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Abstract: We consider the statistical analysis of random sections of a spin
fibre bundle over the sphere. These may be thought of as random fields
that at each point p ∈ S2 take as a value a curve (e.g. an ellipse) living in
the tangent plane at that point TpS2, rather than a number as in ordinary
situations. The analysis of such fields is strongly motivated by applications,
for instance polarization experiments in Cosmology. To investigate such
fields, spin needlets were recently introduced by [21] and [20]. We consider
the use of spin needlets for spin angular power spectrum estimation, in the
presence of noise and missing observations, and we provide Central Limit
Theorem results, in the high frequency sense; we discuss also tests for bias
and asymmetries with an asymptotic justification.
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1. Introduction

The analysis of (random or deterministic) functions defined on the sphere by
means of wavelets has recently been the object of a number of theoretical and
applied papers, see for instance [3, 4, 5, 60, 41, 42, 22, 23, 24, 7, 8, 27]. Many
of these works have found their motivating rationale in recent developments in
the applied sciences, such as Medical Imaging, Geophysics, Atmospheric Sci-
ences, Astrophysics and Cosmology. These same fields of applications are now
prompting stochastic models which are more sophisticated (and more intriguing)
than ordinary, scalar valued random fields. In this paper, we shall be especially
concerned with astrophysical and cosmological applications, but several similar
issues can be found in other disciplines, see for instance [54] for related mathe-
matical models in the field of brain mapping.

Concerning astrophysics, there are now many mathematical papers which
have been motivated by the analysis of so-called Cosmic Microwave Background
radiation (CMB); the latter can be very loosely viewed as a relic electromagnetic
radiation which permeates the Universe providing a map of its status from
13.7 billion years ago, in the immediate adjacency of the Big Bang. Almost
all statistics papers in this area have been concerned with the temperature
component of CMB, which can be represented as a standard spherical random
field (see [13] for a review). We recall that a scalar random field on the sphere
may be thought of as a collection of random variables

{
T (p) : p ∈ S2

}
, where

S2 =
{
p : ‖p‖2

= 1
}

is the unit sphere of R3 and ‖.‖ denotes Euclidean norm.
T (p) is isotropic if its law is invariant with respect to the group of rotations,

T (p)
d
= T (gp) for all g ∈ SO(3), where

d
= denotes equality in distribution of

random fields and SO(3) can be realized as the set of orthonormal 3×3 matrices
with unit determinant.

However, most recent and forthcoming experiments (such as Planck, which
was launched on May 14, 2009, the CLOVER, QUIET and QUAD experiments
or the projected mission CMBPOL) are focussing on a much more elusive and
sophisticated feature, i.e. the so-called polarization of CMB. The physical sig-
nificance of the latter is explained for instance in [12, 31, 55]; we do not enter
into these motivations here, but we do stress how the analysis of this feature is
expected to provide extremely rewarding physical information. Just to provide
a striking example, detection of a non-zero angular power spectrum for the so-
called B-modes of polarization data (to be defined later) would provide the first
experimental evidence of primordial gravitational waves; this would result in
an impressive window into the General Relativity picture of the primordial Big
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Bang dynamics and as such it is certainly one of the most interesting perspec-
tives of current physical research. Polarization is also crucial in the understand-
ing of the so-called reionization optical depth, for which very little information
is available from temperature data, see [20] for more discussion on details.

Here, however, we shall not go deeper into these physical perspectives, as we
prefer to focus instead on the new mathematical ideas which are forced in by the
analysis of these datasets. A rigorous understanding requires some technicalities
which are postponed to the next Section; however we hope to convey the general
idea as follows. We can imagine that experiments recording CMB radiation are
measuring on each direction p ∈ S2 a random ellipse living on TpS2, the tangent
plane at that point. The “magnitude” of this ellipse (= c2 = a2 + b2 in standard
ellipse notation), which is a standard random variable, corresponds to temper-
ature data, on which the statistics literature has so far concentrated. The other
identifying features of this ellipse (elongation and orientation) are collected in
polarization data, which can be thought of as a random field taking values in
a space of algebraic curves. In more formal terms (to be explained later), this
can be summarized by saying that we shall be concerned with random sections
of fibre bundles over the sphere; from a more group-theoretic point of view, we
shall show that polarization random fields are related to so-called spin-weighted
representations of the group of rotations SO(3). A further mathematical inter-
pretation, which is entirely equivalent but shall not be pursued here, is to view
these data as realizations of random matrix fields (see again [54]). Quite inter-
estingly, there are other, unrelated situations in physics where the mathematical
and statistical formalism turns out to be identical. In particular gravitational
lensing data, which have currently drawn much interest in Astrophysics and
will certainly make up a core issue for research in the next two decades, can
be shown to have the same (spin 2, see below) mathematical structure, see for
instance [10]. More generally, similar issues may arise when dealing with random
deformations of shapes, as dealt with for instance by [2].

The construction of a wavelet system for spin functions was first addressed
in [21]; the idea in that paper is to develop the needlet approach of [41, 42]
and [22, 23, 24] to this new, broader geometrical setting, and investigate the
stochastic properties of the resulting spin needlet coefficients, thus generalizing
results from [7, 8]. A wide range of possible applications to the analysis of
polarization data is discussed in [20]. Here, we shall focus in particular on the
possibility of using spin needlets for angular power spectrum estimation for spin
fields, an idea that for the scalar case was suggested by [7]; in [47], needlets were
used for the estimation of cross-angular power spectra of CMB and Large Scale
Structure data, in [18, 19] the estimator was considered for CMB temperature
data in the presence of faint noise and gaps, while in [48] the procedure was
implemented on disjoint subsets of the sphere as a probe of asymmetries in
CMB radiation.

The plan of this paper is as follows: in Section 2 we present the motivations
for our analysis, i.e. some minimal physical background on polarization. In Sec-
tion 3 and 4 we introduce the geometrical formalism on spin line bundles and
spin needlets, respectively, and we define spin random fields. Sections 5, 6 and 7
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are devoted to the spin needlets spectral estimator and the derivation of its
asymptotic properties in the presence of missing observations and noise, includ-
ing related statistical tests for bias and asymmetries. Some technical results are
collected in an Appendix. Throughout this paper, given two positive sequences
{aj} , {bj} we shall write aj ≈ bj if there exist positive constants c1, c2 such that
c1aj ≤ bj ≤ c2aj for all j ≥ 1.

2. Motivations

The classical theory of electromagnetic radiation entails a characterization in
terms of the so-called Stokes’ parameters Q and U , which are defined as follows.
An electromagnetic wave propagating in the z direction has components

Ex(z, t) = E0x cos(τ + δx) , Ey(z, t) = E0y cos(τ + δy) , (1)

where τ := ωt − kz is the so-called propagator and ν = 2πω/k is the frequency
of the wave. (1) can be viewed as the parametric equations of an ellipse which
is the projection of the incoming radiation on the plane perpendicular to the
direction of motion. Indeed, some elementary algebra yields

E2
x(z, t)

E2
0x

+
E2

y(z, t)

E2
0y

− 2
Ex(z, t)

E0x

Ey(z, t)

E0y
cos δ = sin2 δ , δ := δy − δx.

The magnitude of the ellipse (i.e., the sums of the squares of its semimajor and
semiminor axes) is given by

T = E2
0x +E2

0y ;

T has the nature of a scalar quantity, that is to say, it is readily seen to be
invariant under rotation of the coordinate axis x and y. It can hence be viewed as
an intrinsic quantity measuring the total intensity of radiation; from the physical
point of view, this is exactly the nature of CMB temperature observations which
have been the focus of so much research over the last decade. It should be noted
that, despite the non-negativity constraint, in the physical literature on CMB
experiments T is usually taken to be Gaussian around its mean, in excellent
agreement with observations. This apparent paradox is explained by the fact
that the variance of T is several orders of magnitude smaller than its mean, so
the Gaussian approximation is justifiable.

The characterization of the polarization ellipse is completed by introducing
Stokes’ parameters Q and U , which are defined as

Q = E2
0x −E2

0y , U = 2E0xE0y cos δ . (2)

To provide a flavour of their geometrical meaning, we recall from elementary
geometry that the parametric equations of a circle are obtained from (1) in
the special case E0x = E0y, δx = δy + π/2, whence the circle corresponds to
Q = U = 0. On the other hand, it is not difficult to see that a segment aligned
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on the x axis is characterized by Q = T, a segment aligned on the y axis by
Q = −T, for a segment on the line y = ±x we have δx − δy = 0, π, and hence
Q = 0, U = ±T , respectively. The key feature to note, however, is the following:
while T does not depend on any choice of coordinates, this is not the case for
Q and U, i.e. the latter are not geometrically intrinsic quantities. However, as
these parameters identify an ellipse, it is natural to expect that they will be
invariant under rotations by 180◦ degrees and multiples thereof. This is the first
step in understanding the introduction of spin random fields below.

Indeed, it is convenient to identify R2 with the complex plane C by focussing
on w = x+ iy; a change of coordinates corresponding to a rotation γ can then
be expressed as w′ = exp(iγ)w, and some elementary algebra shows that the
induced transform on (Q,U) can be written as

(
Q′

U ′

)
=

(
cos 2γ sin 2γ
− sin 2γ cos 2γ

)(
Q
U

)
,

or more compactly
Q′ + iU ′ = exp(i2γ)(Q + iU) . (3)

In the physicists’ terminology, (3) identifies the Stokes’ parameters as spin 2
objects, that is, a rotation by an angle γ changes their value by exp(i2γ). As
mentioned before, this can be intuitively visualized by focussing on an ellipse,
which is clearly invariant by rotations of 180

◦

. To compare with other situations,
standard (scalar) random fields do not depend on the choice of coordinate axes
in the local tangent plane, and as such they are spin zero fields; a vector field
is spin 1, while we can envisage random fields taking values in higher order
algebraic curves and thus having any integer spin s ≥ 2.

As mentioned earlier, it is very important to notice that polarization is not
the only possible motivation for the analysis of spin random fields. For instance,
an identical formalism is derived when dealing with gravitational lensing, i.e. the
deformation of images induced by gravity according to Einstein’s laws. Gravi-
tational lensing is now the object of very detailed experimental studies, which
have led to huge challenges on the most appropriate statistical methods to be
adopted (see for instance [10]). We defer to future work a discussion on the sta-
tistical procedures which are made possible by the application of spin needlets
to lensing data.

3. Geometric background

In this Section, we will provide a more rigorous background on spin functions.
Despite the fact that our motivating applications are limited to the case s = 2,
we will discuss here the case of a general integer s ∈ Z, which does not entail
any extra difficulty.

A more rigorous point of view requires some background in Differential Ge-
ometry, for which we refer for instance to [9] and [1]. The construction of spin
functions is discussed in more detail by [21], which builds upon a well-established
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physical literature described for instance in [43, 55, 12]. We refer also to [34] for
a very recent contribution from a stochastic point of view.

To proceed further to spin random fields, we need to recall from Geometry
the notion of a fibre bundle. The latter consists of the family (E,B, π, F ), where
E, B, and F are topological spaces and π : E → B is a continuous surjection
satisfying a local triviality condition outlined below. The space B is called the
base space of the bundle, E the total space, and F the fibre; the map π is called
the projection map (or bundle projection). In our case, the base space is simply
the unit sphere B = S2, and the fibre is homeomorphic to the complex line, see
below for further details.

The basic intuition behind fibre bundles is that they behave locally as simple
Cartesian products B × F . The former intuition is implemented by requiring
that for all p ∈ S2 there exist a neighbourhood U = U(p) such that π−1(U) is
homeomorphic to U × F , in such a way that π carries over to the projection
onto the first factor. In particular, the following diagram should commute:

π−1(U)
φ7−→ U × F

π ↓ ւ
proj

U

,

where φ is a homeomorphism and proj is the natural projection. The set π−1(x)
is homeomorphic to F and is called the fibre over x. The fibre bundles we shall
consider are smooth, that is, E,B, and F are required to be smooth manifolds
and all the projections above are required to be smooth maps.

In our case, we shall be dealing with a complex line bundle which is uniquely
identified by fixing transition functions to express the transformation laws under
changes of coordinates. Following [21] (see also [28, 43]), we define UI := S2 \
{N, S} to be the chart covering the sphere with the exception of the North and
South Poles, with the usual coordinates (ϑ, ϕ). We define also the rotated charts
UR = RUI ; in this new charts, we will use the natural coordinates (ϑR, ϕR).
At each point p of UR, we take as a reference direction in the tangent plane
TpS

2, the tangent vector ∂/∂ϕR, (which points in the direction of increasing
ϕR and is tangent to a circle θR = constant). Again as in [21], we let let ψpR2R1

be the (oriented) angle from ∂/∂ϕR1
to ∂/∂ϕR2

(for a careful discussion of
which is the oriented angle, see [21]); this angle is independent of any choice of
coordinates. We define a complex line bundle on S2 by letting exp(isψpR2R1

) be
the transition function from the chart UR1

to UR2
. A smooth spin function f is

a smooth section of this line bundle. f may simply be thought of as a collection
of complex-valued smooth functions (fR)R∈SO(3), with fR defined and smooth
on UR,, such that for all R1, R2 ∈ SO(3), we have

fR2
(p) = exp(isψpR2R1

)fR1
(p)

for all p in the intersection of UR1
and UR2

.
An alternative, group theoretic point of view can be motivated as follows.

Consider the group of rotations SO(3); it is a well-known that, by elementary
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geometry, each element g can be expressed as

g = Rz(α)Rx(β)Rz(γ) , 0 ≤ α ≤ π , 0 ≤ β, γ ≤ 2π , (4)

where Rz(.) and Rx(.) represent rotations around the z and x axis, respectively;
in words, (4) is stating that each rotation can be realized by rotating first by
an angle γ around the z axis, then by an angle β around the x axis, then again
by an angle α around the z axis. We denote as usual by

{
Dl(.)

}
l=0,1,2,...

the

Wigner family of irreducible matrix representations for SO(3); in terms of the
Euler angles, the elements of these matrices can be expressed as

Dl
m1m2

(g) = exp(−im1α)dl
m1m2

(β) exp(−im2γ) ,

where dl
m1m2

is the so-called Wigner’s d(.) function, see [57] for analytic ex-

pressions and more details. Note that Dl
m1m2

(g) = (−1)m1−m2Dl
−m1,−m2

(g);
standard results from group representation theory ([17, 57, 58]) yield

∑

m2

Dl
m1m2

(g)Dl′

m′

1
m2

(g) = δl′

l δ
m′

1
m1

,

and ∫

SO(3)

Dl
m1m2

(g)Dl′

m′

1
m′

2

(g)dg =
8π2

2l+ 1
δl′

l δ
m′

1
m1
δ

m′

2
m2

,

dg denoting the standard uniform (Haar) measure on SO(3). The elements of{
Dl(.)

}
l=0,1,2,...

thus make up an orthogonal system which is also complete,

i.e., it is a consequence of the Peter-Weyl theorem [17] that all square integrable
functions on SO(3) can be expanded, in the mean square sense, as

f(g) =
∑

l

∑

m1m2

2l+ 1

8π2
blm1m2

Dl
m1m2

(g) ,

where the coefficients
{
blm1m2

}
can be recovered from the inverse Fourier trans-

form

blm1m2
=

∫

SO(3)

f(g)Dl
m1m2

(g)dg .

By elementary geometry, we can view the unit sphere as the quotient space
S2 = SO(3)/SO(2) and the functions on the sphere as those which are constants
with respect to the third Euler angle γ, i.e. f(α, β, γ) = f(α, β, γ′) for all γ, γ′.
It follows that
∫

SO(3)

f(g)Dl
m1m2

(g) dg

= (−1)m1−m2

∫ 2π

0

∫ π

0

∫ 2π

0

f(g) exp(im1α)dl
−m1−m2

(β) exp(im2γ) sin βdαdβdγ

=

{
0 for m2 6= 0

2πblm10 otherwise
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In view of the well-known identity

Ylm(β, α) =

√
2l+ 1

4π
dl

m0(β)eimα

= (−1)m

√
2l+ 1

4π
dl
−m0(β)eimα = (−1)m

√
2l+ 1

4π
Dl

−m,0(α, β, γ)

(where we have used dl
mn(β) = (−1)m−ndl

−m,−n(β), see [57], equation 4.4.1),
we immediately obtain the expansion of functions on the sphere into spherical
harmonics, i.e.

f(p) =
∑

l

∑

m

2l+ 1

4π
blm0D

l
m0(p) =

∑

lm

almYlm(p) , alm =

√
2l+ 1

4π
bl−m0 .

We can hence loosely say that standard scalar functions on the sphere “live
in the space generated by the column s = 0 of the Wigner’s D matrices of
irreducible representations”, see also [38]. Now from the Peter-Weyl Theorem
we know that each of the columns s = −l, . . . , l spans a space of irreducible
representations, and these spaces are mutually orthogonal; it is then a natural,
naive question to ask what is the physical significance of these further spaces. It
turns out that these are strictly related to spin functions; indeed we can expand
a smooth spin s functions as

fs(ϑ, ϕ) =
∑

l

∑

m

2l+ 1

4π
blmsD

l
ms(ϕ, ϑ, γ)

∣∣∣∣∣
γ=0

. (5)

Spin s functions can then be related to the so-called spin weighted represen-
tations of SO(3), see for instance [11]. Now by standard group representation
properties we have that

fs((Rz(γ)p) =
∑

l

∑

m

2l+ 1

4π
blmsD

l(Rz(γ))D
l
ms(ϕ, ϑ, γ)

=
∑

l

∑

m

2l+ 1

4π
blms exp(isγ)Dl

ms (ϕ, ϑ, γ)

= exp(isγ)fs(p) ,

as expected.
The analogy with the scalar case can actually be pursued further than that.

It is well-known that the elements Dl
m0, m = −l, . . . , l of the Wigner’s D ma-

trices are proportional to the spherical harmonics Ylm, i.e. the eigenfunctions of
the spherical Laplacian operator ∆S2Ylm = −l(l + 1)Ylm. It turns out that this
equivalence holds in much greater generality and for all integer s and l ≥ s
there exist a differential operator ðð such that −ððDl

ms = elsD
l
ms, where

{els}l=s,s+1, = {(l − s)(l + s+ 1)}s,s+1,... is the associated sequence of eigen-
values (note that for s = 0 we are back to the usual expressions for the scalar
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case, as expected). The operators ð, ð are defined as follows, in terms of their
action on any spin s function fs(.),

ðfs(ϑ, ϕ) = − (sinϑ)
s

[
∂

∂ϑ
+

i

sinϑ

∂

∂ϕ

]
(sinϑ)

−s
fs(ϑ, ϕ) , (6)

ðfs(ϑ, ϕ) = − (sinϑ)
−s

[
∂

∂ϑ
− i

sinϑ

∂

∂ϕ

]
(sinϑ)

s
fs(ϑ, ϕ) . (7)

In (6) one should more rigorously write (ðfs)I on the left side and (fs)I on
the right side. In fact, if on the right side of (6) we replace (ϑ, ϕ) by (ϑR, ϕR)
and fs by (fs)R, the result is in fact (ðfs)R(ϑR, ϕR) (see [21]); similarly in (7).

The spin s spherical harmonics can then be identified as

Ylms(ϑ, ϕ) = (−1)m

√
2l+ 1

4π
Dl

−ms(ϕ, ϑ,−ψ) exp(−isψ)

= (−1)m

√
2l+ 1

4π
exp(imϕ)dl

−ms(ϑ) ;

(8)

again, the previous expression should be understood as Ylms;I (ϑ, ϕ), i.e. spin
spherical harmonics are clearly affected by coordinate transformation, but we
drop the reference to the choice of chart for ease of notation whenever this can
be done without the risk of confusion. The spin spherical harmonics can be
shown to satisfy

Ylm,s+1 = [(l− s) (l + s+ 1)]
−1/2

ðYlm,s , (9)

Ylm,s−1 = − [(l + s) (l− s+ 1)]
−1/2

ðYlm,s , (10)

which motivates the name of spin raising and spin lowering operators for ð, ð.
Iterating, it can be shown also that (see [21])

Ylms =

{
(l− s)!

(l+ s)!

}1/2

(ð)sYlm , for s > 0 ,

Ylms =

{
(l+ s)!

(l− s)!

}1/2

(−ð)−sYlm , for s < 0 .

Further properties of the spin spherical harmonics follow easily from their pro-
portionality to elements of Wigner’s D matrices; indeed we have (orthonormal-
ity)

∫

S2

Ylms(p)Yl′m′s(p)dp =

∫ 2π

0

∫ π

0

Ylms(ϑ, ϕ)Yl′m′ (ϑ, ϕ) sinϑdϑdϕ = δl′

l δ
m′

m .

Viewing spin-spherical harmonics as functions on the group SO(3) (i.e. identi-
fying p = (ϑ, ϕ) as the corresponding rotation by means of Euler angles), using
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(8) and the group addition properties we obtain easily, for p, p′ ∈ S2, that

l∑

m=−l

Ylms (p)Ylms (p′) =
2l + 1

4π

∑

m

Dl
−ms(ϕ, ϑ, 0)Dl

−ms(ϕ
′, ϑ′, 0)

=
2l + 1

4π
Dl

−ss(ψ(p, p′)) ,

where ψ(p, p′) denotes the composition of the two rotations (explicit formulae
can be found in [57]). In the special case p = p′ andR = R′, we have immediately

l∑

m=−l

Ylms (p)Ylms (p) =
2l + 1

4π
, (11)

see also [21] for an alternative proof.
By combining (5) and (8) the spectral representation of spin functions is

derived:
fs(ϑ, ϕ) =

∑

l

∑

m

al;msYl;ms(ϑ, ϕ) . (12)

From (12), a further, extremely important characterization of spin functions
was first introduced by [43], see also [21] for a more mathematically oriented
treatment. In particular, it can be shown that there exists a scalar complex-
valued function g(ϑ, ϕ) = Re {g} (ϑ, ϕ) + iIm {g} (ϑ, ϕ), such that, such that

fs(ϑ, ϕ) = fE(ϑ, ϕ) + ifB(ϑ, ϕ)

=
∑

lm

alm;EYlms(ϑ, ϕ) + i
∑

lm

alm;BYlms(ϑ, ϕ) , (13)

where
fE(ϑ, ϕ) = (ð)sRe {g} (ϑ, ϕ) , fB(ϑ, ϕ) = (ð)sIm {g} .

Note that al;ms = alm;E + ialm;B , where alm;E = al−m;E , alm;B = al−m;B . It is
also readily seen that

al;ms + al;−ms = alm;E + ialm;B + alm;E − ialm;B = 2alm;E ,

al;ms − al;−ms = alm;E + ialm;B − alm;E + ialm;B = 2ialm;B .

In the cosmological literature, {alm;E} and {alm;B} are labelled the E and
B modes (or the electric and magnetic components) of CMB polarization.

4. Spin needlets and spin random fields

We are now in a position to recall the construction of spin needlets, as provided
by [21]. We start by reviewing a few basic facts about standard (scalar) needlets.
Needlets have been defined by [41, 42] as

ψjk (p) =
√
λjk

∑

l

b

(
l

Bj

) l∑

m=−l

Ylm (p)Ylm (ξjk) , p ∈ S
2, (14)
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where {ξjk, λjk} are a set of cubature points and weights ensuring that

∑

jk

λjkYlm (ξjk)Yl′m′ (ξjk) =

∫

S2

Ylm (p)Yl′m′ (p) dp = δl′

l δ
m′

m ,

b(.) is a compactly supported, C∞ function, and B > 1 is a user-chosen “band-
width” parameter. The general cases of non-compactly supported functions b(.)
and more abstract manifolds than the sphere were studied by [22, 23, 24]. The
stochastic properties of needlet coefficients and their use for the analysis of
spherical random fields were first investigated by [7, 8], see also [32, 39, 33, 18]
for further developments. Several applications have already been provided to
CMB data analysis, see for instance [47, 37, 14, 19, 48, 49, 52, 50, 53].

For a fixed B > 1, we shall denote by {Xj}∞j=0 the nested sequence of cubature
points corresponding to the space K[2Bj+1 ], where [.] represents as usual integer

part and KL = ⊕L
l=0Hl is the space spanned by spherical harmonics up to order

L. It is known that {Xj}∞j=0 can be taken such that the cubature points for each

j are almost uniformly ǫj−distributed with ǫj := κB−j , the coefficients {λjk}
are such that cB−2j ≤ λjk ≤ c′B−2j , where c, c′ are finite real numbers, and
card {Xj} ≈ B2j. Exact cubature points can be defined for the spin as for the
scalar case, see [6] for details; for practical CMB data analysis, these cubature
points can be identified with the centre pixels provided by [29], with only a
minor approximation.

Spin needlets are then defined as (see [21])

ψjk;s (p) =
√
λjk

∑

l

b

(√
els

Bj

) l∑

m=−l

Yl;ms (p)Yl;ms (ξjk) . (15)

As before, {λjk, ξjk} are cubature points and weights, b (·) ∈ C∞ is nonnegative,
and has a compact support in [1/B,B] . The expression (15) bears an obvious
resemblance with (14), but it is also important to point out some crucial differ-
ences. Firstly, we note that the square root of the eigenvalues

√
els has replaced

the previous l. This formulation is instrumental for the derivation of the main
properties of spin needlets by means of differential arguments in [21]; we stress,
however, that this is actually a minor difference, as all our results are asymptotic
and of course

lim
l→∞

√
els

l
= lim

l→∞

√
(l − s)(l + s+ 1)

l
= 1 for all fixed s .

A much more important feature is as follows: (15) cannot be viewed as a well-
defined scalar or spin function, because Yl;ms (p) , Yl;ms (ξjk) are spin(s and −s)
functions defined on different point of S2, and as such they cannot be multiplied
in any meaningful way (their product depends on the local choice of coordi-
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nates). Hence, (15) should be written more rigorously as

ψjk;s (p) =
√
λjk

∑

l

b

(√
els

Bj

) l∑

m=−l

{
Yl;ms (p) ⊗ Yl;ms (ξjk)

}
,

ψjk;s (p) =
√
λjk

∑

l

b

(√
els

Bj

) l∑

m=−l

{
Yl;ms (p) ⊗ Yl;ms (ξjk)

}
,

where we denoted by ⊗ the tensor product of spin functions; spin needlets can
the be viewed as spin {−s, s} operators (written T−s,s), which act on a space
of spin s functions square integrable functions to produce a sequence of spin s
square-summable coefficients, i.e. T−s,s : L2

s → ℓ2s. This action is actually an
isometry, as a consequence of the tight frame property, see [6] and [25].

For any spin s function fs, the spin needlet transform is defined by
∫

S2

fs(p)ψjk;s(p)dp = βjk;s ,

and the same inversion property holds as for standard needlets, i.e.

fs(p) =
∑

jk

βjk;sψjk;s(p) ,

the equality holding in the L2 sense. The coefficients of spin needlets can be
written explicitly as

βjk;s =

∫

S2

fs(p)ψjk;2(p)dp =
√
λjk

∑

l

b

(√
els

Bj

) l∑

m=−l

al;msYl;ms (ξjk) . (16)

Remark 1. To illustrate the meaning of these projection operations, and using
a notation closer to the physical literature, we could view spin s quantities as
“bra” entities, i.e. write 〈T (p) , 〈βjk;s , and spin −s as “ket” quantities, i.e. write
for instance Yl;ms (p)

〉
. Then we would obtain

∫

S2

fs(p)ψjk;2(p)dp

=
√
λjk

∑

l

b

(√
els

Bj

) l∑

m=−l

∫

S2

〈fs(p) , Yl;ms (p)
〉
〈Yl;ms (ξjk) dp

=
√
λjk

∑

l

b

(√
els

Bj

) l∑

m=−l

al;ms 〈Yl;ms (ξjk) ,

which is a well-defined spin quantities, as the inner product
〈
fs(p), Yl;ms (p)

〉

yields a well-defined, complex-valued scalar. However we shall not use this
“Dirac” notation later in this paper, as we hope the meaning of our manip-
ulations will remain clear by themselves.
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The absolute value of spin needlets is indeed a well-defined scalar function,
and this allows to discuss localization properties. In this framework, the main
result is established in [21], where it is shown that for any M ∈ N there exists
a constant cM > 0 s.t., for every ξ ∈ S2:

|ψjk;s(ξ)| ≤
cMBj

(1 +Bj arccos(〈ξjk, ξ〉))M
uniformly in (j, k) , (17)

i.e. the tails decay quasi-exponentially.
We are now able to focus on the core of this paper, which is related to the

analysis of spin random fields. As mentioned in the previous discussion, we
have in mind circumstances where stochastic analysis must be developed on
polarization random fields {Q± iU} , which are spin ±2 random functions.

Hence we shall now assume we deal with random isotropic spin functions fs,
by which we mean that there exist a probability space (Ω,ℑ, P ), such that for
all choices of charts UR, the ordinary random function (fs)R, defined on Ω×S2,
is jointly ℑ×B(UR) measurable, where B(UR) denotes the Borel sigma-algebra
on UR. In particular, for the spin 2 random function (Q+iU)(p) as for the scalar
case, the following representation holds, in the mean square sense ([21])

{Q+ iU} =
∑

lm

alm;2Yl;m2 ,

i.e.

lim
L→∞

E

∫

S2

∣∣∣∣∣{Q+ iU} (p) −
L∑

l=1

l∑

m=−l

alm;2Yl;m2(p)

∣∣∣∣∣

2

dp = 0 .

Note that the quantity on the left-hand side is a well-defined scalar, for all L.
The sequence {alm2 = alm;E + ialm;B} is complex-valued and is such that, for
all l1, l2, m1, m2 ,

Eal1m1 ;Eal2m2;E = Eal1m1 ;Bal2m2 ;E = Eal1m1 ;Eal2m2 ;B = Eal1m1;Eal2m2 ;B = 0 ,

and
Ealm;Eal′m′;E = ClEδ

l′

l δ
m′

m , Ealm;Bal′m′ ;B = ClBδ
l′

l δ
m′

m ,

where ∑

l

2l+ 1

4π
ClE ,

∑

l

2l + 1

4π
ClB <∞ .

The spin (or total) angular power spectrum is defined as

E|alm;2|2 =: Cl = {ClE +ClB} .

The angular power spectrum is the key statistic for the analysis of isotropic
random fields, both in the spin and the scalar case. Indeed, in the Gaussian
case it provides complete information on the dependence structure of the field;
moreover, it is in general a function of physical parameters of interest, which
can be recovered by matching the observed and predicted angular power spectra
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by various forms of minimum distance estimators. In the case of polarization, a
non-zero value of the ClB component would yield experimental evidence on the
existence of primordial gravitational waves, one of the most elusive implications
of Big Bang theories. We refer to [13] and the references therein for a more
detailed discussion on techniques and motivations for angular power spectrum
estimation in a CMB framework; our purpose in next section is to extend to the
spin case some needlet-based procedures, which were advocated in the scalar
case by [7, 47, 8] and [18, 19, 48].

5. Spin needlets spectral estimator

In this section, we shall establish an asymptotic result for the spectral estimator
of spin needlets in the high resolution sense, i.e. we will investigate the asymp-
totic behaviour of our statistics as the frequency band goes higher and higher.
We note first, however, one very important issue. As we mentioned earlier, spin
needlet coefficients are not in general scalar quantities. It is possible to choose a
single chart to cover all points other than the North and South Pole; these two
points can be clearly neglected without any effect on asymptotic results. The
resulting spin coefficients will in general depend on the chart, and should hence
be written as {βR;jks} ; however the choice of the chart will only produce an
arbitrary phase factor exp(isγk). The point is that, because in this paper we are
only concerned with quadratic statistics, the phase factor is automatically lost
and our statistics for the spin spectral estimator will be invariant with respect
to the choice of coordinates. In view of this, from now on we can neglect the
issues relative to the choice of charts; we will deal with needlet coefficients as
scalar-valued complex quantities, i.e. we will take the chart as fixed, and for
notational simplicity we write {βjks} rather than {βR;jks} .

We begin by introducing some regularity conditions on the polarization an-
gular power spectrum Γl, which are basically the same as in [21], see also [7, 8]
and [32, 18, 33, 39] for closely related assumptions.

Condition 2. The random field {Q+ iU} (p) is Gaussian and isotropic with
angular power spectrum such that

Cl = l−αg(l) > 0 , where c−1
0 ≤ g(l) ≤ c0 , α > 2 , for all l ∈ N ,

and for every r ∈ N there exist cr > 0 such that

| d
r

dur
g(u)| ≤ cru

−r , u ∈ (|s| ,∞) .

Remark 3. The condition is fulfilled for instance by angular power spectra of
the form

Cl =
F1(l)

lβF2(l)
,

where F1(l), F2(l) > 0 are polynomials of degree q1, q2 > 0, β + q2 − q1 = α.
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By (16), it is readily seen that

Eβjk;sβj′k′;s

=
√
λjk

√
λj′k′

∑

l,l′

b

(√
els

Bj

)
b

(√
el′s

Bj′

)

×
∑

m,m′

Eal;msal′;m′sYl;ms (ξjk)Yl′ ;m′s (ξj′k′) = 0

because

Eal;msal′ ;m′s = Eal1m1;Eal2m2 ;E + 2Eal1m1;Bal2m2 ;E + Eal1m1 ;Eal2m2 ;B = 0 .

On the other hand, the covariance Cov
(
βjk;s, βjk′;s

)
= Eβjk;sβjk′;s is in general

non-zero. In view of (16, it is immediate to see that

∣∣Cov
(
βjk;s, βjk′;s

)∣∣ =
∣∣∣∣∣
√
λjk

√
λjk′

∑

l

b2
(√

els

Bj

)
Cl

(2l + 1)

4π
Kls (ξjk, ξjk′)

∣∣∣∣∣ ;

(18)
where

Kls (p, p′) =

l∑

m=−l

Ylms (p)Ylms (p′) . (19)

For k = k′ we obtain as a special case from (11) that

E |βjk;s|2 = λjk

∑

l

b2
(√

els

Bj

)
Cl

(2l+ 1)

4π
. (20)

From (18) and (20) we obtain

∣∣Corr
(
βjk;s, βjk′;s

)∣∣ =

∣∣∣
∑

l b
2
(√

els

Bj

)
Cl

(2l+1)
4π

Kls (ξjk, ξjk′)
∣∣∣

∑
l b
(√

els

Bj

)
Cl

(2l+1)
4π

. (21)

The key result for the development of the high-frequency asymptotic theory in
the next sections is the following uncorrelation result, which was provided by
[21]; under Condition 2,

∣∣Corr
(
βjk;s, βjk′;s

)∣∣ ≤ CM

{1 +Bjd(ξjk, ξjk′)}M
, for all M ∈ N , some CM > 0 .

(22)
The analogous result for the scalar case is due to [7], see also [33, 39] for some
generalizations. We recall also the following inequality ([42], Lemma 4.8 ), valid
for some cM depending only onM , which will be used in the following discussion:

∑

k′

1

{1 +Bjd(ξjk, ξjk′)}M

1

{1 + Bjd(ξjk′, ξjk′′)}M
≤ cM

{1 + Bjd(ξjk, ξjk′′)}M
.

(23)
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In view of (20), let us now denote

Θj;s :=
∑

k

E |βjk;s|2 =
∑

k

λjk

∑

l

b2
(√

els

Bj

)
Cl

(2l+ 1)

4π

=
∑

l

b2
(√

els

Bj

)
Cl (2l+ 1) .

Under Condition 2, it is immediate to see that

C0B
(2−α)j ≤ Θj;s ≤ C1B

(2−α)j . (24)

A question of great practical relevance is the asymptotic behaviour of
∑

k |βjk;s|2
as an estimator for Θj;s; for the scalar case, this issue was dealt with by [7],
where a Functional Central Limit Theorem result is established and proposed
as a test for goodness of fit on the angular power spectrum. In [47], the needlets
estimator was applied to the cross-spectrum of CMB and Large Scale Structure
data, while [18, 19] have considered the presence of missing observations and
observational noise, establishing a consistency result and providing further ap-
plications to CMB data. In the spin case, angular power spectrum estimation
was considered by [21], under the unrealistic assumptions that the spin random
field P = Q + iU is observed on the whole sphere and without noise. Here we
shall be concerned with the much more realistic case where some parts of the
domain S2 are “masked” by the presence of foreground contamination; more
precisely, we assume data are collected only on a subset S2 \G, G denoting the
masked region. In this section, we do not consider the presence of observational
noise, which shall be dealt with in the following section. In the sequel, for some
(arbitrary small) constant ε > 0, we define Gε =

{
x ∈ S2 : d (x,G) ≤ ε

}
. The

introduction of this parameter allows to get rid of some notational difficulties
in case some grid points should happen to belong to the boundary of the ob-
served regions. For practical data analysis, the choice of any reasonably small ε
has negligible impact on final results; indeed there are usually some degrees of
freedom in the width of the mask to be applied to CMB data, see for instance
[53]. Consider

Θ̂∗
j;sG :=





∑

k:ξjk∈S2\Gε

λk





−1
∑

k:ξjk∈S2\Gε

∣∣β∗
jk;s

∣∣2 (25)

where

β∗
jk;s =

∫

S2\G

P (x)ψjk;s(x)dx .

Our aim will be to prove the following

Theorem 4. Under condition (2), we have

Θ̂∗
j;sG − Θj;s√
V ar

{
Θ̂∗

j;sG

} →d N(0, 1) , as j → ∞ .
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Proof. The proof will be basically in two steps; define

Θ̂j;sG :=





∑

k:ξjk∈S2\Gε

λk






−1
∑

k:ξjk∈S2\Gε

|βjk;s|2 , (26)

which is clearly an unfeasible version of (25), where the β∗
jk;s have been replaced

by the coefficients (in the observed region) evaluated without gaps. The idea will
be to show that

Θ̂j;sG − Θj;s√
V ar

{
Θ̂j;sG

} →d N(0, 1) ,

√
V ar

{
Θ̂j;sG

}
√
V ar

{
Θ̂∗

j;sG

} → 1

and
Θ̂∗

j;sG − Θ̂j;sG√
V ar

{
Θ̂∗

j;sG

} →p 0 , as j → ∞ .

The proof of these statements is provided in three separate Lemmas (14, 15,
16) in the Appendix below.

Remark 5. In general the expressions for V ar
{
Θ̂j;sG

}
, V ar

{
Θ̂∗

j;sG

}
depend on

the unknown angular power spectrum. However, the normalizing factors can be
consistently estimated by subsampling techniques, following the same steps as
in [8]. As revealed by a careful inspection of the proofs, it should be noted that
the presence of a fixed masked region does not affect the rate of convergence of
these estimators, although it does increase a variance by a factor proportional
to the width of the mask. More discussion on rates of convergence can be found
in the next sections.

6. Detection of asymmetries

In this Section, we shall consider one more possible application of spin needlets
to problems of interest for Cosmology. In particular, a highly debated issue
in modern Cosmology relates to the existence of “features”, i.e. asymmetries
in the distribution of CMB radiation (for instance between the Northern and
the Southern hemispheres, in Galactic coordinates). These issues have been the
object of dozens of physical papers, in the last few years, some of them exploiting
scalar needlets, see [48].

In order to investigate this issue, we shall employ a similar technique as [8]
for the scalar case. More precisely, we shall focus on the difference between the
estimated angular power spectrum over two different regions of the sky. Let us
consider A1, A2, two subsets of S2 such that A1 ∩ A2 = ∅; we do not assume
that A1 ∪ A2 = S2, i.e. we admit the presence of missing observations. For
practical applications,A1 and A2 can be visualized as the spherical caps centered
at the north and south pole N, S (i.e. A1 =

{
x ∈ S2 : d(x,N) ≤ π/2

}
, A2 ={

x ∈ S2 : d(x, S) ≤ π/2
}
, but the results would hold without any modification
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for general subsets and could be easily generalized to a higher number of regions.
We shall then focus on the statistic

Θ̂∗
j;sA1

− Θ̂∗
j;sA2√

V ar
{
Θ̂∗

j;sA1

}
+ V ar

{
Θ̂∗

j;sA2

} ,

where

Θ̂∗
j;sA1

:=





∑

k:ξjk∈Aε
1

λk






−1
∑

k:ξjk∈Aε
1

∣∣β∗
jk;s

∣∣2 ,

Θ̂∗
j;sA2

:=





∑

k:ξjk∈Aε
2

λk






−1
∑

k:ξjk∈Aε
2

∣∣β∗
jk;s

∣∣2 , some ε > 0 .

We are here able to establish the following Proposition, whose proof can be
found in the Appendix.

Proposition 6. As j → ∞ , we have



[
V ar

{
Θ̂∗

j;sA1

}]−1/2 (
Θ̂∗

j;sA1
− Θj;s

)

[
V ar

{
Θ̂∗

j;sA2

}]−1/2 (
Θ̂∗

j;sA2
− Θj;s

)


→d N(02, I2) ,

where (02, I2) are, respectively, the 2 × 1 vector of zeros and the 2 × 2 identity
matrix.

Remark 7. An obvious consequence of Proposition 6 is

τj;s,A1,A2
=

Θ̂∗
j;sA1

− Θ̂∗
j;sA2√

V ar
{
Θ̂∗

j;sA1

}
+ V ar

{
Θ̂∗

j;sA2

} →d N(0, 1) .

This result provides the asymptotic justification to implement on polarization
data the same testing procedures as those considered for instance by [48] to
search for features and asymmetries in CMB scalar data. More precisely, we
could test for instance whether the Northern and Southern hemisphere are sta-
tistically different by taking A1, A2 to be the spherical caps of radius π/2 cen-
tred on the North and South pole, respectively, and then comparing τj;s,A1,A2

with the quantiles of a Gaussian distribution. Values above the threshold would
lead to a rejection of the isotropy assumption, as suggested in the temperature
(scalar) case by some empirical findings in the recent cosmological literature
(see again [48] and the references therein).

7. Estimation with noise

In the previous sections, we worked under a simplifying assumption, i.e. we
figured that although observations on some parts of the sphere were completely
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unattainable, data on the remaining part were available free of noise. In this
Section, we aim at relaxing this assumption; in particular, we shall consider the
more realistic circumstances where, while we still take some regions of the sky
to be completely unobservable, even for those where observations are available
the latter are partially contaminated by noise.

To understand our model for noise, we need to review a view basic facts on
the underlying physics. A key issue about (scalar and polarized) CMB radiation
experiments is that they actually measure radiation across a set of different
electromagnetic frequencies, ranging from 30 GHz to nearly 900. One of the key
predictions of Cosmology, whose experimental confirmation led to the Nobel
Prize for J.Mather in 2006, is that CMB radiation in all its components follows
a blackbody pattern of dependence over frequency. More precisely, the intensity
IA is distributed along to the various frequencies according to the Planckian
curve of blackbody emission

IA(v, P ) =
2hν3

c2
1

exp( hν
kBA ) − 1

. (27)

Here, A is a scalar quantity which is the only free parameter in (27), and there-
fore uniquely determines the shape of the curve: we have A = T for the tradi-
tional temperature data, whereas for polarization measurements one can take
A = Q,U. Now the point is that, although there are also a number of foreground
sources (such as galaxies or intergalactic dust) that emit radiation on these fre-
quencies; all these astrophysical components (other than CMB) do not follow a
blackbody curve.

We shall hence assume thatD detectors are available at frequencies ν1, . . . , νD,
so that the following vector random field is observed:

Pvr
(x) = P (x) +Nvr

(x) ;

here, both P (x), Nv(x) are taken to be Gaussian zero-mean, mean square con-
tinuous random fields, independent among them and such that, while the signal
P (x) is identical across all frequencies, the noise Nv(x) is not. More precisely,
we shall assume for noise the same regularity conditions as for the signal P,
again under the justification that they seem mild and general:

Condition 8. The (spin) random field Nv(x) is Gaussian and isotropic, inde-
pendent from P (x) and with total angular power spectrum {ClN} such that

ClN = l−γgN(l) > 0 , where c−1
0N ≤ gN(l) ≤ c0N , γ > 2 , l ∈ N ,

and for every r ∈ N there exist cr > 0 such that

| d
r

dur
gN(u)| ≤ crNu

−r , u ∈ (|s| ,∞) .

It follows from our previous assumptions that for each frequency νr we shall
be able to evaluate

∫

S2

Pvr
(x)ψjk;s(x)dx =: βjk;sr = βjk;sP + βjk;sNr
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where clearly

βjk;sP =

∫

S2

P (x)ψjk;s(x)dx , βjk;sNr
=

∫

S2

Nvr
(x)ψjk;s(x)dx .

Now it is immediate to note that

E|βjk;sr|2 = E|βjk;sP + βjk;sNr
|2

= Eβjk;sPβjk;sP +Eβjk;sNr
βjk;sNr

+ Eβjk;sNr
βjk;sP

+Eβjk;sPβjk;sNr

= E|βjk;sP |2 +E|βjk;sNr
|2 ,

so that the estimator
∑

k |βjk;sr|2 will now be upward biased. In the next
subsections we shall discuss two possible solutions for dealing with this bias
terms, along the lines of [51], and we will provide statistical procedures to test
for estimation bias. We note first that correlation of needlet coefficients across
different channels are provided by

Eβjk;srβjk′;sr = Eβjk;sPβjk′;sP +Eβjk;sNr
βjk′;sNr

.

Denote

ΘN
j;s =

∑

k

E|βjk;sNr
|2 =

∑

l

b2(

√
els

Bj
)
2l + 1

4π
ClN ;

as before, it is easy to obtain that C1B
(2−γ)j ≤ ΘN

j;s ≤ C2B
(2−γ)j. With the

same discussion as for (22) provided by [21], we have that, under Condition 2
and 8,

∣∣Corr
(
βjk;sr, βjk′;sr

)∣∣ ≤ CM

{1 + Bjd(ξjk, ξjk′)}M
, for all M ∈ N . (28)

7.1. The needlet auto-power spectrum estimator

In many circumstances, it can be reasonable to assume that the angular power
spectrum of the noise component, ClN , is known in advance to the experimenter.
For instance, if noise is primarily dominated by instrumental components, then
its behaviour may possibly be calibrated before the experimental devices are
actually sent in orbit, or otherwise by observing a peculiar region where the
signal has been very tightly measured by previous experiments. Assuming the
angular power spectrum of noise to be known, the expected value for the bias
term is immediately derived:

E|βjk;sNr
|2 =

∑

l

b2(

√
els

Bj
)
2l+ 1

4π
ClNr

,
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whence it is natural to propose the bias-corrected estimator

Θ̃AP
j :=

1

D

∑

k

∑

r

{
|βjk;sr|2 − E|βjk;sNr

|2
}

=
1

D

∑

k

∑

r

{
(βjk;sP + βjk;sNr

)
(
βjk;sP + βjk;sNr

)
− E|βjk;sNr

|2
}

=
∑

k

|βjk;sP |2 +
1

D

{
∑

k

∑

r

(
βjk;sPβjk;sNr

+ βjk;sNr
βjk;sP

+
[
|βjk;sNr

|2 −E|βjk;sNr
|2
])}

.

We call the previous statistic the needlet auto-power spectrum estimator (AP,
compare [51]). The derivation of the following Proposition is rather standard,
and hence omitted for brevity’s sake.

Proposition 9. As j → ∞, we have

Θ̃AP
j − Θj√
V ar

{
Θ̃AP

j

} →d N(0, 1) ,

where

V ar
{
Θ̃AP

j

}
= O(B2(1−min(α,γ))j) .

As before, the normalizing variance in the denominator can be consistently
estimated by subsampling techniques, along the lines of [8]. It should be noticed

that the rate of convergence for
{
Θ̃AP

j − Θj

}
= O(B(1−min(α,γ))j) is the same

as in the noiseless case for γ ≥ α, whereas it slower otherwise, when the noise

is asymptotically dominating. The “signal-to-noise” ratio Θj/
√
V ar

{
Θ̃AP

j

}
is

easily seen to be in the order of B2j−αj/B(1−min(α,γ))j = Bj(1+min(α,γ)−α),
whence it decays to zero unless α ≤ γ + 1.

7.2. The needlet cross-power spectrum estimator

To handle the bias term, we shall pursue here a different strategy than the
previous subsection, dispensing with any prior knowledge of the spectrum of the
noise component. The idea is to exploit the fact that, while the signal is perfectly
correlated among the different frequency components, noise is by assumption
independent. We shall hence focus on the needlets cross-angular power spectrum
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estimator (CP), defined as

Θ̃CP
j :=

1

D(D − 1)

∑

k

∑

r1 6=r2

βjk;sr1
βjk;sr2

=
1

D(D − 1)

∑

k

∑

r1 6=r2

(
βjk;sP + βjk;sNr1

) (
βjk;sP + βjk;sNr2

)

=
∑

k

|βjk;sP |2 +
1

D(D − 1)

×





∑

k

∑

r1 6=r2

(
βjk;sPβjk;sNr2

+ βjk;sNr1
βjk;sP + βjk;sNr1

βjk;sNr2

)



 .

In view of the previous independence assumptions, it is then immediately
seen that the above estimator is unbiased for Θj , i.e.

EΘ̃CP
j =

∑

k

E |βjk;sP |2 =
∑

l

b2
(√

els

Bj

)
2l+ 1

4π
Cl .

We are actually able to establish a stronger result, namely

Proposition 10. As j → ∞, we have

Θ̃CP
j − Θj√
V ar

{
Θ̃CP

j

} →d N(0, 1) , V ar
{
Θ̃CP

j

}
= O(B2(1−min(α,γ))j) .

We omit also this (standard) proof for brevity’s sake. We can repeat here
the same comments as in the previous subsection, concerning the possibility
of estimating the normalizing variance by subsampling techniques, along the
lines of [8], and the roles of α,γ for the rate of convergence

{
Θ̃CP

j − Θj

}
=

O(B(1−min(α,γ))j).

7.3. Hausman test for noise misspecification

In the previous two subsections, we have considered two alternate estimators
for the angular power spectrum, in the presence of observational noise. It is a
standard result (compare [51]) that the auto-power spectrum estimator enjoys a
smaller variance, provided of course that the model for noise is correct. Loosely
speaking, we can hence conclude that the auto-power spectrum estimator is
more efficient when noise is correctly specified, while the cross-power spectrum
estimator is more robust, as it does not depend on any previous knowledge on the
noise angular power spectrum. An obvious question at this stage is whether the
previous results can be exploited to implement a procedure to search consistently
for noise misspecification. The answer is indeed positive, as we shall show in the
Appendix along the lines of the procedure suggested by [51].
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Proposition 11. Under Assumptions 2 and 8 , we have

Θ̃CP
j;s − Θ̃AP

j;s√
V ar

{
Θ̃CP

j;s − Θ̃AP
j;s

} →d N(0, 1),

where

V ar
{

Θ̃CP
j;s − Θ̃AP

j;s

}
= O(B2(1−γ)j)

Remark 12. Note that V ar
{
Θ̃CP

j;s

}
, V ar

{
Θ̃AP

j;s

}
, 2Cov

{
Θ̃CP

j;s , Θ̃
AP
j;s

}
are robust

to misspecification of the noise, because Variance and Covariance are transla-
tion invariant. It follows that the denominator can (once again) be consistently
estimated by subsampling techniques, as in [8].

Under the alternative of noise misspecification, we have easily

Θ̃CP
j;s − Θ̃AP

j;s√
V ar

{
Θ̃CP

j;s − Θ̃AP
j;s

} →d N(δj , 1)

where

δj :=
E|βjk;sNr

|2 − Θj;sNr√
V ar

{
Θ̃CP

j;s − Θ̃AP
j;s

}

where Θj;sNr
is the bias-correction term which is wrongly adopted. The deriva-

tion of the power properties of this testing procedure is then immediate.
As a final comment, we notice that throughout this paper we have only

been considering estimation and testing for the total angular power spectrum
Cl = ClE + ClB . The separate estimation of the two components (E and B
modes) is of great interest for physical applications, and will be addressed in
future work.

8. Appendix

In this paper, we deal with quadratic transforms of random needlet coefficients;
as in the earlier works in this area, we use the diagram formulae (see for instance
[46, 56]) extensively, and we provide here a brief overview to fix notation. Denote
by Hq the q−th order Hermite polynomials, defined as

Hq(u) = (−1)qeu2/2 d
q

du
e−u2/2.

Diagrams are basically mnemonic devices for computing the moments and cu-
mulants of polynomial forms in Gaussian random variables. Our notation is the
same as for instance in [35, 36], where again these techniques are applied in a
CMB related framework. Let p and lij = 1, . . . , p be given integers. A diagram



D. Geller et al./Spin needlets 1520

γ of order (l1 , . . . , lp) is a set of points {(j, l) : 1 ≤ j ≤ p, 1 ≤ l ≤ lj} called

vertices, viewed as a table W =
−→
l1 ⊗ · · · ⊗ −→

lp and a partition of these points
into pairs

{((j, l), (k, s)) : 1 ≤ j ≤ k ≤ p; 1 ≤ l ≤ lj , 1 ≤ s ≤ lk},

called edges. We denote by I(W ) the set of diagrams of order (l1, . . . , lp). If the
order is l1 = · · · = lp = q, for simplicity, we also write I(p, q) instead of I(W ).
We say that:
a) A diagram has a flat edge if there is at least one pair {(i, j)(i′, j′)} such

that i = i′; we write IF for the set of diagrams that have at least one flat edge,
and IF otherwise.

b) A diagram is connected if it is not possible to partition the rows
−→
l1 · · ·−→lp of

the table W into two parts, i.e. one cannot find a partition K1∪K2 = {1, . . . , p}
that, for each member Vk of the set of edges (V1, . . . , Vr) in a diagram γ, either

Vk ∈ ∪j∈K1

−→
lj , or Vk ∈ ∪j∈K2

−→
lj holds; we write IC for connected diagrams, and

IC otherwise.
c) A diagram is paired if, considering any two sets of edges {(i1, j1)(i2, j2)}

{(i3, j3)(i4 , j4)}, then i1 = i3 implies i2 = i4; in words, the rows are completely
coupled two by two.

The following, well-known Diagram Formula plays a key role in some of our
computations (see [46] and [56]).

Proposition 13. (Diagram Formula) Let (X1, . . . , Xp) be a centered Gaussian
vector, and let γij = E[XiXj ], i, j = 1, . . . , p be their covariances, Hl1 , . . . , Hlp

be Hermite polynomials of degree l1, . . . , lp respectively. Let L be a table con-
sisting of p rows l1, . . . , lp, where lj is the order of Hermite polynomial in the
variable Xj . Then

E

[
p∏

j=1

Hlj (Xj)

]
=

∑

G∈I(l1,...,lp)

∏

1≤i≤j≤p

γ
ηij(G)
ij

Cum(Hl1(X1), . . . , Hlp(Xp)) =
∑

G∈Ic(l1,...,lp)

∏

1≤i≤j≤p

γ
ηij (G)
ij

where, for each diagram G, ηij(G) is the number of edges between rows li, lj and
Cum(Hl1 (X1), . . . , Hlp(Xp)) denotes the p-th order cumulant.

Lemma 14. As j → ∞, under Condition 2 we have

Θ̂j;sG − Θj;s√
V ar

{
Θ̂j;sG

} →d N(0, 1) .

Proof. Notice that




∑

k:ξjk∈S2\Gε

λk




2

V ar
(
Θ̂j;sG

)
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= V ar

[
∑

k

|βjk;s|2
]

=
∑

k,k′

∣∣Eβjk;sβjk′;s

∣∣2

=
∑

k,k′

λjkλjk′

∣∣∣∣∣
∑

l

b2
(√

els

Bj

)
Cl

(2l+ 1)

4π
Kls (ξjk, ξjk′)

∣∣∣∣∣

2

.

By standard manipulations we obtain the upper bound

V ar

[
∑

k

|βjk;s|2
]
≤ CMB

2(2−α)j
∑

k,k′

λjkλjk′

1

[1 + Bjd(ξjk, ξjk′)]
2M

≤ CMB
2(2−α)j

[
sup
k′

λjk′

]∑

k

λjk

∑

k′

1

[1 + d(ξjk, ξjk′)]
2M

=
∑

k

λjkO(B2(1−α)j) ,

in view of (22) (24) and λjk ≈ B−2j . On the other hand, we also have the trivial
lower bound
∑

k,k′

∣∣Eβjk;sβjk′;s

∣∣2 ≥
∑

k

∣∣Eβjk;sβjk;s

∣∣2 = Θ2
j;s

∑

k

λ2
jk ≥ c

∑

k

λjkB
2(1−α)j,

whence we have

V ar

{
∑

k

|βjk;s|2
}

≈
(
∑

k

λjk

)(
B2(1−α)j

)
. (29)

By recent results in [45, 44] it suffices to focus on fourth-order cumulant; the
proof that

Cum4






∑
k |βjk;s|2 − (

∑
k λjk)Θj;s√

V ar
{∑

k |βjk;s|2
}





→ 0 as j → ∞ ,

is a standard application of the Diagram Formula, indeed we have

Cum4

{
∑

k

|βjk;s|2 −
(
∑

k

λjk

)
Θj;s

}

= 6
∑

k1,k2,k3,k4

Eβjk1;sβjk2;sEβjk2;sβjk3;sEβjk3;sβjk4;sEβjk4;sβjk1;s

≤ C (Θj;s)
4

(
∑

k

λjk

)[
sup
k′

λjk′

]3
=

(
∑

k

λjk

)
O
(
B(2−4α)j

)
,

in view of (22) and (23). Thus the Proposition is established.
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Next we turn to the following

Lemma 15. As j → ∞, under Condition 2 we have
√
V ar

{
Θ̂j;sG

}
√
V ar

{
Θ̂∗

j;sG

} → 1

Proof. Again in view of the Diagram Formula, it is enough to focus on

V ar




∑

k:ξjk∈S2\Gε

|βjk;s|2

− V ar




∑

k:ξjk∈S2\Gε

∣∣β∗
jk;s

∣∣2



= O

(
∑

k,k′

∣∣Eβjk;sβjk′;s

∣∣2 −
∑

k,k′

∣∣∣Eβ∗
jk;sβ

∗
jk′;s

∣∣∣
2
)
.

Now notice that

∣∣Eβjk;sβjk′;s

∣∣2 −
∣∣∣Eβ∗

jk;sβ
∗
jk′;s

∣∣∣
2

= Eβjk;sβjk′;s

(
Eβjk;sβjk′;s − Eβ∗

jk;sβ
∗
jk′;s

)

+ Eβ∗
jk;sβ

∗
jk′;s

(
Eβjk;sβjk′;s −Eβ∗

jk;sβ
∗
jk′;s

)
, (30)

and

Eβjk;sβjk′;s −Eβ∗
jk;sβ

∗
jk′;s = Eβjk;s

(
βjk′;s − β∗

jk′;s

)
+ Eβ∗

jk′;s

(
βjk;s − β∗

jk;s

)

≤
{
E|βjk;s|2

}1/2 {
E|βjk′;s − β∗

jk′;s|2
}1/2

+
{
E|β∗

jk′;s|2
}1/2

{
E|βjk;s − β∗

jk;s|2
}1/2

. (31)

Hence

E|βjk;s − β∗
jk;s|2 ≤ E

{∫

G

P (x)ψjk;s(x)dx

}2

≤ E

{
sup
x∈G

{
ψjk;s(x)

}∫

Gε

|P (x)|dx
}2

≤
[
sup
x∈G

{
ψjk;s(x)

}]2
E

{∫

G

|P (x)|dx
}2

≤
[
sup
x∈G

{
ψjk;s(x)

}]2
E

{[∫

G

1dx

][∫

G

|P (x)|2dx
]}

≤ 4π

[
sup
x∈G

{
ψjk;s(x)

}]2
E

{[∫

G

|P (x)|2dx
]}

= O

(
B2j

[1 +Bjε]2M

)
.
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Now recall that

E|βjk;s|2 = O
(
B−αj

)
,

whence E|β∗
jk;s|2 = O

(
B−αj

)
, if M > α/2 + 1. Hence, in view of (31)

∣∣∣Eβ∗
jk;sβ

∗
jk′;s − Eβjk;sβjk′;s

∣∣∣ ≤ CB(1−α/2)j

[1 + Bjε]M
, (32)

for some constant C > 0. Also, from (30) and (32) we obtain that

∑

k,k′

(∣∣Eβjk;suβjk′;su

∣∣2 −
∣∣∣Eβ∗

jk;suβ
∗
jk′;su

∣∣∣
2
)

≤
∑

k,k′

(∣∣Eβjk;sβjk′;s

∣∣+
∣∣∣Eβ∗

jk;sβ
∗
jk′;s

∣∣∣
)
O

(
B−jα/2

[1 + Bjε]M

)

≤ O

(
B(1−α/2)j

[1 +Bjε]M

)
Θj;s

∑

k,k′

CM

√
λjkλjk′

{1 +Bjd(ξjk, ξjk′)}M

≤ O

(
B3(1−α/2)j

[1 +Bjε]M

)∑

k

λjk .

Recall from (29) that V ar
(∑

k:ξjk∈S2\G |βjk;s|2
)

= (
∑

k λjk)O
(
B2(1−α)j

)
.

Hence forM large enough, that isM > 1+α/2, the statement of the Proposition
is established.

Lemma 16. As j → ∞, under Condition 2 we have

Θ̂∗
j;sG − Θ̂j;sG√
V ar

{
Θ̂∗

j;sG

} →p 0 .

Proof. We have

E









∑

k:ξjk∈S2\Gε

λk




(
Θ̂∗

j;sG − Θ̂j;sG

)





2

= E

{
∑

k

|βjk;s|2 −
∣∣β∗

jk;s

∣∣2
}2

,

which we can expand as follows

E

{
∑

k

βjk;s

(
βjk;s − β∗

jk;s

)
+
∑

k

β∗
jk;s

(
βjk;s − β∗

jk;s

)}2

= E

{
∑

k

βjk;s

(
βjk;s − β∗

jk;s

)
}2

+ E

{
∑

k

β∗
jk;s

(
βjk;s − β∗

jk;s

)}2
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+ 2E

{
∑

k

βjk;s

(
βjk;s − β∗

jk;s

)
}{

∑

k

β∗
jk;s

(
βjk;s − β∗

jk;s

)}

=
∑

k,k′

[
Eβjk;s

(
βjk′;s − β∗

jk′;s

)
Eβjk′;s

(
βjk;s − β∗

jk;s

)

+Eβ∗
jk;s

(
βjk′;s − β∗

jk′;s

)
Eβ∗

jk′;s

(
βjk;s − β∗

jk;s

)]

+

{
∑

k

Eβjk;s

(
βjk;s − β∗

jk;s

)
}2

+

{
∑

k

Eβ∗
jk;s

(
βjk;s − β∗

jk;s

)}2

+ 2

{
∑

k

Eβjk;s

(
βjk;s − β∗

jk;s

)
}{

∑

k

Eβ∗
jk;s

(
βjk;s − β∗

jk;s

)}

+ 2





∑

k,k′

Eβjk;s

(
βjk′;s − β∗

jk′;s

)
Eβ∗

jk′;s

(
βjk;s − β∗

jk;s

)





+ 2




∑

k,k′

Eβjk;sβ
∗
jk′;sE

(
βjk;s − β∗

jk;s

)(
βjk′;s − β∗

jk′;s

)


 .

Now recall again

E |βjk;s|2 , E
∣∣β∗

jk;s

∣∣2 ≤ CB−αj, and E
∣∣βjk;s − β∗

jk;s

∣∣2 ≤ C ′B2j

[1 +Bjε]M
,

whence from the same steps as in the previous Proposition, we have

Eβjk;s

(
βjk′;s − β∗

jk′;s

)
, Eβ∗

jk;s

(
βjk′;s − β∗

jk′;s

)
≤ CB(1−α/2)j

[1 + Bjε]M
.

It follows that

E

{
∑

k

|βjk;s|2 −
∣∣β∗

jk;s

∣∣2
}2

≤ CB(6−α)j

[1 +Bjε]2M
.

By arguments in the previous Propositions, we know that

V ar

{[
∑

k:ξjk∈S2\Gε

λk

]
Θ̂∗

j;sG

}
≈
(

∑

k:ξjk∈S2\Gε

λjk

)
B2(1−α)j;

thus the statement is established, provided we take M > 2 + α/2.

Proof. (Proposition 6). By the Cramer-Wold device, the proof can follow very
much the same steps as for the univariate case. We first establish the asymptotic
uncorrelation of the two components, i.e. we show that

lim
j→∞

[
V ar

{
Θ̂∗

j;sA1

}
V ar

{
Θ̂∗

j;sA2

}]−1/2

E
{(

Θ̂∗
j;sA1

− Θj;s

)(
Θ̂∗

j;sA2
− Θj;s

)}

= 0 . (33)
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Now

E
(
Θ̂∗

j;sA1
− Θj;s

)(
Θ̂∗

j;sA2
− Θj;s

)
= E

(
Θ̂∗

j;sA1
− Θj;s

)
E
(
Θ̂∗

j;sA2
− Θj;s

)

+





∑

k:ξjk∈S2\Aε
1

λk

∑

k:ξjk∈S2\Aε
2

λk






−1
∑

k:ξjk∈S2\Aε
1

∑

k′:ξjk′∈S2\Aε
2

∣∣∣Eβ∗
jk;sβ

∗
jk′;s

∣∣∣
2

.

(34)
In view of (22) and Proposition 16, we have

|(34)| ≤ (Θj;s)
2

∑

k:ξjk∈S2\Aε
1

∑

k′:ξjk′∈S2\Aε
2

Cλjkλjk′

[1 + Bjd(ξjk, ξjk′)]
2M

≤ C (Θj;s)
2
[supk λjk]

2

[1 + 2Bjε]
2(M−1)

= O
(
B2(1−α−M)j

)
.

Thus (33) is established, in view of (29) and Propositions (15), (16). For the
fourth order cumulant, given any generic constants u, v, we shall write

X = u
[
V ar

{
Θ̂∗

j;sA1

}]−1/2 (
Θ̂∗

j;sA1
− Θj;s

)
, (35)

and

Y = v
[
V ar

{
Θ̂∗

j;sA2

}]−1/2 (
Θ̂∗

j;sA2
− Θj;s

)
. (36)

Recall that

Cum4 (X + Y ) = Cum4 (X) + Cum4 (Y ) + 4Cum(X, Y, Y, Y )

+ 6Cum(X,X, Y, Y ) + 4Cum(X,X,X, Y ) ;

by results in the previous Section, we have immediatelyCum4 (X) , Cum4 (Y ) →
0, as j → ∞. On the other hand, in view of Proposition 16 and the equivalence
between convergence in probability and in Lp for Gaussian subordinated pro-
cesses (see [30]), we can replace Θ̂∗

j;sAi
by Θ̂j;sAi

in (35) and (36), and we have
easily

Cum(X, Y, Y, Y )

≤ CB4(α−1)j (Θj;s)
2

∑

k:ξjk∈S2\Aε
1

∑

ξjk1
,..,ξjk3

∈S2\Aε
2

λjkλjk1
λjk3

λjk3

[1 + Bjd(ξjk, ξjk1
)]

M

× 1

[1 +Bjd(ξjk2
, ξjk1

)]
M

[1 +Bjd(ξjk3
, ξjk2

)]
M

[1 + Bjd(ξjk, ξjk3
)]

M

≤ CB4(α−1)j (Θj;s)
2
[supk λjk]

4

[1 + 2Bjε]
2(M−1)

= O
(
B−2(M+1)j

)
.

Similarly, we have

Cum(X,X,X, Y ), Cum(X,X, Y, Y ) ≤ CB−2(M+1)j.

Thus the Proposition is established, provided we choose M > 2 + α.
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Proof. (Proposition 11). The proof is again quite standard, and we only need
to provide the main details. Notice first that

Θ̃CP
j;s − Θ̃AP

j;s

=
1

D(D − 1)

∑

k

∑

r1 6=r2

βjk;sr1
βjk;sr2

− 1

D

∑

k

∑

r

{
|βjk;sr|2 − E|βjk;sNr

|2
}

=
1

D(D − 1)

∑

k

{
(D − 1)

∑

r

E|βjk;sNr
|2 −

∑

r1 6=r2

|βjk;sr1
− βjk;sr2

|2
}
,

and applying again the Diagram Formula, we have that

V ar
(
Θ̃CP

j;s − Θ̃AP
j;s

)

=
1

D2(D − 1)2

∑

k1,k2

∑

r1 6=r2,r3 6=r4,

∣∣E (βjk1;sr1
− βjk1;sr2

)
(
βjk2;sr3

− βjk2;sr4

)∣∣2 .

Similarly to the discussion for (29), we can show that

V ar
(
Θ̃CP

j;s − Θ̃AP
j;s

)
= O

(
D2B2(1−γ))j

)
.

Once again, the next step is to consider the fourth order cumulants,

Cum4





∑

k




∑

r1 6=r2

|βjk;sr1
− βjk;sr2

|2 − (D − 1)
∑

r

E|βjk;sNr
|2









= 6
∑

k1,..,k4

∑

r2n 6=r2n−1,n=1,..,4

E (βjk1;sr1
− βjk1;sr2

)
(
βjk2;sr3

− βjk2;sr4

)

×E (βjk2;sr3
− βjk2;sr4

)
(
βjk3;sr5

− βjk3;sr6

)

×E (βjk3;sr5
− βjk3;sr6

)
(
βjk4;sr7

− βjk4;sr8

)

×E (βjk4;sr7
− βjk4;sr8

)
(
βjk1;sr1

− βjk1;sr2

)

≤ CMD4
(
ΘN

j;s

)4 ∑

k1,..,k4

λjk1
λjk2

λjk3
λjk4

[1 + d(ξjk1
, ξjk2

)]
M

[1 + d(ξjk2
, ξjk3

)]
M

× 1

[1 + d(ξjk3
, ξjk4

)]M [1 + d(ξjk4
, ξjk1

)]M

≤ CD4B(2−4γ)j.

in view of (28), choosing M ≥ 3. Now it is easy to see that

Cum4






Θ̃CP
j;s − Θ̃AP

j;s√
V ar

{
Θ̃CP

j;s − Θ̃AP
j;s

}





→ 0 ,

whence the Proposition is established, again resorting to results in [45].
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