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Comment
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1. INTRODUCTION

The authors are to be commended for jumping in
to describe support vector machines (SVMs), not an
easy thing to do since the the literature for SVMs
has grown at least exponentially in the last few years.
A Google search for “support vector machines” gave
“about 1,180,000” hits as of this writing. The authors
have nevertheless made a nice selection of important
points to emphasize. As noted, SVMs were proposed
for classification in the early 1990s by arguments like
those behind Figure 1 in their paper. The use of SVMs
grew rapidly among computer scientists, as it was
found that they worked very well in all kinds of prac-
tical applications. The theoretical underpinnings that
went with the original proposals were different than
those in the classical statistical literature, for example,
those related to Bayes risk, and so had less impact in
the statistical literature. The convergence of SVMs and
regularization methods (or, rather the convergence of
the “SVM community” and the “regularization com-
munity”) was a major impetus in the study of the (clas-
sical) statistical properties of the SVM. One point at
which this convergence took place was at an Amer-
ican Mathematical Society meeting at Mt. Holyoke
in 1996. The speaker was describing the SVM with the
so-called kernel trick when an anonymous person at the
back of the room remarked that the SVM with the ker-
nel trick was the solution to an optimization problem
in a reproducing kernel Hilbert space (RKHS). Once it
was clear to statisticians that the SVM can be obtained
as the result of an optimization/regularization problem
in a RKHS, tools known to statisticians in this context
were rapidly employed to show how the SVM could be
modified to take into account nonrepresentative sam-
ple sizes, unequal misclassification costs and more than
two classes, and to show in each case that it directly tar-
gets the Bayes risk under very general circumstances
(see also [5, 8]). Thus, a “classical” explanation of why
they work so well was provided.
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2. MERCER’S KERNELS AND POSITIVE
DEFINITE FUNCTIONS

Let T be a.d.o. (any dirty old) domain and let
K(s, t), s, t ∈ T , be a symmetric, positive definite
function of two variables; K is said to be positive def-
inite if for any n, and any t1, . . . , tn ∈ T , the n × n

matrix with ij th element K(ti, tj ) is nonnegative def-
inite. In the early SVM literature, as well as in the
present paper, the kernel is described as having a rep-
resentation K(s, t) = ∑∞

ν=1 λν�ν(s)�ν(t). Here the
(nonnegative) λν and the �ν are the eigenvalues and
eigenvectors of K . A representation as in this sum is
sufficient for K to be positive definite (see [13] on the
Mercer Hilbert–Schmidt theorem), but the so-called
radial basis functions (RBF) popular in machine learn-
ing, of the form K(s, t) = k(‖s − t‖), s, t in Euclid-
ean d-space Ed , do not have a countable sequence of
eigenvalues and eigenvectors—complex exponentials
play the role of eigenvectors (see [3]). The Gaussian
kernel Kc(x, y) = e−‖x−y‖2/c is such an example. Al-
though the notion of a countable expansion was used in
uncoupling the linear SVM from its linearity restriction
(and seems to be repeated over and over), the lack of a
countable set of eigenvectors and eigenvalues does not
affect the use of the Gaussian kernel or any other pos-
itive definite function in an SVM; as the authors note,
only values of K are needed. The RBF probably just do
not want to be called “Mercer’s kernels” (!). Positive
definite functions are sometimes called reproducing
kernels, relating to their association with RKHS [1].

Given a collection of objects (which could be vec-
tors, images, sounds, graphs, texts, trees, . . . ) in a.d.o.
domain T , a positive definite matrix with ij entry
K(i, j) defines a (squared) distance dij between the ith
and j th object as

dij = K(i, i) + K(j, j) − 2K(i, j)

(and, in addition, this distance comes with an inner
product). It can be argued that using distance between
objects, defined in some way, is truly fundamental to
classification and, therefore, positive definite kernels,
since they provide a distance, play a fundamental role.
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3. LARGE MARGIN CLASSIFIERS AND
REGULARIZATION

Referring to equation (3.1) in the main paper, note
that the elementary cost function (1 − yif (xi ))+ de-
pends only on τi = yif (xi ). If yi and f (xi ) have the
same sign, then f will classify yi correctly, and if they
have different signs, then f will classify yi incorrectly.
The term τi is frequently called the margin, and classi-
fiers that depend on the data only through τ are called
large margin classifiers. The cost function c(τ ) = (τ )+
is called the misclassification counter, and it would be
considered the ideal cost function if it were not for
the fact that it leads to a nonconvex, nontractable op-
timization problem. Considering Bernoulli data coded
as yi = 1 or yi = 0, the penalized likelihood estimate,
where the cost function is the negative log likelihood,
goes back at least to [12]. In that paper, members of the
exponential family were considered as cost functions
and it was natural to put the log likelihood in the canon-
ical form for distributions in the exponential family.
Thus the log likelihood for Bernoulli data is parame-
terized by the logit f (x) = logp(x)/(1 −p(x)). How-
ever, if Bernoulli data are recoded as yi = ±1, then
the log likelihood (cost function) becomes L(y, f ) =
(1 + e−yf ). Since thresholding p(x) at p = 1/2 is
equivalent to thresholding at f = 0, the penalized log
likelihood estimate is also a large margin classifier.

It turns out that there are lots of large margin classi-
fiers with the property that the sign of the estimate that

minimizes

1

n

n∑

i=1

c(yif (xi )) + µ‖f ‖2
K

tends to the sign of the log odds ratio, assuming that
the problem is tuned adequately and that the RKHS
associated with K is rich enough for the problem at
hand. The following rather amazing result is from [6]:
Let c(z) < c(−z), every z > 0, and let c′(0) �= 0 exist.
If Ec(Yf ((X)|X = x)) has a global minimizer f̄ (x)

and f (x) �= 0, then sign(f̄ (x)) = (signf (x)). A bunch
of examples are given in [6]. Note the result that the
lowly squared difference L(y, f ) = (y−f )2 leads to a
large margin classifier since if |y| = 1, then (y −f )2 ≡
(1 − yf )2. This large margin classifier (!) is sometimes
called the least squares support vector machine, but it
is nothing more than ordinary ridge regression on data
that have been coded as ±1. Many large margin classi-
fiers have been proposed, both convex and nonconvex,
that claim various properties; four of the many are de-
scribed in [11, 14, 17, 19]. These classifiers are said to
have some special advantages, either theoretical, com-
putational or practical, and it is interesting to under-
stand more generally the circumstances under which
one cost function can be better than another. Consid-
ering accuracy as well as computational tractability, it
is unlikely that there will be just one best cost func-
tion for all classification problems (see the comparison
in Figure 1). The hinge function occupies a niche as a

FIG. 1. Comparison of the cost functions c(τ ) = (−τ )+, c(τ ) = (1 − τ )+ and c(τ ) = log2(1 + e−τ ), which are the misclassification
function, the hinge function and the negative log-likelihood function, respectively. Any strictly convex function that goes through 1 at τ = 0
will be an upper bound on the misclassification function (−τ+) and will be a looser bound than some hinge function (1 − θτ)+.



COMMENT 349

general purpose large margin classifier that is the clos-
est convex upper bound, in some sense, to the misclas-
sification function.

4. PROBABILITY ESTIMATES AND THE SVM

I respectfully disagree with the authors’ remark that
“from a statistical point of view, an important subject
remains open: the interpretability of the SVM outputs.”
I think the appropriate interpretation is that the SVM
targets the sign of the log odds ratio directly; see [7].
Since the target function signf (x) is discontinuous at
f (x), and the SVM is found as an optimization prob-
lem in a RKHS which is typically a space of continu-
ous functions, it cannot jump at the boundary, but there
may be a Gibbs effect there. Since the SVM is gener-
ally a smooth approximation which tends not to stray
too far outside of the interval [−1,1], there is a ten-
dency to believe that 2p − 1 can be inferred from the
SVM. This is not, however the case. A toy problem
which is easy to drive toward asymptopia illustrates
this point.

In Figure 2, the solid line gives 2p(x) − 1, where
p(x) is the true conditional probability of the + class.
Data yi have been generated as yi = 1 with probabil-
ity p(xi) and −1 with probability 1 − p(xi) for 300

FIG. 2. Solid line: true conditional probability
2p(x) − 1 = probY = 1; dashed line: fitted SVM; dotted
line: fitted penalized likelihood estimate. Data yi have been
generated according to p(x) for 300 equally spaced values of x.

equally spaced points x(i) in the interval [−2,2]. The
logit f (x) has been estimated as f̂ (x) via penalized
likelihood, and 2p̂(x) − 1 is plotted as the dotted line,

where p̂ = ef̂ /(1+ ef̂ ). The dashed line gives the sup-
port vector machine estimate from the same data. It can
be seen that the SVM is trying to estimate −1 for x < 0
and +1 for x > 0, which is the Bayes optimal classi-
fier here. A small Gibbs effect near the class bound-
ary x = 0 is evident, although the penalized likelihood
and SVM will essentially pick out the same classifica-
tion boundary. Further examples of this phenomenon in
the context of the multicategory SVM of Lee, Lin and
Wahba can be found in [5]. A comparative discussion
of the multicategory SVM and a multicategory penal-
ized likelihood estimate can be found in [16].

5. SUPPORT VECTOR REGRESSION

A precursor of the ε insensitive loss function can be
found in [15], where the loss function is L(y,f (xi )) =
0 if |y − f | ≤ ε and ∞ otherwise. In 1969 only highly
quantized data were available from satellites, but com-
putation of such estimates was iffy.

6. SPARSITY, VARIABLE SELECTION

In many classification problems, it is desirable to
learn which components of the proposed attribute
vector are actually contributing substantially to the
actual classification. Two recent contributions are
[4] and [18]. The trick is to add �1 (absolute value)
penalties on coefficients of variables or terms in the
penalty functional, which induces sparsity, as is well
known. An early proponent of adding �1 penalties in
classification algorithms to promote sparsity is [2];
there are many other recent related contributions. In
practice the major challenge in many problems in-
volves which attributes, or clusters of attributes, to put
into the model to begin with. This challenge appears
in images, sounds, handwriting, text, genomic data,
meteorological data, astronomical data and elsewhere.
Many open questions remain in particular contexts.

7. REGULARIZED KERNELS FROM
DISSIMILARITY DATA

Some recent work [9] focused on fitting kernels from
noisy, scattered, incomplete dissimilarity data, which
can then be used as a dimension reduction tool or in
a SVM or multicategory SVM. Given a set of objects
(protein sequences in [9]) and dissimilarity information
dij between the ith and j th object, for a sufficiently
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rich subset � of the
(n
2

)
pairs, one finds an n×n kernel

(nonnegative definite matrix) Kµ over “object space”
to yield

min
K∈S

∑

ij∈�

|dij − d̂ij | + µ traceK,(1)

where S is the class of nonnegative definite n × n ma-
trices and d̂ij = Kµ(i, i) + Kµ(j, j) − 2Kµ(i, j). It is
necessary to choose µ and it is useful to truncate the
eigenvalues of Kµ after the first p, where p can be
chosen so as to retain some specified percentage of the
trace. Suppressing µ and the truncation level p, a sup-
port vector machine f (i), i = 1, . . . , n, can be defined
in object space as

f (i) =
n∑

�=1

c�K(i, �)

by minimizing

n∑

i=1

(
1 − yif (i)

)
+ + µc′K†c

or its multicategory analog from [5].
To classify a new object (i = n + 1), the “newbie”

algorithm is used. It goes as follows: Given di,n+1 for
sufficiently many i, find b ∈ En and constant c to min-
imize

∑

i

|di,n+1 − d̂i,n+1|

over b ∈ range(K) and c − b′K†b ≥ 0. The b and c

are used to give a new (n + 1) × (n + 1) nonnega-
tive definite matrix with K in the upper left block, and
K(n + 1, n + 1) = c, K(i, n + 1) = bi, i = 1, . . . , n,
and d̂ij = K(n + 1, n + 1) + K(i, i) − 2K(i, n + 1).
Then the classifier evaluated at the (n + 1)st object is

f (n + 1) =
n∑

�=1

c�K(n + 1, �).

Pseudo-attribute vectors may be defined as x(i) =
(
√

λ1φ1(i), . . . ,
√

λpφp(i)), where the {λν,φν} are the
eigenvalues and eigenvectors of K . The newbie can be
placed in this pseudo-attribute coordinate system by
using its fitted distance from a sufficiently large sub-
set of the fitted training set distances. Since K(i, j) =
(x(i),x(j)), the resulting SVM is linear in the pseudo-
attribute vectors. However, other SVMs can be built on
the labeled pseudo-attribute vectors.

The so-called semisupervised version of this prob-
lem occurs when only some of the original training

objects are labeled. Thus, there are three kinds of ob-
jects: (1) those that are in the training set and labeled;
(2) those that are in the training set and not labeled,
but are used to determine the geometry of the object
space; and (3) unlabeled newbies. Both kinds of unla-
beled data can then be classified by the SVM.

The tuning parameter µ in equation (1) can be tuned
by leaving out pairs of objects (CV2) and compar-
ing their observed distances with their fitted (pseudo-
attribute) distances for a range of µ.

8. ROBUST MANIFOLD UNROLLING

A related problem occurs when the objects of inter-
est are believed to lie in a low-dimensional (nonlinear)
manifold in some higher-dimensional space. Here then
it is desired to “flatten out” the manifold and reduce
the dimension before carrying out a classification or
regression operation. Recent references can be found
in [10], where we proposed an approach related to that
in equation (1) with two modifications: (a) only dis-
tances between k nearest neighbors will be used and
(b) µ traceK is replaced by −µ traceK . The effect on
the resulting pseudo-attribute vectors is that they tend
to “flatten out” or “unroll” due to the fact that only
nearest neighbor distances are used, as well as the fact
that the minus sign propels distant objects to become
more distant. A longer discussion of the rationale be-
hind this algorithm and demonstrations of its behavior
are found in [10]. The semisupervised version of this
problem can be defined similarly, with many potential
applications. Both of these optimization problems can
be solved numerically using convex cone optimization
code.

9. WHERE ARE WE GOING?

The theory, computation and application of clas-
sification problems that relate to support vector ma-
chines and other regularization based classifiers is by
no means finished work, although the extent of work
so far is breathtaking. Many problems remain. Using
subject matter knowledge to build kernels that embody
subject matter information efficiently in various fields
remains an interesting challenge. For example, text and
language processing have interesting problems that in-
volve complex relationships between components of
text. Huge attribute vectors and small training sets as
occur in genetic data of various kinds present their own
challenges, as does the merging of heterogenous kinds
of information. Multiple correlated inputs and out-
puts provide challenges. Improved systematic ways to
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choose important attributes or groups of attributes re-
main to be found. As the authors note, the relationships
between statistical learning theory based on Vapnik–
Chervonenkis dimension and SVM theory based on
regularization remain to be understood better, as do
regularization based approaches and other approaches
to classification. Collaboration between statisticians,
computer scientists, mathematicians and subject mat-
ter experts will no doubt be needed for many of the
practical challenges.
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