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Abstract: Oracle inequalities and variable selection properties for the
Lasso in linear models have been established under a variety of different
assumptions on the design matrix. We show in this paper how the different
conditions and concepts relate to each other. The restricted eigenvalue con-
dition [2] or the slightly weaker compatibility condition [18] are sufficient
for oracle results. We argue that both these conditions allow for a fairly
general class of design matrices. Hence, optimality of the Lasso for predic-
tion and estimation holds for more general situations than what it appears
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1. Introduction

In this paper we revisit some sufficient conditions for oracle inequalities for
the Lasso in regression and examine their relations. Such oracle results have
been derived by, among others, [4, 19, 21, 2, 16], and for the related Dantzig
selector by [11] and [13]. Furthermore, variable selection properties of the Lasso
have been studied by [15, 23, 14, 22] and [20]. Our main aim is to present the
relations (of which some are known and some are new) between the various
conditions, and to emphasize that sufficient conditions for oracle inequalities
hold in fairly general situations.

The Lasso, which we at first only study in a noiseless situation, is defined as
follows. Let X be some measurable space, Q be a probability measure on X ,
and ‖ · ‖ be the L2(Q) norm. Consider a fixed dictionary of functions {ψj}p

j=1 ⊂
L2(Q), and linear functions

fβ(·) :=

p
∑

j=1

βjψj(·) : β ∈ R
p.
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Consider moreover a fixed target

f0(·) :=

p
∑

j=1

β0
jψj(·).

We let S := {j : β0
j 6= 0} be its active set, and s := |S| be the sparsity index

of f0.
For some fixed λ > 0, the Lasso for the noiseless problem is

β∗ := arg min
β

{

‖fβ − f0‖2 + λ‖β‖1

}

, (1.1)

where ‖ · ‖1 is the ℓ1-norm. We write f∗ := fβ∗ and let S∗ be the active set of
the Lasso.

Let us precise what we mean by an oracle inequality. With β being a vector
in R

p, and N ⊂ {1, . . . , p} an index set, we denote by

βj,N := βj l{j ∈ N}, j = 1, . . . , p,

the vector with non-zero entries in the set N (hence, for example β0
S = β0).

Definition: Sparsity constant and sparsity oracle inequality. The
sparsity constant φ0 is the largest value φ0 > 0 such that Lasso with β∗ and
f∗ satisfies the φ0-sparsity oracle inequality

‖f∗ − f0‖2 + λ‖β∗
Sc‖1 ≤ λ2s

φ2
0

.

Restricted eigenvalue conditions (see [12, 13] and [2]) have been developed to
derive lower bounds for the sparsity constant. We will present these conditions
in the next section. Irrepresentable conditions (see [23]) are tailored for proving
variable selection, i.e., showing that S∗ = S, or, more more modestly, that the
symmetric difference S∗△S is small.

1.1. Organization of the paper and summary

We start out with, in Section 2, an overview of the conditions we will compare,
and some pointers to the literature. We then examine their relations. Figure 1
below enables to see the various relations at a single glance.

Sections 3–9 present a proof of each of the indicated (numbered) implications.
Our conclusion is that (perhaps not surprising) the compatibility condition is
the least restrictive, and that many sufficient conditions for compatibility may
be somewhat too harsh (see also our discussion in Section 12).

We illustrate in Section 10 that one may check compatibility using approxi-
mations. We give several examples, where the compatibility condition holds. We
also give an example where the compatibility condition yields a major improve-
ment to the oracle result, as compared to the restricted eigenvalue condition.
The noisy case, studied briefly in Section 11, poses no additional theoretical
difficulties. A lower bound on the regularization parameter λ is required, and
implications become somewhat more technical because all further results depend
on this lower bound. Section 12 discusses the results.
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Fig 1. A double arrow (⇒) indicates a straight implication, whereas the more fancy arrow-
heads mean that the relation is under side-conditions. The numbers indicate the section where
the result is (re)proved.

1.2. Some notation

For a vector v, we invoke the usual notation

‖v‖q =

{

(
∑

j |vj|q)1/q, 1 ≤ q <∞
maxj |vj|, q = ∞.

The Gram matrix is

Σ :=

∫

ψTψdQ,

so that
‖fβ‖2 = βT Σβ.

The entries of Σ are denoted by σj,k := (ψj , ψk), with (·, ·) being the inner
product in L2(Q).

To clarify the notions we shall use, consider for a moment a partition of the
form

Σ :=

(

Σ1,1 Σ1,2

Σ2,1 Σ2,2

)

,

where Σ1,1 is an N ×N matrix, Σ2,1 is a (p−N) ×N matrix and Σ1,2 := ΣT
2,1

is its transpose, and where Σ2,2 is a (p−N) × (p−N) matrix. Such partitions
will be play an important role in the sections to come.

More generally, for a set N ⊂ {1, . . . , p} with size N , we introduce the N×N
matrix

Σ1,1(N ) := (σj,k)j,k∈N ,

the (p−N) ×N matrix

Σ2,1(N ) = (σj,k)j /∈N ,k∈N ,

and the (p−N) × (p−N) matrix

Σ2,2(N ) := (σj,k)j,k/∈N .
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We let Λ2
min(Σ1,1(N )) be the smallest eigenvalue of Σ1,1(N ). Throughout, we

assume that, for the fixed active set S, the smallest eigenvalue Λ2
min(Σ1,1(S)) is

strictly positive, i.e., that Σ1,1(S) is non-singular.
We sometimes identify βN with the vector |N |-dimensional vector {βj}j∈N ,

and write e.g.,
βT
NΣβN = βT

NΣ1,1(N )βN .

2. An overview of definitions

The definitions we will present are conditions on the Gram matrix Σ, namely
conditions on quadratic forms βT Σβ, where β is restricted to lie in some subset
of R

p. We first take the set of restrictions

R(L, S) := {β : ‖βSc‖1 ≤ L‖βS‖1 6= 0}.

The compatibility condition we discuss here is from [18]. Its name is based
on the idea that we require the ℓ1-norm and the L2(Q)-norm to be somehow
compatible.

Definition: Compatibility condition. We call

φ2
compatible(L, S) := min

{

s‖fβ‖2

‖βS‖2
1

: β ∈ R(L, S)

}

the (L, S)-restricted ℓ1-eigenvalue.
The (L, S)-compatibility condition is satisfied if φcompatible(L, S) > 0 .

The bound ‖βS‖1 ≤ √
s‖βS‖2 (which holds for any β) leads to two succes-

sively stronger versions of restricted eigenvalues. We moreover consider supsets
N of S with size at most N . Throughout in our definitions, N ≥ s. We will only
invoke N = s and N = 2s (for simplicity).

Define the sets of restrictions

Radaptive(L, S) := {β : ‖βSc‖1 ≤ √
sL‖βS‖2},

and for N ⊃ S,

R(L, S,N ) :=
{

β ∈ R(L, S) : ‖βNc‖∞ ≤ min
j∈N\S

|βj|
}

,

and

Radaptive(L, S,N ) :=
{

β ∈ Radaptive(L, S) : ‖βNc‖∞ ≤ min
j∈N\S

|βj |
}

.

If N = s, we necessarily have N\S = ∅. In that case, we let minj∈N\S |βj| =
∞, i.e., R(L, S, S) = R(L, S) (Radaptive(L, S, S) = Radaptive(L, S)).

The restricted eigenvalue condition is from [2] and [13]. We complement it
with the adaptive restricted eigenvalue condition. The name of the latter is
inspired by the fact that this strengthened version is useful for the development
of theory for the adaptive Lasso [24] which we do not show in this paper.
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Definition: (Adaptive) restricted eigenvalue. We call

φ2(L, S,N) := min

{ ‖fβ‖2

‖βN ‖2
2

: N ⊃ S, |N | ≤ N, β ∈ R(L, S,N )

}

the (L, S,N)-restricted eigenvalue, and, similarly,

φ2
adaptive(L, S,N)

:= min

{ ‖fβ‖2

‖βN ‖2
2

: N ⊃ S, |N | ≤ N, β ∈ Radaptive(L, S,N )

}

the adaptive (L, S,N)-restricted eigenvalue.
The (adaptive) (L, S,N)-restricted eigenvalue condition holds if φ(L, S,N)
> 0 (φadaptive(L, S,N) > 0).

We introduce the (adaptive) restricted regression condition to clarify various
connections between different assumptions.

Definition: (Adaptive) restricted regression.
The (L, S,N)-restricted regression is

ϑ(L, S,N) := max

{ |(fβN
, fβNc )|

‖fβN
‖2

: N ⊃ S, |N | ≤ N, β ∈ R(L, S,N )

}

.

The adaptive (L, S,N)-restricted regression is

ϑadaptive(L, S,N)

:= max

{ |(fβN
, fβNc )|

‖fβN
‖2

: N ⊃ S, |N | ≤ N, β ∈ Radaptive(L, S,N )

}

.

The (adaptive) (L, S,N)-restricted regression condition holds if ϑ(L, S,N) < 1
(ϑadaptive(L, S,N) < 1).

Note that (fβN
, fβNc )/‖fβN

‖2 equals the coefficient when regressing fβNc

onto fβN
.

Of course all these definitions depend on the Gram matrix Σ. In Sections 10
and 11, we make this dependence explicit by adding the argument Σ, e.g. the
(Σ, L, S)-compatibility condition, etc.

When L = 1, the argument L is omitted, e.g. φcompatible(S) :=
φcompatible(1, S), and e.g., the S-compatibility condition is then the condition
φcompatible(S) > 0. The case L > 1 is mainly needed to handle the situation
with noise, and L < 1 is of interest when studying the adaptive Lasso (but we
do not develop its theory in this paper).

We now present some definitions from [10].
Definition: Restricted orthogonality constant. The quantity

θ(S,N) := sup
N⊃S: |N|≤N

sup
M⊂Nc, |M|≤s

sup
β

∣

∣

∣

∣

(fβN
, fβM

)

‖βN ‖2‖βM‖2

∣

∣

∣

∣

,
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is called the (S,N)-restricted orthogonality constant. We moreover define

θs,N := max{θ(S,N) : |S| = s}.

Definition: Restricted isometry constant. The N -restricted isometry
constant is the smallest value of δN such that for all N with |N | ≤ N ,

(1 − δN )‖βN ‖2
2 ≤ ‖fβN

‖2 ≤ (1 + δN )‖βN ‖2
2.

Definition: Uniform eigenvalue. The (S,N)-uniform eigenvalue is

Λ2(S,N) := inf
N⊃S, |N|≤N

Λ2
min(Σ1,1(N )).

As mentioned before, we always assume that Λ(S, s) > 0.
Definition: Weak restricted isometry. The weak (S,N)-restricted isom-

etry constant is

ϑweak−RIP(S,N) :=
θ(S,N)

Λ2(S,N)
.

The weak (L, S,N)-restricted isometry property holds if ϑweak−RIP(S,N)< 1/L.
Definition: Restricted isometry property. The RIP constant is

ϑRIP :=
θs,2s

1 − δs − θs,s
.

The restricted isometry property, shortly RIP, holds if ϑRIP < 1.
An irrepresentable condition can be found in [23]. We use a modified version

which involves only the design but not the true coefficient vector β0 (whereas
its sign vector appears in [23]). The reason is that most other conditions con-
sidered in this paper do not depend on β0 as well. Our (L, S,N)-irrepresentable
condition with L = 1 and N = s is only slightly stronger than the condition
in [23].

Definition: Irrepresentable condition.
Part 1. We call

ϑirrepresentable(S,N) := min
N⊃S: |N|≤N

max
‖τN ‖∞≤1

‖Σ2,1(N )Σ−1
1,1(N )τN ‖∞

the (S,N)-uniform irrepresentable constant.
The (L, S,N)-uniform irrepresentable condition is met, if ϑirrepresentable(S,N) <
1/L.
Part 2. We say that the (L, S,N)-irrepresentable condition is met, if for some
N ⊃ S with |N | ≤ N , and all vectors τN satisfying τN ∈ {−1, 1}|N|, we have

‖Σ2,1(N )Σ−1
1,1(N )τN ‖∞ < 1/L.

Part 3. We say that the weak (S,N)-irrepresentable condition is met, if for
all τS ∈ {−1, 1}s, and for some N ⊃ S with |N | ≤ N , and for some τN\S ∈
{−1, 1}|N\S|, we have

‖Σ2,1(N )Σ−1
1,1(N )τN ‖∞ ≤ 1.
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Finally, we present coherence conditions, which are in the spirit of [5, 4]. [7]
derive an oracle result under a tight coherence condition.

Definition: Coherence. The (L, S)-mutual coherence condition holds if

ϑmutual(S) :=
smaxj /∈S maxk∈S |σj,k|

Λ2(S, s)
< 1/L.

The (L, S)-cumulative coherence condition holds if

ϑcumulative(S) :=

√
s
√

∑

k∈S

(
∑

j /∈S |σj,k|
)2

Λ2(S, s)
< 1/L.

2.1. Implications for the Lasso and some first relations

It is shown in [18] that the compatibility condition implies oracle inequalities for
the Lasso. We re-derive the result for later reference and also for illustrating that
the compatibility condition is just a condition to make the proof go through.
We also show (again for later reference) the additional ℓ2-result if one uses the
(S,N)-restricted eigenvalue condition.

Lemma 2.1. (Oracle inequality) We have for the Lasso in (1.1),

‖f∗ − f0‖2 + λ‖β∗
Sc‖1 ≤ λ2s/φ2

compatible(S).

Moreover, letting N∗\S being the set of the N−s largest coefficients |β∗
j |, j ∈ Sc,

‖β∗
N∗

− β0
N∗

‖2
2 ≤ λ2s/φ4(S,N).

Proof of Lemma 2.1. The first assertion follows from the Basic Inequality

‖f∗ − f0‖2 + λ‖β∗‖1 ≤ λ‖β0‖1,

using the definition of the Lasso in (1.1), which implies

‖f∗ − f0‖2 + λ‖β∗
Sc‖1 ≤ λ

(

‖β0‖1 − ‖β∗
S‖1

)

≤ λ‖β∗
S − β0

S‖1 ≤ λ
√
s‖f∗ − f0‖/φcompatible(S).

Note that the last inequality holds because β∗ −β0 ∈ R(S) which follows by its
preceding inequality:

‖β∗
Sc‖1 = ‖β∗

Sc − β0
Sc‖1 ≤ ‖β∗

S − β0
S‖1.

The second result follows from

‖β∗
N∗

− β0
N∗

‖2
2 ≤ ‖f∗ − f0‖2/φ2(S,N),

and using φcompatible(S) ≥ φ(S,N).
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An implication of Lemma 2.1 is an ℓ1-norm result:

‖β∗ − β0‖1 = ‖β∗
Sc‖1 + ‖β∗

S − β0
S‖1

≤ λs/φ2
compatible(S) +

√
s‖f∗ − f0‖/φcompatible(S)

≤ 2λs/φ2
compatible(S),

where the last inequality is using the first assertion in Lemma 2.1. We also note
that the second assertion in Lemma 2.1 has most statistical importance for the
case with N = s. We will need the case N = 2s later in our proofs.

In [15] and [23], it is proved that the irrepresentable condition is sufficient
and essentially necessary for variable selection, i.e., for achieving S∗ = S. We
will also present a self-contained proof in Section 6 where we will show that the
(S, s)-irrepresentable condition is sufficient and the weak (S, s)-irrepresentable
condition is essentially necessary for variable selection.

The paper [2] proves oracle inequalities under the restricted eigenvalue con-
dition. They assume

min{φ(L, S, s) : |S| = s} > 0

(where L can be taken equal to one in the noiseless case).
The restricted isometry property from [10], abbreviated to RIP, also requires

uniformity in S. They assume the RIP

ϑRIP < 1.

They show that the RIP implies exact reconstruction of β0 from f0 by linear
programming (that is, by minimizing ‖β‖1 subject to ‖fβ − f0‖ = 0). [6] prove
this result assuming δN + θs,N < 1 for N = 1.25s only; see also [8] for an earlier
result. It is clear that 1− δN ≤ Λ2(S,N), i.e., the restricted isometry constants
are more demanding than uniform eigenvalues. [10] furthermore show that

ϑweak−RIP(S,N) ≤ ϑRIP.

See also Figure 1. They prove that the RIP is sufficient for establishing oracle
inequalities for the Dantzig selector. [12] and [2] show that

φ(L, S, 2s) ≥ (1 − Lϑweak−RIP(S, 2s))Λ(S, 2s).

Thus, the weak (S, 2s)-restricted isometry property implies the break (S, 2s)-
restricted eigenvalue condition. See also Figure 1.

The papers [3, 5, 4] show that their coherence conditions imply oracle results
and refinements (see also Section 4 for their condition on the diagonal of Σ).
[9] weaken the coherence conditions by restricting the parameter space for the
regression coefficient β.

Finally, it is clear that φadaptive(L, S,N) ≤ φ(L, S,N) ≤ φcompatible(L, S),
i.e.,
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adaptive restricted eigenvalue condition ⇒
restricted eigenvalue condition ⇒
compatibility condition.

See also Figure 1.
It is easy to see that ϑ(L, S, s) and ϑadaptive(L, S, s) scale with L, i.e., we have

ϑ(L, S, s) = Lϑ(S, s), ϑadaptive(L, S, s) = Lϑadaptive(S, s).

This is not true for the (adaptive) restricted (ℓ1-)eigenvalues. It indicates that
the (adaptive) restricted regression is not well-calibrated for proving compat-
ibility or restricted eigenvalue conditions, i.e, one might pay a large price for
taking the route to oracle results via restricted regression conditions.

We end this subsection with the following lemma, which is based on ideas
in [11]. A corollary is the ℓ2-bound given in (2.1), which thus illustrates that
considering supsets N of S can be useful. However, we use the lemma for other
purposes as well.

We let for any β, rj(β) := rank(|βj |), j ∈ Sc, if we put the coefficients in
decreasing order. Let N0(β) be the set of the s largest coefficients in Sc:

N0(β) := {j : rj(β) ∈ {1, . . . , s}}.

Put N (β) := N0(β) ∪ S. Further, assuming without loss of generality that
p = (K + 2)s for some integer K ≥ 0, we let for k = 1, . . . , K,

Nk(β) :=
{

j : rj(β) ∈ {ks+ 1, . . . , (k + 1)s}
}

.

We further define

N∗ := N (β∗), N ∗
k := Nk(β∗), k = 0, 1, . . . , K.

Lemma 2.2. We have for any any r ≥ 1, and 1/r + 1/q = 1, and any β, and
for N := N (β), and Nk := Nk(β), k = 0, 1, . . . , K, the bound

‖βNc‖r ≤
K
∑

k=1

‖βNk
‖r ≤ ‖βSc‖1/s

1/q.

Corollary 2.1. Combining Lemma 2.1 with Lemma 2.2 gives

‖β∗ − β0‖2
2 ≤ 2λ2s/φ4(S, 2s). (2.1)

This result is from [2]. The proof we give is essentially the same as theirs.

Proof of Lemma 2.2. Clearly,

‖βNc‖r = ‖
K
∑

k=1

βNk
‖r ≤

K
∑

k=1

‖βNk
‖r.

We know that for k = 1, . . . , K,

|βj| ≤ ‖βNk−1
‖1/s, j ∈ Nk,
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and hence,
‖βNk

‖r
r ≤ s−(r−1)‖βNk−1

‖r
1.

It follows that

K
∑

k=1

‖βNk
‖r ≤

K
∑

k=1

‖βNk−1
‖1s

−(r−1)/r ≤ ‖βSc‖1/s
1/q.

3. The restricted regression condition implies the restricted
eigenvalue condition

We start out with an elementary lemma.

Lemma 3.1. Let f1 and f2 by two functions in L2(P ). Suppose for some 0 <
ϑ < 1.

−(f1, f2) ≤ ϑ‖f1‖2.

Then
(1 − ϑ)‖f1‖ ≤ ‖f1 + f2‖.

Proof. Write the projection of f2 on f1 as

fP
2,1 := (f2, f1)/‖f1‖2f1.

Similarly, let
f = (f1 + f2)

P
1 := (f, f1)/‖f1‖2f1

be the projection of f1 + f2 on f1. Then

(f1 + f2)
P
1 = f1 + fP

2,1 =
(

1 + (f2, f1)/‖f1‖2
)

f1,

so that

‖(f1 + f2)
P
1 ‖ =

∣

∣

∣1 + (f2, f1)/‖f1‖2
∣

∣

∣‖f1‖

≥
(

1 + (f2, f1)/‖f1‖2
)

‖f1‖ ≥ (1 − ϑ)‖f1‖

Moreover, by Pythagoras’ Theorem

‖f1 + f2‖2 ≥ ‖(f1 + f2)
P
1 ‖2.

It is then straightforward to derive the following result.

Corollary 3.1. Suppose that ϑ(L, S,N) < 1. Then

φ2(L, S,N) ≥
(

1 − ϑ(L, S,N)
)2

Λ2(S,N).

A similar result is true for the adaptive versions. In other words, the (adap-
tive) restricted regression condition implies the (adaptive) restricted eigenvalue
condition.
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4. S-coherence conditions imply adaptive (S, s)-restricted regression
conditions

The papers [3, 5, 4] establish oracle results under a condition which we refer
to as the restricted diagonal condition. They provide coherence conditions for
verifying the restricted diagonal condition.

Definition: Restricted diagonal condition. We say that the S-restricted
diagonal condition holds if for some constant ϕ(S) > 0

Σ − ϕ(S)diag(ιS)

is positive semi-definite. Here ι := (1, . . . , 1)T (so ιj,S = l{j ∈ S}).
We now show that coherence conditions actually imply restricted regression

conditions. First, we consider some matrix norms in more detail. Let 1 ≤ q ≤ ∞,
and r be its conjugate, i.e.,

1

q
+

1

r
= 1.

Define
‖Σ1,2(N )‖2,q := sup

‖βNc‖r≤1

‖Σ1,2(N )βNc‖2.

Some properties. The quantity ‖Σ1,2(N )‖2
2,2 is the largest eigenvalue of the

matrix Σ1,2(N )Σ2,1(N ). We further have for 1 ≤ q <∞,

‖Σ1,2(N )‖2,q ≤





∑

j /∈N





√

∑

k∈N
σ2

j,k





q



1/q

,

and similarly for q = ∞,

‖Σ1,2(N )‖2,∞ ≤ max
j /∈N

√

∑

k∈N
σ2

j,k.

Moreover,
‖Σ1,2(N )‖2,q ≥ ‖Σ1,2(N )‖2,∞,

so for replacing ‖Σ1,2(N )‖2,∞ by ‖Σ1,2(N )‖2,q, q < ∞, one might have to pay
a price.

Lemma 4.1. For all 1 ≤ q ≤ ∞, the following inequality holds:

ϑadaptive(L, S, 2s) ≤ max
N⊃S, |N|=2s

L
√
s‖Σ1,2(N )‖2,q

s1/qΛ2(S, 2s)
.

Moreover,

ϑadaptive(S, s) ≤
√
s‖Σ1,2(S)‖2,∞

Λ2(S, s)
.
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Proof of Lemma 4.1. Take r such that 1/q + 1/r = 1. Let N ⊃ S, with
|N | = 2s and let β ∈ Radaptive(L, S,N ).

We let fN := fβN
, fNc := fβNc .

We have

|(fN , fNc)| = |βT
NΣ1,2(N )βNc |

≤ ‖Σ1,2(N )‖2,q‖βNc‖r‖βN ‖2.

Applying Lemma 2.2 gives

‖βNc‖r ≤ ‖βSc‖1/s
1/q ≤ L

√
s‖βS‖2/s

1/q ≤ L
√
s‖βN ‖2/s

1/q. (4.1)

This yields

|(fN , fNc)| ≤ L
√
s‖Σ1,2(S)‖2,q‖βN ‖2

2/s
1/q

≤ L
√
s‖Σ1,2(S)‖2,q‖fN‖2

2/(s
1/qΛ2(S, 2s)).

Similarly,

|(fS , fSc)| ≤ ‖Σ1,2(S)‖2,∞‖βSc‖1‖βS‖2

≤ √
s‖Σ1,2(S)‖2,∞‖βS‖2

2 ≤ √
s‖Σ1,2(S)‖2,∞‖fS‖2/Λ2(S, s).

One of the consequences is in the spirit of the mutual coherence condition
in [5].

Corollary 4.1. (Coherence with q = ∞) We have

ϑadaptive(S, s) ≤
√
smaxj /∈S

√

∑

k∈S σ
2
j,k

Λ2(S, s)
≤ ϑmutual(S)

With q = 1 and N = s, the coherence lemma is similar to the cumulative
local coherence condition in [4]. We also consider the case N = 2s.

Corollary 4.2. (Coherence with q = 1) We have

ϑadaptive(S, s) ≤ ϑcumulative(S),

and

ϑ(L, S, 2s) ≤ max
N⊃S, |N|=2s

L
√

∑

k∈N
(
∑

j /∈N |σj,k|
)2

√
sΛ2(S, 2s)

.

The coherence lemma with q = 2 is a condition about eigenvalues (recall
that ‖Σ1,2(N )‖2

2,2 equals the largest eigenvalue of Σ1,2(N )Σ2,1(N )). The bound
is then much rougher than the one following from the weak (S, 2s)-restricted
isometry condition, which we derive in Lemma 7.1.

Corollary 4.3. (Coherence with q = 2) We have

ϑadaptive(L, S, 2s) ≤ max
N⊃S, |N|=2s

L‖Σ1,2(N )‖2,2

Λ2(S, 2s)
.
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5. The adaptive (S, s)-restricted regression condition implies the
(S, s)-uniform irrepresentable condition

Theorem 5.1. We have

ϑirrepresentable(S, s) ≤ ϑadaptive(S, s).

Proof of Theorem 5.1. First observe that

‖Σ2,1(S)Σ−1
1,1(S)τS‖∞ = sup

‖βSc‖1≤1

|βT
ScΣ2,1(S)Σ−1

1,1(S)τS |

= sup
‖βSc‖1≤1

|(fβSc , fbS
)|,

where
bS := Σ−1

1,1(S)τS .

We note that

‖fbS
‖2

√
s‖bS‖2

=
‖Σ1/2

1,1 (S)bS‖2
2

‖Σ1,1(S)bS‖2‖bS‖2

‖Σ1,1(S)bS‖2√
s

≤ 1.

(Use Cauchy-Schwarz inequality for bounding the first factor). Furthermore, for
any constant c,

sup
‖βSc‖1≤1

|(fβSc , fbS
)| = sup

‖βSc‖1≤c

|(fβSc , fbS
)|/c.

Take c =
√
s‖bS‖2 to find

‖Σ2,1(S)Σ−1
1,1(S)τS‖∞ = sup

‖βSc‖1≤
√

s‖bS‖2

|(fβSc , fbS
)|√

s‖bS‖2

≤ sup
‖βSc‖1≤

√
s‖bS‖2

|(fβSc , fbS
)|

‖fbS
‖2

.

6. The (S, s)-irrepresentable condition is sufficient and essentially
necessary for variable selection

An important characterization of the solution β∗ can be derived from the Karush-
Kuhn-Tucker (KKT) conditions which in our context involves subdifferential
calculus: see [1].

The KKT conditions. We have

2Σ(β∗ − β0) = −λτ∗.

Here ‖τ∗‖∞ ≤ 1, and moreover

τ∗j l{β∗
j 6= 0} = sign(β∗

j ), j = 1, . . . , p.
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For N ⊃ S, we write the projection of a function f on the space spanned by
{ψj}j∈N as fPN , and the anti-projection as fAN := f − fPN . Hence, we note
that

fPN

β = (fβN
+ fβNc )PN = fβN

+ (fβNc )PN ,

and thus
fAN

β = (fβNc )AN .

Moreover

‖(fβNc )AN ‖2 = βT
Nc Σ2,2(N )βNc − βT

Nc Σ2,1(N )Σ−1
1,1(N )Σ1,2(N )βNc .

Lemma 6.1. Suppose Σ−1
1,1(N ) exists. We have

2‖(fβ∗

Nc
)AN ‖2 = λ(β∗

Nc )T Σ2,1(N )Σ−1
1,1(N )τ∗N − λ‖β∗

Nc‖1.

Proof of Lemma 6.1. By the KKT conditions, we must have

2Σ1,1(N )(β∗
N − β0

N ) + 2Σ1,2(N )β∗
Nc = −λτ∗N ,

2Σ2,1(N )(β∗
N − β0

N ) + 2Σ2,2(N )β∗
Nc = −λτ∗Nc .

It follows that

2(β∗
N − β0

N ) + 2Σ−1
1,1(N )Σ1,2(N )β∗

Nc = −λΣ−1
1,1(N )τ∗N ,

2Σ2,1(N )(β∗
N − β0

N ) + 2Σ2,2(N )β∗
Nc = −λτ∗Nc

(leaving the second equality untouched). Hence, multiplying the first equality
by −(β∗

Nc )T Σ2,1(N ), and the second by (β∗
Nc )T ,

− 2(β∗
Nc)T Σ2,1(N )(β∗

N − β0
N ) − 2(β∗

Nc )T Σ2,1(N )Σ−1
1,1(N )Σ1,2(N )β∗

Nc

= λ(β∗
Nc )T Σ2,1(N )Σ−1

1,1(N )τ∗N ,

2(β∗
Nc )T Σ2,1(N )(β∗

N − β0
N ) + 2(β∗

Nc )T Σ2,2(N )β∗
Nc = −λ‖β∗

Nc‖1,

where we invoked that β∗
j τ

∗
j = |β∗

j |. Adding up the two equalities gives

2(β∗
Nc)T Σ2,2(N )β∗

Nc − 2(β∗
Nc )T Σ2,1(N )Σ−1

1,1(N )Σ1,2(N )β∗
Nc

= λ(β∗
Nc )T Σ2,1(N )Σ−1

1,1(N )τ∗N − λ‖β∗
Nc‖1.

We now connect the irrepresentable condition to variable selection. Define

|β0|min := min{|β0
j | : j ∈ S}.

Lemma 6.2.
Part 1. Suppose the (S,N)-uniform irrepresentable condition holds. Then
|S∗\S| ≤ N − s.
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Part 2. Suppose the (S,N)-irrepresentable condition holds and

|β0|min > λs/φ2
compatible(S).

Then S∗ ⊃ S and |S∗| ≤ N .
Part 3. Conversely, suppose that S∗ ⊃ S and |S∗| ≤ N , and Λ(S,N) > 0. Then

‖Σ2,1(S∗)Σ
−1
1,1(S∗)τ

∗
S∗
‖∞ ≤ 1.

If moreover
|β0|min > λ

√
s/(2Λ(S,N)),

then τ∗S∗
= τ0

S∗
, where τ0

S∗
:= sign(β0

S∗
).

A special case is N = s. In Part 1, we then obtain that S∗ ⊂ S, i.e., no false
positive selections. Moreover, Part 2 then proves S∗ = S and Part 3 assumes
S∗ = S.

Proof of Lemma 6.2.
Part 1. Let N ⊃ S be a set of size at most N , such that

sup
‖τS‖∞≤1

‖Σ2,1(N )Σ−1
1,1(N )τN ‖∞ < 1.

By Lemma 6.1, we now have that if ‖β∗
Nc‖1 > 0

2‖(f∗)AN ‖2 = λ(β∗
Nc )T Σ2,1(N )Σ−1

1,1(N )τ∗N − λ‖β∗
Nc‖1 < 0,

which is a contradiction. Hence ‖β∗
Nc‖1 = 0, i.e., S∗ ⊂ N .

Part 2. By Lemma 2.1,

‖β∗
S − β0

S‖1 ≤ √
s‖f∗ − f0‖/φcompatible(S) ≤ λs/φ2

compatible(S).

The condition |β0|min > λs/φ2
compatible(S) thus implies that S∗ ⊃ S, and hence

that τ∗S ∈ {−1, 1}s. We also know that τ∗S∗
∈ {−1, 1}. Hence for any N satis-

fying S ⊂ N ⊂ S∗, also τN ∈ {−1, 1}|N|. Thus, by the (S,N)-irrepresentable
condition, there exists such an N , say Ñ , with

‖Σ2,1(Ñ )Σ−1
1,1(Ñ )τ∗Ñ ‖∞ < 1.

As in Part 1, we then must have that ‖β∗
Ñc

‖1 = 0.

Part 3. Because Λ(S,N) > 0, and |S∗| ≤ N , we know that Σ−1
1,1(S∗) exists.

Because S∗ ⊃ S, we have β∗
Sc
∗

= β0
Sc
∗

= 0, so the KKT conditions take the form

2Σ1,1(S∗)(β
∗
S∗

− β0
S∗

) = −λτ∗S∗
,

and
2Σ2,1(S∗)(β

∗
S∗

− β0
S∗

) = −λτ∗Sc
∗
.

Hence
β∗

S∗
− β0

S∗
= λΣ−1

1,1(S∗)τ
∗
S∗
/2,
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and, inserting this in the second KKT equality,

Σ2,1(S∗)Σ
−1
1,1(S∗)τ

∗
S∗

= τ∗Sc
∗
.

But then
‖Σ2,1(S∗)Σ

−1
1,1(S∗)τ

∗
S∗
‖∞ = ‖τ∗Sc

∗
‖∞ ≤ 1.

The first KKT equality moreover implies

‖β∗
S∗

− β0
S∗
‖2 ≤ λ

√
N/(2Λ2(S,N)).

So when |β0|min > λ
√
N/(2Λ2(S,N)), we have τ∗S∗

= τ0
S∗

.

7. The weak (S,2s)-restricted isometry property implies the
(S,2s)-restricted regression condition

Lemma 7.1. We have

ϑadaptive(L, S, 2s) ≤ Lϑweak−RIP(S, 2s).

Proof of Lemma 7.1. Let β be an arbitrary vector. satisfying ‖βSc‖1 ≤ L
√
s‖βS‖2.

From Lemma 2.2,

K
∑

k=1

‖βNk
‖2 ≤ ‖βSc‖1/

√
s ≤ L‖βS‖2.

Hence, using the definition of the restricted orthogonality constant θ(S, 2s),
and of the (S, 2s)-uniform eigenvalue Λ2(S, 2s),

|(fβN
, fβNc )| ≤ θ(S, 2s)

K
∑

k=1

‖βN‖2‖βNk
‖2 ≤ Lθ(S, 2s)‖βN ‖2‖βS‖2

≤ Lθ(S, 2s)‖fβN
‖2
2/Λ

2(S, 2s),

or
|(fβN

, fβNc )|
‖fβN

‖2
≤ Lθ(S, 2s)/Λ2(S, 2s) = Lϑweak−RIP(S, 2s).

Corollary 7.1. Together with Corollary 3.1, we can now conclude that when
ϑweak−RIP(S, 2s) < 1/L, one has

φ2(L, S, 2s) ≥ (1 − Lϑweak−RIP(S, 2s))2Λ2(S, 2s).

This result is from [12] and [2].
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8. The restricted isometry property with small constants implies
the weak (S,2s)-irrepresentable condition

We start with two preparatory lemmas. Recall that

ϑweak−RIP(S, s) = θ(S, s)/Λ2(S, s).

Lemma 8.1. Suppose that

ϑweak−RIP(S, s) < 1.

Then
2‖(fβ∗

Sc
)AS‖2 ≤ ϑweak−RIP(S, s)

(

λ
√
s‖β∗

N∗
0

‖2

)

,

where AS denotes the anti-projection defined in Section 6.

Proof of Lemma 8.1. Define

bS := Σ1,1(S)−1τ∗S .

Then
‖bS‖2 ≤ ‖τ∗S‖2/Λ

2(S, s) ≤ √
s/Λ2(S, s).

Moreover,

|(β∗
Sc)T Σ2,1Σ

−1
1,1(S)τ∗S | = |(fβ∗

Sc
, fbS

)| ≤
K−1
∑

k=0

|(fβ∗

N∗
k

, fbS
)|

≤ θ(S, s)

K
∑

k=0

‖β∗
N∗

k

‖2‖bS‖2 ≤ θ(S, s)‖bS‖2

(

‖β∗
N∗

0

‖2 +

K
∑

k=1

‖β∗
N∗

k

‖2

)

≤ θ(S, s)‖bS‖2

(

‖β∗
N∗

0

‖2 + ‖β∗
Sc‖1/

√
s
)

≤ θ(S, s)

Λ2(S, s)

√
s‖β∗

N∗
0

‖2 +
θ(S, s)

Λ2(S, s)
‖β∗

Sc‖1

= ϑweak−RIP(S, s)
(√

s‖β∗
N∗

0

‖2 + ‖β∗
Sc‖1

)

.

Thus,

(β∗
Sc)T Σ2,1Σ

−1
1,1(S)τ∗S − ‖β∗

Sc‖1

≤ ϑweak−RIP(S, s)
√
s‖β∗

N∗
0

‖2 − (1 − ϑweak−RIP(S, s))‖β∗
Sc‖1

≤ ϑweak−RIP(S, s)
√
s‖β∗

N∗
0

‖2.

Hence, by Lemma 6.1,

2‖(fβ∗
Sc

)AS‖2 ≤ ϑweak−RIP(S, s)
(

λ
√
s‖β∗

N∗
0

‖2

)

.
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Lemma 8.2. Suppose that

ϑweak−RIP(S, s) < 1.

Then for any subset Ñ ⊂ Sc, with |Ñ | ≤ s, and any b ∈ R
p

|(fb
Ñ
, f∗ − f0)| ≤ λ

√
s

φ(S, 2s)Λ(S, s)

(

θ(S, s) +
√

(1 + δs,s)θ(S, s)/2

)

‖bÑ‖2.

Proof of Lemma 8.2. We have

|(fb
Ñ
, f∗ − f0)| ≤ |(fb

Ñ
, (f∗ − f0)PS )| + |(fb

Ñ
, (f∗)AS )|

Let us write
(f∗ − f0)PS := fγS

.

Then, invoking Lemma 2.1,

‖γS‖2 ≤ ‖fγS
‖/Λ(S, s) = ‖(f∗ − f0)PS‖/Λ(S, s) ≤ ‖f∗ − f0‖/Λ(S, s)

≤ λ
√
s/
(

φ(S, 2s)Λ(S, s)
)

.

It follows that

|(fb
Ñ
, (f∗ − f0)PS )| ≤ θ(S, s)‖bÑ ‖2‖γS‖2

≤ θ(S, s)‖bÑ ‖2λ
√
s/
(

φ(S, 2s)Λ(S, s)
)

.

Moreover, we have

‖β∗
N∗

0

‖2 ≤ ‖β∗
N∗

− β0
N∗

‖2 ≤ λ
√
s/φ2(S, 2s).

So, by Lemma 8.1,

‖(fβ∗
Sc

)AS‖2 ≤ θ(S, s)

Λ2(S, s)
λ
√
s‖β∗

N∗
− β0

N∗
‖2/2

≤ λ2sθ(S, s)/
(

2φ2(S, 2s)Λ2(S, s)
)

.

Therefore

|(fb
Ñ
, (f∗)AS )| ≤ ‖fb

Ñ
‖‖(f∗)AS )‖ ≤ λ

√
s
√

θ(S, s)/2/
(

φ(S, 2s)Λ(S, s)
)

‖fb
Ñ
‖

≤
√

(1 + δs)θ(S, s)/2

φ(S, 2s)Λ(S, s)
λ
√
s‖bÑ‖2.

The next result shows that if the constants are small enough, then there will
be no more than s false positives. We define

α(S) :=

(√
2θ(S, s) +

√

(1 + δs)θ(S, s)
)

φ(S, 2s)Λ(S, s)
. (8.1)
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Lemma 8.3. Suppose that
α(S) < 1.

Then |S∗\S| < s.

Proof of Lemma 8.3. Since α(S) < 1, Lemma 8.2 implies that for any Ñ ⊂
Sc, with |Ñ | ≤ s, and for any b with ‖bÑ ‖2 6= 0,

|(fb
Ñ
, f∗ − f0)| < λ

√

s/2‖bÑ ‖2.

Hence, taking bj = (ψj , f
∗ − f0), j ∈ Ñ ,

∑

j∈Ñ
|(ψj, f

∗ − f0)|2 < λ2s/2.

For j ∈ S∗\S we have by the KKT conditions

|2(ψj, f
∗ − f0)| ≥ λ.

Suppose now that |S∗\S| ≥ s. Then there is a subset N ′ of S∗\S, with size
|N ′| = s, and we have

λ2s/2 >
∑

j∈N ′

|(ψj, f
∗ − f0)|2 ≥ λ2|N ′|/2.

This is a contraction, and hence |S∗\S| < s.

This leads to the following result.

Theorem 8.1. Suppose that α(S) < 1, see (8.1). Then the weak (S, 2s)-
irrepresentable condition holds.

Proof of Theorem 8.1. As α(S) < 1, we know that φ(S, 2s) > 0. Take an
arbitrary τ0

S ∈ {−1, 1}s, and a β0 satisfying β0
S = β0, sign(β0

S) = τ0
S , and

|β0|min > λ
√
s/φ2(S, 2s).

By Lemma 2.1, the Lasso satisfies

‖β∗
S − β0

S‖2 ≤ λ
√
s/φ2(S, 2s).

Hence, we must have S∗ ⊃ S, and τ∗S = τ0
S . Moreover, by Lemma 8.3, |S∗| < 2s.

By Part 3 of Lemma 6.2, we must have

‖Σ2,1(S∗)Σ
−1
1,1(S∗)τ

∗
S∗
‖∞ ≤ 1.

Since τ0
S = τ∗S is arbitrary and τ∗S∗

∈ {−1, 1}|S∗|, we conclude that the weak
(S, 2s)-irrepresentable condition holds (in fact the weak (S, 2s−1)-irrepresentable
condition holds).
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Corollary 8.1. The RIP is the condition ϑRIP < 1, or equivalently

δs + θs,s + θs,2s < 1.

The paper [10] shows that δ2s ≤ θs,s + δs. The restricted isometry constant δs
has to be less than one, so we may use the bound 1 + δs ≤ 2. Moreover, it is
clear that θ(S,N) ≤ θs,N , and Λ2(S,N) ≥ 1 − δN . Inserting these bounds in
Corollary 7.1 we find

φ(S, 2s)Λ(S, s) ≥ (1 − δs − θs,s − θs,2s)

√

1 − δs
1 − δs − θs,s

≥ (1 − δs − θs,s − θs,2s).

It follows that

α(S) ≤
√

2(θs,s +
√

θs,s)

1 − δs − θs,s − θs,2s
.

For example, if δs ≤
√

2 − 1 and θs,2s ≤ 1
16

, we get (invoking θs,s ≤ θs,2s)

α(S) ≤ 0.96.

We conclude that the RIP with small enough constants implies the weak (S, 2s)-
irrepresentable condition.

As [10] show, the RIP implies exact recovery. To complete the picture, we
now show that the (S, s)-irrepresentable condition also implies exact recovery.

The linear programming problem is

min{‖β‖1 : ‖fβ − f0‖ = 0},

where, as before f0 = fβ0 with β0 = β0
S . Let βLP be the minimizer of the linear

programming problem.

Lemma 8.4. Suppose the (S, s)-irrepresentable condition holds. Then one has
exact recovery, i.e., βLP = β0.

Proof of Lemma 8.4. This follows from [10]. They show that βLP = β0 if one
can find a g ∈ L2(P ), such that
(i) (ψj , g) = τ0

j , for all j ∈ S,
(ii) |(ψj, g)| < 1 for all j /∈ S,
where, as before, τ0

S := sign(β0
S). The (S, s)-irrepresentable condition says that

this is true for g = fbS
, where bS = Σ−1

1,1(S)τ0
S .

9. The (S, s)-uniform irrepresentable condition implies the
S-compatibility condition

As the (S, s)-irrepresentable condition implies variable selection, one expects it
will be more restrictive than the compatibility condition, which only implies
a bound for the prediction error (and ℓ1-estimation error). This turns out to
be indeed the case, albeit we prove it only under the uniform version of the
irrepresentable condition.
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Theorem 9.1. Suppose that

ϑirrepresentable(S, s) < 1/L.

Then
φ2

compatible(L, S) ≥ (1 − Lϑirrepresentable(S, s))
2Λ2(S, s).

Proof of Theorem 9.1. Define,

β⋄ := arg min
β

{‖fβ‖2 : ‖βS‖1 = 1, ‖βSc‖1 ≤ L}.

Let us write f⋄ := f⋄β , f⋄S := f⋄βS
and f⋄Sc := fβ⋄

Sc
. Introduce a Lagrange

multiplier λ ∈ R for the constraint ‖βs‖1 = 1. By the KKT conditions, there
exists a vector τ⋄S , with ‖τ⋄S‖∞ ≤ 1, such that τT

S β
⋄
S = ‖β⋄

S‖1, and such that

Σ1,1(S)β⋄
S + Σ1,2(S)β⋄

Sc = −λτ⋄S . (9.1)

By multiplying by (β⋄
S)T , we obtain

‖f⋄S‖2 + (f⋄S , f
⋄
Sc) = −λ‖β⋄

S‖1.

The restriction ‖β⋄
S‖1 = 1 gives

‖f⋄S‖2 + (f⋄S , f
⋄
Sc) = −λ.

We also have from (9.1)

β⋄
S + Σ−1

1,1(S)Σ1,2(S)β⋄
Sc = −λΣ−1

1,1τ
⋄
S . (9.2)

Hence, by multiplying with (τ⋄S)T ,

‖β⋄
S‖1 + (τ⋄S)T Σ−1

1,1(S)Σ1,2(S)β⋄
Sc = −λ(τ⋄S)T Σ−1

1,1τ
⋄
S ,

or

1 = − (τ⋄S)T Σ−1
1,1(S)Σ1,2(S)β⋄

Sc − λ(τ⋄S)T Σ−1
1,1(S)τ⋄S

≤ ϑ‖β⋄
Sc‖1 − λ(τ⋄S)T Σ−1

1,1(S)τ⋄S

≤ Lϑ− λ(τ⋄S)T Σ−1
1,1(S)τ⋄S .

Here, we applied that the (S, s)-uniform irrepresentable condition, with ϑ =
ϑirrepresentable(S, s), and the condition ‖βSc‖1 ≤ L. Thus

1 − Lϑ ≤ −λ(τ⋄S)T Σ−1
1,1(S)τ⋄S .

Because 1 − Lϑ > 0 and (τ⋄S)T Σ−1
1,1(S)τ⋄S ≥ 0, this implies that λ < 0, and in

fact that
(1 − Lϑ) ≤ −λs/Λ2(S, s),

where we invoked

(τ⋄S)T Σ−1
1,1(S)τ⋄S ≤ ‖τ⋄S‖2

2/Λ
2(S, s) ≤ s/Λ2(S, s).
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So
−λ ≥ (1 − Lϑ)Λ2(S, s)/s.

Continuing with (9.2), we moreover have

(β⋄
Sc)T Σ2,1(S)β⋄

S + (β⋄
Sc)T Σ2,1(S)Σ−1

1,1(S)Σ1,2(S)β⋄
Sc

= −λ(β⋄
Sc )T Σ2,1(S)Σ−1

1,1(S)τ⋄S .

In other words,

(f⋄S , f
⋄
Sc) + ‖(f⋄Sc)PS‖2 = −λ(β⋄

Sc )T Σ2,1(S)Σ−1
1,1(S)τ⋄S ,

where (f⋄Sc)PS is the projection of f⋄Sc on the space spanned by {ψk}k∈S. Again,
by the (S, s)-uniform irrepresentable condition and by ‖β⋄

Sc‖1 ≤ L,
∣

∣(β⋄
Sc)T Σ2,1(S)Σ−1

1,1(S)τ⋄S
∣

∣ ≤ ϑ‖β⋄
Sc‖1 ≤ Lϑ,

so

−λ(β⋄
Sc )T Σ2,1(S)Σ−1

1,1(S)τ⋄S = |λ|(β⋄
Sc)T Σ2,1(S)Σ−1

1,1(S)τ⋄S

≥ −|λ|
∣

∣(β⋄
Sc)T Σ2,1(S)Σ−1

1,1(S)τ⋄S
∣

∣ ≥ −|λ|Lϑ = λLϑ.

It follows that

‖f⋄‖2 = ‖f⋄S‖2 + 2(f⋄S , f
⋄
Sc) + ‖f⋄Sc‖2

= − λ+ (f⋄S , f
⋄
Sc) + ‖f⋄Sc‖2

≥ − λ+ (f⋄S , f
⋄
Sc) + ‖(f⋄Sc)PS‖2 ≥ −λ+ λLϑ = −λ(1 − Lϑ)

≥ (1 − Lϑ)2Λ2(S, s)/s.

Finally note that ‖f⋄‖2 = φ2
compatible(L, S)/s.

10. Verifying the compatibility and restricted eigenvalue condition

In this section, we discuss the theoretical verification of the conditions. De-
termining a restricted ℓ1-eigenvalue is in itself again a Lasso type of problem.
Therefore, it is very useful to look for some good lower bounds.

A first, rather trivial, observation is that if Σ is non-singular, the restricted
eigenvalue condition holds for all L, S and N , with φ2(L, S,N) ≥ Λ2

min(Σ),
the latter being the smallest eigenvalue of Σ. If Σ is the population covariance
matrix of a random design, i.e., the probability measure Q is the theoretical dis-
tribution of observed co-variables in X , assuming positive definiteness of Σ is not
very restrictive. We will present some examples in Section 10.2. Compatibility
conditions for the population Gram matrix are of direct relevance if one replaces
L2-loss by robust convex loss [19]. But, as we will show in the next subsection,
even if Σ corresponds to the empirical covariance matrix of a fixed design, i.e.,
the measure Q is the empirical measure Qn of n observed co-variables in X ,
the compatibility and restricted eigenvalue condition is often “inherited” from
the population version. Therefore, even for fixed designs (and singular Σ), the
collection of cases where compatibility or restricted eigenvalue conditions hold
is quite large.
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10.1. Approximating the Gram matrix

For two (positive semi-definite) matrices Σ0 and Σ1, we define the supremum
distance

d∞(Σ1,Σ0) := max
j,k

|(Σ1)j,k − (Σ0)j,k|.

Generally, perturbing the entries in Σ by a small amount may have a large
impact on the eigenvalues of Σ. This is not true for (adaptive) restricted ℓ1-
eigenvalues, as is shown in the next lemma and its corollary.

Lemma 10.1. Assume
d∞(Σ1,Σ0) ≤ λ̃.

Then ∀ β ∈ R(L, S),

∣

∣

∣

∣

‖fβ‖2
Σ1

‖fβ‖2
Σ0

− 1

∣

∣

∣

∣

≤ (L+ 1)2λ̃s

φ2
compatible(Σ0, L, S)

,

and similarly, ∀ N ⊃ S, |N | = N , and ∀ β ∈ R(L, S,N ),

∣

∣

∣

∣

‖fβ‖2
Σ1

‖fβ‖2
Σ0

− 1

∣

∣

∣

∣

≤ (L+ 1)2λ̃s

φ2(Σ0, L, S, N)
,

and ∀ N ⊃ S, |N | = N , and ∀ β ∈ Radaptive(L, S,N ),

∣

∣

∣

∣

‖fβ‖2
Σ1

‖fβ‖2
Σ0

− 1

∣

∣

∣

∣

≤ (L+ 1)2λ̃s

φ2
adaptive(Σ0, L, S, N)

.

Proof of Lemma 10.1. For all β,

∣

∣‖fβ‖2
Σ1

− ‖fβ‖2
Σ0

∣

∣ = |βT Σ1β − βT Σ0β|
= |βT (Σ1 − Σ0)β| ≤ λ̃‖β‖2

1.

But if β ∈ R(L, S), it holds that ‖βSc‖1 ≤ L‖βS‖1, and hence

‖β‖1 ≤ (L+ 1)‖βS‖1 ≤ (L+ 1)‖fβ‖Σ0

√
s/φcompatible(Σ0, L, S).

This gives

∣

∣‖fβ‖2
Σ1

− ‖fβ‖2
Σ0

∣

∣ ≤ (L+ 1)2λ̃‖fβ‖2
Σ0
s/φ2

compatible(Σ0, L, S).

The second result can be shown in the same way, and the third result as well as
for β ∈ Radaptive(L, S,N ), it holds that ‖βSc‖1 ≤ L

√
s‖βS‖2, and hence

‖β‖1 ≤ L
√
s‖βS‖2 + ‖βS‖1 ≤ (L + 1)

√
s‖βS‖2.
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Corollary 10.1. We have

φcompatible(Σ1, L, S) ≥ φcompatible(Σ0, L, S) − (L+ 1)
√

d∞(Σ0,Σ1)s.

Similarly,

φ(Σ1, L, S, N) ≥ φ(Σ0, L, S, N)− (L + 1)
√

d∞(Σ0,Σ1)s,

and the same result holds for the adaptive version.

Corollary 10.1 shows that if one can find a matrix Σ0 with well-behaved small-
est eigenvalue, in a small enough ℓ∞-neighborhood of Σ1, then the restricted
eigenvalue condition holds for Σ1. As an example, consider the situation where
ψj(x) = xj (j = 1, . . . , p) and where

Σ̂ := XTX/n = (σ̂j,k),

where X = (Xi,j) is a (n × p)-matrix whose columns consist of i.i.d. N (0, 1)-
distributed entries (but allowing for dependence between columns). We denote
by Σ the population covariance matrix of a row of X. Using a union bound, it
is not difficult to show that for all t > 0, and for

λ̃(t) :=

√

4t+ 8 logp

n
+

4t+ 8 log p

n
,

one has the inequality

P

(

d∞(Σ̂,Σ) ≥ λ̃(t)
)

≤ 2 exp[−t]. (10.1)

This implies that if the smallest eigenvalue Λ2
min(Σ) of Σ is bounded away

from zero, and if the sparsity s is of smaller order o(
√

n/ logp), then the re-
stricted eigenvalue condition holds with constant φ(S,N) not much smaller than
Λmin(Σ). The result can be extended to distributions with Gaussian tails.

10.2. Some examples

In the following, our discussion mainly applies for Σ being the population covari-
ance matrix. For Σ being the empirical covariance matrix, the assumptions in
the discussion below are unrealistic, but as seen in the previous section, the pop-
ulation properties can have important implications for the restricted eigenvalues
of the empirical covariance matrix.

Example 10.1. Consider the matrix

Σ := (1 − ρ)I + ριιT ,

with 0 < ρ < 1, and ι := (1, . . . , 1)T a vector of 1’s. Then the smallest eigenvalue
of Σ is Λ2

min(Σ) = 1 − ρ, so the (L, S,N)-restricted eigenvalue condition holds
with φ2(L, S,N) ≥ 1− ρ. The uniform (S, s)-irrepresentable condition is always
met. The largest eigenvalue of Σ is (1 − ρ) + ρp. Hence, the restricted isometry
constants δs are defined only for ρ < 1/(s− 1).
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Example 10.2. In this example, Σ is a Toeplitz matrix, defined as follows.
Consider a positive definite function

R(k), k ∈ Z,

which is symmetric (R(k) = R(−k)) and sufficiently regular in the following
sense. The corresponding spectral density

fspec(γ) :=

∞
∑

k=−∞
R(k) exp(−ikγ) (γ ∈ [−π, π])

is assumed to exist, to be continuous and periodic, and

γ0 := arg min
γ∈[0,π]

fspec(γ)

is assumed unique, with f(γ0) = M > 0. Moreover, we suppose that fspec(·) is
(2α) continuously differentiable at γ0, with f(2α)(γ0) > 0. A Toeplitz matrix is

Σ = (σj,k), σj,k := R(|j − k|),

where R(·) satisfies the conditions described above (in terms of the spectral
density). A special case arises with σj,k = ρ|j−k| for some 0 ≤ ρ < 1. The
smallest eigenvalue Λ2

min(Σ) of Σ is bounded away from zero where the bound
is independent of p [17].

Example 10.3. Consider a matrix Σ which is of block structure form:

Σ = diag(Σ1, . . . ,Σk),

where the Σj are (m × m) covariance matrices (j = 1, . . . , k) (the restriction
to having the same dimension m can be easily dropped) and km = p. If the
minimal eigenvalues satisfy

min
j

Λ2
min(Σj) ≥ η2 > 0,

then the minimal eigenvalue of Σ is also bounded from below by η2 > 0. Whenm
is much smaller than p, it is (much) less restrictive that small m×m covariance
matrices Σj have well-behaved minimal eigenvalues than large p× p matrices.

Example 10.4. This example presents a case where the compatibility condition
holds, but where the uniform irrepresentable constant is very large. We also
calculate the adaptive restricted regression. Let the first s indices {1, . . . , s} be
the active set S and suppose that

Σ :=

(

I Σ1,2

Σ2,1 Σ2,2

)

,

where I is the (s× s)-identity matrix, and

Σ2,1 := ρ(b2b
T
1 ),
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with 0 ≤ ρ < 1, and with b1 an s-vector and b2 a (p − s)-vector, satisfying
‖b1‖2 = ‖b2‖2 = 1. Moreover, Σ2,2 is some (p − s) × (p − s)-matrix, with
diag(Σ2,2) = I, and with smallest eigenvalue Λ2

min(Σ2,2). One easily verifies
that

Λ2
min(Σ) ≥ Λ2

min(Σ2,2) − ρ.

Moreover, for b1 := (1, 1, . . . , 1)T /
√
s and b2 := (1, 0, . . . , 0)T , and ρ > 1/

√
s,

the (S, s)-uniform irrepresentable condition does not hold, as in that case

sup
‖τS‖∞≤1

‖Σ2,1(S)Σ−1
1,1(S)τS‖∞ = ρ

√
s.

However, for any N > s, the (S,N)-uniform irrepresentable condition does hold.
We moreover have

ϑadaptive(S, s) =
√
s‖Σ1,2‖2,∞ =

√
sρ,

i.e. (since Λ(S, s) = 1), the bounds of Lemma 4.1 and Theorem 5.1 are strict in
this example.

Example 10.5. We recall that φcompatible(S) ≥ φ(S, s). Here is an exam-
ple where the compatibility condition holds with reasonable φ2

compatible(S), but

where the restricted eigenvalue φ2(S, s) is very small. Assume s > 2. Let the
first s indices {1, . . . , s} be the active set S with corresponding (s×s) covariance
matrix Σ1,1, and suppose that

Σ := diag(Σ1,1, I),

where
Σ1,1 = diag(B, I),

and, for some 0 ≤ ρ < 1 − 1/(s− 2),

B =

(

1 ρ
ρ 1

)

.

We then have

βT
S Σ1,1βS = (1 − ρ)(β2

1 + β2
2 ) + ρ(β1 + β2)

2 +

s
∑

j=3

β2
j

≥ (1 − ρ)(β2
1 + β2

2 ) +

(

s
∑

j=3

|βj |
)2

/(s− 2)

Hence,

min
‖βS‖1=1

βT
S Σ1,1βS

≥ min
|β1|+|β2|≤1

{

(1 − ρ)(β2
1 + β2

2) + (1 − |β1| − |β2|)2/(s− 2)
}
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≥ min
|β1|+|β2|≤1

{

∑

j=1,2

(

1 − ρ+
1

s− 2

)

β2
j +

1

2 − s
− 2

|β1|+ |β2|
s− 2

}

= min
|β1|+|β2|≤1

{

(s− 2)(1 − ρ) + 1

s− 2

∑

j=1,2

(

|βj | −
1

(s− 2)(1 − ρ) + 1

)2}

− 2

(s− 2)
(

(s− 2)(1 − ρ) + 1
) +

1

s− 2

≥ (s− 2)(1 − ρ) − 1

(s− 2)
(

(s− 2)(1 − ρ) + 1
) .

It follows that

φ2
compatible(S) = min

‖βS‖1=1, ‖βSc‖1≤1

sβT Σβ

‖βS‖2
1

≥ s
(

(s− 2)(1 − ρ) − 1
)

(s− 2)
(

(s− 2)(1 − ρ) + 1
)

≥ (s− 2)(1 − ρ) − 1

(s− 2)(1 − ρ) + 1
.

On the other hand
φ2(S, s) = Λ2(S, s) = (1 − ρ).

Hence, for example when 1 − ρ = 3/(s− 2), we get

φ2
compatible(S) ≥ 1/2

and

φ2(S, s) =
3

s− 2
.

Clearly, for large s, this means that φcompatible(S) is much better behaved than
φ(S, s). Note that large s in this example (with 1 − ρ = 3/(s− 2)) corresponds
to a correlation ρ close to one, i.e., to a case where Σ is “almost” singular.

11. Adding noise

We now consider the Lasso estimator based on n noisy observations. Let Xi ∈ X
(i = 1, . . . , n) be the co-variables, and Yi ∈ R (i = 1, . . . , n) be the response
variables. The noisy Lasso is

β̂ := arg min
β

{

1

n

n
∑

i=1

|Yi − fβ(Xi)|2 + λ‖β‖1

}

.

The design matrix is
X = Xn×p := (ψj(Xi)).

The empirical Gram matrix is

Σ̂ := XT X/n =

∫

ψTψdQn = (σ̂j,k),
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where Qn is the empirical measure Qn :=
∑n

i=1 δXi
/n. The L2(Qn)-norm is

denoted by ‖ · ‖n. We moreover let (·, ·)n be the L2(Qn)-inner product.

As before, we write f0 = fβ0 and now, f̂ = fβ̂ . We consider

ǫi := Yi − f0(Xi), i = 1, . . . , n,

as the noise. Moreover, we write (with some abuse of notation)

(f, ǫ)n :=
1

n

n
∑

i=1

f(Xi)ǫi,

and we define
λ0 := 2 max

1≤j≤p
|(ψj , ǫ)n|.

Here is a simple example which shows how λ0 behaves in the case of i.i.d.
standard normal errors.

Lemma 11.1. Suppose that ǫ1, . . . , ǫn are i.i.d. N (0, 1)-distributed, and that
σ̂j,j = 1 for all j. Then we have for all t > 0, and for

λ0(t) := 2

√

2t+ 2 logp

n
,

P

(

2 max
1≤j≤p

|(ψj , ǫ)n| ≤ λ0(t)

)

≥ 1− 2 exp[−t].

Proof. As σ̂j,j = 1, we know that Vj :=
√
n(ψj , ǫ)n is N (0, 1)-distributed. So

P

(

max
1≤j≤p

|Vj| >
√

2t+ 2 logp

)

≤ 2p exp

[

−2t+ 2 logp

2

]

= 2 exp [−t] .

11.1. Prediction error in the noisy case

A noisy counterpart of Lemma 2.1 is:

Lemma 11.2. Take λ > λ0, and define L := (λ + λ0)/(λ− λ0). Then

‖f̂ − f0‖2
n +

2λ0

L− 1
‖β̂Sc‖1 ≤ 4(L+ 1)2λ2

0s

(L − 1)2φ2
compatible(Σ̂, L, S)

.

Proof of Lemma 11.2. Because

2|(ǫ, f̂ − f0)| ≤
(

2 max
1≤j≤p

|(ψj, ǫ)|
)

‖β̂ − β0‖1 ≤ λ0‖β̂ − β0‖1,

we now have the Basic Inequality

‖f̂ − f0‖2
n + λ‖β̂‖1 ≤ λ0‖β̂ − β0‖1 + λ‖β0‖1.
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Hence,
‖f̂ − f0‖2

n + (λ − λ0)‖β̂Sc‖1 ≤ (λ+ λ0)‖β̂S − β0
S‖1.

Thus,
‖β̂Sc‖1 ≤ L‖β̂S − β0

S‖1.

This implies

‖β̂S − β0
S‖1 ≤ √

s‖f̂ − f0‖n/φcompatible(Σ̂, L, S).

So we arrive at

‖f̂ − f0‖2
n + (λ − λ0)‖β̂Sc‖1 ≤ (λ+ λ0)

√
s‖f̂ − f0‖n/φcompatible(Σ̂, L, S).

Now, insert λ = λ0(L+ 1)/(L− 1).

In a similar way, but using (S, 2s)-restricted eigenvalue conditions, one may
prove ℓ2-convergence in the noisy case.

Observe that the S-compatibility condition now involves the matrix Σ̂, which
is definitely singular when p > n. However, we have seen in the previous sec-
tion that, also for such Σ̂, compatibility conditions and restricted eigenvalue
conditions hold in fairly general situations.

11.2. Noisy KKT

The KKT conditions in the noisy case become

2(ψj, f̂ − f0)n − 2(ψj, ǫ)n = −λτ̂j , j = 1, . . . , p,

or in matrix notation,

2Σ̂(β̂ − β0) −XT ǫ/n = −λτ̂ ,

where ‖τ̂‖∞ ≤ 1, and τ̂j := sign(β̂j) whenever β̂j 6= 0.
To avoid too many repetitions, let us only formulate the noisy version of a

part of Part 1 of Lemma 6.2.

Lemma 11.3. Take λ > λ0, and define L := (λ + λ0)/(λ − λ0). Suppose the
uniform (Σ̂, L, S, s)-irrepresentable condition holds. Then Ŝ ⊂ S.

Proof of Lemma 11.3. This follows from a straightforward generalization of
Lemma 6.1, where the equalities now become inequalities:

2‖(fβ̂Sc
)ÂS‖2

n ≤ 2L

L− 1
λ0Σ̂2,1(S)Σ̂−1

1,1(S)τ̂S − 2

L− 1
λ0‖β̂Sc‖1.

Here, fÂS is the anti-projection of f , in L2(Qn), on the space spanned by
{ψj}j∈S.
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The noisy KKT conditions involve the matrix Σ̂. Again, as discussed in Sub-
section 10.1, we may replace it by an approximation. As a consequence, if this
approximation is good enough, we can replace (Σ̂, L, S, s)-irrepresentable con-
ditions by (Σ, L̃, S, s)-irrepresentable conditions, provided we take L̃ > L large
enough.

Lemma 11.4. Take λ > λ0, and define L := (λ + λ0)/(λ− λ0). Suppose that

d∞(Σ̂,Σ) ≤ λ̃,

and
φcompatible(Σ, L, S) > (L+ 1)

√

λ̃s

and in fact, that

(L + 1)
√

λ̃s

φcompatible(Σ, L, S) − (L+ 1)
√

λ̃s
< 1.

Then

‖(Σ̂ − Σ)(β̂ − β0)‖∞ <
2λ0

L− 1
.

Proof of Lemma 11.4. We have

‖(Σ̂ − Σ)(β̂ − β0)‖∞ ≤ λ̃‖β̂ − β0‖1 ≤ (L+ 1)λ̃‖β̂S − β0
S‖1

≤ (L + 1)λ̃
√
s‖f̂ − f0‖n/φcompatible(Σ̂, L, S)

≤ 2λ0(L + 1)2λ̃s

(L − 1)φ2
compatible(Σ̂, L, S)

≤ 2λ0(L + 1)2λ̃sλ0

(L − 1)
(

φcompatible(Σ, L, S) − (L + 1)
√

λ̃s
)2
.

We conclude that the KKT conditions in the noisy case can be exploited in
the same way as in the case without noise, albeit that one needs to adjust the
constants (making the conditions more restrictive).

12. Discussion

We show how various conditions for Lasso oracle results relate to each other,
as illustrated in Figure 1. Thereby, we also introduce the restricted regression
condition.

For deriving oracle results for prediction and estimation, the compatibility
condition is the weakest. Looking at the derivation of the oracle result in Lemma
2.1, no substantial room seems to be left to improve the condition. The restricted
eigenvalue condition is slightly stronger but in some cases, as demonstrated in
Example 10.5, the compatibility condition is a real improvement.
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For variable selection with the Lasso, the irrepresentable condition is sufficient
(assuming sufficiently large non-zero regression coefficients) and essentially nec-
essary. We present the, perhaps not unexpected, but as yet not formally shown,
result that the irrepresentable condition is always stronger than the compatibil-
ity condition.

We illustrate in Section 10 how - in theory - one can verify the compatibility
condition. If the sparsity is of small order o(

√

n/ logp), we can approximate the
empirical Gram matrix by the population analogue. It is then much more easy
and realistic that the population Gram matrix has sufficiently regular behavior,
as illustrated with our examples in Section 10.2. We believe moreover that a
sparsity bound of small order o(

√

n/ logp) covers a large area of interesting
statistical problems. With larger s, the statistical situation is comparable to one
of a nonparametric model with “(effective) smoothness less than 1/2”, leading
to very slow convergence rates. In contrast, for example in decoding problems,
sparseness up to the linear-in-n regime can be very important. Moreover, in the
case of robust convex loss, one may apply the compatibility condition directly to
the population matrix, i.e., the sparsity regime s = o(

√

n/ log p) can be relaxed
for such loss functions (see [19]). We therefore conclude that oracle results for
the Lasso hold under quite general design conditions.

A final remark is that in our formulation, the compatibility condition and
restricted eigenvalue condition depend on the sparsity s as well as on the active
set S. As S is unknown, this means that for a practical guarantee, the conditions
should hold for all S. Moreover, one then needs to assume the sparsity s to
be known, or at least a good upper bound needs to be given. Such strong
requirements are the price for practical verifiability. We however believe that in
statistical modeling, non-verifiable conditions are allowed and in fact common
practice. Moreover, our model assumes a sparse linear “truth” with “true” active
set S, only for simplicity. Without such assumptions, there is no “true” S, and
the oracle inequality concerns a trade-off between sparse approximation and
estimation error, see for example [19].
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