phenomenon here.

The estimated teacher effects may also be robust to our MNAR models because
these models are relatively modest deviations from MAR. Although our selection
models allowed the probability of observing a score to depend on each student’s
general level of achievement, it did not allow the probability of observing a score
to be related directly to the student’s unique level of achievement in a given year.
Such a model might yield greater changes to student effect estimates and subse-
quently to estimated teacher effects. The pattern mixture model did not place such
restrictions on selection; however, it did assume that both the teacher effects and
the out-year weights on those effects did not depend on response patterns. Again,
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more flexible models for these parameters might make teacher effects more sen-
sitive to the model. However, our model specifications are well aligned with our
expectations about missing data mechanisms. Also, studies of the heterogeneity
of teacher effects as a function of student achievement have found that such inter-
actions are very small (explaining three to four percent of the variance in teacher
effects for elementary school teachers [Lockwood and McCaffrey (2009)]). Hence,
it is reasonable to assume that teacher effects would not differ by response pattern
even if response patterns are highly correlated with achievement.

Downweighting data from students with incomplete data when calculating the
posterior means of teacher effects may be beneficial beyond making the models ro-
bust to assumptions about missing data. A primary concern with using longitudinal
student achievement data to estimate teacher effects is the potential confounding
of estimated teacher effects with differences in student inputs among classes due
to purposive assignment of students to classes [Lockwood and McCaffrey (2007)].
Although, under relatively unrestrictive assumptions, such biases can be negated
by large numbers of observed test scores on students, with few tests, the con-
founding of estimated teacher effects can be significant [Lockwood and McCaffrey
(2007)]. Incomplete data result in some students with very limited numbers of test
scores and the potential to confound their background with estimated teacher ef-
fects. By downweighting the contributions of these students to teacher effects, the
model mitigates the potential for bias from purposive assignment, provided some
students have a significant number of observed scores.

We demonstrated that MNAR models can be adapted to the sequential multi-
membership models used to estimate teacher effects from longitudinal student
achievement data, but in our analysis little was gained from fitting the more com-
plex models. Fitting MNAR models might still be beneficial in VA modeling ap-
plications where the variability in teacher effects is smaller so that differences in
the estimates of student effects could have a greater impact on inferences about
teachers or where more students are missing scores in the years they are taught by
teachers of interest. A potential advantage to our selection model is that it provided
a means of controlling for a student-level covariate (the number of observed test
scores) by modeling the relationship between that variable and the latent student
effect rather than including it in the mean structure as fixed effect (as was done by
PMIX). This approach to controlling for a covariate might be used more broadly
to control for other variables, such as participation in special programs or family
inputs to education, without introducing the potential for overcorrecting that has
been identified as a possible source of bias when covariates are included as fixed
effects but teacher effects are random.
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A.1. Posterior means and standard deviations for parameters of MAR,

SEL and PMIX models.

TABLE 1

Posterior means and standard deviations for parameters other than teacher and student effects from

MAR and SEL models

Posterior Posterior Posterior Posterior
Parameter mean std. dev. mean std. dev.
ni 3.39 0.03 3.44 0.03
o 3.98 0.03 4.01 0.03
7%} 4.70 0.03 4.69 0.02
w4 5.29 0.02 5.26 0.02
us 6.00 0.03 5.96 0.03
71 0.65 0.03 0.63 0.03
%) 0.57 0.03 0.56 0.03
3 0.55 0.03 0.54 0.03
T4 0.43 0.02 0.42 0.02
5 0.42 0.02 0.42 0.02
a1 0.16 0.02 0.14 0.03
a3 0.15 0.02 0.13 0.03
az 0.20 0.02 0.19 0.02
41 0.12 0.02 0.09 0.02
42 0.11 0.02 0.10 0.02
43 0.14 0.02 0.11 0.02
as] 0.11 0.02 0.08 0.03
asy 0.14 0.02 0.13 0.02
as53 0.09 0.02 0.06 0.02
as54 0.34 0.03 0.34 0.03
v 0.71 0.01 0.73 0.01
ol 0.58 0.01 0.57 0.01
o) 0.47 0.01 0.47 0.01
03 0.45 0.01 0.45 0.01
o4 0.37 0.01 0.37 0.01
o5 0.37 0.01 0.37 0.01
aj NA NA —1.00 0.02
ap NA NA 0.90 0.02
as NA NA 0.71 0.02
ay NA NA 0.79 0.02
B NA NA —0.83 0.03
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TABLE 2
Posterior means and standard deviations for yearly means from pattern mixture model by response
pattern. Pattern 25 combines students with seven rare response patterns

n1 ) 13 Hq s

Posterior Posterior Posterior Posterior Posterior

Pattern Mean SD Mean SD Mean SD Mean SD Mean SD

1 3.71 0.03 4.32 0.04 5.11 0.03 5.70 0.03 6.34 0.03
2 NA NA 4.27 0.05 5.00 0.04 5.52 0.04 6.16 0.04
3 3.67 0.06 NA NA 5.06 0.06 5.69 0.05 6.35 0.05
4 NA NA NA NA 4.98 0.04 5.53 0.04 6.17 0.04
5 3.57 0.07 4.24 0.07 NA NA 5.56 0.06 6.26 0.06
6 NA NA 4.07 0.11 NA NA 5.39 0.10 6.00 0.09
7 3.51 0.14 NA NA NA NA 5.64 0.14 6.21 0.12
8 NA NA NA NA NA NA 5.52 0.04 6.22 0.04
9 NA NA NA NA NA NA NA NA 6.15 0.06
10 3.48 0.06 3.97 0.05 4.75 0.05 5.30 0.05 NA NA
11 NA NA 391 0.06 4.55 0.06 5.09 0.06 NA NA
12 3.04 0.09 NA NA 4.11 0.08 4.70 0.07 NA NA
13 NA NA NA NA 4.32 0.05 4.90 0.05 NA NA
14 3.21 0.13 3.79 0.13 NA NA 4.93 0.11 NA NA
15 NA NA 3.62 0.17 NA NA 4.80 0.14 NA NA
16 3.30 0.18 NA NA NA NA 4.96 0.17 NA NA
17 NA NA NA NA NA NA 5.02 0.06 NA NA
18 3.45 0.05 4.04 0.05 4.66 0.05 NA NA NA NA
19 NA NA 3.95 0.07 4.63 0.07 NA NA NA NA
20 3.28 0.09 NA NA 4.48 0.10 NA NA NA NA
21 NA NA NA NA 4.67 0.06 NA NA NA NA
22 3.22 0.04 3.67 0.04 NA NA NA NA NA NA
23 NA NA 3.92 0.05 NA NA NA NA NA NA
24 3.03 0.04 NA NA NA NA NA NA NA NA

N
W

3.28 0.19 3.96 0.18 4.59 0.12 5.82 0.11 NA NA
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TABLE 3
Posterior means and standard deviations for student residual standard deviations from pattern
mixture model by response pattern. Pattern 25 combines students with seven rare response patterns

o1 0y 03 o4 o5

Posterior Posterior Posterior Posterior Posterior

Pattern Mean SD Mean SD Mean SD Mean SD Mean SD

1 0.57 0.01 0.44 0.01 0.41 0.01 0.35 0.01 0.38 0.01
2 NA NA 0.50 0.02 0.44 0.02 0.35 0.02 0.36 0.02
3 0.52 0.03 NA NA 0.38 0.03 0.34 0.03 0.43 0.03
4 NA NA NA NA 0.46 0.02 0.35 0.02 0.35 0.02
5 0.48 0.04 0.53 0.04 NA NA 0.37 0.03 0.36 0.04
6 NA NA 0.59 0.08 NA NA 0.53 0.07 0.41 0.07
7 0.55 0.10 NA NA NA NA 0.57 0.09 0.32 0.10
8 NA NA NA NA NA NA 0.42 0.03 0.28 0.04
9 NA NA NA NA NA NA NA NA 0.49 0.04
10 0.60 0.03 0.46 0.02 0.41 0.02 0.44 0.02 NA NA
11 NA NA 0.46 0.03 0.40 0.04 0.55 0.03 NA NA
12 0.62 0.06 NA NA 0.52 0.05 0.38 0.05 NA NA
13 NA NA NA NA 0.48 0.03 0.39 0.04 NA NA
14 0.62 0.08 0.48 0.08 NA NA 0.38 0.09 NA NA
15 NA NA 0.62 0.11 NA NA 0.27 0.15 NA NA
16 0.51 0.15 NA NA NA NA 0.39 0.17 NA NA
17 NA NA NA NA NA NA 0.85 0.04 NA NA
18 0.53 0.03 0.45 0.03 0.58 0.03 NA NA NA NA
19 NA NA 0.48 0.06 0.56 0.05 NA NA NA NA
20 0.36 0.10 NA NA 0.66 0.07 NA NA NA NA
21 NA NA NA NA 0.96 0.03 NA NA NA NA
22 0.48 0.03 0.54 0.02 NA NA NA NA NA NA
23 NA NA 0.84 0.03 NA NA NA NA NA NA
24 0.98 0.01 NA NA NA NA NA NA NA NA

N
(9]

0.67 0.12 0.65 0.12 0.29 0.09 0.24 0.10 NA NA
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Posterior means and standard deviations for standard deviation of student effects,
by response pattern, standard deviation of teacher effects and prior teacher effect
weights, which are constant across response pattern for the pattern mixture model.
Response patterns 9, 17, 21, 23 and 24 involve a single observation so all the
student variance is modeled by the residual variance and there are no additional
student effects or standard error of student effects estimated for these patterns

Posterior
Parameter Mean Std. dev.
v, Pattern 1 0.62 0.01
v, Pattern 2 0.63 0.02
v, Pattern 3 0.63 0.03
v, Pattern 4 0.60 0.02
v, Pattern 5 0.47 0.04
v, Pattern 6 0.44 0.07
v, Pattern 7 0.66 0.09
v, Pattern 8 0.60 0.03
v, Pattern 10 0.73 0.03
v, Pattern 11 0.70 0.04
v, Pattern 12 0.69 0.06
v, Pattern 13 0.71 0.03
v, Pattern 14 0.68 0.08
v, Pattern 15 0.67 0.11
v, Pattern 16 0.80 0.14
v, Pattern 18 0.71 0.03
v, Pattern 19 0.74 0.05
v, Pattern 20 0.70 0.07
v, Pattern 22 0.66 0.02
v, Pattern 25 0.52 0.09
7] 0.63 0.03
[2) 0.55 0.03
3 0.51 0.02
T4 0.41 0.02
5 0.43 0.02
a1 0.14 0.02
a3l 0.12 0.02
a3 0.19 0.02
41 0.08 0.02
o4 0.10 0.02
043 0.11 0.02
asq 0.08 0.02
a5 0.14 0.02
53 0.07 0.02
54 0.32 0.03
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FIG. 6. Scatter plots of posterior means for fourth grade teacher effects from selection, pattern
mixture and MAR models versus those from the alternative selection model.

A.2. Results for the alternative selection model. Figure 6 compares the es-
timated teacher effects from the alternative selection and other models. The corre-
lation between the estimated teacher effects from this alternative selection model
and those from SEL were 0.97, 0.98, 0.99, 0.99 and 1.00, for grades one to five,
respectively. As shown in Figure 6, the estimated fourth grade teacher effects from
the new model are not only highly correlated with those from SEL, they are nearly
identical to those from all the other models. Other grades are similar.

The two alternative selection models do, however, yield somewhat different es-
timates of the individual student effects. The differences were most pronounced
for students observed only in grade one in which the alternative selection model
tended to shift the distribution of these students toward lower levels of achievement
(left panel of Figure 7). However, differences even exist for students observed at
every grade (right panel of Figure 7). Again, these differences are sufficiently small
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FI1G. 7. Scatter plots of posterior means from the two alternative selection models for effects of

students with selected response patterns.
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or the students are sufficiently downweighted so that they do not result in notable
changes to the estimated teacher effects.

Acknowledgment. We thank Harold C. Doran for providing us the data used
in the analyses presented in this article.

SUPPLEMENTARY MATERIAL

Student achievement data and WinBUGS code (DOI: 10.1214/10-
AOAS405SUPP; .zip). The file SHAR generates six files:

1. readme.

2. AOAS405_McCaffrey_Lockwood_MNAR.csv contains the 1998-2002 stu-
dent achievement data with student and teacher identifiers used to estimate
teacher effects using selection and pattern mixture models. The comma delim-
ited file contains four variables:

(a) stuid — student ID that is common among records from the same teacher;

(b) tchid — teacher ID that is common among students in the teacher’s class
during a year;

(c) year — indicator of year of data takes on values 0—4 (grade level equals
year + 1);

(d) Y —student’s district mathematics test score for year rescaled by subtracting
400 and dividing by 40.

3. AOAS405_McCaffrey_Lockwood_MAR-model.txt — Annotated WinBUGS
code used for fitting Model (3.1) assuming data are missing at random (MAR).

4. AOAS405_McCaftrey_Lockwood_sel-model.txt — Annotated WinBUGS code
used for fitting Model (3.1) with assumption 1 for missing data.

5. AOAS405_McCaffrey_Lockwood_sel2-model.txt — Annotated WinBUGS
code used for fitting Model (3.1) with assumption 1b for missing data.

6. AOAS405_McCaffrey_Lockwood_patmix-model.txt — Annotated WinBUGS
code used for fitting the pattern mixture Model (3.2).

REFERENCES

BALLOU, D., SANDERS, W. and WRIGHT, P. (2004). Controlling for student background in value-
added assessment of teachers. J. Educ. Behav. Statist. 29 37-66.
BEST, N. G., COwLES, K. and VINES, S. K. (1995). CODA: Convergence diagnosis and output
analysis software for Gibbs sampling output, Version 0.3. MRC Biostatistics Unit, Cambridge.
BIFULCO, R. and LADD, H. (2004). The impact of charter schools on student achievement: Evidence
from North Carolina. Technical report, Univ. Connecticut and Duke Univ.

BRAUN, H. (2005a). Using student progress to evaluate teachers: A primer on value-added models.
Technical report, Educational Testing Service, Policy Information Center.

BRAUN, H. (2005b). Value-added modeling: What does due dilligence require? In Value Added
Models in Education: Theory and Practice (R. Lissitz, ed.) 19-38. JAM Press, Maple Grove,
MN.


http://dx.doi.org/10.1214/10-AOAS405SUPP
http://dx.doi.org/10.1214/10-AOAS405SUPP

MISSING DATA IN VALUE-ADDED MODELS 795

BROWNE, W. J., GOLDSTEIN, H. and RASBASH, J. (2001). Multiple membership multiple classifi-
cation (MMMC) models. Statist. Model. 1 103—124.

DIGGLE, P. and KENWARD, M. G. (1994). Informative drop-out in longitudinal data analysis. Appl.
Statist. 43 49-73.

DUNN, M., KADANE, J. B. and GARROW, J. (2003). Comparing the harm done by mobility and
class absence: Missing students and missing data. J. Educ. Behav. Statist. 28 269-288.

ELLICKSON, P. L. and MCGUIGAN, K. A. (2000). Early predictors of adolescent violence. Amer.
J. Public Health 90 566-572.

FITZMAURICE, G. M., LAIRD, N. M. and SHNEYER, L. (2001). An alternative parameterization of
the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statist. Med.
20 1009-1021.

FOLLMANN, D. and WU, M. (1995). An approximate generalized linear model with random effects
for informative missing data. Biometrics 51 151-168. MR1341233

GELMAN, A. and RUBIN, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statist. Sci. 7 457-472.

GOLDHABER, A. and ANTHONY, E. (2004). Can teacher quality be effectively assessed? Unpub-
lished manuscript.

GUuoO, X. and CARLIN, B. P. (2004). Separate and joint modeling of longitudinal and event time data
using standard computer packages. Amer. Statist. 58 16-24. MR2055507

HANUSHEK, E. A., KAIN, J. F. and RIVKIN, S. G. (2002). The impact of charter schools on acad-
emic achievement. Technical report, Hoover Institute.

HANUSHEK, E. A., KAIN, J. F. and RIVKIN, S. G. (2004). Disruption versus tiebout improvement:
The costs and benefits of switching schools. J. Public Economics 88 1721-1746.

HARRIS, D. and SAsSsS, T. R. (2006). Value-added models and the measurement of teacher quality.
Unpublished manuscript.

HEDEKER, D. and GIBBONS, R. D. (1997). Application of random-effects pattern-mixture models
for missing data in longitudinal studies. Psychological Methods 2 64-78.

HEDEKER, D. and GIBBONS, R. D. (2006). Longitudinal Data Analysis. Wiley, Hoboken, NJ.
MR2284230

HOLMAN, R. and GLAS, C. A. W. (2005). Modelling non-ignorable missing-data mechanisms with
item response theory models. Br. J. Math. Statist. Psychol. 58 1-17. MR2196127

IBRAHIM, J. G., CHEN, M.-H. and LipPsiTZ, S. R. (2001). Missing responses in generalised lin-
ear mixed models when the missing data mechanism is nonignorable. Biometrika 88 551-564.
MR1844851

JACOB, B. and LEFGREN, L. (2006). When principals rate teachers. Technical Report No. 2, Edu-
cation Next.

KANE, T. J., ROCKOFF, J. E. and STAIGER, D. O. (2006). What does certification tell us about
teacher effectiveness? Evidence from New York City. Unpublished manuscript.

KUPERMINTZ, H. (2003). Teacher effects and teacher effectiveness: A validity investigation of the
tennessee value added assessment system. Educational Evaluation and Policy Analysis 25 287—
298.

LE, V., STECHER, B., LOCKWOOD, J. R., HAMILTON, L. S., ROBYN, A., WILLIAMS, V., RYAN,
G., KERR, K., MARTINEZ, J. F. and KLEIN, S. (2006). Improving Mathematics and Science Ed-
ucation: A Longitudinal Investigation of the Relationship Between Reform-Oriented Instruction
and Student Achievement (MG-480-EDU). RAND, Santa Monica, CA.

LissiTz, R., ED. (2005). Value Added Models in Education: Theory and Applications. JAM Press,
Maple Grove, MN.

LITTLE, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. J. Amer. Statist.
Assoc. 88 125-134.

LITTLE, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. J. Amer.
Statist. Assoc. 90 1112-1121. MR1354029


http://www.ams.org/mathscinet-getitem?mr=1341233
http://www.ams.org/mathscinet-getitem?mr=2055507
http://www.ams.org/mathscinet-getitem?mr=2284230
http://www.ams.org/mathscinet-getitem?mr=2196127
http://www.ams.org/mathscinet-getitem?mr=1844851
http://www.ams.org/mathscinet-getitem?mr=1354029

796 D. F. MCCAFFREY AND J. R. LOCKWOOD

LITTLE, R. J. A. and RUBIN, D. B. (1987). Statistical Analysis with Missing Data, 2nd ed. Wiley,
New York. MR0890519

Lockwoob, J. R. and MCCAFFREY, D. F. (2007). Controlling for individual heterogeneity in
longitudinal models, with applications to student achievement. Electron. J. Statist. 1 223-252.
MR2312151

LockwooD, J. R. and MCCAFFREY, D. F. (2009). Exploring student—teacher interactions in lon-
gitudinal achievement data. Education Finance and Policy 4 439-467.

LockwooD, J. R., MCCAFFREY, D. F., MARIANO, L. T. and SETODJI, C. (2007). Bayesian
methods for scalable multivariate value-added assessment. J. Educ. Behav. Statist. 32 125-150.

LuUNN, D. J., THOMAS, A., BEST, N. and SPIEGELHALTER, D. (2000). WinBUGS—a Bayesian
modelling framework: Concepts, structure, and extensibility. Statist. Comput. 10 325-337.

MCCAFFREY, D. F. and LOCKwOOD, J. R. (2010). Supplement to “Missing data in value-added
modeling of teacher effects.” DOI: 10.1214/10-AOAS405SUPP.

MCCAFFREY, D. F., LocKwooD, J. R., KORETZ, D. M. and HAMILTON, L. S. (2003). Evaluating
Value-Added Models for Teacher Accountability (MG-158-EDU). RAND, Santa Monica, CA.
MCcCAFFREY, D. F., LOoCKwoOOD, J. R., KORETZ, D., Louis, T. A. and HAMILTON, L. (2004).

Models for value-added modeling of teacher effects. J. Educ. Behav. Statist. 29 67-101.

MCCAFFREY, D. M., LOCKwWOOD, J. R., MARIANO, L. T. and SETODJI, C. (2005). Challenges
for value-added assessment of teacher effects. In Value Added Models in Education: Theory and
Applications (R. Lissitz, ed.) 111-144. JAM Press, Maple Grove, MN.

MEHANA, M. and REYNOLDS, A. J. (2004). School mobility and achievement: A meta-analysis.
Children and Youth Services Review 26 93—119.

MOUSTAKI, I. and KNOTT, M. (2000). Weighting for item non-response in attitude scales by using
latent variable models with covariates. J. Roy. Statist. Soc. Ser. A 163 445—459.

US GENERAL ACCOUNTING OFFICE (1994). Elementary school children: Many change schools fre-
quently, harming their education (GAO/HEHS-94-45). Technical report, US General Accounting
Office, Washington, DC. Retreived on December 30, 2008 from http://archive.gao.gov/t2pbat4/
150724.pdf.

KOROBKO, O. B., GLAS, C. A. W., BOSKER, R. J. and LUYTEN, J. W. (2008). Comparing the dif-
ficulty of examination subjects with item response theory. Journal of Educational Measurement
45 139-157.

O’MUIRCHEARTAIGH, C. and MOUSTAKI, I. (1999). Symmetric pattern models: A latent variable
approach to item non-response in attitude scales. J. Roy. Statist. Soc. Ser. A 162 177-194.

R DEVELOPMENT CORE TEAM (2007). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

RAUDENBUSH, S. W. and BRYK, A. S. (2002). Hierarchical Linear Models: Applications and Data
Analysis Methods, 2nd ed. Sage, Newbury Park, CA.

RUMBERGER, R. W. (2003). The causes and consequences of student mobility. J. Negro Educ. 72
6-21.

SANDERS, W. L., SAXTON, A. M. and HORN, B. P. (1997). The Tennessee value-added assessment
system: A quantitative outcomes-based approach to educational assessment. In Grading Teachers,
Grading Schools: Is Student Achievement a Valid Evaluational Measure? (J. Millman, ed.) 137-
162. Corwin Press, Thousand Oaks, CA.

SCHACTER, J. and THUM, Y. M. (2004). Paying for high and low-quality teaching. Econ. Educ.
Rev. 23 411-430.

SEARLE, S. R., CASELLA, G. and MCCULLOCH, C. E. (1992). Variance Components. Wiley, New
York. MR1190470

SIMPSON, G. A. and FOWLER, M. G. (1994). Geographic mobility and children’s emo-
tional/behavioral adjustment and school functioning. Pediatrics 93 303-309.

SINGER, J. D. and WILLETT, J. B. (2003). Applied Longitudinal Data Analysis: Modeling Change
and Event Occurrence. Oxford Univ. Press, Oxford.


http://www.ams.org/mathscinet-getitem?mr=0890519
http://www.ams.org/mathscinet-getitem?mr=2312151
http://dx.doi.org/10.1214/10-AOAS405SUPP
http://archive.gao.gov/t2pbat4/150724.pdf
http://www.ams.org/mathscinet-getitem?mr=1190470
http://archive.gao.gov/t2pbat4/150724.pdf

MISSING DATA IN VALUE-ADDED MODELS 797

SPIEGELHALTER, D. J., BEST, N. G., CARLIN, B. P. and VAN DER LINDE, A. (2002). Bayesian
measures of model complexity and fit (with discussion). J. R. Statist. Soc. Ser. B Statist. Methodol.
64 583-639. MR1979380

STRAND, S. and DEMIE, F. (2006). Pupil mobility, attainment and progress in primary school. Br.
Educ. Res. J. 32 551-568.

TEN HAVE, T. R., REBOUSSIN, B. A., MILLER, M. E. and KUNSELMAN, A. (2002). Mixed effects
logistic regression models for multiple longitudinal binary functional limitation responses with in-
formative drop-out and confounding by baseline outcomes. Biometrics 58 137-144. MR1891052

THEIL, H. (1971). Principals of Econometrics. Wiley, New York.

WoobD, D., HALFON, N., SCARLATA, D., NEWACHECK, P. and NESSIM, S. (1993). Impact of
family relocation on children’s growth, development, school function, and behavior. J. Amer.
Med. Assoc. 270 1334-1338.

WRIGHT, S. P. (2004). Advantages of a multivariate longitudinal approach to educational value-
added assessment without imputation. Presented at the 2004 National Evaluation Institute, July
8-10, 2004, Colorado Springs, CO.

Wu, M. C. and CARROLL, R. J. (1988). Estimation and comparison of changes in the pres-
ence of informative right censoring by modeling the censoring process. Biometrics 44 175-188.
MRO0931633

ZIMMER, R., BUDDIN, R., CHAU, D., DALEY, G., GILL, B., GUARINO, C., HAMILTON, L.,
KRrRoP, C., MCCAFFREY, D., SANDLER, M. and BREWER, D. (2003). Charter School Oper-
ations and Performance: Evidence from California. RAND, Santa Monica, CA.

THE RAND CORPORATION
4570 FIFTH AVENUE, SUITE 600
PITTSBURGH, PENNSYLVANIA 15213
USA
E-MAIL: danielm@rand.org

lockwood @rand.org


http://www.ams.org/mathscinet-getitem?mr=1979380
http://www.ams.org/mathscinet-getitem?mr=1891052
http://www.ams.org/mathscinet-getitem?mr=0931633
mailto:danielm@rand.org
mailto:lockwood@rand.org

	Introduction
	Introduction to value-added modeling
	Missing test score data in value-added modeling
	MNAR models

	Data description
	Models
	Selection model
	Pattern mixture model
	Prior distributions and estimation

	Results
	Selection models
	Pattern mixture model

	Discussion
	Appendix
	Posterior means and standard deviations for parameters of MAR, SEL and PMIX models
	Results for the alternative selection model

	Acknowledgment
	Supplementary Material
	References
	Author's Addresses

