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SENSITIVITY OF INFERENCES IN FORENSIC GENETICS TO
ASSUMPTIONS ABOUT FOUNDING GENES

BY PETER J. GREEN AND JULIA MORTERA1

University of Bristol and Università Roma Tre

Many forensic genetics problems can be handled using structured sys-
tems of discrete variables, for which Bayesian networks offer an appeal-
ing practical modeling framework, and allow inferences to be computed by
probability propagation methods. However, when standard assumptions are
violated—for example, when allele frequencies are unknown, there is iden-
tity by descent or the population is heterogeneous—dependence is generated
among founding genes, that makes exact calculation of conditional probabil-
ities by propagation methods less straightforward. Here we illustrate differ-
ent methodologies for assessing sensitivity to assumptions about founders in
forensic genetics problems. These include constrained steepest descent, linear
fractional programming and representing dependence by structure. We illus-
trate these methods on several forensic genetics examples involving criminal
identification, simple and complex disputed paternity and DNA mixtures.

1. Introduction. Forensic genetics is concerned with a variety of inferential
problems based on DNA profile data, for example, involving criminal identifica-
tion or disputed paternity. Inference in these settings is carried out under an as-
sumed probability model, a structured stochastic system of (largely) discrete vari-
ables, including typically genes and genotypes of the individuals involved. In such
problems, some of the probability distributions specifying the model are not truly
known with certainty.

In discrete models in the forensic genetics setting, there are two main aspects of
such model uncertainty: (a) assumptions about founders—the default assumption
being that all individuals of unknown genotype whose parents are not part of the
model are assumed drawn from a homogeneous population in the Hardy–Weinberg
equilibrium, with known allele frequencies, and (b) assumptions about mutation—
the default being that there is none. Everything else is determined by Mendelian
inheritance (granted that the choice of genetic markers used in these problems rules
out linkage disequilibrium).

In this paper we examine the first of these two issues, and study the effect of
varying assumptions on the “founding genes,” that is, the variables in the model
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that represent genes inherited from individuals not explicitly represented. Several
concrete phenomena:

• unknown allele frequencies,
• identity by descent among founders,
• heterogeneity (the existence of subpopulations),
• lack of the Hardy–Weinberg equilibrium,

that generate correlations between founding genes can be studied by considering
the effect of perturbing the joint distribution of the founding genes on the condi-
tional probabilities (posterior inferences) of interest.

Bayesian networks, with inferences computed by probability propagation meth-
ods (“junction tree algorithms”), offer an appealing practical modeling framework
for structured systems involving discrete variables in numerous domains, includ-
ing forensic genetics, and we will make extensive use of such networks for model
specification and computation of inferences. Other authors have approached re-
lated questions of sensitivity using an algebraic approach; see Laurie and Weir
(2003), Weir (2007b), Song and Slatkin (2007) among others. However, building
on that of Dawid et al. (2002) and subsequent authors, our experience suggests
that a Bayesian network approach, although not delivering an explicit algebraic
solution, is more flexible and powerful, especially in complex settings.

The outline of the paper is as follows. Brief introductions to the genetic termi-
nology used is given in Section 2 and to Bayesian networks in Section 3.1; the
different methodologies for assessing sensitivity are discussed in Section 3. Vari-
ous forensic identification examples are illustrated in Section 4, and in Section 5, a
number of scenarios are discussed that are variations on the baseline assumptions,
such as uncertain allele frequencies, identity by descent, population heterogeneity
and combinations thereof. Results for the baseline and these scenarios are shown
in Section 6, and finally in Section 7 we draw conclusions and discuss further
developments.

2. Genetic background. To set the scene, we need some basic facts about
DNA profiles; for a more detailed explanation see Butler (2005).

Here we adopt a slightly nonstandard usage of the term gene, which for our
purpose is simply defined as an identified stretch of DNA and is the entity trans-
mitted from parent to offspring. More precisely, a gene is a particular sequence of
the four bases, represented by the letters A, C, G and T. A specific position on a
chromosome is called a locus (hence, there are two genes at any locus of a chromo-
some pair). A DNA profile consists of measurements on the genotype at a number
of forensic markers, which are specially selected loci on different chromosomes.
Each genotype consists of an unordered pair of genes, one inherited from the father
and one from the mother (though one cannot distinguish which is which). When
both alleles are identical the actor is homozygous at that marker, and only a single
allele value is observed; otherwise the actor is heterozygous.
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Current technology uses around 8–20 short tandem repeat (STR) markers. At
each marker, each gene has a finite number (up to around 20) of possible values,
or alleles, generally positive integers. For example, an allele value of 5 indicates
that a certain word (e.g., CAGGTG) in the four letter alphabet is repeated exactly 5
times in the DNA sequence at that locus.

In statistical terms, a gene is represented by a random variable, whose realized
value is an allele.

In a particular forensic context, we will refer to the various human individuals
involved in the case as “actors.” An actor’s DNA profile comprises a collection of
genotypes, one for each marker.

Assuming Mendelian segregation, at each marker a parent passes a copy of just
one of his or her two genes, randomly chosen, to the child, independently of the
other parent and independently for each child. Databases have been gathered from
which allele frequency distributions, for various populations, can be estimated for
each forensic marker. Throughout this paper, our numerical examples use the allele
frequencies reported in Butler et al. (2003).

The Hardy–Weinberg law states that the relative proportion of genotypes, with
respect to a given locus, remains constant in a population so long as mating is
random. If there is independence in the inheritance of genes at loci on the same
chromosome pair, these loci are said to be unlinked. In standard forensic identifi-
cation problems it is customary to assume the Hardy–Weinberg equilibrium, and
that loci are unlinked, which corresponds to assuming independence within and
across markers.

3. Methodology for assessing sensitivity.

3.1. Bayesian networks. A Bayesian network (BN) is a discrete multivariate
probability model represented as a directed acyclic graph (DAG). Its formula-
tion as a network provides a joint graphical and numerical representation allow-
ing the application of fast general-purpose algorithms to compute inferences. In a
Bayesian network, complex interrelationships are broken down into simple local
dependencies, from which a full graphical representation can be built in a modular
fashion. A genetic pedigree fits naturally into this framework: the family relation-
ships constitute the local graphical modules, with the required conditional proba-
bility tables being simply specified, for example, by Mendel’s laws of inheritance,
or by the logical relationship between a genotype and its constituent genes.

We give a brief introduction to the basic elements of a Bayesian network; for fur-
ther details see Cowell et al. (1999). The DAG D underlying a Bayesian network
represents qualitative relationships of dependence and independence between vari-
ables; D consists of a set V of nodes, and directed links, drawn as arrows. Each
node v ∈ V represents a random variable Xv . The set pa(v) of parents of a node
v are those nodes in D out of which arrows into v originate. The quantitative
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structure of a Bayesian network is expressed in terms of a set of conditional prob-
ability distributions. The full joint probability density of (Xv, v ∈ V ) is defined
by p(x) = ∏

v∈V p(xv|xpa(v)). Algorithms such as that by Lauritzen and Spiegel-
halter (1988) transform the graph D into a new representation called a junction
tree of cliques which allows efficient computation of the conditional probability
p(xv|xA), for any v ∈ V , any set of nodes A ⊆ V and any configuration xA of
the nodes XA. The nodes in A would typically be those at which we observe and
input evidence XA = xA. A node v at which the conditional distribution given the
evidence is desired might be termed a target node.

3.2. Marginal posteriors in a Bayesian network. For forensic genetics it is
useful to partition the set of variables in the joint probability model (which corre-
spond to a set of nodes in the corresponding Bayesian network model) disjointly
as

X = F ∪ E ∪ T ∪ O,(1)

corresponding to Founding genes, Evidence (that is, data), Targets and Others.
We suppose that there is a single binary target, taking values T = 1 and 0, which
correspond, for example, in criminal identification, to the true/false state of the
hypothesis that the suspect left a trace at the scene of a crime.

In forensic genetics problems the weight of the evidence in favor of a hypothesis
is generally expressed as a likelihood ratio. Our focus of attention in this paper is,
therefore,

h(f ) = log
P {T = 1|E}
P {T = 0|E} ,

the logarithm of the likelihood ratio (LR) for the hypothesis represented by T ,
given the data or evidence E. This will be expressed as a function of the joint
distribution f of the founders F , written as a vector indexed by the vector of values
of the founding alleles: P {F = i} = fi. Let pt i = P {T = t,E|F = i} for t = 0,1
and all i, and write pt for the vector of pt i for all i, so that P {T = t,E} = pT

t f .
Then

h(f ) = log
P {T = 1|E}
P {T = 0|E}

= log
P {T = 1,E}
P {T = 0,E}

= log

∑
i P {T = 1,E|F = i}fi∑
i P {T = 0,E|F = i}fi

= log
pT

1 f

pT
0 f

.
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The basis for our study is to evaluate variations in the value of h(f ) as f varies
from the default or baseline assumptions f0 (typically homogeneous population,
known frequencies, Hardy–Weinberg). In the following subsections we discuss
several approaches to doing so.

3.3. Representing dependence by structure. The most straightforward ap-
proach to the numerical assessment of sensitivity of h(f ) to specific changes in f

is simply to set up and run a Bayesian network (BN) for a variety of alterna-
tive settings for f . This need not be too cumbersome for a small collection of
alternative f s if the BN calculation can be conducted in a suitable programming
environment (see Appendix A.3).

Many of the alternative f s that will be of interest, unlike the baseline f0, will
impose dependence among founding genes. This arises in the case of uncertainty
in allele frequencies, for identity by descent, and often in the presence of subpop-
ulation structure. Dependence can of course be handled within the discrete BN
formalism, by elaborating the DAG of the model with additional parent–child con-
nections between founding genes, as necessary. It is immediate to see how to do
this for cases of subpopulation structure; methods for dealing with uncertain al-
lele frequencies and identity by descent through model structure are deferred to
Section 5.2 and Section 5.3 respectively.

3.4. Multiple markers.

3.4.1. Marker data may not be conditionally independent. Forensic genetics
routinely uses from 8 up to 20 markers simultaneously, in order to increase the
power of the inference. Thus, the evidence E has a component Em for a number
of markers m = 1,2, . . . ,Nm. The standard assumption is that the {Em} are inde-
pendent, given T , which arises by design, since markers are generally chosen from
different chromosomes (and to be neutral in selection terms). In such a case, we
have immediately that likelihood ratios for T obey the “product rule”:

P {E|T = 1}
P {E|T = 0} =

Nm∏
m=1

{
P {Em|T = 1}
P {Em|T = 0}

}
,(2)

so that BN calculations can be run separately for each m, and trivially aggregated
for the required combined inference.

However, if there are unobserved variables, other than T , common to all markers
and correlated with them, then this conditional independence, and the product rule,
will fail. As we will see, this applies to identity by descent, and to some cases of
population substructure.

The most straightforward approach to dealing with the complication of multiple
markers, when the product rule (2) fails, is to extend the model to handle all mark-
ers simultaneously. This is fairly routine if the structural approach of Section 3.3
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is being used, given a suitable programming environment. However, the computa-
tional time and space requirements of a BN to handle all markers simultaneously
typically grow rapidly with the number of markers, so it is of interest to seek alter-
native approaches.

3.4.2. Computing across-marker inferences using within-marker BNs. Con-
sider the following joint probability model for marker data E = {Em,m =
1,2, . . . ,Nm}. There is a latent variable R typically coding the relationship be-
tween the actors, and a target variable T of interest. In terms of the general notation
of Section 3.2, R is part of O .

We assume

p(T ,R,E) = p(T )p(R)

Nm∏
m=1

p(Em|T ,R),(3)

that is, that markers are conditionally independent, given only the target node T

and the relationship variable R.
To calculate likelihood ratios between values of T , we need the marginal likeli-

hoods P(E|T ), which can be expressed

p(E|T ) = ∑
R

p(R)
∏
m

p(Em|T ,R)

= p(T )−Nm
∑
R

p(R)
∏
m

p(Em,T |R)

since T and R are independent a priori. Probability propagation algorithms, such
as those presented by Lauritzen and Spiegelhalter (1988) and Lauritzen (2003),
when run on a Bayesian network with evidence Em, for each marker m and value
of R separately, deliver precisely p(Em,T |R), providing their output is left unnor-
malized.

The correct overall marginal likelihoods can thus be obtained simply by multi-
plying the BN output tables over markers and then averaging with respect to P(R).

At the same time, the marker-specific likelihood ratios can be obtained from

p(Em|T ) = p(T )−1
∑
R

p(R)p(Em,T |R)

and the (incorrect) answer obtained from the “product rule” is the result of multi-
plying these values together; it is clear that (2) does not hold. In brief, the product
rule is in error by averaging the marginal likelihoods p(Em,T |R) over R before
multiplying over m.

This approach is available whenever (3) applies, whatever the interpretation of
the latent variable R, and will be practical, providing R does not take too many
distinct values.

A more subtle variation can reduce the scale of the computation. Suppose there
are within-marker latent variables π = {πm,m = 1,2, . . . ,Nm} (in the case of
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identity by descent, these code the pattern of identity among genes for the re-
spective markers), and suppose

p(T ,R,π,E) = p(T )p(R)

Nm∏
m=1

{p(πm|R)p(Em|T ,πm)}.(4)

Then the marginal likelihood can be manipulated as follows:

p(E|T ) = ∑
R

p(R)
∏
m

{∑
πm

p(πm|R)p(Em|T ,πm)

}

= ∑
R

p(R)
∏
m

{∑
πm

p(πm|R)p(Em,T |πm)/p(T |πm)

}

= p(T )−Nm
∑
R

p(R)
∏
m

{∑
πm

p(πm|R)p(Em,T |πm)

}
.

This demonstrates that the required combined inference can also be obtained
from within-marker BN calculations for each marker m and each value of the latent
variable πm. Each BN in this case will be somewhat simpler since the global latent
variable(s) R are not involved.

The relative computational cost of the two alternative calculations depends on
the numbers of distinct values taken by R and by {πm}.

3.5. Constrained steepest descent (CSD). A more analytic and potentially
more general approach to deal with whole classes of alternative f is to aim to
bound differences |h(f ) − h(f0)| in terms of ‖f − f0‖ and, in particular, study
this for infinitesimal departures from f0. In the absence of constraints on f , the
direction in which h varies most steeply is of course given by the gradient of h.

The gradient of the log LR h at f satisfies

((∇h)(f ))i = p1i

pT
1 f

− p0i

pT
0 f

,

that is,

(∇h)(f ) = (pT
1 f )−1p1 − (pT

0 f )−1p0 = g,

say.
In practice, there will be constraints on f ; in particular, it must be a probabil-

ity distribution, necessitating bound constraints for nonnegativity and the equality
constraint f T 1 = 1. We may also wish to impose symmetry constraints, arising
from considerations of exchangeability between certain actors, or their genes, and
so on. In this paper we consider only linear equality constraints on f , together with
the ubiquitous nonnegativity bound constraints. Since f is representing the (com-
pletely general) founding gene distribution as a vector of (joint) probability values,
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linear constraints on such vectors form a very general class of constraints—on the
values of any moments, or probabilities, for example.

The constrained direction of steepest descent/ascent is the projection of the gra-
dient vector of the objective function at the point in question onto the orthogonal
complement of the constraints.

More explicitly, given a real function h of a n-vector argument, the n-vector δ

that maximizes limε→0 ε−1|h(f0 + εδ) − h(f0)| subject to ‖δ‖ = 1 and XT δ = 0
is given by δ = (I − H)g/‖(I − H)g‖, where g is the gradient of h at f0, H =
X(XT X)−XT and ‖ · ‖ denotes euclidean norm. In the language of linear models,
we regress g on X and scale the residuals to have norm 1.

One approach to reporting sensitivity of inferences to perturbations to f0 of
magnitude ε is to deliver the maximum and minimum of h(f ) for f lying on the
line of constrained steepest descent, subject to fi ≥ 0, ‖f −f0‖ < ε. These cannot
strictly be interpreted as bounds, since they are based on a linearization of h(f )

and because the nonnegativity constraint may by chance bite particularly severely
in the constrained steepest descent direction.

It may also be of interest to weight the coordinate directions unequally, replac-
ing the spherical neighborhood of f0 implicit in the derivation above by an el-
lipsoidal one. This would allow, for example, approximating relative departures
from f0 instead of absolute ones. Given a symmetric positive definite matrix W ,
we then seek the n-vector δ to maximize limε→0 ε−1|h(f0 +εWδ)−h(f0)| subject
to ‖δ‖ = 1 and XT Wδ = 0. The optimizing direction δ is W(I − HW)g/‖W(I −
HW)g‖, where HW = X(XT W 2X)−XT W 2.

3.6. Linear fractional programming (LFP). A second analytic method ex-
ploits the linear fractional form of exp(h(f )) = pT

1 f /pT
0 f as a function of f .

Linear fractional programming concerns the problem of minimizing a function of
the form

α0 + αT x

β0 + βT x

over nonnegative variables x = (x1, x2, . . . , xn) subject to linear equality or in-
equality constraints. There are various approaches [Bajalinov (2003)], but the most
straightforward reduces this to a standard linear programming problem. Exposi-
tions of this approach are either sketchy or rather inaccessible [Vajda (1975); Gass
(1969); Charnes and Cooper (1962)], so we give the basic details here.

Suppose the linear constraints are of the form
n∑

j=1

aij xj ≤ bi for i = 1,2, . . . , c.

Other equality or inequality constraints, in any combination, are treated similarly.
We suppose that the set of feasible x is bounded. Then it is readily shown that
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the optimization can be performed by running two artificial linear programs, each
minimizing

α0y0 + αT y

over the (n + 1) variables (y0,y = (y1, y2, . . . , yn)) subject to
n∑

j=1

aij yj − biy0 ≤ 0 for i = 1,2, . . . , c.

β0y0 + βT y = δ and y0, y1, . . . , yn ≥ 0,

where δ = +1 in one problem and −1 in the other. The solution (y�
0,y�) for

whichever of these problems gives the smaller minimum is used (often, in fact,
only one of the two problems has feasible solutions) and then

x�
j = y�

j

y�
0

gives the optimum for the original problem.
Returning to our problem of interest, linear fractional programming allows us

to find the minimum and maximum of the log LR = h(f ), subject to an arbitrary
set of linear constraints XT f = XT f0, as in Section 3.5, and linear bounds on the
difference between f and f0, for example, maxi |(f − f0)i| ≤ ε (i.e. that the total
variation norm is less than ε).

In this setting the calculations can be simplified, since the coefficients in the lin-
ear combinations of fi in the numerator and denominator of the posterior odds are
nonnegative. It then turns out that the LP problem with δ = −1 is never feasible,
so only the δ = +1 computation need be done.

As in Section 3.5, we can readily weight the coordinate directions unequally,
and amend this to seek the extremes of the log LR within the hyper-rectangle
maxi |(f − f0)i/wi| ≤ ε—the resulting bounds are still linear.

For both this approach and that of constrained steepest descent, Section 3.5,
the dimension of the free variable f in the optimization scales exponentially with
number of markers, so the only realistic possibility of using these bounds numeri-
cally for multiple markers, when markers are dependent, would involve exploiting
the identities in Section 3.4.2.

4. Example settings. We consider four examples, two from criminal law, a
case of simple criminal identification and a DNA mixture, and two from paternity
cases, simple paternity and disputed sibship. The data for the DNA mixture and
the paternity cases were based on real forensic casework. In all the examples given
there are two competing hypotheses H0 and H1 and the strength of the evidence in
favor of H0 is given by the likelihood ratio

LR = P(E|H0)

P (E|H1)
,
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where the evidence E consists of measurements on a set of DNA markers. The
hypotheses H0 and H1 correspond to the two values of the Boolean target T of
Section 3.2.

We introduce the four examples in turn, with sample data, using a mix of alge-
braic and graphical formulations of the probability models we need. Only the first
example is covered in full detail; for the other examples, in order to save space, we
concentrate only on the additional features each introduces.

4.1. Criminal identification. A pictorial representation of a simple criminal
identification case, with a single charge against a single suspect, together with its
expanded version, is shown in Figure 1. The evidence might be that the suspect’s
DNA profile matches the one found at the crime scene. Suppose we are interested
in testing the prosecution hypotheses H0: the crime trace belongs to the suspect s
(loosely, “the suspect is guilty”); versus the defense hypothesis H1: the crime trace
belongs to another actor as randomly drawn from the population. Representation
of such problems as Bayesian networks was introduced by Dawid et al. (2002),
and as object-oriented Bayesian networks by Dawid, Mortera and Vicard (2007).

The target T of the inference is the Boolean variable S guilty?, whose values
true and false correspond to H0 and H1 respectively.

The two actors, s and as, are each fully described by three variables for each
marker m, the paternal gene, maternal gene and genotype, denoted, for exam-
ple, by (spgm,smgm,sgtm). For each marker and each actor, the genotype is
determined as the logical combination of the corresponding genes, for example,
p(asgtm = {8,11}|aspgm = 8,asmgm = 11) = 1. All genes for both actors
are initially assumed drawn i.i.d. from prescribed allele frequencies for the cor-
responding marker.

For each marker, tracem represents the crime scene trace for that marker, and
is modeled as identical to sgtm or asgtm according to whether S guilty?

FIG. 1. (Left) Block-level network for criminal identification, showing actors s and as, crime trace
and target. (Right) Expanded network revealing variables within each block node.
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TABLE 1
DNA profiles of crime scene trace and suspect

Marker D13 D3 D5 D7 FGA THO1 TPOX VWA

sgt & trace 9 14 11 17 9 11 10 10 21 22 7 7 10 11 18 18

is true or false, respectively. For example, p(tracem = sgtm|sgtm, asgtm,

S guilty? = true) = 1. Our task is to compute the likelihood ratio for
S guilty? corresponding to the observed evidence that tracem and sgtm

coincide, with values given in Table 1.
We can write the joint distribution of all variables as

p(S guilty?)
∏
m

[p(spgm)p(smgm)p(aspgm)p(asmgm)]

× ∏
m

[p(sgtm|spgm,smgm)p(asgtm|aspgm,asmgm)(5)

× p(tracem|sgtm,asgtm,S guilty?)],
the conditional independence structure of which is represented at a block level
by the DAG in Figure 1. In the expanded version of the network in Figure 1, the
variables within each block are visible, although the inner DAG structure is hidden.
It shows the correspondence to the factors in (5), and the blocks are annotated
according to partition (1).

In this paper we examine departures from the baseline assumptions of indepen-
dence of all the variables {spgm,smgm,aspgm,asmgm,m = 1,2, . . . ,Nm}, so
the factor

∏
m[p(spgm)p(smgm)p(aspgm)p(asmgm)] in (5), corresponding to

baseline f0, will in general be replaced by a different but appropriate joint distrib-
ution.

4.2. Mixed trace. When several actors may have contributed to a DNA sample
left at a crime scene we encounter the problem of mixed traces. Here we consider a
mixed trace, based on a real murder case which took place in Firenze. The mixture
was assumed to be from two actors and we wish to test the hypothesis H0: s&v
that the suspect s and the victim v contributed to the mixture, as compared to
the hypothesis H1: as&v that an unknown actor in the population, as, and the
victim contributed to the mixture. One might alternatively consider an additional
unknown actor av instead of the victim, in which case the hypotheses are H0:
s&av and H1: as&av. For a general description of the problem of DNA mixtures
we refer to Mortera, Dawid and Lauritzen (2003). The evidence E consists of
the suspect’s and the victim’s genotypes and the DNA mixture composition as
shown in Table 2. The presence of three and four alleles for markers D7 and FGA,
respectively, are a clear indication that the trace is a mixture from more than one
contributor.
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TABLE 2
Data showing mixture composition, suspect’s and victim’s genotypes

Marker mix sgt vgt

D13 8 11 8 8 8 11
D3 16 18 18 18 16 16
D5 12 13 12 13 12 12
D7 8 10 11 8 10 8 11
FGA 22 24 25 26 22 26 24 25
THO1 6 7 6 7 6 7
TPOX 8 11 8 8 8 11
VWA 17 18 17 17 17 18

Figure 2 shows the top-level network which can be used for analyzing a mixture
with two contributors, p1 and p2. Nodes s, v, as and av represent the suspect, the
victim and two unknown actors. Only the genotypes, sgt etc., for the four actors
contribute to the rest of the model specification. Boolean node p1=s? represents
the hypothesis that contributor p1 is the suspect. The variable p1gtm selects be-
tween sgtm and asgtm according to the true/false state of the Boolean variable
p1=s?, in the same way as S guilty? is used to switch between sgtm and
asgtm in the previous section. A similar relationship holds between the variables
p2gtm vgtm, avgtm and p1=v?. The target node is the logical combination
of the two Boolean nodes p1=s? and p2=v? and represents the four different
hypotheses described above.

In the baseline model for this example, the founding actors s, v, as and av
each have paternal and maternal genes drawn for each marker independently from
the gene pool for the appropriate population. This completes the joint distribution
for all variables in the model which could be written out in expanded form as in

FIG. 2. Network for a DNA mixture from two contributors.
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equation (5), but in this and subsequent examples, we suppress this representation
to save space.

Genotype information on the suspect and/or the victim is entered by fixing the
values of sgtm and vgtm. The variable mixm represents the mixed trace given by
all possible combinations of alleles from contributors p1 and p2, and information
on the alleles seen in the mixture is entered there. All the evidence can be propa-
gated by the Bayesian network calculations to find the required marginal posterior
distribution for target.

4.3. Simple paternity testing. In a simple disputed paternity case, shown in
Figure 3, we have an alleged family triplet formed by a disputed child c, its undis-
puted mother m and the putative father pf. DNA profiles are obtained from c, m
and pf. On the basis of this evidence E, we wish to assess the likelihood ratio for
the hypothesis of paternity, H0: tf=pf?= true, the true father tf is the putative
father; as against that of nonpaternity H1: tf=pf?= false, the true father is an al-
ternative actor af, randomly drawn from the population. Thus, tf=pf? switches
deterministically between two alternatives, as seen in the previous examples; the
only difference here is that this switching is now at the level of paternal and ma-
ternal genes, not the genotype. The corresponding factors in the joint probability
model are therefore∏
m

[p(tfmgm|pfmgm,afmgm,tf=pf?)p(tfpgm|pfpgm,afpgm,tf=pf?)].

The genes are needed since in Figure 3 the representation of c as a child of m
and tf signifies the independent random draws of the child’s genes from those of
its parents according to Mendel’s law, independently for each marker.

The baseline assumptions in this case will be that the paternal and maternal
genes at each marker for each of m, af and pf are drawn independently from the
relevant populations.

Table 3 gives the paternity testing evidence that we analyze in Section 6.

4.4. Disputed sibship. The pedigree in Figure 4 represents a real case of dis-
puted inheritance, essentially a more complicated paternity dispute. We have an

FIG. 3. Pedigree for simple disputed paternity.
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TABLE 3
Paternity testing data showing genotypes of mother, child and putative father

Marker mgt cgt pfgt

D13 10 13 13 13 11 13
D3 16 17 16 17 17 18
D5 11 12 11 11 11 11
D7 10 12 10 11 11 12
FGA 23 23 21 23 21 23
THO1 6 6 6 7 7 7
TPOX 8 11 8 11 11 11
VWA 18 18 18 18 17 18

undisputed family with two children m2, tf2, c21 and c22 and it is questioned
whether the deceased father tf2 is also the true father tf1 of a child c1 by an-
other mother m1. The target hypothesis of interest is represented by the Boolean
node tf1=tf2? which embodies the two hypotheses that tf2 is the father of c1
or not, according as its value is true or false.

In this example, the baseline assumptions are that the paternal and mater-
nal genes at each marker for each of m1, m2, af and tf2 are drawn indepen-
dently from the relevant populations. The complete joint distribution, following
the schematic structure of Figure 4, is thus a product of terms of the kind met in
earlier examples: factors for these founding genes, for the Mendelian inheritance
of genes for the three children, and selection (of both genes for all markers) be-
tween af and tf2 according to the value of tf1=tf2?, similarly to the selection
in Section 4.3.

The data available are given in Table 4 and comprise only the genotypes of m2,
c21, c22, m1 and c1.

5. Variations on baseline assumptions. We now describe the different sc-
enarios—uncertainty in allele frequencies, identity by descent and population

FIG. 4. Pedigree for disputed sibship.
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TABLE 4
Disputed sibship data

Marker m1gt c1gt m2gt c21gt c22gt

D13 10 13 13 13 12 12 11 12 12 13
D3 16 17 16 17 15 18 15 18 15 18
D5 11 12 11 11 11 11 11 11 11 11
D7 10 12 10 11 10 10 10 10 10 10
FGA 23 23 21 23 24 25 20 25 20 24
THO1 6 6 6 7 9 9.3 7 9 7 9.3
TPOX 8 11 8 11 10 11 10 10 10 10
VWA 18 18 18 18 17 20 17 18 18 20

substructure—to be considered as departures from the baseline assumptions, in
each of the four examples of the previous section. In each example the baseline
is that, for each marker, all founding genes are drawn independently from defined
“gene pools” with specified allele frequencies. Our variant scenarios all replace
this baseline assumption by a different joint distribution for these founding genes,
for which we propose appropriate probability models, again using a mix of al-
gebraic and graphical formulations. For definiteness we will concentrate in the
following discussion on the implications for simple criminal identification (Sec-
tion 4.1). All of the other examples can be handled similarly.

5.1. Coancestry coefficients. The standard approach to allowing for depar-
tures from the baseline assumptions in genetic calculations is to capture the “ambi-
ent” degree of relatedness in a population by means of a single scalar parameter θ ,
which we call here the coancestry coefficient. The concept is found in many dif-
ferent guises in the literature, reflecting the diversity of causes for dependence
between genes drawn randomly from a gene pool, and the multiplicity of mod-
els for this dependence. Informally, θ is the “proportion of alleles that share a
common ancestor in the same subpopulation” [Balding and Nichols (1994)]. It
can be identified with Wright’s measure of interpopulation variation FST [Wright
(1940, 1951)].

For a more explicit definition, suppose that n genes have been drawn at random,
of which m are allele a, then the probability that the next gene is also allele a is

mθ + (1 − θ)ρ(a)

1 + (n − 1)θ
= m + αρ(a)

n + α
,(6)

where ρ(a) is the marginal probability of drawing the allele a, and α = (1 − θ)/θ .
Used recursively, this relation determines the joint distribution of any finite set of
genes g1, g2, . . . , gn. This can be written


(α)


(n + α)

n∏
i=1

{∑
j<i

δ(gj , gi) + αρ(gi)

}
,(7)
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where δ(·, ·) is the Kronecker delta, and ρ(·) is the marginal allele distribution.
This joint distribution represents one of the variations f to the baseline distri-
bution f0. The informal definition of θ mentioned above arises since for two
genes we can easily derive the joint distribution p(g1, g2) = (1 − θ)ρ(g1)ρ(g2) +
θδ(g1, g2)ρ(g1).

We can interpret (6) as saying that the next gene is with probability 1/(n + α)

a copy of each of the preceding n genes (whatever the patterns of equality among
them), and with probability α/(n + α) an independent random draw from the
gene pool. We recognize this as the Pólya urn scheme [Blackwell and MacQueen
(1973)] corresponding to a Dirichlet process model [Ferguson (1973)], albeit one
with, unusually, a discrete base measure. A particular consequence is that the joint
distribution (7) determined by (6) is exchangeable, so that the order in which genes
are introduced does not matter.

The value θ = 0 (α → ∞) corresponds to independent sampling from {ρ(·)},
and positive values to positive dependence due to population coancestry. The
model has been used ubiquitously to adjust for coancestry, whether due to iden-
tity by descent [e.g., Balding and Nichols (1995) and Ayres and Balding (2005)],
population structure [e.g. Fung and Hu (2004)], or for other reasons.

The strength of this approach to dependence lies in the convenience of captur-
ing complex patterns of dependence with multiple causes in a single number, the
weakness is that it can be at best a crude approximation to suppose that the de-
pendence among the founding genes in a particular setting follows such a simple
process as (6).

5.2. Uncertain allele frequencies (UAF). In reality, the allele frequencies as-
sumed when conducting probabilistic forensic inference against an assumed back-
ground population are not fixed probabilities, but empirical frequencies in a data-
base. An imperfect idealization is to regard these databases as independently
drawn random samples from corresponding populations. Assuming a Dirichlet
(δ(1), δ(2), . . . , δ(k)) prior and multinomial sampling with sample size n, the pos-
terior distribution of a set of probabilities r = (r(1), r(2), . . . , r(k)) is Dirich-
let (Mρ(1),Mρ(2), . . . ,Mρ(k)), where M = n + ∑

i δi , and ρ = (ρ(1), ρ(2),

. . . , ρ(k)) are the posterior means.
Our model for uncertain allele frequencies is that the founding genes (apg,

amg, bpg and bmg, for example) are drawn i.i.d. from the distribution r across
alleles, which in turn has the above Dirichlet distribution in which ρ are the data-
base allele frequencies. The variation in r induces dependence among apg, amg,
bpg and bmg, but in contrast to the case of identity by descent (illustrated in Sec-
tion 5.3), there is still independence across markers.

In general, drawing the founding genes g1, g2, . . . , gn conditionally indepen-
dently from r, where r is in turn drawn from a Dirichlet prior, corresponds ex-
actly to the standard set-up for a Dirichlet process model, specifically, that defined
by (7), with α = M . The Pólya urn scheme for this model can be stated explicitly
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FIG. 5. Network for Pólya urn scheme.

as follows. The first gene g1 is drawn fromρ. Then with probability 1/(M + 1), g2
is set equal to g1, and otherwise is a fresh random draw from ρ. In general, gn is
equal to each of g1, g2, . . . , gn−1 with probability 1/(M + n − 1) each, and with
the remaining probability M/(M +n− 1) is an independent random draw from ρ.
This is the same mechanism as described in the previous subsection, so perhaps
surprisingly the model (7) is a more appropriate description of uncertainty in allele
frequencies than identity by descent.

The urn scheme is amenable to representation as a Bayesian network, with
founder nodes that include the independent random draws from the gene pool, and
terminal nodes the required g1, g2, . . . , with intermediate nodes carrying out the
required switching. This can be set up in various ways; in the interests of compu-
tational time and space in probability propagation, it is generally best to organize
the net so that all choices are binary. This procedure of “divorcing” creates smaller
clique tables in the Bayesian network [Jensen (1966)]. The result is represented by
a network whose DAG is shown in Figure 5 and which is set out in pseudo-code
in Appendix A.1.

5.3. Identity by descent (IBD). When two actors, say, a and b, in a case are
related, it is no longer correct to regard their genes apg, amg, bpg and bmg as
random variables independent a priori (and independent across markers), since
Mendelian inheritance from their common ancestor(s) induces dependence be-
tween their genes. This is called identity by descent [Cotterman (1974); Thompson
(1974)]. Wright (1940) devised an “island model” for a compound population, in
which a finite “island” population is regularly refreshed with immigration from
an infinite “mainland” population with constant allele frequencies. The actors are
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drawn randomly from the island population, and the immigration bottleneck in-
duces dependence among their genes that can be taken to describe identity by
descent. Wright obtained a distribution equivalent to (6) for the dependence be-
tween genes. The same result has been derived for a more flexible birth–death–
immigration process by Rannala (1996).

The standard practice of adjusting the formulae for the required likelihood ra-
tios using the corresponding value of θ = FST as in Balding and Nichols (1995)
assumes no specific relationship between the actors, so may give a poor approx-
imation to the truth in situations where such relationships (or their probabilities)
can be assumed. Further, the standard approach ignores the fact that relatedness,
where the relationship is uncertain, induces dependence between markers, as men-
tioned in Section 3.4.1. Here we set up a probabilistic formulation that does capture
all the dependencies, if the analyst is prepared to model the specific relationships
between the actors probabilistically.

For any specified form of relationship, it is straightforward to use Mendel’s law
to derive the correct joint distribution of apg, amg, bpg and bmg, especially if the
relationship is fairly close. For example, if a is father to b, then we find that apg,
amg and bmg are independent draws from the gene pool, while, given these, bpg
is equal to apg or amg with probabilities 1/2 each. As a second example, if a and
b are siblings, then there are four possible patterns of identity among apg, amg,
bpg and bmg, delivered with equal probability: there may be no IBD, or bpg =
apg, or bmg = amg, or both of these, where in each case those variables not
appearing to the left of a = sign are independent draws from the gene pool. A table
of these patterns, giving further examples, can be found in Appendix A.2.

When the actual relationship between the actors is not known but we are pre-
pared to assign it a prior probability distribution, then at each marker, the joint dis-
tribution of the founding genes is the corresponding weighted average. However,
with multiple markers, the story is more complicated. We can build a full prob-
ability model for IBD using the formulation in the second half of Section 3.4.1.
The variable R signifies the relationship (e.g., a is father to b) and the variable πm

the pattern of identity (e.g., bpg = apg, others different), for marker m. These
patterns of dependence are very naturally expressed by elaborating the graphical
model with these additional variables, and generating the founding genes from
these nodes and independent draws from the gene pool. This is visualized in
Figure 6. Note that, conditional on the relationship between the actors, the pattern
of IBD among the actors’ genes is independent from marker to marker.

The idea of using a latent “pattern” variable to structure the dependence among
founding genes is very general, and should be useful in modeling departures from
baseline other than those considered here. It could have been used in place of the
Pólya urn scheme for UAF in Section 5.2, but at some cost in efficiency.

5.4. Population heterogeneity (HET). Population heterogeneity raises two
kinds of issues in the modeling. First, since unobserved actors are assumed to have
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FIG. 6. Networks representing (left) the dependence of pattern of IBD πm on relation R, for two
markers and (right) dependence of paternal and maternal genes at marker m for two individuals on
pattern πm.

genes drawn from a population, results can depend on which population (and cor-
responding allele frequency database) is used. Second, when there is uncertainty
about which population is relevant, this can induce dependence between actors,
observed or not. Additionally, when uncertainty about subpopulation relates to un-
typed actors, dependence between markers is induced.

The sensitivity of the resulting inferences to population structure, based on a
synthetic population that is a mixture of Afro-Caribbean, Hispanic and Caucasian
subpopulations, is presented for various examples in Section 6. Such problems are
easily set up as Bayesian networks with the structure shown in Figure 7, where S is
a variable identifying the subpopulation, which may be dependent (perhaps identi-
cal) or independent between actors depending on the scenario of interest. Crucially,
for each actor, S is the same for both genes for all markers, so that mixing across
subpopulations is not the same as averaging the allele frequencies and assuming an
undivided subpopulation. This observation may have wider implications; since all

FIG. 7. Network for genotype allowing for subpopulation effect; note that conditional on subpop-
ulation S, every gene at every marker is drawn independently from the appropriate subpopulation
gene pool.
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real populations are to a degree heterogeneous, some dependence between markers
will be ubiquitous.

5.5. Combinations of scenarios. Bayesian networks are intrinsically modular,
and so are our scenarios, so it should be no surprise that the scenarios can be
combined. This raises further challenges to the θ /FST approach (6) to coancestry.
In particular, it is important to note that the output from two modules of this form
“cascaded” together does not follow this distribution.

To see this, recall the form of the partition distribution induced by the Dirichlet
process [see, e.g., Green and Richardson (2001), or expand (7)]:


(α)


(n + α)
αd

d∏
j=1

(nj − 1)!

is the probability of any particular partition of the n items into d clusters of sizes
n1, n2, . . . , nd . (These clusters are of items (genes) identical by descent, or through
the structural model of Section 5.2, not by the chance event of the same allele being
drawn twice from the gene pool.) In our present context the Dirichlet concentration
parameter α is M or (1 − θ)/θ , and n is the number of genes drawn from the gene
pool. So to take the example of n = 3 founding genes, there are three possibilities:
(a) all three are different; (b) two are the same, and the other different; (c) all
three are the same. The respective probabilities are proportional to (α2,3α,2). If
two modules analogous to that in Figure 5, with concentration parameters α, β

respectively, are cascaded together, it is straightforward but tedious to verify that
the probabilities of these three possibilities are now proportional to(

α2β2,3αβ(α + β + 2), (α + β)(α + β + 3) − αβ + 4
)
,

which are not in the correct ratio. Thus, if, for example, we use (6) to model both
uncertainty in allele frequencies and identity by descent, the pattern of dependence
induced by the two factors combined is not properly described by (6) in any prob-
lem involving three or more founding genes.

However, it is true that to first order the Dirichlet modules do cascade together
without changing their functional form. For large α and β , the probability that any
particular pair of the n genes are identical is α−1 + β−1 + O(α−2, α−1β−1, β−2),
the probability that all are distinct is 1− (n

2

)
(α−1 +β−1)+O(α−2, α−1β−1, β−2),

and all other possibilities have negligible probability. Thus, for large M/small θ ,
the effects of combining uncertainty in allele frequencies, identity by descent or
population heterogeneity are additive on the scale of M−1 = θ/(1 − θ).

For exact results for specific models for the phenomena, the Bayes net modules
for UAF, HET and IBD can be combined, properly reflecting the genetics of the
situation. The only two realistic scenarios are UAF followed by HET and UAF
followed by IBD. (Combinations of IBD and HET are unrealistic since two genes
that might be IBD cannot belong to different subpopulations.) Thus output genes
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from the Pólya urn scheme representing uncertainty in allele frequencies can be fed
into the model for heterogeneous populations; or are subject to patterned selection
according to the IBD model.

There have been previous algebraic approaches for different scenarios combin-
ing multiple sources of dependence [see Ayres and Overall (1999), Weir (2007a),
and Fung and Hu (2004), among others].

6. Results for the different scenarios on various forensic examples. Throu-
ghout this section, when not stated otherwise, the following settings are used for il-
lustrative purposes. For UAF, the aggregated prior and sample size M is set to 100.
For the IBD scenario we assume that two actors are either unrelated (with proba-
bility 0.90) or that the possible relation between them is equally likely to be that of
parent–child or of half sibs (see the first and third block of rows of Table 12) with
α = γ = 0.05.

We need to clarify that the choice of the parameters and the possible relation-
ships among actors yielding the numerical results given here are merely illustra-
tive. The potential user of the methods we describe would need to insert his/her
beliefs about the likely relationships. Here we have chosen the possibility of par-
ticular close relationships among actors.

The baseline model corresponds to M → ∞ for UAF and α = γ = 0 for IBD.
The analyses for the baseline, the IBD and UAF scenarios are based on random
draws from the Caucasian gene pool in Butler et al. (2003). For the HET scenario
the k actors are drawn from possibly different components Si, i = 1, . . . , k, of a
mixed population which is an equal mixture of the Afro-Caribbean, Hispanic and
Caucasian populations. Equal prior weights are used here purely for illustrative
purposes, weights based on real population sizes or weights based on other non-
DNA evidence should be used in real forensic casework.

6.1. Criminal identification. Based on the evidence for the criminal identifica-
tion case in Table 1, likelihood ratios were computed for the baseline assumptions
and for UAF, IBD and HET scenarios; these are presented in columns 2 to 5 of
Table 5. Both marker by marker and overall results are given, along with across-
marker results using the product rule. The results for HET refer to the case when
both the suspect s, and the unknown alternative suspect as, are from different
components S1 and S2, of a heterogeneous mixed population.

Table 6 gives the allele frequencies for markers D3 and THO1 in the three sub-
populations considered. Comparing UAF and IBD to the baseline scenario, one can
see that both systematically down-weight the LR. The effect can be dramatic when
the baseline frequency of an allele is very rare, as for marker D3. For M = 10,000
we attain near convergence to the baseline value (not shown here).

Furthermore, for UAF the product rule (2) applies and the overall LR is roughly
20 times smaller than the baseline. For IBD the evidence is roughly 460 × 103
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TABLE 5
Likelihood ratios for criminal identification for baseline, UAF, IBD and HET, as well as

combinations of UAF plus IBD and UAF plus HET

Marker Baseline UAF IBD HET UAF+IBD UAF+HET

D13 138.9 106.6 88.7 126.7 71.7 113.9
D3 1162.8 194.6 111.9 3488.4 74.3 583.7
D5 27.7 23.6 20.5 35.6 18.2 33.4
D7 16.9 14.6 13.7 11.8 12.1 11.2
FGA 12.3 11.8 11.1 17.0 10.6 16.7
THO1 27.7 22.7 21.0 10.3 17.8 22.5
TPOX 36.7 31.5 27.5 35.8 24.3 34.2
VWA 25.0 20.8 19.2 32.2 16.5 29.0
Overall log10LR
Exact 13.38 12.10 7.71 13.85 7.49 12.57
Product rule 13.38 12.10 11.54 13.57 10.95 12.96

times smaller than the baseline and the product rule overestimates the weight of
evidence yielding a value about 7 × 103 times greater than the exact value.

It is important to observe that HET induces dependence among the markers;
the product rule does not apply. Furthermore, as stated in Section 5.4, one would
get a different result by using a gene pool of the weighted average subpopulation
frequencies, instead of explicitly modeling the subpopulation mixture. For HET,
however, there is no regular pattern in the LR values. For example, for marker D3
the LR for HET is more than 3 times that of the baseline using the Caucasian allele
frequencies (allele 11 being absent in the other two subpopulations, see Table 6);
whereas for marker THO1, the LR for HET is less than half the value for the
baseline, since allele 7 has a much lower frequency in the Caucasian subpopulation
than in the other two (again, see Table 6). In real forensic casework we would
amend the values of the allele frequencies by updating the gene pool database with
the newly observed individuals [Dawid and Mortera (1996)].

TABLE 6
Selected allele frequencies in the different subpopulations for markers D3 and THO1

Marker Allele Caucasian Afro-Caribbean Hispanic

D3 11 0.002 0 0
17 0.215 0.205 0.204

THO1 7 0.190 0.421 0.279

Database size 302 258 140
(individuals)
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The last two columns of Table 5 show the LR for the combination of scenarios
UAF plus IBD and UAF plus HET. The overall effect of combining UAF plus
IBD is dramatic—it reduces the overall LR by a factor 775 × 105 compared to the
baseline, and is roughly 3 × 103 times smaller than the product rule result. For the
combination of UAF plus HET the overall LR is roughly 6 times smaller than the
baseline and 2.5 times smaller than the product rule result.

An initial study of the usefulness of the analytic methods CSD and LFP of
assessing sensitivity, discussed in Section 3.5 and Section 3.6, was conducted for
each of the UAF and IBD scenarios. The linear constraints imposed for illustration
restrict attention to joint distributions for the two genes of each founding actor that
(a) are exchangeable with respect to actor, (b) are exchangeable with respect to
gene within each actor, and (c) give the same marginal distribution for each gene
as the baseline. Bounds were computed for departures from baseline that are both
absolute and relative (that is, weighted by the baseline probabilities), in all cases
separately for each marker.

For comparison with the exact results computed as discussed using BNs, rele-
vant values for ε were calculated from these exact results, thus, εCSD

A = ‖f − f0‖,
εCSD

R = ‖f/f0 − 1‖ (with division defined componentwise), εLFP
A = maxi |fi −f0i|

and εLFP
R = maxi |fi − f0i|/f0i. Here f denotes the joint distribution of the found-

ing genes under the scenario in question, and f0 the baseline distribution.
The resulting bounds for the likelihood ratios are presented in Table 7. The

absolute bounds obtained from the linear fractional method are suppressed, since
all are (0,∞). Trivial bounds of 0 and ∞ arise when the ellipsoids or rectangles
defined by the values of ε above include values for which marginal likelihoods are
0 under one or other hypothesis.

Our preliminary conclusion from these results is that these analytic methods do
not provide bounds that are likely to be useful in forensic casework, for departures
from the baseline as large as those considered here.

6.2. Mixed trace. The analyses of the different scenarios for the mixed trace
example of Section 4.2 based on the evidence in Table 2 are shown in Table 8.
Only the LR for hypothesis H0: s&v against H1: as&v is given. UAF refers to the
case where all 8 founding genes s, as, v and av are uncertain, and HET refers to
the case where as and av’s genes are drawn from possibly differing components
of the mixed populations.

The baseline overall result is roughly 1.8, 55 and 1.2 times bigger than those
for UAF, IBD and HET, respectively. The product rule yields an answer about 23
times bigger than the correct result for IBD; for HET it is about 1.2 times smaller.

Fung and Hu (2004) derive algebraic formulae for analyzing various mixed trace
examples when considering specific relationships among actors as well as using
the Balding and Nichols (1995) correction to allow for population structure. This
example involves combining different scenarios, as in Section 5.5. We can derive



754 P. J. GREEN AND J. MORTERA

TABLE 7
Criminal identification: bounds on likelihood ratios from constrained steepest descent (CSD) and

linear fractional programming (LFP) analyses of UAF and IBD scenarios: † denotes “bounds” that
fail to bracket the exact value

LFP, relative CSD, relative CSD, absolute

Baseline Exact Lower Upper Lower Upper Lower Upper

UAF
D13 138.9 106.6 0 ∞ 20.6 ∞ 41.4 ∞
D3 1162.8 194.6 0 ∞ 123.6 ∞ 1162.2† ∞
D5 27.7 23.6 0 ∞ 11.1 ∞ 24.8† ∞
D7 16.9 14.6 11.8 24.6 13.6 22.1 6.2 ∞
FGA 12.3 11.8 7.4 21.1 9.7 16.8 5.0 ∞
THO1 27.7 22.7 16.4 47.4 20.1 42.0 5.1 ∞
TPOX 36.7 31.5 0 ∞ 14.8 513.7 27.9 ∞
VWA 25 20.8 15.3 41.2 18.5 36.5 5.3 ∞
IBD
D13 138.9 88.7 0 ∞ 13.5 ∞ 41.4 ∞
D3 1162.8 111.9 0 ∞ 123.6† ∞ 1162.2† ∞
D5 27.7 20.5 0 ∞ 9.4 ∞ 24.8† ∞
D7 16.9 13.7 10.9 26.7 12.4 25.6 4.8 ∞
FGA 12.3 11.1 6.7 23.5 8.5 21.1 4.0 ∞
THO1 27.7 21 14.8 52.8 18.0 51.4 3.8 ∞
TPOX 36.7 27.5 0 ∞ 11.9 ∞ 27.9† ∞
VWA 25 19.2 13.9 45.6 16.7 44.1 4.0 ∞

all their results by considering the combination of UAF and a fixed relationship R

in the IBD model (not shown here). However, with our methodology we can extend
their analysis to model uncertainty over R. Recall, that in this case one cannot sim-
ply obtain the overall LR by applying the product rule, so their algebraic method
might become too difficult to implement.

6.3. Simple paternity testing. The overall LR for paternity testing based on the
evidence in Table 3 shows less dramatic departures from baseline, as can be seen
in Table 9. Column UAF1 refers to the case where only pf and af have uncertain
allele frequencies and UAF2 refers to the case where all founders, pf, af and m,
have uncertain allele frequencies. Recall, the results for HET correspond to the
case when pf and af are drawn from different components, S1 and S2, of the
subpopulation. Again, the biggest difference in the results presented in Table 9
occurs between the baseline and the IBD scenario where the LR is roughly 6.5
times less. Furthermore, for IBD the LR for the product rule result is roughly 4
times bigger than the exact LR, whereas, for HET the product rule underestimates
the exact LR by about 10%.
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TABLE 8
Comparison of likelihood ratios for a DNA mixture for baseline, UAF, IBD and HET scenarios

Marker Baseline UAF IBD HET

D13 5.22 4.85 4.83 7.17
D3 7.10 6.38 6.22 6.72
D5 3.63 3.36 3.40 3.53
D7 4.86 4.68 4.53 3.97
FGA 51.78 46.17 39.02 34.94
THO1 5.62 5.01 5.09 4.18
TPOX 3.13 3.10 3.00 3.47
VWA 6.56 6.18 6.01 8.44
Overall log10LR
Exact 6.59 6.33 4.85 6.52
Product rule 6.59 6.33 6.22 6.46

Table 10 gives further details on population heterogeneity when: (a) pf and
af are drawn from different mixture components (the same as column HET in
Table 9); (b)–(d) pf is drawn from the mixed population and af is drawn from
a Caucasian, Afro-Caribbean and Hispanic gene pool, respectively. Note that the
product rule applies for cases (b)–(d), where one of the untyped actors af is from
a specified subpopulation. This will be true in general, whereas for (a), the product
rule understates the overall weight of evidence.

6.4. Disputed sibship. Table 11 shows results for the different scenarios for
the disputed sibship case of Section 4.4, illustrated in Figure 4, based on the ev-
idence in Table 4. For UAF1, only af and tf2 are modeled as having uncertain
allele frequencies, whereas in case UAF2 all 8 founders are modeled as having
uncertain allele frequencies. Again, for HET af and tf2 are drawn from possibly
different subpopulation components.

Comparing UAF1 and UAF2, we note that the overall LR decreases slightly in
the latter case.

In this example, based on indirect evidence—actor tf2’s DNA profile was not
available—the LR is quite weak. For example, under a uniform prior probability on

TABLE 9
Likelihood ratios for paternity testing for baseline UAF, IBD and HET

Baseline UAF1 UAF2 IBD HET

Exact 1317.56 1007.53 912.33 202.29 1313.32
Product rule 1317.56 1007.53 912.33 797.69 1209.60
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TABLE 10
Likelihood ratios for paternity testing for different subpopulation scenarios (pf is drawn from S1)

(a) af from S2 (b) af Cauc. (c) af Afro. (d) af Hisp.

Exact 1313.32 1317.56 1886.15 1004.90
Product rule 1209.60 1317.56 1886.15 1004.90

the target tf1=tf2, the LR yields a posterior probability of 0.747 for the baseline
and 0.694 for UAF2.

7. Conclusions and further work. This paper illustrates some approaches
for analyzing the sensitivity of forensic identification inference in Bayesian net-
works to assumptions about joint allele frequency distributions of founding genes.
These are demonstrated on several different examples involving DNA evidence
such as criminal identification, paternity testing, disputed sibship and mixed traces.

A first approach assesses the sensitivity of the inference to founders by building
up and running a Bayesian network for a variety of different scenarios of interest
in forensic genetics, such as uncertainty in allele frequencies (UAF), identity by
descent (IBD) and in the presence of population heterogeneity (HET), as well as
plausible combinations of these scenarios. We show that IBD and HET scenar-
ios induce dependence among markers which need to be handled simultaneously,
since the simplifying product rule no longer applies. Here we have also attempted
to clarify the relation between the standard approach using the Balding and Nichols
correction formula and the model we use for uncertain allele frequency.

TABLE 11
Likelihood ratios for disputed sibship

Marker Baseline UAF1 UAF2 IBD HET

D13 4.032 3.806 3.681 3.621 3.876
D3 0.354 0.353 0.352 0.362 0.356
D5 2.120 2.083 2.024 2.034 2.369
D7 0.402 0.401 0.395 0.411 0.387
FGA 0.444 0.441 0.443 0.453 0.480
THO1 3.472 3.338 3.443 3.177 2.516
TPOX 0.473 0.470 0.467 0.483 0.450
VWA 3.333 3.212 3.084 3.065 3.711
Overall LR
Exact 2.956 2.490 2.273 2.285 2.501
Product rule 2.956 2.490 2.273 2.341 2.552
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A second approach is based on analytic methods including constrained steep-
est descent (CSD) and linear fractional programming (LFP). Results using this
approach can give bounds which are rather wide.

In casework analysis, including the possibility of UAF, IBD, HET and plausible
combinations thereof could transform a LR that is incriminating in the baseline
scenario to one that is below the threshold for incriminating a suspect or declaring
paternity. It is important in cases brought before the court to present a result that
errs on the side of caution, that is, which is less incriminating for the suspect. When
incorporating UAF and IBD and in some HET scenarios, the correct LRs are less
incriminating than those computed naively assuming standard assumptions. In all
the examples analyzed here the product rule consistently overestimates the LR for
the IBD scenario.

The numerical results presented are computed in both GRAPPA, and with the
HUGIN software, available at http://www.hugin.com. Codes used in our exam-
ples, for both of these systems, can be found at http://www.stats.bris.ac.uk/~peter/
Sensitivity.

The modularity and flexibility of the approach based on Bayesian networks al-
lows ready application to numerous different examples and complicating features
that have not been analyzed here. For example, the deconvolution of DNA mixed
traces using quantitative peak area information has been solved using Bayesian
networks [Cowell, Lauritzen and Mortera (2007a, 2007b)]. Further forensic ge-
netics applications handled using Bayesian networks account for the possibility of
mutation, as well as artifacts such as allelic drop-out and the presence of silent
alleles [Dawid, Mortera and Vicard (2007)]. The effect on the LR of introducing
mutation and silent alleles can also be substantial even when the underlying pertur-
bations are small. It should be reasonably straightforward to incorporate the basic
modular scenarios described here, in these examples as well. A further application
of our methods for incorporating IBD, to assess sensitivity to quantities other than
the target hypotheses like guilt/innocence, could be that of inferring the posterior
probability of specific relationships among actors conditional on their DNA pro-
files [Egeland et al. (2000)]. This could be useful, for example, in immigration
cases.

The methodology developed could have a much wider applicability than foren-
sic genetics applications. For example, the UAF scenario could be used for model-
ing the uncertainty in name distributions used in the identification of archaeologi-
cal finds [Mortera and Vicard (2008)].

APPENDIX

A.1. Uncertain allele frequencies. Pseudo-code for Pólya urn representa-
tion. GP() denotes a draw from the gene pool, and Bernoulli(p) a draw from

http://www.hugin.com
http://www.stats.bris.ac.uk/~peter/Sensitivity
http://www.stats.bris.ac.uk/~peter/Sensitivity
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Bernoulli (p):
g[1]~GP()
for(i in 2:N) pool[i]~GP()
for(i in 2:N) c[i]~Bernoulli(M/(M+i-1))
g[2] = if c[2] then pool[2] else g[1]
for(i in 3:N) {
for(j in 2:(i-1))

d[i,j]~Bernoulli(1/j)
temp[i,2] = if d[i,2] then g[2] else g[1]
if(i>3) for(j in 3:(i-1))
temp[i,j] = if d[i,j] then g[j] else temp[i,j-1]
g[i] = if c[i] then pool[i] else temp[i,i-1]

}

A.2. Identity by descent. The joint distribution of patterns of IBD between
the 2 genes of 2 actors with 9 different degrees of relatedness R, each one, where
applicable, treated symmetrically over the two actors and two sexes (e.g., parent-
child has 4 arrangements that matter—a father to b, b mother to a, etc.) is given in
Table 12 and in Table 13 (for incestuous relationships). It has a panel (separated by
white space) for each relationship R; the 2nd column is the assumed probability
of the relationship, the 3rd column the probability, given the relationship, of the
pattern πm of IBD expressed by the indicators in the remaining columns. For each
relationship, there should be a line for no IBD (all zero indicators)—it is omitted.

Summarizing the probabilities across all possible relationships given in Table 12
and Table 13, we have the following:

(a) apg=bpg others differ OR amg=bmg others differ

α/4 + β/4 + γ /4 + δ/8 + ε/16 + 3φ/32 + ψ/64 + λ/8 + μ/8,

(b) apg=bmg others differ OR amg=bpg others differ

α/4 + δ/8 + ε/16 + 3φ/32 + ψ/64 + λ/8 + μ/32,

(c) apg=amg others differ OR bpg=bmg others differ

μ/32,

(d) apg=bpg AND amg=bmg, but these differ

β/4 + φ/32 + λ/4 + 3μ/16,

(e) apg=bmg AND amg=bpg, but these differ

φ/32 + μ/32,

(f) apg=bpg AND amg=bpg, but these differ

μ/32,
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TABLE 12
Patterns of dependence for IBD

R p(R) p(πm|R) a
p
g
=
a
m
g

a
p
g
=
b
p
g

a
p
g
=
b
m
g

a
m
g
=
b
p
g

a
m
g
=
b
m
g

b
p
g
=
b
m
g

#
co

m
m

on

a father of b α/4 0.5 0 1 0 0 0 0 1
0.5 0 0 0 1 0 0 1

a mother of b α/4 0.5 0 0 1 0 0 0 1
0.5 0 0 0 0 1 0 1

b father of a α/4 0.5 0 1 0 0 0 0 1
0.5 0 0 1 0 0 0 1

b mother of a α/4 0.5 0 0 0 1 0 0 1
0.5 0 0 0 0 1 0 1

Sibs β 0.25 0 1 0 0 1 0 2
0.25 0 1 0 0 0 0 1
0.25 0 0 0 0 1 0 1

1/2 sibs, same mother γ /2 0.5 0 0 0 0 1 0 1
1/2 sibs, same father γ /2 0.5 0 1 0 0 0 0 1

a sib of father of b δ/4 0.25 0 1 0 0 0 0 1
0.25 0 0 0 1 0 0 1

a sib of mother of b δ/4 0.25 0 0 1 0 0 0 1
0.25 0 0 0 0 1 0 1

b sib of father of a δ/4 0.25 0 1 0 0 0 0 1
0.25 0 0 1 0 0 0 1

b sib of mother of a δ/4 0.25 0 0 0 1 0 0 1
0.25 0 0 0 0 1 0 1

Cousins, mothers are sibs ε/4 0.25 0 0 0 0 1 0 1
Cousins, mother a sib of father b ε/4 0.25 0 0 0 1 0 0 1
Cousins, father a sib of mother b ε/4 0.25 0 0 1 0 0 0 1
Cousins, fathers are sibs ε/4 0.25 0 1 0 0 0 0 1

Double cousins, same sex parents sibs φ/2 0.0625 0 1 0 0 1 0 2
0.1875 0 0 0 0 1 0 1

Double cousins, opposite sex parents sibs φ/2 0.0625 0 0 1 1 0 0 2
0.1875 0 0 0 1 0 0 1

2nd cousins, mothers are cousins ψ/4 0.0625 0 0 0 0 1 0 1
2nd cousins, mother a cousin of father b ψ/4 0.0625 0 0 0 1 0 0 1
2nd cousins, father a cousin of mother b ψ/4 0.0625 0 0 1 0 0 0 1
2nd cousins, fathers are cousins ψ/4 0.0625 0 1 0 0 0 0 1
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TABLE 13
Patterns of dependence for IBD for incestuous scenarios

R p(R) p(πm|R) a
p
g
=
a
m
g

a
p
g
=
b
p
g

a
p
g
=
b
m
g

a
m
g
=
b
p
g

a
m
g
=
b
m
g

b
p
g
=
b
m
g

#
co

m
m

on

b mother and sister to a λ/4 0.25 1 1 0 1 0 0 3
0.25 0 0 0 1 0 0 1
0.25 0 1 0 0 1 0 2
0.25 0 0 0 0 1 0 1

b father and brother to a λ/4 0.25 1 0 1 0 1 0 3
0.25 0 0 1 0 0 0 1
0.25 0 1 0 0 1 0 2
0.25 0 1 0 0 0 0 1

a mother and sister to b λ/4 0.25 0 1 1 0 0 1 3
0.25 0 0 1 0 0 0 1
0.25 0 1 0 0 1 0 2
0.25 0 0 0 0 1 0 1

a father and brother to b λ/4 0.25 0 0 0 1 1 1 3
0.25 0 0 0 1 0 0 1
0.25 0 1 0 0 1 0 2
0.25 0 1 0 0 0 0 1

Parents are sibs μ 0.0625 1 1 1 1 1 1 4
0.0625 0 0 0 1 1 1 3
0.0625 0 1 1 0 0 1 3
0.0625 1 0 1 0 1 0 3
0.0625 1 1 0 1 0 0 3
0.03125 0 0 1 1 0 0 2
0.03125 1 0 0 0 0 1 2
0.1875 0 1 0 0 1 0 2
0.125 0 0 0 0 1 0 1
0.125 0 1 0 0 0 0 1
0.03125 0 0 0 1 0 0 1
0.03125 0 0 1 0 0 0 1
0.03125 1 0 0 0 0 0 1
0.03125 0 0 0 0 0 1 1

(g) all same except apg OR all same except amg OR all same except bpg OR all
same except bmg

λ/16 + μ/16,

(h) all same

μ/16.

This yields a total of

α + 3β/4 + γ /2 + δ/2 + ε/4 + 7φ/16 + ψ/16 + λ + 15μ/16.
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The text above summarizes the total probability across the scenarios. All pos-
sible patterns appear. The only symmetries arise from switching the actors, or
switching the sexes. For the range of relationships considered here one can de-
rive inequality constraints such as

P(apg=amg) < P (amg=bpg) < P (apg=bpg)

and symmetrically for

P(bpg=bmg) < P (apg=bmg) < P (amg=bmg).

Table 1 in Balding and Nichols (1995) refers to the numbers of genes that are
IBD, not which genes they are, for 4 of the 9 degrees of relatedness given in Ta-
ble 12 and Table 13.

A.3. Software for Bayesian networks. Many software systems, commercial
or public-domain, are available for computations in Bayesian networks/probabilis-
tic expert systems, and some of these will be suitable for the network calculations
needed in the methods we discuss. These calculations do demand a degree of “pro-
grammability,” so that looping over markers, etc., is straightforward, and this is not
available in some systems.

Our numerical results have been obtained using two systems that do offer the
necessary flexibility—HUGIN and GRAPPA.

HUGIN (http://www.hugin.com/) is a sophisticated commercial system for prob-
abilistic networks. In recent editions, it implements the idea of Object Orientated
Bayesian networks, which allows building networks from modules, which can be
conveniently replicated and combined using a graphical interface. The networks
illustrated in all of our figures are in fact screenshots of HUGIN network modules.

GRAPPA is a suite of functions in the statistical language R [R Development
Core Team (2005)] that allows the construction of discrete Bayesian networks on
a modest scale, and inference in such models. It is freely available from http://
www.stats.bris.ac.uk/~peter/Grappa. One of the advantages of its implementation
in R is that all of the programming features of that language can be brought to bear
to support the customization of GRAPPA to the problem at hand, and flexibility in
experimentation. In particular, this extends to combining network computations
with other kinds of programming, including the computations for the constrained
steepest descent and linear fractional programming methods seen in Section 3.5
and Section 3.6.

Selected GRAPPA codes and HUGIN networks used for our computations are
available at http://www.stats.bris.ac.uk/~peter/Sensitivity.
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