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Abstract: We consider the standardnon-parametric regression model with
Gaussian errors but where the data consist of different samples. The ques-
tion to be answered is whether the samples can be adequately represented
by the same regression function. To do this we define for each sample a
universal, honest and non-asymptotic confidence region for the regression
function. Any subset of the samples can be represented by the same func-
tion if and only if the intersection of the corresponding confidence regions
is non-empty. If the empirical supports of the samples are disjoint then the
intersection of the confidence regions is always non–empty and a negative
answer can only be obtained by placing shape or quantitative smoothness
conditions on the joint approximation, or by making additional assump-
tions about the support points. Alternatively, a simplest joint approxima-
tion function can be calculated which gives a measure of the cost of the
joint approximation, for example, the number of extra peaks required.
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1. Introduction

1.1. The problem

We consider the following problem in non-parametric regression: given k samples

yini
= {(tij, yij) : j = 1, . . . , ni}, i = 1, . . . , k, (1)
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with empirical supports

Sini
= {ti1 < ti2 < . . . < tini

}, i = 1, . . . , k, (2)

the question to be answered is whether they can be simultaneously represented
by a common function f . The standard approach is to assume that the data
were generated according to the model

Yini
(t) = fi(t) + σiZi(t), i = 1, . . . , k, t ∈ [0, 1], (3)

where the Zi, i = 1, . . . , k are independent, standard Gaussian white noise pro-
cesses and then to consider the null and alternative hypotheses

H0 : f1 = . . . = fk H1 : fi 6= fj for some i, j. (4)

Individual samples generated under (3) will be denoted by

Y ini
= {(tij , Yij) : j = 1, . . . , ni}, i = 1, . . . , k.

Here and in the following we use minuscule letters to denote general data sets
and majuscule letters for data generated under (3). We shall mostly restrict
attention to the case k = 2; the extension to more samples poses no problems.

Within this model it is possible to construct tests which are asymptotically
consistent if limni = ∞, i = 1, 2, and which can detect alternatives converging
to the null hypothesis at certain rates. This may be formalized by putting

f1(t) − f2(t) = f1,n1
(t) − f2,n2

(t) = ∆n(t), n = min(n1, n2) (5)

where ∆n is a difference function and measures the rate of convergence to the
null hypothesis. An asymptotic approach requires some assumptions about the
design points tij. Very often these are taken to be random variables Tij with
values in [0, 1] and whose density has support [0, 1]. In this paper our use of the
word ‘support’ refers always to the empirical support Sini

and not to the support
of some underlying density. With this in mind the best result seems to be that of
Neumeyer and Dette (2003) who construct a test which can detect alternatives
which converge to the null hypothesis at the optimal rate asymptotic rate ∆n =
O(n−1/2). If the supports are equal, Sini

= {t1, . . . , tni
}, i = 1, 2, then it is not

difficult to construct such a test as the differences Y1n1
(tj) − Y2n2

(tj) do not
depend on f (see for example Delgado (1992) and Fan and Lin (1998)). The
result of Neumeyer and Dette (2003) continues to hold even if the supports are
disjoint, S1n1

∩ S2n2
= ∅. In this case, however, there are conceptual difficulties

as we now show.
We consider firstly the case of exact data

yij = fi(tij), tij ∈ Sini
, i = 1, 2,

with disjoint supports S1n1
and S2n2

. If we denote the supremum norm on [0, 1]
by ‖ · ‖∞ then the null and alternative hypotheses of (4) may be rewritten as

H0 : ‖f1 − f2‖∞ = 0, H1 : ‖f1 − f2‖∞ > 0. (6)
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As the values of f1 and f2 are known only on the disjoint sets S1n1
and

S2n2
respectively, it is not possible to decide between H0 and H1: there al-

ways exists a function f which agrees with f1 on S1n1
and with f2 on S2n2

.
It does not help to impose qualitative smoothness assumptions such as in-
finite differentiability as it is always possible to interpolate the data points
with such a function. In spite of this, all conditions imposed in the litera-
ture are of a qualitative form: Hall and Hart (1990), a bounded first deriva-
tive; Härdle and Marron (1990), Hölder continuity; King et al. (1990), at least
uniform continuity; Kulasekera (1995), Kulasekera and Wang (1997), a con-
tinuous second derivative; Munk and Dette (1998), Hölder continuity of order
β > 1/2; Dette and Neumeyer (2001), a continuous rth derivative: Lavergne
(2001), a second derivative which is uniformly Lipschitz of order β, 0 ≤ β < 1;
Neumeyer and Dette (2003), continuous derivatives of order d ≥ 2. The problem
cannot be solved by asymptotic considerations because the situation for n = ∞
can be completely different from that for any finite n. This is related to the fol-
lowing result in real analysis. It is possible to construct a sequence of infinitely
differentiable functions fn on [0, 1] which converge pointwise to a function f∞
which is discontinuous at every rational point: for finite n we have infinite dif-
ferentiability, for n = ∞ we have a discontinuity at every rational point. One
remedy is to place quantitative smoothness conditions on the functions fn such

as ‖f(1)
n ‖∞ ≤ 1 for all n. In this case the limiting function f∞ is at least contin-

uous and it is now possible to distinguish between H0 and H1 for finite n. This
continues to hold if noise is added. A possibly more acceptable alternative is
to impose shape constraints such as monotonicity. If for example it is assumed
that under H0 the common function is monotone then it is possible to decide
between H0 and H1 for finite n. There is a third possibility if it is reasonable
to assume that the supports are interchangeable, for example that they are i.i.d
random variables. This is discussed in Section 3.2.

In general there is an understandable reluctance to place a priori quantita-
tive smoothness conditions unless these have some scientific justification. This
applies also to shape constraints but to a lesser degree. We propose the follow-
ing method. If the supports are disjoint then there will always be a common
function consistent with the data. However if f1 and f2 differ then this com-
mon function will become increasingly complex as the sample sizes increase.
Complexity can be measured by smoothness such as the value of ‖f(1)‖∞ or by
shape by specifying the smallest number of local extreme values required to be
consistent with the data. It is this increase in complexity which we call the cost
of the simultaneous approximation.

1.2. An example

The top panel of Figure 1 shows two data sets of sizes n1 = n2 = 500 gener-
ated according to (3) with f1(t) = exp(1.5t), f2(t) = exp(1.5t) + 4 and σi =
0.25, i = 1, 2. The support of the first sample is j/500, j = 0, . . . , 499 and of the
second sample (2j + 1)/1000, j = 0, . . . , 499. The bottom panel shows a sample
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Fig 1. The top panel shows two samples each of size 500 generated by Y1(t) = exp(1.5t) +
0.25Z(t) and Y2(t) = exp(1.5t) + 4 + 0.25Z(t) together with the approximating monotonic
curves. The design points were j/500, j = 0, . . . , 499 for the first sample and (2j+1)/1000,j =
0, . . . ,499 for the second sample. The centre panel shows a joint approximating function with
998 local extreme values. The bottom panel shows a sample of size n = 1000 generated using
the function of the centre panel.

of size n = 1000 generated using the function of the centre panel. It is similar
to the data generated under f1 and f2. The function shown in the centre panel
is piecewise constant. However it can be made infinitely differentiable with very
little change in its values by convoluting it with a Gaussian kernel with a very
small bandwidth. Such a function would also produce the sample shown in the
bottom panel, that is, it is consistent with both individual samples. Furthermore
as an infinitely differentiable function it satisfies all the qualitative smoothness
conditions to be found in the literature. If however one imposes the quantitative
smoothness condition ‖f(1)‖∞ ≤ 1 then it is clear that no such function can
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Fig 2. The upper panel shows the data of Figure 1 but with the values of Y2 now given by
Y2(t) = exp(1.5t)+0.103+0.25Z(t). There is now a joint monotonic approximating function
which is shown in the lower panel.

approximate both data sets simultaneously. Another way of looking at the func-
tion is in terms of shape. The joint piecewise constant approximating function
has 998 local extreme values and this is the minimum number which is consis-
tent. As the individual curves are both monotone the extra 998 local extreme
values can be seen as the cost of the joint approximation. Alternatively one can
place a shape constraint such as monotonicity on the joint function. In this case
there does not exists a joint approximating function which satisfies the shape
constraint of monotonicity.

Using exactly the same noise we now move the two data sets closer together
by putting f2(t) = exp(1.5t)+ 0.103. This is shown in the top panel of Figure 2
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Fig 3. The upper panel shows the results of minimizing the total variation of the second
derivatives for the data of the upper panel of Figure 2 subject to monotonicity. The lower
panel shows the corresponding result for the lower panel of Figure 2.

together with the approximating functions. There now does exist a monotone
joint approximation which is shown in the lower panel of Figure 2. The cost of the
joint approximation in terms of the number of local extreme values is now zero.
The cost in terms of smoothness as measured by the total variation of the second
derivative TV (f(2)) is however very high. The top panel of Figure 3 shows the
result of minimizing the total variation of the second derivative subject to the
monotonicity of the function for the two samples separately. The values of the
total variation of the second derivative are 0.36 and 0.70 for the first and second
samples respectively. These may be compared with a total variation of the second
derivative of exp(1.5t) which is 7.83. The second derivatives are shown in the
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Fig 4. The upper panel shows the second derivative of the functions in the upper panel of
Figure 3: the lower panel shows the corresponding result for the lower panel of Figure 3.

top panel of Figure 4. The smoothest joint approximation is shown shown in the
lower panel of Figure 3 and its second derivative in the lower panel of Figure 4. It
is clear that the cost in terms of smoothness is high and indeed the value of the
total variation of the second derivative for the joint approximation is 1090530.
The reason is that for these two data sets a monotone joint approximation is
just possible. If we move the samples slightly closer close together by putting
f2(t) = exp(1.5t) + 0.1 then the joint approximation becomes much smoother.
It is shown in the upper panel of Fig 5 and its second derivative in the lower
panel. The total variation of the second derivative is now 12.42. We note that
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Fig 5. The upper panel shows the smoothest joint approximating function when the two sam-
ples are moved closer together with f2(t) = exp(1.5t)+0.1. The bottom panel shows the second
derivative of the approximating function.

we place numerical values on all our measures of complexity, the number of local
extreme values, the total variation of the second derivative.

1.3. Approximation and regularization

Our approach is as follows:

(1) Firstly, for each sample yini
we define a so called approximation region
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Fig 6. The probability of rejecting the equality of functions as a function of δ for the shape
constrained method (black) and the rank method (red).
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Fig 7. The upper panel shows the function f1(t) = exp(1.5t) and the function f2 which is
equal to f1 apart from the interval [0.402,0.440] where f2(t) = f1(t)+0.575. The lower panel
shows the two data sets Y1(tj) = f1(tj) + 0.25Z1(tj) and Y2(tj) = f2(tj) + 0.25Z2(tj) for
j = 1, . . . , 500 and with tj = j/500.

Aini
which specifies those functions fi for which the model (3) is an ade-

quate approximation for the sample. The intersection of the approximation
regions A1,n1

∩ A2,n2
contains all those functions which simultaneously
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approximate both samples. It is also the approximation region for the si-
multaneous approximation. A similar idea in the context of the one-way
table in the analysis of variance is expounded in Davies (2004).

(2) Secondly, using some measure of complexity we regularize within each
approximation region by choosing the simplest function which is consistent
with the data. This is in the spirit of Donoho (1988) who pointed out that
in non-parametric regression and density problems it is possible only to
give lower bounds on certain quantities of interest such the number of
local extremes.

We give an example which may clarify our purpose. The top panel of Figure 8
shows a sample of size n = 1000 generated by

Y (t) = Φ(t) + 0.25Z(t)

where Φ denotes the standard normal distribution function. The grid used was
tj = −49.95 + j/10, j = 1, . . . , 1000. The second panel shows a kernel estimator
using a global bandwidth h = 2. The resulting estimate is smooth but lies so
far away from the data that it does not belong to the approximation region.
The third panel shows the estimator derived by choosing the largest bandwidth
consistent with the estimator lying in the approximation region. The function
is close to the data but exhibits superfluous wiggles. The bottom panel shows
a function obtained by regularizing within the approximation region first by
shape and then for smoothness as measured by the total variation of the second
derivative. The function has the correct shape and is smooth.

Regularization plays an important and often unrecognized role in statis-
tics. Even the simple location problem requires regularization. Suppose we are
given a sample of independently and identically distributed random variables
X1, . . . , Xn with distribution function F (· − µ). We are told that F is symmet-
ric, continuous and has variance 1 but no more. We require an estimate for the
unknown µ and a 95% confidence interval. Which F do we choose and why?
Firstly we restrict the choice to all those F in

Fn = {F : dko(F, Fn) ≤ 1.52/
√

n }

where dko denotes the Kolmogorov metric and Fn the empirical distribution
function of the data. This defines a 0.99-approximation region for the unknown
F and corresponds to the An above. We regularize within Fn and choose the
simplest F which is symmetric and has variance 1. On the basis of TINSTAAFL,
there is no such thing as a free lunch, at least in statistics, (Tukey (1993)) the
simplest F is the least favourable one, that is, it minimizes the Fisher informa-
tion within Fn. If the data are so close to normal that Φ ∈ FN then the result
is Φ itself. In other words, the standard choice of the normal distribution for
the location problem is an act of regularization. We refer to Davies (2008) for a
more detailed discussion.
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Fig 8. Top panel: sample of size n = 1000 generated according to Y (t) = Φ(t) + 0.25Z(t).
Second panel: a kernel estimate with a global bandwidth not in the approximation region.
Third panel: a kernel estimate with the largest global bandwidth so that it is in the approx-
imation region. Bottom panel: a function in the approximation region regularized for shape
and smoothness.
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1.4. Contents

In Section 2 we define the approximation or confidence regions Aini
. Section 3 is

devoted to the case of disjoint supports and Section 4 to the case of intersecting
supports. A short comparison with other methods is given in Section 5 and
the problem of heteroskedastic noise is discussed in Section 6. The main shape
regularization we consider is that of minimizing the number of local extreme
values. The algorithm we use is the taut string algorithm of Davies and Kovac
(2001). In Section 7 we describe how it can be adapted to the case of several
samples with differing noise levels. We end with a short discussion of the results
in Section 8.

2. Approximation regions

2.1. Single samples

The following is based on Davies et al. (2009). We consider a single sample of
data Y n = (ti, Y (ti))

n
1 generated under the model

Y (t) = f(t) + σZ(t) (7)

where we take the ti to be ordered. Based on this model we consider two different
approximation or confidence regions An and A∗

n defined as follows. For any
function g and any interval I ⊂ [0, 1] we put

w(g, Y n, I) =
1
√

|I|
∑

ti∈I

(Y (ti) − g(ti)) (8)

where |I| denotes the number of points ti ∈ I. The confidence region An is
defined by

An(Y n, In, σ, τn) = {g : max
I∈In

|w(g, Y n, I)| ≤ σ
√

τn log(n) }. (9)

where In is a collection of intervals of [0, 1]. We restrict attention to the cases
where In is either the family of all intervals or a family of intervals of the form

In(λ) =
{

[tl(j,k), tu(j,k)] : l(j, k) = ⌊(j − 1)λk + 1⌋, u(j, k) = min(⌊jλk⌋, n),

j = 1, . . . , ⌈nλ−k⌉, k = 1, . . . , ⌈logn/ logλ⌉
}

(10)

for some λ > 1. Our default choice is the (wavelet) dyadic scheme In(2). For
any given α and collection of intervals In we define τn(α) by

P

(

max
I∈In

1
√

|I|

∣

∣

∣

∑

i∈I

Z(ti)
∣

∣

∣
≤
√

τn(α) logn

)

= α. (11)

One immediate consequence is

P (f ∈ An(Y n, In, σ, τn(α))) = α (12)
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so that An is a universal, exact and non-asymptotic confidence region for f of
size α. The value of τn(α) may be determined by simulations. For the dyadic
scheme In = In(2) these show that τn(0.95) ≤ 3 for all n ≥ 500. If In contains all
singletons {ti}, as will always be the case, it follows from Dümbgen and Spokoiny
(2001) and Kabluchko (2007) that limn→∞ τn(α) = 2 for any α.

The confidence region (9) treats all intervals equally. The second confidence
region A∗

n downweights the importance of small intervals and is constructed
as follows. Dümbgen and Spokoiny (2001) extended Lèvy’s uniform modulus of
continuity of the Brownian motion and showed that

sup
0<s<t<1

(B(t)−B(s))2

t−s − 2 log(1/(t − s))

log(log(ee/(t − s)))
< ∞ a.s. (13)

If we embed the partial sums
∑j

i∈I Z(ti)/
√

|I|, I ∈ In, in a standard Brownian
motion it follows that

sup
I∈In

(
∑

tj∈I Z(tj))
2/|I| − 2 log(n/|I|)

log(log(een/|I|))) = Γn < ∞ a.s. (14)

where Γn is bounded in probability as n tends to infinity. This implies that for
any α we can find a γn = γn(α) such that

A∗
n(Y n, In, σ, γn(α)) =

{

g : |w(g, Y n, I)| ≤ (15)

σ
√

2 log(n/|I|) + γn(α) log(log(een/|I|)) for all I ∈ In)
}

.

is a universal, exact and non-asymptotic α-confidence for f . The values of γn

may be determined by simulation. For α = 0.95 and with In = In(2) a good
approximation for γn(α) for n ≥ 100 is given by

γn(0.95) ≈ 5.77− exp(2.89− 0.6 log(n)). (16)

The confidence regions An(Y n, In, σ, τn) and A∗
n(Y n, In, σ, γn) both require

the true value of σ. We show how it is possible to obtain an estimate σ̂n such
that on replacing σ by σ̂n both regions become honest in the sense of Li (1989)
rather than exact. The following argument corrects the somewhat casual re-
marks on the problem made in Davies et al. (2009). Consider n independently
distributed N(0, σ2) random variables. The median of the |N(0, 1)| distribution
is Φ−1(3/4) = 0.6745 and hence P(1.4826|Wi| ≥ σ) = 0.5. If we denote the jth
order statistic of |W1|, . . . , |Wn| by |W |(j) then the normal approximation for
the binomial (n, 1/2) distribution implies the following approximation

P
(

1.4826|W |(⌈n/2+zβ

√
n/2⌉) ≥ σ

)

≈ β (17)

where zβ denotes the β-quantile of the standard normal distribution. It follows
from Anderson (1955) that if we replace the Wi by W ′

i = Wi − ci then whatever
the ci there is an upward bias in the estimation of σ and we have

P
(

1.4826|W ′|(⌈n/2+zβ

√
n/2⌉) ≥ σ

)

≥ β.
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If, in particular, we put β = 0.995 we obtain

P
(

1.4826|W ′|(⌈n/2+1.288
√

n⌉) ≥ σ
)

≥ 0.995.

We can apply this to W ′
i = Y (t2i) − Y (t2i−1), i = 1, . . . , ⌊n + 1⌋/2 =: m and

obtain
P
(

1.4826|W ′|(⌈m/2+1.288
√

m⌉) ≥
√

2σ
)

≥ 0.995

which holds for any function f . On putting

σ̂n =
1.4826√

2
|W ′|(⌈m/2+1.288

√
m⌉) = 1.0484|W ′|(⌈m/2+1.288

√
m⌉)

we see that P(σ̂n ≥ σ) ≥ 0.995 and hence

P
(

f ∈ An(Y n, In, σ̂n, τn(α))
)

≥ α − 0.005 (18)

is an honest confidence region with α − 0.005 in place of α. The corresponding
inequality for A∗

n also holds. In spite of this the default value for σ̂n we shall
use in this paper is

σ̂n = 1.0484median(|Y (t2) − Y (t1)|, . . . , |Y (tn) − Y (tn−1)|). (19)

It is simpler, the difference is in general small, it was used in Davies and Kovac
(2001), Davies et al. (2008c), Davies et al. (2008a) and it also corresponds to
using the first order Haar wavelets to estimate σ.

In Davies (1995) implicit use is made of an confidence region based on the
lengths of runs of the signs of the residuals. Explicit universal, honest and non-
asymptotic confidence regions which based on the signs of the residuals are to
be found in Dümbgen (1998, 2003, 2006, 2007) and Dümbgen and Johns (2004).

2.2. A one-way table for regression functions

This section extends the approach given in Davies (2004) for the one-way table
to the case of regression functions. We consider k samples Y ini

= (tij, Yi(tij))
ni

j=1

generated under (3). As a first step we replace the α in (11) and (15) by αk =
α1/k or the more general Bonferroni bound αk = 1 − (1 − α)/k where k is the
number of samples. This adjusts the size of each confidence region to take into
account the number of samples. The confidence region for the ith sample is given
by

Aini
= Aini

(Y ini
, Iini

, σ̂ini
, τini

(αk)) = (20)
{

g : max
I∈Iini

|w(g, Y ini
, I)| ≤ σ̂ini

√

τini
(αk) log(ni)

}

.

We denote by Pf with f = (f1, . . . , fk) the probability model where all the

samples Y ini
, i = 1, . . . , k, are independently distributed and Y ini

was gener-
ated under (3) with f = fi, i = 1, . . . , k. It follows from the choice αk = α1/k

that

P f (fi ∈ Aini
(Y ini

, Iini
, σ̂ini

, τini
(αk)), i = 1, . . .k) ≥ α for all f . (21)
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All questions concerning the relationships between the functions fi can now be
answered by using the confidence regions Aini

. For example, the question as to
whether the fi are all equal translates into the question as to whether

Ank
= ∩k

i=1Aini
= ∩k

i=1Aini
(Y ini

, Iini
, σ̂ini

, τini
(αk)), nk = (n1, . . . , nk)

(22)
is empty or not. If the supports Sini

of the samples are not disjoint then it
is possible that the linear inequalities which define the confidence regions are
inconsistent. In this case Ank

= ∅ and there is no joint approximating function.
If the supports Sini

of the samples are pairwise disjoint then Ank
is non–

empty and so there always is a joint approximation function. Without further
restrictions on the joint approximating function nothing more can be said. If
however the joint approximating function is required to satisfy, for example, a
shape constraint such as monotonicity, then it may be the case that there is no
joint approximating function. Figure 1 shows just such a case where there are
monotone approximations for each sample individually but no monotone joint
approximation. To answer questions of this nature we must regularize within
Ank

and this is the topic of the next section.

3. Disjoint supports

3.1. Regularization

We consider firstly the case when the supports Sini
, i = 1, . . . , k, are pairwise

disjoint. In this case the joint approximation region Ank
is non-empty and will in

general include many functions which would not be regarded as being acceptable.
Indeed, it may be that Ank

does not contain any acceptable function.

3.2. Exchangeable supports

The joint approximating function shown in the centre panel of Figure 1 may
be regarded as unacceptable. It is however possible to think of situations where
the joint approximating function is of this complexity. The function is charac-
terized by many very thin peaks so that a random choice of design points will
often miss them all (needles in a haystack). On the basis of some additional
information (metal detectors) the design points of the second sample are chosen
intentionally and the peaks (needles) are discovered. The joint approximating
function of Figure 1 is clearly incompatible with independently distributed de-
sign points. If we choose a random sample uniformly distributed on [0, 1] and
generate the corresponding y-values using the joint approximating function the
resulting sample will, with overwhelming probability, not be approximable by
a monotone function, even though each of the individual samples was approx-
imable by a monotone function. In the following we assume that the experimen-
tal conditions are such that the supports of the two samples may be regarded
as exchangeable. We give two different ways of making use of this information.
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The first method is to accept a joint approximating function if and only if the
approximating functions of the samples and the joint approximating function
all have the same shape. The definition of shape we use for the purpose of
demonstrating the method is the number of local extreme values. On the basis
of this we would conclude for the data exhibited in Figure 1 that the two data
sets cannot be adequately approximated by the same function.

The second method does not require the calculation of approximating func-
tions but it restricted to the case where the noise levels of the two samples
are the same. If we generated two samples Y 1n1

and Y 2n2
under the model

(3) where the support points of the two samples are interchangeable, then the
resulting samples will be interchangeable: what is labelled as being from sam-
ple 1 could equally have been labelled as being from sample 2. In particular,
if we permutate all observations at random and assign the first n1 to sample
1 and the remaining n2 to sample 2, then the new data will have exactly the
same distribution as the original data. This continues to hold if we replace the
Yi-values by their ranks Ri in the joint sample. To compare the two permutated
samples we multiply the ranks of the second sample by -1. This gives us n1 +n2

observations of the form (Ti,±Ri), i = 1, . . . , n with Ti < Ti+1, i = 1, . . . , n − 1
and with + if (Ti, Ri) has been allocated to the first sample and − if it was
allocated to the second sample. Given a collection of intervals In we consider
the sums

Sj =
∑

Ti∈Ij

±Ri, Ij ∈ In.

The means mj and standard deviations sj of the Sj conditional on the original
data (Ti, Ri) can be calculated on the basis of random permutations and corre-
sponding allocations of the signs ±. In a second simulation the say 0.95-quantile
λ(0.95) of

Λ = max
Ij∈In

|Sj − mj |
sj

can be calculated. If the value Λ̃ of Λ for the original sample exceeds λ(0.95)
then we conclude that the two samples cannot be described by the same function
and exchangeable support points.

Figure shows the result of a small simulation study to demonstrate the two
methods. Data were generated according to (3) with

n1 = n2 = 500, σ1 = σ2 = 0.25, f1(t) = exp(1.5t), f2(t) = exp(1.5t) + δ

and with support points independently and uniformly distributed over [0, 1] for
both samples. The family In of subsets of [0, 1] was taken to be In(2) and to
make the two procedures comparable we set τn = 2.26. The figure shows the
probability of rejecting a joint approximation as a function of δ.



P.L. Davies and A. Kovac/Quantifying the cost of simultaneous approximation 763

4. Intersecting supports

4.1. Quantifying detectable differences

As mentioned in Section 1 the Neumeyer and Dette (2003) procedure can detect
differences of the order of n−1/2. We now consider the size of detectable differ-
ences for our procedure in the case of equal supports. For simplicity we consider
only the case k = 2 and assume that the supports S1n1

= Sn and S2n2
= Sn are

the same and that the data Y 1n and Y 1n are generated by (3) where we allow
for differing σ1 and σ2. We take In to be the set of all intervals but we indicate
below the adjustments required if In = In(λ) as in (10). We state the results
using σ1 and σ2 rather than the estimates (19) and write τn = τn(α1/2).

Theorem 4.1. Let In be the set of all intervals, suppose f1(t) > f2(t) + ηn on

an interval In containing |In| support points ti ∈ Sn and set

ζn =
(

max
{

0, ηn

√

|In| − (σ1 + σ2)
√

τn log(n)
})

/
√

σ2
1 + σ2

2 . (23)

Then with probability at least 2Φ(ζn) − 1 there will be no joint approximation

for the data sets Y 1n and Y 2n.

Proof. Suppose there exists a joint approximation f̃n. Then

1
√

|In|

∣

∣

∣

∣

∣

∑

ti∈In

(Yj(ti) − f̃n(ti))

∣

∣

∣

∣

∣

≤ σj

√

τn log(n) , j = 1, 2,

or equivalently

1
√

|In|

∣

∣

∣

∣

∣

∑

ti∈In

(f1(ti) + σjZj(ti) − f̃n(ti))

∣

∣

∣

∣

∣

≤ σj

√

τn log(n) , j = 1, 2.

which implies

1
√

|In|

∣

∣

∣

∣

∣

∑

ti∈In

(f1(ti) − f2(ti))

∣

∣

∣

∣

∣

≤ (σ1 + σ2)
√

τn log n

+
1

√

|In|

∣

∣

∣

∣

∣

∑

ti∈In

(σ1Z1(ti) − σ2Z2(ti))

∣

∣

∣

∣

∣

= (σ1 + σ2)
√

τn log n +
√

σ2
1 + σ2

2 |N(0, 1)|.

As
1

√

|In|

∣

∣

∣

∣

∣

∑

ti∈In

(f1(ti) − f2(ti))

∣

∣

∣

∣

∣

≥
√

|In| ηn

it follows

|N(0, 1)| ≥
(

ηn

√

|In| − (σ1 + σ2)
√

τn logn
)

/
√

σ2
1 + σ2

2

from which the theorem follows.
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If the supports points in Sn are equidistant and In has length δn then |In| ≈
nδn and we can replace ζn of (23) by

ζn =
(

max
{

0, ηn

√

nδn − (σ1 + σ2)
√

τn log(n)
})

/
√

σ2
1 + σ2

2 (24)

The theorem is based on the assumption that In is the set of all intervals. If
In = In(λ) as in (10) it follows that there exists an interval I′n ⊂ I in In(λ) and
containing |I′n| ≥ |In|/λ = δn/λ points ti of Sn for which f1(ti) − f2(ti) > ηn.
This requires replacing (23) by

ζn =
(

max
{

0, ηn

√

|In/λ| − (σ1 + σ2)
√

τn log(n)
})

/
√

σ2
1 + σ2

2 (25)

and (24) by

ζn =
(

max
{

0, ηn

√

nδn/λ − (σ1 + σ2)
√

τn log(n)
})

/
√

σ2
1 + σ2

2 . (26)

If In = [0, 1] then (26) reduces to

ζn =
(

max
{

0, ηn

√

n/λ − (σ1 + σ2)
√

τn log(n)
})

/
√

σ2
1 + σ2

2 . (27)

so that discrepancies on the whole interval of O(
√

(log n)/n ) will be detected.
This results in an extra log n term when compared with the result of Neumeyer
and Dette (2003).

The same analysis can be carried through using the approximation region
A∗

n. In the theorem we simply replace γn by

ζ∗n =
max

{

0, ηn

√

|In| − (σ1 + σ2)
√

2 log(n/|In|) + γn(α) log log(een/|In|)
}

√

σ2
1 + σ2

2
(28)

and corresponding to (26) we obtain

ζ∗n =
max

{

0, ηn

√

nδn/λ − (σ1 + σ2)
√

2 log(λ/δn) + γn(α) log log(eeλ/δn)
}

√

σ2
1 + σ2

2

.

(29)
In particular, if δn = 1, then deviations of order O(1/

√
n) can be detected.

4.2. An example

We consider a situation similar to that of Figure 1 as is shown in Figure 7.
The sample sizes are n = 500 with common supports tj = j/n and we take
α to be 0.95 so that αk = 0.951/2 = 0.9747. For this choice of α and with
In = In(2) simulations give τn = 2.973. We set f1(t) = exp(1.5t) and put



P.L. Davies and A. Kovac/Quantifying the cost of simultaneous approximation 765

f2(t) = f1(t) except for t ∈ [0.402, 0.44] where f2(t) = f1(t) + ηn. For this
interval δn = 20/500. To be able to detect deviations ηn with a probability of
at least 0.95 it is sufficient to require ζn ≥ 1.96. This leads to

ηn ≥ (1.96
√

1/2 + 0.5
√

2.973 log500 )/
√

10 = 1.12.

For the data shown in Figure 7 the difference is detected with ηn = 0.575 but not
with ηn = 0.574. Simulations show that for this particular example a deviation
of 0.65 on the interval [0.402, 0.44] is detected with probability 0.95.

5. Comparison with other procedures

5.1. Analysis and simulations

When the supports are disjoint the approach developed in this paper is not com-
parable with others. There are two reasons for this. Firstly, other approaches
postulate equality of the regression functions and either accept or reject this
postulate. In contrast our approach results in a joint approximating function
which is either accepted or rejected, the decision being taken outside of statis-
tics. Secondly, in the case of disjoint supports the other approaches require
estimates of the two functions. In all cases known to us these estimates depend
on a smoothing parameter for which there is no default choice: there are only
suggestions based on asymptotics which may be arbitrarily bad for any given n.
We therefore restrict attention to the case of equal supports. For simplicity we
take k = 2. For such data Delgado (1992) proposed the test statistic

Tn =
√

n max
1≤j≤n

|R(j)|/s∗n = max
1≤j≤n

∣

∣

∣

∣

∣

j
∑

i=1

(Y1(ti) − Y2(ti))

∣

∣

∣

∣

∣

/(σn

√
n) (30)

where σn is some quantifier of the noise. Under the null hypothesis f1 = f2 = f
the distribution of Tn does not depend on f . In this special case the test statistic
of Neumeyer and Dette also reduces to (30). If the data were generated under
(3) then under H0 the distribution of Tn converges to that of max0≤t≤1 |B(t)|
where B is a standard Brownian motion. The 0.95-quantile is approximately
2.24 which leads to rejection of H0 if

Tn ≥ 2.24. (31)

Suppose now that the data are generated as in (3) with f1(t) = f2(t) apart from
t in an interval I of length δn where f1(t)−f2(t) ≥ ηn. It follows from (31) that
H0 will be rejected with high probability if

δnηn ≥ 4.48σ/
√

n (32)

where σ2 = σ2
1 +σ2

2 . If δn = 1 deviations of the order of O(σ/
√

n) can be picked
up which contrasts with the O(σ

√

log(n)/n) of (26) for the method based on
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An. The method based on A∗
n however will also pick up deviations of the order

of O(σ/
√

n) as can be seen from (28). For δn = 1/
√

n it follows from (32) that
the test statistic Tn will pick up deviations of the order of σ. In this situation
we see from (26) and (28) that the methods based on An and A∗

n will both pick

up deviations of the order of O(σ
√

log(n)/
√

n ).
Another test which is applicable in this situation is due to Fan and Lin (1998).

If we denote the Fourier transform of the data sets by Ỹ1(i) and Ỹ2(i), i =
1, . . . , n, and order them as described in Fan and Lin (1998), their test statistic
reduces to

T ∗
n = max

1≤m≤n

∣

∣

∣

∣

∣

1√
m

m
∑

i=1

((Ỹ2(i) − Ỹ1(i))
2/σ̃2

n − 1)

∣

∣

∣

∣

∣

(33)

where σ̃n is some estimate of the standard deviation of the Ỹ2(i) − Ỹ1(i). For
data generated under the model (3) the critical value of T ∗

n can be obtained by
simulations. It is not as simple to determine the size of the deviations which
can be detected by the test (33) as the test statistic is a function of the Fourier
transforms and the differences in the functions must be translated into differ-
ences in the Fourier transforms. The first member of the sum in (33) is the
difference of the means and this is given the largest weight. We do not pursue
this further but give the results of a small simulation study.

We put n = 500 and consider two samples of the form

Y1(i/n) = Z1(i/n), i = 1, . . . , n = 500 (34)

Y2(i/n) = g(i/n) + Z2(i/n), i = 1, . . . , n = 500 (35)

were generated where the Zj(i/n) are i.i.d N(0, 1) random variables with g given
by one of

g1(t) = η, 0 ≤ t ≤ 1

g2(t) =

{

η, 0 ≤ t ≤ 1/2,
−η, 1/2 < t ≤ 1,

g3(t) =







0, 0 ≤ t ≤ U,
η, U < t ≤ U + 1/4,
0, U + 1/4 < t ≤ 1,

g4(t) =















0, 0 ≤ t ≤ U,
η, U < t ≤ U + 1/8,
−η, U + 1/8 < t ≤ U + 1/4,
0, U + 1/4 < t ≤ 1,

where U is uniformly distributed on [0, 3/4] and independent of the Zi, i = 1, 2.
The four procedures, Delgado–Neumeyer–Dette, Fan–Lin and those based on
An and A∗

n were all calibrated to give tests of size 0.05 for testing g ≡ 0.
The critical values for Delgado–Neumeyer–Dette and Fan–Lin tests are 2.22
and 6.97 respectively. The value of τn for the test based on An is 1.46 and the
corresponding value of γn for that based on A∗

n is 0.66. Figure 9 shows the power
of the tests for different values of η. The upper panels are the results for g = g1
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Fig 9. The panels from top to bottom show the power functions of the four tests with g = g1

to g = g4 in order. The Delgado–Neumeyer–Dette is shown in blue, the Fan–Lin test in black,
the test based on An in green and that based on A∗

n in red.

and for g = g2 and the lower panels give the results for g = g3 and g = g4.
The colour scheme is as follows: Delgado–Neumeyer–Dette blue, the Fan–Lin
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Fig 10. The top and centre panels show two data sets each of 4806 observations with the
same design points. The bottom panel shows the differences of the two samples.

black, An green and A∗
n red. The results confirm the analysis given above. The

Delgado–Neumeyer–Dette and Fan–Lin tests are better with g given by (1) but
if the mean difference is zero (2), or the interval is small (3) or both (4) then
they are outperformed by the procedure based on A∗

n and, in case 4, also by
that based on An.

5.2. An application

We give an example with some real data from the area of thin-film physics.
They give the number of photons of refracted X-rays as a function of the angle
of refraction and were kindly supplied by Professor Dieter Mergel of the Uni-
versity of Duisburg-Essen. Two such data sets are shown in the top panel of
Figure 10; the differences y1(ti) − y2(ti) are shown in the bottom panel. Each



P.L. Davies and A. Kovac/Quantifying the cost of simultaneous approximation 769

data set is composed of 4806 measurements and the design points are the same.
The samples differ in the manner in which the thin film was prepared. One
of the questions to be answered is whether the results of the two methods are
substantially different.

The noise levels for the data sets are the same, namely 8.317, which is explain-
able by the fact that the data are integer valued. The differences between the two
data sets are concentrated on intervals each containing about 40 observations.
The estimate (32) suggests that the differences will have to be of the order of 92
to be detected with a degree of certainty by the Delgado–Neumeyer–Dette test.
The actual differences are of about this order as can be seen from the bottom
panel of Figure 10. In fact the test just fails to reject the null hypothesis at the
0.1 level. The realized value of the test statistic is 1.734 as against the critical
value of 1.90 given in (31). The Fan-Lin test (33) rejects the null hypothesis at
the 0.01 level. The realized value of the test statistic is 111.66 as against the
critical value of 12.44 for a test of size α = 0.01. Finally the tests based on An

and A∗
n both reject the null hypothesis at the 0.01 level. The realized value of

τn is 43.15 as against the critical value of 1.50. The realized value of γn is 53.27
as against the critical value of 0.733.

6. Heteroskedastic noise

The results so far were developed for data with homogeneous noise. If the noise is
heteroskedastistic then we can use the results of Höhenrieder (2008) (see Davies
(2005) for a preliminary report) to quantify the local noise level. The original
motivation was to provide volatility estimates for financial data using the model

R(t) = Σ(t)Z(t) (36)

where R denotes the daily returns, Σ is the volatility and Z is standard white
noise.

∑

ti∈I

R(ti)
2

Σ(ti)2
=
∑

ti∈I

Z(ti)
2 D

= χ2(|I|)

for any interval I and where χ2(k) denotes the chi-squared distribution with k
degrees of freedom and |I| denotes the number of points ti ∈ I. We put

Sn =
{

σ : σ : {1, . . . , n} → (0,∞)

χ2
|I|,1−αn

2

≤
∑

t∈I

R(t)2

σ(t)2
≤ χ2

|I|, 1+αn
2

, ∀I ⊂ {1, . . . , n}
}

. (37)

where χ2
k,β denotes the β–quantile of the χ2–distribution with k degrees of

freedom and αn is given by

P

(

χ2
|I|,1−αn

2

≤
∑

t∈I

Z(t)2 ≤ χ2
|I|, 1+αn

2

, ∀I ⊂ {1, . . . , n}
)

= α. (38)
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A simple approximation for αn with α = 0.9 is given by

αn = 1 − 0.0343 exp(−0.286 log log(n))/n

which is valid at least for 100 ≤ n ≤ 20000. It follows that Sn is a universal,
exact and non-asymptotic confidence region for Σ of size α, that is

P(Σ ∈ Sn) = α

whatever Σ. For real data r(ti) we replace the R(ti) in (37) by the r(ti). The form
of regularization we choose is one based on sparsity. We take σn to be piecewise
constant with the minimum number of intervals of all such functions in Sn. The
algorithmic complexity of this problem makes it practically unsolvable so we
replace Sn by

S∗
n =

{

σ : σ : {1, . . . , n} → (0,∞)χ2
|I|,1−αn

2

≤
∑

t∈I

R(t)2

σ(t)2
≤ χ2

|I|, 1+αn
2

∀I ⊂ Iν , Iν a constancy interval of σ
}

. (39)

As Sn ⊂ S∗
n we see that S∗

n is honest (Li (1989)) rather than exact. The sparsity
problem can now be solved quite simply. For financial data it makes for greater
interpretability if

σn(tj)
2 =

1

|I|
∑

ti∈I

r(ti)
2, tj ∈ I,

on intervals I of constancy of σn. Amongst all such functions we then minimize
the sum of the quadratic deviations

∑

i(r(ti)
2 − σn(ti)

2)2. This problem can
be solved using dynamic programming. We refer to Höhenrieder (2008): an R-
package is available from

http://www.stat-math.uni-essen.de/cho/research.php.

The upper panel of Figure 11 shows the absolute daily returns of the standard
and Poor’s index over about 19260 days together with the piecewise constant
volatility in red. The lower panel shows the first 5000 observations.

To apply the above methodology to non-parametric regression we replace the
model (3) by

Y (t) = f(t) + σ(t)Z(t)

and consider the differences of the Yi

Yi+1 − Yi = f(ti+1) − f(ti) + σ(ti+1)Z(ti+1) − σ(ti)Z(ti).

If the regression function f and the noise level σ are sufficiently smooth we have

Yi+1 − Yi ≈ σ(ti)(Z(ti+1) − Z(ti))

which is close to (36). The main difference is that successive Z(ti+1) − Z(ti)
and Z(ti+2) − Z(ti+1) are correlated. This can either be ignored (our option)

http://www.stat-math.uni-essen.de/cho/research.php
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Fig 11. Upper panel: absolute daily returns of the Standard and Poor’s index over 19260 days
together with the estimated piecewise volatility in red. The lower panel shows the first 5000
days.

or every second difference can be eliminated. We can now calculate a piecewise
constant noise level as for the finance data. The approximation region (9) is
replaced by putting

w(g, Y n, I) =
1

√

|I|
∑

ti∈I

Y (ti) − g(ti)

σn(ti)
(40)

and setting

An(Y n, In, σ, τn) = {g : max
I∈In

|w(g, Y n, I)| ≤
√

τn log(n) } (41)

where σ is now a function. In applications we replace σ by an estimate of the
noise level described above. This definition of the approximation region can also
be found in Davies et al. (2008a) where high noise levels were essentially Poisson
with parameter f(t). The top panel of Figure 12 shows a data set of size n = 500
generated according to

Y (t) = exp(1 − 5t) + 0.25 exp(1.5t)Z(t) (42)
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Fig 12. Top panel: a sample of size n = 500 generated according to (42). Second panel: the
taut string estimate based on homogeneous noise. Third panel: a piecewise constant estimate
of the noise level. Bottom: the taut string estimate based on the piecewise constant noise
estimate.

and with the support being uniformly distributed on [0, 1]. The second panel
shows the taut string estimate based on homogeneous noise. The third panel
shows the piecewise constant noise estimate and the bottom panel the taut
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string estimate using this noise estimate. The extension to the problem of several
samples is straightforward.

7. Adapting the taut string algorithm

The taut string algorithm of Davies and Kovac (2001) has proved to be very
effective in determining the number of local extremes of a function contaminated
by noise (see Davies et al. (2008b)). It has the following property. Two sets of
points (ti, ui) and (ti, li), i = 0, . . . , n with ti < ti+1 and li ≤ ui, l0 = u0, ln = un

describe a tube on [t0, tn]. The taut string algorithm calculates a function ts,
the taut string, which lies within the tube, li ≤ ts(ti) ≤ ui, i = 0, . . . , n and
has the smallest number of local extreme values of all functions which lie within
the tube. An algorithm of complexity O(n) for calculating the taut string is
given in the appendix of Davies and Kovac (2001). When applied to a data set

(ti, yi), i = 1, . . . , n the tube is centred at the partial sums (ti,
∑i

j=1 yj) of the
yi whereby the tube is chosen automatically using local squeezing as described
in Section 3.6 of Davies and Kovac (2001). The approximating function is taken
to be the left-hand derivative of the piecewise linear taut string except for the
first point where the right-hand derivative is taken. The method can be adapted
to the case of k samples by weighting the observations according to the inverse
noise level of the sample from which the observation comes as we now explain.

The first question to be decided is whether a common approximation exists or
not. This will always be the case unless the intersection of the empirical supports
is non-empty in which case it is possible that the linear inequalities defining the
approximation regions are inconsistent. In principle this can be decided using
linear programming but in practice it may not be possible for large data sets
because of the corresponding large number of inequalities. A simple and effective
way of overcoming the problem is as follows. Let n ≤∑k

i=1 ni denote the number
of different tij values which we order as 0 ≤ t1 < . . . < tm ≤ 1. For each sample
we calculate the values of σ̂ini

given by (19) and put

yℓ =

∑

tij=tm
yij/σ̂2

ini
∑

tij=tℓ
1/σ̂2

ini

, i = 1, . . . , m. (43)

We now simply check whether any function f̃m which interpolates the points
(tℓ, yℓ), ℓ = 1, . . . , m lies in each of the approximation regions. If this is the
case then clearly an approximating function exists. If it is not the case then we
conclude that no such function exists although this has not actually been shown.
However if an interpolating function does not lie in all approximation regions
then any function which does will be even more complex and so probably not
acceptable.

If a joint approximation exists then the taut string algorithm can be used to
find a joint approximation with the smallest, or close to the smallest, number of
local extreme values. Applying the taut string algorithm directly to the points
(tℓ, yℓ), ℓ = 1, . . . , m may result in too many local extreme values, especially
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Fig 13. Top: two data sets with f(t) = exp(1.5t) and noise levels σ1 = 0.1, σ2 = 50. Centre:
plot of the unweighted partial sums. Bottom: the resulting taut string approximation.

if the noise levels of the samples are very different. This is because the partial
sums

∑i
j=1 yj of the yi, on which the taut string algorithm relies, are dominated

by those samples with the largest noise level. This is shown in Figure 13 where
we generated two data sets each of size ni = 500 according to (3) with

f(t) = exp(1.5t), σ1 = 0.1, σ2 = 50
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Fig 14. Upper panel: plot of the weighted partial sums for the data of Figure 13. Lower panel:
the resulting taut string approximation.

and where the tij, j = 1, . . . , 500, i = 1, 2 are taken to be independently and
uniformly distributed on [0, 1]. The top panel of Figure 13 shows the two data
sets, the centre panel shows the plot (tℓ, y

∗
ℓ ), ℓ = 1, . . . , 1000 of the partial sums

y∗ℓ =
∑ℓ

j=1 yj of the yℓ. The bottom panel shows the results of the taut string
procedure when the tube is centred at the points (tℓ, y

∗
ℓ ). The partial sums are

dominated by the second sample with σ2 = 50 and this is reflected in the result
of the taut string procedure. The problem may be overcome by weighting the
observations according to the noise level. We put

αℓ =
∑

tij=tℓ

1/σ̂2
ini

, y◦ℓ =

ℓ
∑

1

αjyj , Aℓ =

ℓ
∑

1

αj, y◦0 = A0 = 0

The plot of the partial sums (Aℓ, y
◦
ℓ ), ℓ = 1, . . . , 1000 is shown in the upper

panel of Figure 14. This is now dominated by the low noise sample. The lower
panel shows the result of applying the the taut string procedure to these points.

The local squeezing procedure described in Davies and Kovac (2001) can be
adopted to the case of k samples as follows. For a given tube, the taut string
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through the tube and constrained to pass through (0, 0) and (y◦n, An) is cal-
culated. The value of the estimate f̃n(tm) at the point tm is taken to be the
left-hand derivative of the taut string except for the first point where the right-
hand derivative is taken. For each data set individually it is now checked whether
f̃n ∈ Aini

, i = 1, . . . , k. If this is the case the procedure terminates. Otherwise
those intervals for which the inequalities defining the Aini

do not hold are noted
and the tube is squeezed at all points tj−1 and tj for which tj lies in such an

interval. This is continued until a function f̃n ∈ Ank
is found.

8. Discussion

Although the comparison of non-parametric regression functions is neither a
fundamental theoretical nor practical problem it does pose some interesting
conceptual challenges for statisticians, particularly in the case where the sup-
ports are disjoint. As pointed out in Section 1.1, if the supports of the samples
are disjoint then there will always be a single function which could have gener-
ated the data and which is consistent with any qualitative smoothness condition.
There can be no qualitative smoothness objections to the function in the cen-
tre panel of Figure 1 but there can be quantitative smoothness objections, for
example that the absolute value of the first derivative exceeds a given bound.
We note that this bound must be made explicit, simply assuming ‖f(1)‖∞ ≤ C
without specifying C does not help. On a more general level the problem is one
of lack of uniformity in the asymptotics. The set of functions which satisfy a
qualitative smoothness condition is too large for uniform asymptotics over the
class: if a sequence of functions fn in this class converges pointwise to a function
f , all that can be said about f is that its points of discontinuity have measure
zero. A weak form of quantitative smoothness over the class ‖f(1)‖∞ ≤ C at
least guarantees that the limiting function will be continuous. Another case of
non-uniform asymptotics is the choice of a smoothing parameter. Articles which
rely on kernel estimators with a global bandwidth hn often recommend a choice
hn ≍ cn−1/5 because it is asymptotically optimal. For any finite n it can be very
poor and consequently hn ≍ cn−1/5 is of no help in any concrete application.
Typically examples and simulations will be restricted to functions which are very
smooth when measured in terms of the supremum norms of the first and second
derivatives, ‖f(1)‖∞ ≤ 10 for example. Here the asymptotics may start working
for relatively small samples but none of this is captured by the theorems. Finally
we note that lack of uniformity can cause problems in much simpler situations.
An example is Hodges’ super efficient estimator of the parameter µ of a N(µ, 1)
distribution (see for example Lehmann (1983), page 405). For the connection
between the Hodges’ estimator and the effects of non-uniformity in other areas
of statistics we refer to Pötscher and Leeb (2008).

The goal is to provide procedures which work well for the data at hand and, in
particular, for the sample size n at hand. One consequence of this is that we are
prepared to give specific numerical values such as ‘at least 998 local minima’ and
‘the total variation of the second derivative is at least 0.7’ to describe the data.
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We do not embed the procedure in a sequence of procedures and then show that
they will work asymptotically. Asymptotics are used only as a concrete approx-
imation to calculate a probability, just as one may approximate the binomial
b(n, 1/2) probabilities using the normal approximation. One example is the de-
termination of the values of the τn(α). From the asymptotics limn→∞ τn(α) = 2
and simulations for finite n it is possible to derive a simple formula which will
provide good approximations for all n. Another example is the use of the nor-
mal approximation in (17). The claim that the approximation regions are honest
was made to emphasize the applicability to the data set at hand. If the noise
is heteroskedastic then the regions may no longer be honest, but the intention
is that they are still relevant for the data at hand. The main data constraints
when defining the approximation region are the reasonably accurate determina-
tion of the noise level and the requirement that the noise can well be described
by the Gaussian model. The work of Dümbgen shows that this latter restric-
tion can be overcome to a large extent by defining the approximation region in
terms of the signs or some other function of the residuals (see Dümbgen (1998,
2003, 2006, 2007); Dümbgen and Johns (2004); Dümbgen and Kovac (2009)).
In Dümbgen and Kovac (2009) it is shown how the taut string algorithm can
be adapted to these more general situations.

The approximation regions contain many functions which will in general not
be acceptable. For example, any function which interpolates the data and whose
residuals are consequently all zero will lie in the approximation region. If the
statistician is interested in local extreme values then a function of interest would
be one which minimizes this number subject to its belonging to the approxima-
tion region. This would in a sense answer the question as to which local extreme
values ‘are really there’. Similarly, if the statistician is interested in smoothness
then a function of interest would be one which maximizes this subject to its
belonging to the approximation region. The approximation regions considered
here are convex. It is therefore in principle possible to minimize any convex
measure of complexity. In practice there may be numerical problems because of
the large number of linear constraints which define the approximation regions.
The number of local extreme values is not convex a convex function and we
are lucky that the taut string algorithm performs not only very well in terms
of its results, but also it is also very fast. By minimizing the complexity it is
possible not only to exhibit a simple function which is consistent with the data
but also to claim that this is the (or a) simplest function. In particular, if this
simplest function has at least one local extreme value, then the data cannot be
adequately approximated by a monotone function.

When comparing two data sets the analysis depends on whether the supports
are disjoint or not. If there are not disjoint then it may well be the case that
there is no common approximating function. If they are disjoint, then there
always will be a joint approximating which can only be eliminated by complexity
considerations. These need not be formulated in advance: it may well be that the
experimenter cannot formulate these in advance, but, having seen the simplest
function consistent with both data sets, is not prepared to accept it.

As already mentioned in Section 1.3 regularization plays an essential role in
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much of statistics. This is not generally recognized but well known exceptions
are Hampel (Hampel et al. (1986)), Huber (Huber (1981)) and Tukey (Tukey
(1993)). It is perhaps not a coincidence that all three were instrumental in laying
down the foundations of robust statistics where the consideration of perturba-
tions of models is part of the theory. The necessity of regularization derives from
the fact that many statistical problems, and particularly those which involve the
use of likelihood, are ill-posed. This is simply because the linear differential op-
erator is not bounded and hence not continuous. This is the classical situation
where regularization is required. For a more detailed discussion of the role of
regularization in statistics and other related topics we refer to Davies (2008).
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