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1. Introduction

Multiple testing in general linear models is a long standing statistical prac-
tice. The subject has been given great impetus over the last two decades with
applications arising in fields where the numbers of hypotheses to be tested
can be extremely large (namely thousands). Such applications are needed in
microarrays, astronomy, mutual fund evaluations, proteomics, disclosure risk,
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cytometry, imaging and others. Traditional methods, usually classified as sin-
gle step methods, are deemed too conservative, particularly when the number
of hypotheses to be tested is very large. To compensate, stepwise procedures
were introduced, which enable more rejection of hypotheses. See, for exam-
ple, Dudoit and Van Der Laan (2008) and Lehmann and Romano (2005) for de-
scription and some properties of single step and stepwise procedures. Many step-
wise procedures are based on P-values derived from the marginal distributions
of relevant test statistics that test an individual hypothesis. Oftentimes, these
and other multiple testing procedures (MTPs) are focused on controlling some
type of error rate, namely, the familywise error rate (FWER), weak or strong, or
the false discovery rate (FDR). Oftentimes the error rate controlling procedures
seek to have good average power. While focusing on error rate control of the
overall procedure, sometimes the properties of the ensuing tests of each individ-
ual hypothesis is not given enough attention. It is true that the resulting test for
an individual hypothesis resulting from an MTP can be complicated. Neverthe-
less, examining the properties of the individual tests can be important. In fact,
a decision theory approach to multiple testing, focusing on individual tests, can
suggest procedures that do well when evaluated by the expected number of type
I errors and expected numbers of type II errors. This represents another way to
evaluate MTPs. See Dudoit and Van Der Laan (2008) where attention is given
to type I and type II errors as well as to error rate controlling procedures.

In a series of papers, Cohen and Sackrowitz (2005a,b, 2007, 2008) and
Cohen, Kolassa, and Sackrowitz (2007) have shown that many of the standard
stepwise procedures under a wide variety of assumptions, often turn out to be
inadmissible for a variety of risk functions that involve both expected type I
and expected type II errors. For exponential family models the inadmissibil-
ity is often shown to follow because in testing an individual hypothesis, rele-
vant acceptance sections are not intervals. This represents a disturbing practical
shortcoming of many of the usual procedures.

In response to the inadmissibility property and the fact that many stepwise
procedures are based on the marginal distributions of test statistics, even when
they are statistically dependent, Cohen, Sackrowitz, and Xu (2009) recommend
a new MTP method called maximum residual down (MRD). MRD takes corre-
lation into account and is admissible (in many exponential family models) for a
risk function that focuses on expected type I and type II errors.

For some models the MRD method is not consistent. See Section 2 for a formal
definition of consistency. Informally, consistency means that the probability of
correctly testing each hypothesis tends to 1 as the sample size tends to infinity
and as critical values tend to infinity at a certain rate.

In this paper we introduce a modification of MRD which offers a procedure
that is admissible and consistent. The modification, discussed in Section 3, adds
a screening stage following MRD, and a sign stage following the screening stage.
The screening stage, which is intuitively desirable, enables the overall procedure
to be consistent. Its addition however can alter the admissibility property of
MRD. The sign stage restores the admissibility and retains the consistency
property. Call the new procedure MRDSS.
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For the most part we assume a multivariate normal model with unknown
mean vector and a covariance matrix that is known or known up to a scalar
multiple. The tests of hypotheses concern the components of the mean vector.
The results also apply, with minor modifications, to many , but not all, expo-
nential family models. For example, the results apply to testing differences of
binomial parameters, Poisson parameters, or scale parameters of exponential
distributions. Furthermore the MRD, screening, and sign stages suggest an ap-
proach with the potential to yield an admissible and consistent MTP for more
complicated exponential family models. One such model entails testing whether
all local log odds ratios are zero in an R × C contingency table. This latter
problem is treated in the companion paper by Chen, Cohen, and Sackrowitz
(2009).

In that paper all three stages require the development of nontrivial analogues
of the MRD, screen, and sign stages that enable an admissible, consistent MTP
to ensue. Furthermore, as in the multivariate normal case and other straightfor-
ward exponential family cases, the resulting MTP has other desirable properties.
These include computational feasibility and as justified by simulation results,
they do considerably better than typical stepwise procedures in terms of type I
and type II errors over large portions of the parameter space.

We will apply the MRDSS method to selection of variable models in regres-
sion. For such models, the MRD method is shown to be equivalent to some
forward method of selecting variables. See Miller (2002) for a discussion of for-
ward methods. Both MRD and the forward method are stepwise methods based
on what we define as residuals. Forward methods and hence MRD are typically
not consistent. See, for example, An and Gu (1985). We show that MRDSS, and
thus a modification of a forward method, with a screen and sign stage added,
is admissible and consistent under modest and typical conditions on the critical
values and design matrix.

The results will be proved assuming a full rank multivariate normal model
with unknown mean vector and known covariance matrix while testing compo-
nents of the mean vector. However, extension to the following cases, sometimes
with modifications are possible: covariance equal to an unknown variance times
a known positive definite matrix; testing functions of natural parameters of
exponential family densities; regression models with suitable design matrices.

Through the first five sections the focus will be on the multivariate normal
model. Definitions and other preliminaries are given in Section 2. MRDSS is
described in Section 3. Section 4 is concerned with results on admissibility and
consistency. A small simulation is also reported in Section 4. The simulation
shows the improvement of MRDSS relative to the FDR controlling step-up pro-
cedure over a large portion of the parameter space. In Section 5 we demonstrate
that MRD is equivalent to a forward method of variable selection in a linear
regression model. Some remarks about the backward method are also made in
Section 5. Section 6 contains extensions to some exponential family models. The
proof of admissibility of MRDSS is in the Appendix.
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2. Multivariate normal models

Let Xα, α = 1, . . . , n, be a random sample of M ×1 vectors from a multivariate
normal distribution whose mean vector is µ and whose covariance matrix is Γ.
Sometimes Γ is known and sometimes Γ = σ2Σ where Σ is known and σ2 is
unknown. In the later case, s2 =

∑n
α=1(Xα − X̄)

′
Σ−1(Xα − X̄)/M(n− 1) is an

unbiased estimator of σ2, which is independent of X̄ =
∑n

α=1 Xα/n. For this
model with Γ known and nonsingular the density of X̄ is

f
X̄

(x̄ |µ,Γ) =
(

n1/2/(2π)M/2 |Γ |1/2
)

exp
{

−n/2(x̄− µ)′Γ−1(x̄ − µ)
}

= β(µ,Γ)h(x̄) expnx̄′Γ−1µ
(2.1)

We wish to test Hi : µi = 0 vs Ki : µi 6= 0, i = 1, 2, . . . ,M . Sometimes one
sided alternatives Ki : µi > 0, are of interest.

The general linear model has Y = Aβ + ǫ where Y is an n × 1 vector
which is multivariate normal with mean vector Aβ and covariance matrix σ2I.
A = (a1, . . . , aM ) is an n ×M fixed design matrix and β is an M × 1 vector

of parameters. If A has rank M , then β̂ = (A′A)−1A′Y ∼ N(β, σ2S−1) where

S−1 = (A′A)−1. An unbiased estimator of σ2 is s2 = (y′y − β̂
′A′y)/(n −M),

which is called mean squared error and which is independent of β̂. Thus this
general linear model reduces to our multivariate normal model with Γ = σ2S−1.
We wish to test Hi : βi = 0 vs Ki : βi 6= 0, i = 1, 2, . . . ,M .

For notational convenience we consider the model in (2.1) with n = 1 for all
matters not concerning consistency. This is done without loss of generality. An
MTP Φ(x) = (φ1(x), . . . , φM(x))′ where φi(x) is a test function for testing Hi

vs Ki, i = 1, . . . ,M . That is, φi(x) is the probability of rejecting Hi for the
sample point x. A type I error is made if Hi is rejected when µi = 0 and a type
II error is made if Hi is not rejected and µi 6= 0. The expected type I error is
Eµφi(x) when µi = 0. The expected type II error is Eµ(1−φi(x)) when µi 6= 0.
The risk function for φi(x) is

Ri(φi(x,µ)) = (1 − νi)Eµφi(x) + νiEµ(1 − φi(x)) (2.2)

where νi = 1 if µi 6= 0 and νi = 0 if µi = 0.
The risk function for the procedure Φ(x) is defined as the vector risk function

(R1(φ1,µ), R2(φ2,µ), . . . , RM(φM ,µ)) (2.3)

An MTP Φ(x) is inadmissible if there exists another MTP, say Φ∗(x) such
that for all i = 1, . . . ,M , Ri(φ

∗,µ) ≤ Ri(φi,µ) with strict inequality holding
for some i and some µ.

Now we return to the model in (2.1) for the case of n > 1. Consistency is
defined in An and Gu (1985) and in Bunea, Wegkamp, and Auguste (2006). Let
I = {i : µi 6= 0} and Î = {i : Φi(x̄) 6= 0, i = 1, . . . ,M}. We say Φ is consistent
when P {Î = I} tends to 1 when n tends to infinity.
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3. MRDSS: Multivariate normal model

We start with the multivariate normal model with Γ = Σ = (σij) known and
nonsingular. Without loss of generality for now we let n = 1. (For n > 1, X̄

would replace X where X is given in the next line.)
Let X = (X1, . . . , XM )′, X(i1,...,ir) be a subvector of X consisting of all

components except Xi1 , . . . , Xir
. Σ(i1,..,ir) is the (M − r) × (M − r) covariance

matrix of X(i1,...,ir), for any j 6= i1, . . . , ir, σ
(i1,..,ir)
(j) is the (M −r−1)×1 vector

of covariances between Xj and all variables except Xi1 , .., Xir
and Xj .

σ2
(j·i1,..,ir) = σjj − σ

(i1,..,ir)
j

′
Σ−1

(i1,..,ir,j)σ
(i1,..,ir)
j (3.1)

is the conditional variance of Xj , given all variables except Xi1 , . . . , Xir
, Xj .

Now define the jth normalized residual at step m to be

Umj (X
(i1,...,im−1)) =

Xj − σ
(i1,..,im−1)
j

′
Σ−1

(i1,..,im−1,j)
X(i1,..,im−1,j)

[σ2
(j·i1,..,im−1)

]1/2
(3.2)

m = 1, . . . ,M . At step m, we let Um be the (M −m+ 1) × 1 vector of Umj ’s.
We note that if Dm is the diagonal matrix of the terms in (3.1), then

Um = D1/2
m Σ−1

(i1,..,im−1)
X(i1,..,im−1)

Let C1 > C2 > · · · > CM > 0 be a given set of constants. Then the MTP,
called maximum residual down (MRD), is determined as follows:

At step 1, consider U1j(X), j ∈ 1, . . . ,M . Let j1 = j1(X) be such that
|U1j1(X)| = maxj |U1j(X)|. If |U1j1(X)| < C1, stop and accept all Hi. Other-
wise reject Hj1 and continue to step 2.

At step 2, consider the (M−1) functions U2j(X
(j1)), j ∈ {1, . . . ,M}\{j1}. Let

j2 = j2(X
(j1)) be such that |U2j2(X

(j1))| = max
{

|U2j(X
(j1))| : j ∈ 1, . . . ,M\{j1}

}

.
If |U2j2 | < C2 stop and accept all remaining null hypotheses. Otherwise reject
Hj2 and continue to step 3.

In general, at step m, m = 1, . . . ,M , consider M − m + 1 functions
Umj (X

(j1,..,jm−1)), j ∈ {1, . . . ,M}\{j1, . . . , jm−1}. Let jm = jm(X(j1,..,jm−1))

be such that |Umjm
| = max

{

|Umj(X
(j1,..,jm−1))| : j ∈ 1, . . . ,M\{j1, . . . , jm−1}

}

.

If |Umjm
| < Cm, stop and accept all remaining null hypotheses. Otherwise reject

Hjm
and continue to step m+ 1 ( unless m = M , in which case, stop).

If and when Hi is rejected, say at step r, record the sign of Uri.

To add a screening stage to MRD, let CU > CL > 0 be two additional
constants. Typically CL ≤ CM < CU . After MRD is done, each hypothesis is
accepted or rejected.
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Let Hj1, . . . , Hjp
be those hypotheses that are rejected. Should any

|Xji
|/√σjiji

< CL , (3.3)

i = 1, . . . , p, then reverse the reject decision to an accept decision.
For those hypotheses that MRD accepted, say, Hjp+1

, . . . , HjM
, reject any for

which
|Xji

|/√σjiji
> CU , (3.4)

i = p+ 1, . . . ,M .
To add a sign stage first consider only those hypotheses rejected by MRD,

i.e., Hj1 , . . . , Hjp
, and such that CL < |Xji

|/√σjiji
< CU , i = 1, . . . , p. Then

switch those to accept whenever the sign of Xji
is different from the sign of

Um∗ji
where m∗ is the step when Hji

was rejected by MRD. The MRD proce-
dure followed by a screening stage and a sign stage is called MRDSS.

We will illustrate MRDSS in the following example:

Example. Let X = (X1, X2, X3, X4)
′ be such that X ∼ N(µ,Σ) where

Σ =









2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2









.

We wish to test Hi : µi = 0 vs Ki : µi 6= 0, i = 1, . . . , 4.
For the purpose of demonstrating the application of MRDSS we will let C1 =

2.3, C2 = 2.0, C3 = 1.7, C4 = 1.4, CL = .6, and CU = 3.6. Now suppose we
observe X1 = 1, X2 = 5, X3 = 4.7 and X4 = 5.3.

First we apply MRD. At step 1 the residuals are:

U11 =

[

X1 − (1, 1, 1)





2 1 1
1 2 1
1 1 2





−1

(X2, X3, X4)
′

]

/

[

2 − (1, 1, 1)





2 1 1
1 2 1
1 1 2





−1 



1
1
1





]1/2

= [X1 − (X2 +X3 +X4)/4](4
5
)1/2 = −2.46

U12 = [X2 − (X1 +X3 +X4)/4](4
5)1/2 = 2.01

U13 = [X3 − (X1 +X2 +X4)/4](4
5)1/2 = 1.68

U14 = [X4 − (X1 +X2 +X3)/4](4
5
)1/2 = 2.35

(3.5)

Since |U11| is the largest and |U11| > 2.3 = C1, MRD rejects H1 and goes to the
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next step. Now with X1 eliminated,

U22 =

[

X2 − (1, 1)

(

2 1
1 2

)−1

(X2 , X4)
′

]

/

[

2 − (1, 1)

(

2 1
1 2

)−1 (

1
1

)]1/2

= [X2 − (X3 +X4)/3] /(3
4
)1/2 = 1.44

U23 = [X3 − (X2 +X4)/3] /(3
4 )1/2 = 1.10

U24 = [X4 − (X2 +X3)/3] /(3
4 )1/2 = 1.79

Since |U22|, |U23| and |U24| are all less than C2 = 2.0, MRD stops and accepts
H2, H3, and H4.

Next we do the screen stage by comparing each |Xi/
√

2| to CL = .6 and
CU = 3.6. We see that CL < |Xi/

√
2| < CU for i = 1, 2, 3 but |X4/

√
2| =

3.75 > 3.6 = CU . Thus the MRD decision to accept H4 is reversed to reject H4.
Lastly we perform the sign stage. This applies only to hypotheses Hi that

were rejected by MRD and for which CL < |Xi/
√

2| < CU . In this example only
H1 falls into this category. Upon examination we see that H1 was rejected at
the first step of MRD stage with U11 = −2.46 while X1/

√
2 = .707. Since these

signs are opposite we reverse the MRD decision to reject H1.
In conclusion MRDSS will accept H1, H2, H3 and reject H4.
For the multivariate normal model where Γ = σ2Σ , σ2 is unknown and n > 1,

a modification of Umj is called for. The numerator would use the component
of X̄ instead of X, and the denominator of Umj would be multiplied by the
square root of an estimator of σ2 divided by

√
n. The estimator of σ2 could

be s2 defined in Section 2 or it could be V =
∑n

α=1 xαΣ−1xα/n, which is
an unbiased estimator of σ2 when µ = 0. Simular modifications would also
be made in the screen stage determined by (3.3) and (3.4). The advantage of
using V 1/2 is that both admissibility and consistency of the overall procedure
are easily established. The advantage of using s is that the overall procedure is
both location and scale invariant.

4. Admissibility and consistency of MRDSS

Let ΦMRDSS(X) be the MRDSS MTP for the multivariate normal model with
σ2 known. When studying admissibility, without loss of generality, n = 1.

Theorem 4.1. The MTP ΦMRDSS(X) is admissible for the vector risk func-

tion.

Proof. See Appendix.

Note that MRD has been proven to be admissible in Cohen, Sackrowitz, and Xu
(2009).

Let Σ be positive definite and let gi be the i-th column of Σ. Then define the
class of MTPs with:
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Property N : Suppose Ψ(X) is an MTP with individual test functions Ψi(X).
Suppose Ψi(X), for every i, is such that the acceptance section along the line
x + rgi is an interval. Then the MTP is said to have Property N. It is noted
in the Appendix that Property N is necessary and sufficient for an MTP to be
admissible.

Next we address the issue of consistency of MRDSS. We first note that
MRDSS is consistent if and only if for each i, the individual test of hypoth-
esis Hi : µi = 0 vs Ki : µi 6= 0 is consistent.

In discussing consistency the sample size n > 1 and the random vector X is
replaced by X̄. The screen step of MRDSS becomes accept Hi if

√
n|X̄i|/σ1/2

ii < CL(n) ,

and reject if √
n|X̄i|/σ1/2

ii > CU(n) ,

where now the critical values change with n.

Theorem 4.2. Assume CL(n) < CU (n), assume CL(n) → ∞ as n → ∞ in such

a way that CL(n) = o(
√
n). Also CU(n) → ∞ as n → ∞ and CU (n) = o(

√
n).

Then ΦMRDSS is consistent.

Proof. Note first that when µi = 0

P (MRDSS accepts Hi) ≥ P {√n|X̄i|/σ1/2
ii ≤ CL}

= P
{

−CL −√
nµi/σ

1/2
ii ≤ √

n(X̄i − µi)/σ
1/2
ii ≤ CL −√

nµi/σ
1/2
ii

} (4.1)

Since CL → ∞ and µi = 0, (4.1) → 1 as n tends to ∞.
Next note that when µi 6= 0,

Pµ( MRDSS rejects Hi) ≥ Pµ(
√
n|X̄i|/σ1/2

ii ≥ CU)

= 1 − Pµ

{

−CU −
√
nµi/σ

1/2
ii ≤

√
n(X̄i − µi)/σ

1/2
ii ≤ CU −

√
nµi/σ

1/2
ii

}

= 1 −
[

Φ(CU −
√
nµi/σ

1/2
ii ) − Φ(−CU −

√
nµi/σ

1/2
ii )

]

(4.2)

where Φ is the CDF of a standard normal distribution. Since CU = o(
√
n) and

µi 6= 0, (4.2) → 1.

Remark 4.3. For the model where Xα, α = 1, . . . , n is multivariate normal
with mean µ and covariance matrix σ2Σ with σ2 unknown the screen step

of MRDSS replaces
√
n|X̄i|/σ1/2

ii by
√
n|X̄i|/(sσ1/2

ii ). Recall s2 is defined in
Section 2.

The proof of Theorem 4.2, with appropriate modification would establish
consistency of MRDSS in this case. That is, the statistic for the screen step
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would be ti =
√
n|X̄i|/sσ1/2

ii . In (4.1) we would replace
√
n(X̄i − µi)/σ

1/2
ii by

(ti − Eti)/
√

var(ti). Using properties of the noncentral t distribution as given
in Johnson and Kotz (1970), and analogues of (4.1) and (4.2) would establish

consistency. Consistency also follows if
√
n|X̄i|/V 1/2σ

1/2
ii is used in the screen

stage.

Remark 4.4. In the next section we will show that MRD is the same as a
forward method in selection of variables in a multiple linear regression model.

For this application the statistic used for the screening step is Ti = |β̂i|/sλ1/2
ii

where λii is the i− th diagonal element of S−1. Then for consistency we require
that maxλii(n) → 0 as n → ∞ in such a way that λii = O(1/n). A different
requirement for λii can be made if CL and CU are chosen to tend to ∞ at a
rate different from the one given in Theorem 4.2.

At this point we note that MRD alone is oftentimes not consistent. For a
simple example we need only consider the model of the illustrative example of
Section 3. We need only begin by thinking of the Xi as sample means based on
n independent observations and change the covariance matrix to 1

n
Σ. Next we

study the distribution of (U11, U12, U13, U14) when the parameter point is µ =
(0, r, r, r)′. From (3.5) it is clear the covariance matrix is symmetric and the mean
vector is

√

4/5(−3r/4, r/2, r/2, r/2). Therefore, regardless of n, Pµ

(

|U11| =

max(|U11|, |U12|, |U13|, |U14|)
)

> 1/4. Thus, with probability > 1/4, the decision
at the first step of MRD will be based on |U11|. If |U11| ≥ C1, H1 is rejected
and a type I error is made. If |U11| < C1, the process stops and all hypotheses,
includingH2, H3 and H4 are accepted. In this case three type II errors are made.
Here for any n, the probability that some error will be made is > 1/4.

We conclude this section with the results of a simulation. As mentioned in
Cohen, Sackrowitz, and Xu (2009), the MRD procedure can be viewed as a fam-
ily of procedures that is parameterized by a set of constants C1, . . . , CM . MRDSS
has two more parameters: CL and CU .

The simulation concerns a multivariate normal model with a mean vector of
order 1000 × 1 and a covariance matrix which is intraclass with equal diagonal
elements and equal off-diagonal elements. The parameter points are such that
at most 25 percent are non-zero. This is not atypical for many practical models
when the number of hypotheses to be tested is very large. We perform MRDSS
and an FDR controlling step-up procedure at FDR level .05. Type I and type II
errors are compared as well as total number of mistakes. For MRD and MRDSS,
we compute the percent decrease of total number of mistakes relative to the
step-up procedure. For all simulations, we used 2000 iterations.

The simulation results are listed in Table 4.1. The step-up procedure is
the Benjamini and Hochberg (1995) FDR controlling procedure where FDR
= 0.05. For MRD and MRDSS we use the same set of constants (C1, . . . , CM)
as in Cohen, Sackrowitz, and Xu (2009), i.e., for α = 0.05, M = 1000, C1 =
Φ−1(1 − α/2M), Ci = 0.71Φ−1(1 − α/2(M − i + 1)), i = 2, . . . ,M . We set
CL = Φ−1(1 − α/2), CU = C1. For MRD and MRDSS, there is (usually sub-
stantial) improvement in both the expected number of type I and II errors.
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5. Equivalence of MRD and a forward selection method

For this section we assume the general linear model described in Section 2 with
σ2 known. We test Hi : βi = 0 vs Ki : βi 6= 0, i = 1, . . . ,M . Let C1 > C2 >
· · · > CM > 0 be a given set of constants.

Recall A = (a1, . . . , an) and let A be partitioned as (A1, A2) where A1 is
n × (m − 1) and A2 is n × (M − m + 1). Let V = R(A) be the linear space
spanned by the columns of A and V1 = R(A1) be the linear space spanned by the
columns of A1. Furthermore, let PV be the projection matrix for space V and
let P1 be the projection matrix for space V1. Let V2 = V ∩V ⊥

1 = R(A2·1), where
A2·1 = A2 − P1A2 = (a2·1m, . . . , a2·1M). Finally let P2 denote the projection
matrix for V2 so that PV = P1 + P2.

Forward selection methods are studied in Miller (2002) and many other texts
studying linear regression. They are methods that select fixed variables to enter
a linear regression model in steps. In the first step one considers the random vari-
ables (a′

iy)/σ ‖ai‖, i = 1, . . . ,M . The forward method selects the fixed variable
ai1 provided that

U1i1 = max
1≤i≤M

(|a′
iy|/σ ‖ai‖) > C1 . (5.1)

If U1i1 ≤ C1, no variables are chosen and the procedure stops. Now assume
(m − 1) variables have been selected. Without loss of generality say they are
(a1, . . . , am−1) = A1. Then at stage m, the method selects aim

provided

Umim
= max

m≤j≤M
(|a′

2·1jy|/σ ‖a2·1j‖) > Cm . (5.2)

If Umim
≤ Cm, the procedure stops. Thus at step m, the forward method is

tantamount to rejecting Him
: βim

= 0 by virtue of (5.2).
Note that the vector of components a′

2·1jy in (5.2) can be written as A′
2·1y.

Now recall MRD applied to β̂ ∼ N(β, σ2S−1). At step one the numerator of

the residual is proportional to Sβ̂ = A′y, which is the vector of components in
the expression in the numerator in (5.1). At step m, assuming Hi : βi = 0, i =
1, . . . , m−1 have been rejected, MRD deletes the first m−1 rows and first m−1
columns of S−1 and considers β̂2 ∼ N(β2,Λ22) where β2 = (βm, . . . , βM )′ and

S−1 =

(

Λ11 Λ12

Λ21 Λ22

)

, with Λ11 (m−1)×(m−1) and Λ22 (M−m+1)×(M−m+1).

The residuals Um at this step are proportional to Λ−1
22 β̂2. That is,

Um ∝ Λ−1
22 β̂2 . (5.3)

However, note
A1β̂1 + A2β̂2 = Aβ̂ = PV y . (5.4)

Multiply both sides of (5.4) by P2 to get

A2·1β̂2 = P2PV y = P2y . (5.5)

Since Λ−1
22 = A′

2A2 − A′
2P1A2 = A′

2·1A2·1, we find using (5.3) and (5.5) that

Um ∝ A′
2·1P2y = A′

2·1y . (5.6)
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Note that the components of (5.6) are (a′
2·1y), the unnormalized terms in the

expression (5.2). Thus we have proved

Theorem 5.1. For the assumption of the general linear regression model, the

forward selection method is equivalent to MRD.

Remark 5.2. Whereas the forward method and MRD are oftentimes not con-
sistent procedures, MRDSS and thus the forward method plus screening, plus
sign is consistent. It is interesting to note that Christensen (1987) p.288, claims
that the precise screening step we recommend is an improvement on the forward
method.

The backward method starts by assuming a linear regression model with M
parameters. At step 1, one can decide that βi1 = 0 if Ti1 = min1≤i≤M Ti(β̂) =

min1≤i≤M(|β̂i|/σβ̂i
) ≤ Cm. Otherwise the procedure stops and no variables are

eliminated.

At stage m, assuming without loss of generality that variables a1, . . . , am−1

have been eliminated, one considers residuals of the form

(β̂j − λj
(1,..,m−1)Λ−1

11(m−1)(β̂1 , . . . , β̂m−1)
′)/λ

1/2
j·(1,..,m−1) . (5.7)

where λ
(1,..,m−1)
j are the elements in the jth row of S−1 that represent the

covariance of β̂j and (β̂1 , . . . , β̂m−1)
′ ; Λ−1

11(m−1) represents the covariance ma-

trix of (β̂1, . . . , β̂m−1)
′ and λj·(1,..,m−1) is the conditional variance of β̂j given

β̂1, . . . , β̂m−1.

If minm≤j≤M of the terms in (5.7) ≤ CM−m+1, and the index is im then
decide βim

= 0 and continue. Otherwise stop.

Remark 5.3. The backward method is consistent under mild conditions (see
An and Gu, 1985). Nevertheless the backward method is akin in some sense
to the step-up method of multiple testing. They are identical at the first step.
As previously mentioned step-up methods are often inadmissible in normal and
exponential family models and it can be shown that the backward method would
sometimes be inadmissible for a risk function whose components are expected
number of type I errors and expected number of type II errors.

6. Exponential family models

There are many models involving distributions that belong to the exponen-
tial family. For example, hypothesis testing problems involving differences of
binomial parameters, Poisson parameters, and scale parameters of exponential
distributions. Such exponential family models lend themselves to a somewhat
straightforward extension of the MRDSS method and result in admissible and
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consistent MTPs. In this section we describe the extension. In other exponen-
tial family models it can be non-trivial to find (if such exist) functions with
the properties needed to play the roles of the analogues of MRD, screen and
sign stage. One such case is an R × C contingency table where the hypotheses
of interest concern all local log odds ratios. Such a case will be treated in the
companion paper by Chen, Cohen, and Sackrowitz (2009).

For exponential families, where the hypotheses of interest may be differences
or contrasts among natural parameters, we describe MRDSS.

Let Zα = (Z1α, . . . , Z(m+1)α)′, α = 1, . . . , n be independent (M + 1) × 1
random vectors representing independent one dimensional exponential family
distributions with natural parameter ωi, i = 1, . . . ,M+1. Thus the joint density
of the sufficient statistic Z̄ =

∑n
α=1 Zα/n is

fZ̄(z̄ | ω) = β(ω)h(z̄)enz̄
′ω

where ω = (ω1, . . . , ω(M+1))
′. Let G be a full rank M × (M + 1) matrix of

contrasts, let B =
(

G
F

)

, where the row F is a 1 × (M + 1) vector of 1. Now let
θ = Bω and note

z̄′ω = z̄′(B′B′−1)B−1θ = z̄′B′(BB′)−1θ

If we let X = nBZ̄, we find the density of X is

fX(x | θ) = β∗(θ)h∗(x)ex
′Σ−1θ (6.1)

where Σ = BB′. Further note that

Σ =

(

GG′ 0
0 M + 1

)

and Σ−1 =

(

(GG′)−1 0
0 1/(M + 1)

)

.

We wish to test Hi : θi = 0 vs Ki : θi 6= 0, i = 1, . . . ,M . Note that the
first M components of X are contrasts among the components of Z̄ while
XM+1 =

∑M+1
i=1 Z̄i. Also note that the density in (6.1) is similar to the den-

sity (2.1). The MRD stage for this model will entail residuals Wmj defined as
follows: The numerator of Wmj , the analogue of Umj of (3.2) , is defined ex-
actly as in (3.2). The denominator is defined as an estimator of the standard
deviation of the numerator assuming all ωi are equal. The estimator will be a
function of XM+1/(M + 1) which is the (M + 1)st component of x′Σ−1. The
term XM+1/(M +1) is the average of the Z̄i, i = 1, . . . ,M . Such a definition of
Wmj will ensure that MRD will be admissible in this case. The screen stage will
be determined by statistics whose numerators are the absolute values of |Xi|,
i = 1, . . . ,M and whose denominator is also a function of XM+1/(M +1). Such
statistics along with a sign stage based on the signs of W ∗

mji
and Xji

will ensure
that the resulting procedure will be admissible and consistent under conditions
similar to those assumed in the normal case.
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Appendix A: Proof of main theorem

Consider the setup where X , defined in Section 2, has density (2.1) with n = 1
and we wish to test Hi : θi = 0 vs Ki : θi 6= 0. Let ψi(X) be a test function
for Hi vs Ki. Let W = Σ−1X. A lemma concerning admissibility of any single
test, say ψi(X), is as follows:

Lemma A.1. A necessary and sufficient condition for ψi(X) = ψ∗
i (W) to

be admissible is that for almost every fixed {Wj , j = 1, . . . ,M ; j 6= i}, the

acceptance section of the test is convex in Wi.

Proof. See Matthes and Truax (1967)

Suppose, without loss of generality, we study the admissibility of ψ1(x). Ac-
cording to Lemma A.1 we will then regard W2, . . . ,WM to be fixed while W1

varies. Note that one way to study ψ∗
1(W) is to study ψ1(x + rg), where g

is the first column of Σ, as r varies. This is true since W is a function of x,
and so W evaluated at x + rg is equal to Σ−1(x + rg) = W + (r, 0, . . . , 0)′ =
(W1 + r,W2, . . . ,WM)′.

Note that the components of W are constants times the numerators of the
components of U1 defined in Section 3. Note further, assuming H1 has not yet
been rejected, that |Um1| as a function of r is decreasing and then increasing.
Here the function Um1 ∝W1 + r is strictly increasing in r. All this implies that
if |Um1| is decreasing in r then Um1 is negative, while when |Um1| is increasing
in r then Um1 is positive.

Next we define

Property L: A test is said to have Property L if there exists three points x,x∗ =
x + r1g,x

∗∗ = x + r2g, with 0 < r1 < r2, such that x and x∗∗ are accept points
and x∗ is a reject point when testing H1 vs K1.

Note that if a procedure has Property L (for a set of positive measure) then
it is inadmissible by virtue of Lemma A.1.

Proof of Theorem 4.1: The proof is by contrapositive. That is, we will assume
that Ψ1 of the MRDSS has Property L and then show that this impossible. That
is, we assume that for ψ1 there exists 3 sample points x, x∗ and x∗∗ for which
we accept, reject, accept (ARA) in that order with x∗ = x+ r1g,x

∗∗ = x+ r2g,
0 < r1 < r2, we must show this leads to a contradiction.

We will consider every possible way that the three stages of ψ1 might yield an
ARA sequence for the points x,x∗ and x∗∗ as defined before. Note that MRD
is admissible so that the sequence ARA is impossible at stage 1. The other 7
possible(first stage) test results for MRD are AAA, AAR, RAA, ARR, RAR,
RRA and RRR. Recall that screening(stage 2) can, potentially, reverse any stage
1 decision. However, the sign stage (stage 3) is applicable only when the stage
1 action was to Reject and no change was made at stage 2. As an example of
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the reasoning used to identify the possible paths suppose stage 1 results in the
sequence AAR. By definition stage 3 cannot impact the first two actions. Thus
the only two paths possible, begining with AAR, are AAR → ARR → ARA and
AAR → ARA → ARA. Following these rules we find that there are 18 paths
( listed in Table A.1 ) that must be studied. We will show that each of these
paths leads to contradiction.

Note that the fourth row in each cell of Table A.1 indicates how |Xi| relates
to the screen stage. This will help in showing that each of the 18 cases cannot
happen.

Table A.1

Possible paths leading to ARA of MRDSS

case 1 case 2 case 3
MRD A A A A A R A A R
MRD+Sc A R A A R A A R R
MRDSS A R A A R A A R A
|X1| < CU > CU < CU < CU > CU < CL < CU > CU > CL

case 4 case 5 case 6
MRD A R A A R R A R R
MRD+Sc Cannot occur A R A A R R
MRDSS A R A A R A
|X1| < CU > CL < CL < CU > CL > CL

case 7 case 8 case 9
MRD R A A R A A R A R
MRD+Sc A R A R R A A R A
MRDSS A R A A R A A R A
|X1| < CL > CU < CU > CL > CU < CU < CL > CU < CL

case 10 case 11 case 12
MRD R A R R A R R A R
MRD+Sc R R A R R R A R R
MRDSS A R A A R A A R A
|X1| > CL > CU < CL > CL > CU > CL < CL > CU > CU

case 13 case 14 Type8, case 15
MRD R R A R R A R R R
MRD+Sc A R A R R A A R A
MRDSS A R A A R A A R A
|X1| < CL > CL < CU > CL > CL < CU < CL > CL < CL

< CU

case 16 case 17 case 18
MRD R R R R R R R R R
MRD+Sc R R R R R A A R R
MRDSS A R A A R A A R A
|X1| > CL > CL > CL > CL > CL < CL < CL > CL > CL

< CU < CU < CU < CU < CU < CU < CU < CU < CU

At this point we note a fact.

F1: Consider x,x∗ = x + r1g,x
∗∗ = x + r2g, with 0 < r1 < r2. Then

|x∗1| ≤ max(|x1|, |x∗∗1 |).
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Now for the 18 cases listed in Table A.1. Cases 1, 2, 7, 9 and 15 violate F1 as
seen from the fourth row of the cells in Table A.1.

Case 3: From Table A.1 we see that a sign change occurred at x∗∗ when both
x1

∗∗ and Um∗1(x
∗∗) were positive. This contradicts the sign stage rule.

Case 4: Cannot occur since MRD is admissible.

Case 5: From Table A.1 we see that at x∗∗ the screen stage took a reject to
an accept implying |x∗∗1 | < CL. But |x∗1| > CL implying x∗1 < 0. But MRD is
ARR implying Um∗1(x

∗) > 0. Hence MRDSS being ARA is contradicted at x∗.

Case 6: From the first row in this cell we see that Um∗1(x
∗∗) > 0. From the

sign change at x∗∗, we find x∗∗1 < 0 which implies x∗1 < 0. But this violates the
sign rule.

Case 8: From the fourth row we find x∗1 < 0 which implies x1 < 0. Since MRD
is RAA, Um∗1(x) < 0. However from row 3 we have a sign change, implying a
contradiction.

Case 10: Again both Um∗1(x) < 0 and x1 < 0 contradicting a sign change.

Case 11: Both x∗∗1 and Um∗1(x
∗∗) are positive, contradicting a sign change.

Case 12: Same reasoning as Case 11.

Case 13: From the fourth row x∗1 > 0 and between CU and CL. From the first
row Um∗1(x) < 0. This contradicts row 3 at x∗.

Case 14: From the first row Um∗1(x
∗) < 0, Um∗1(x) < 0. Since there is

change at x1 due to sign, that implies x1 > 0, x∗1 > 0, and x∗∗1 > 0. From row 2,
x∗∗1 < CU . Hence CL < x1 < CU and also CL < x∗1 < CU . In particular x∗1 > 0.
This contradicts the sign change rule at x∗.

Case 16: Note that a sign action took place at x and at x∗∗. Applying F1,
we have CL < |x∗1| < CU . Now if x1 < 0 that implies Um∗1(x) > 0 which in
turn implies Um∗1(x

∗) > 0 and Um∗1(x
∗∗) > 0. Since there is a sign change at

x∗∗ then we have x∗∗1 < 0 which means x∗1 < 0 and a sign change should have
occurred at x∗. This is a contradiction. Now if x1 > 0, similar reasoning leads
to a contradiction at x∗.

Case 17: From the first two rows we conclude CL < |x∗1| and |x∗∗1 | < CL

implying x∗1 < 0 and therefore x1 < 0. The sign stage at x implies Um∗1(x) > 0
and therefore Um∗1(x

∗) > 0. But |x1| < CU and |x∗∗1 | < CL implies |x∗1| < CU .
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Hence we have CL < |x∗1| < CU and x∗1 < 0 and Um∗1(x
∗) > 0. This contradicts

the sign stage at x∗.

Case 18: From the first two rows we have |x1| < CL and |x∗1| > CL so
x∗1 > 0 implying x∗∗1 > 0. Since there is a sign action at x∗∗, |x∗∗1 | < CU

and Um∗1(x
∗∗) < 0 implying Um∗1(x

∗) < 0. Hence x∗1 > 0, x∗∗1 > 0, CL <
x∗1 < x∗∗1 < CU , implies there should have been a sign action at x∗. This is a
contradiction.

�
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