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Comment: Struggles with Survey
Weighting and Regression Modeling

Roderick J. Little

I appreciate the opportunity to comment on Andrew
Gelman’s interesting paper. As an admirer of Gelman’s
work, it is a pleasure to read his take on the topic of sur-
vey weighting, which I have always found fascinating.
Since I support Gelman’s general approach, I focus on
reinforcing some points in the article and commenting
on some of the modeling issues he raises.

As a student of statistics, I first encountered weights
as the inverse of the residual variance for handling non-
constant variance in regression. I then had a course on
sample surveys, where the weights were the inverse
of the probability of selection. When these two sets
of weights are different, which should be used? This
question remained a mystery for many years, and only
later did I come to appreciate that it reflects funda-
mental philosophical differences of design-based ver-
sus model-based survey inference.

The design-based approach treats the survey out-
comes as fixed, with randomness arising from the dis-
tribution of sample selection. Sampling weights, de-
fined as the inverse of the probability of selection, play
a pivotal role in design-based inference in yielding es-
timates that are design unbiased or consistent. Simi-
larly with poststratification, the weight is proportional
to the ratio of population and sample counts in the
poststrata, and as such involves the distribution of the
sample counts rather than outcomes. If the “probabil-
ity of selection” is replaced by the “probability of in-
clusion,” then nonresponse weighting also enters the
picture as the inverse of the estimated probability of
response given selection.

The regression approach is model-based, and puts
the emphasis on predicting values for nonsampled units
in the population. Gelman uses the Bayesian para-
digm to generate predictions, but to me the key issue
is whether the objective is viewed as prediction. The
Bayesian paradigm seems to me (and I think to Gel-
man) the most natural and compelling framework for
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prediction (Little, 2004, 2006), but in many situations
one can get quite far with likelihood-based methods
that do not explicitly add a prior distribution. In sum-
mary:

design-based = weighting;
model-based = prediction.

This statement is an oversimplification. Design-based
weights arise in the context of particular prediction
models, so the approaches intersect. A simple ex-
ample is the stratified mean for stratified samples,
which arises as the prediction estimate for a regression
on dummy variables for strata. More generally, Lit-
tle (1991) provides an approximate Bayesian interpre-
tation of design-weighted estimates of regression pa-
rameters. Prediction and weighting can be combined,
and hybrid approaches are increasingly popular. In par-
ticular, Sdrndal, Swensson and Wretman (1992) take
the prediction estimate from a model and then cali-
brate it by adding weighted sums of residuals, to yield
protection against model misspecification. Robins and
colleagues (Scharfstein, Rotnitzky and Robins, 1999;
Bang and Robins, 2005) use the term “doubly-robust”
to describe such estimators, and have popularized them
in the general statistics literature; I would be interested
in Gelman’s views on this alternative approach. My
own view is that robustness can be achieved within
a pure prediction paradigm by judicious choice of
model; see Firth and Bennett (1998), Little (2004) and
Little and Zheng (2007).

Design weighting, as represented by the Horvitz—
Thompson (HT) estimator and variants, has the virtue
of simplicity, and by avoiding an explicit model it has
an aura of robustness to model misspecification. It is
the “granddaddy of doubly-robust estimators,” since it
is a prediction estimator for a model where the ratios
of outcomes to selection probabilities are exchange-
able, and it is consistent when either this model or
the weights are correctly specified (Firth and Bennett,
1998). However, unthinking application of the HT es-
timator is dangerous, since inferences based on it can
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be poor if the underlying HT model is not reason-
able. An extreme parody is Basu’s (1971) famous ele-
phant example. In work with Hui Zheng, I compared
the HT estimator with prediction based on a robust
regression model where the relationship between the
outcome and the selection probabilities is modeled via
a penalized spline. The prediction estimators perform
similarly to HT when the HT model is true, and much
better when the HT model is violated, in terms of both
efficiency and confidence coverage (Zheng and Little,
2003, 2004, 2005). Similar gains in the case of nonre-
sponse are reported in Yuan and Little (2007a, b).

The limitations of design weighting are well illus-
trated in the case of poststratification considered by
Gelman. The design-weighted estimator of the popu-
lation mean of a variable Y is

J J J
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where P;,n;,y; are respectively the population pro-
portion, sample count and sample mean in poststra-
tum j, and w; is the design weight, j =1, ..., J. From
the prediction perspective, P; is known, and y; is an
estimate of the population mean ¥ j in poststratum j.
Equation (1) is a model-based estimator for a model
that assumes distinct and a priori independent means
for each j. This estimator works well in large samples,
but breaks down if the sample sizes in certain poststrata
are small—clearly it totally fails if there are cells where
the population proportion is nonzero and the sample
size is zero. The prediction approach replaces the esti-
mate y; from the saturated model by an estimate from
a more parsimonious model, that is,

J
) Ymod = Y Pjll;,
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where [i; is the model prediction for poststratum ;.
Note that the “weight” given to the predicted mean [t
in poststratum j remains the population proportion Pj,
which seems entirely appropriate because this quan-
tity is known. It is the prediction of the poststratum
mean y; that is modified, since that is where borrow-
ing strength from data in other cells is needed. This is
not possible under a strict design-based approach, be-
cause it requires a model for the outcome Y. I think that
tinkering with the design weights—for example by col-
lapsing poststrata so that they have cases in the sample,
or not letting the design weights get too large—puts
the emphasis in the wrong place, the weight assigned

to the observations, rather than the right place, the pre-
dictions of Y in the poststrata. In particular, collapsing
over a set of cells assumes an implicit model that the
mean of Y is constant in those cells. A more empirical
approach to collapsing would be to base the collapsed
poststrata on a regression tree model. See Little (1993)
for other collapsing ideas.

Gelman replaces the predictions (1) from the satu-
rated model with predictions (2) from a hierarchical
regression model. He proposes models that treat main
effects in the model as fixed effects by assigning them
flat prior distributions, and shrink the interactions to-
ward zero by modeling them with proper prior distrib-
utions. This approach provides a good example of the
power and flexibility of the Bayesian approach—more
a principled extension of design weighting, rather than
an alternative. Concerning Gelman’s modeling ques-
tions, I have the following comments:

1. Gelman writes that “Regression modeling is a po-
tentially attractive alternative to weighting. In prac-
tice, however, the potential for large numbers of inter-
actions can make regression adjustments highly vari-
able.” However, note that when the strata are based on
the joint distribution of design variables, the weight-
ing estimate (1) is based on the saturated model that
includes all interactions between these variables, so
the weighting approach has this problem in its most
extreme form. Any regression model that removes or
smooths over interactions should have better precision.

2. If all main effects and interactions appear in the
hierarchical model, the resulting estimate of the mean
is design consistent, in that it converges to (1) as the
sample size increases. The Bayesian approach provides
a principled approach to smoothing in small samples.

3. For estimates of means, it is important to model
carefully the relationship between the outcome and
the propensity to be included (Little, 1983; Rubin,
1983, 1985; Rizzo 1992), and less important to get
the relationship with other variables right, since condi-
tional on the propensity, the distributions of other vari-
ables are balanced for included and excluded cases by
the balancing property of the propensity score (Rosen-
baum and Rubin, 1983). This idea motivates penalized
spline of propensity prediction (PSPP, Little and An,
2004), which models the relationship between the out-
come and the propensity to respond by a penalized
spline, and then adds other variables parametrically.
Zhang and Little (2005) discuss a simplification of the
method, and extensions to parameters other than un-
conditional means. These methods are formulated for
the case of nonresponse propensities, but are readily



COMMENT 173

applied in the setting of other forms of selection, in-
cluding sample selection.

4. The regression approach conditions on the vari-
ables that enter into the weight; hence effects of other
variables in the regression model are adjusted for the
design variables. To obtain valid unadjusted effects the
design variables have to be averaged out. In Section
1.4, Gelman describes this averaging process for mod-
els involving interactions, but he does not appear to av-
erage over the design variables X when fitting the ad-
ditive model in Table 1. If I understand his description
correctly, then the estimates of change being compared
in Table 1 are not comparable, since the regression es-
timate is adjusted for X and the weighted estimate of
change is not. This might account for the differences.

5. Gelman bases variance estimates on the poste-
rior distribution from his Bayesian analysis. These es-
timates are potentially sensitive to misspecified vari-
ance assumptions in the regression models—for exam-
ple, many survey variables are positive and have a vari-
ance that tends to increase with the mean. Assuming
standard models with nonconstant variance can lead to
incorrect confidence coverage (see, e.g., Yuan and Lit-
tle, 2007a, b). So, good confidence coverage requires
attention to the variance structure as well as the mean
structure. One way of avoiding these problems (at the
expense of inferential impurity) is to compute sample
reuse variance estimates like the bootstrap, and I would
be interested in Gelman’s attitude to such approaches.

Gelman states that “it is not generally clear how
to apply weights to more complicated estimands such
as regression coefficients.” A wide class of weighted
estimates can be obtained from estimating equations
where the sample units are weighted by the inverse of
their inclusion probabilities (Binder, 1983; Godambe
and Thompson, 1986). A special case is weighted
pseudo-likelihood, where the estimating equations are
derivatives of the log likelihood. However, generating
a weighted approximation to the estimating equations
for the whole population does not address the problems
with weighting discussed above in the poststratification
setting.
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