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Abstract: The Commission of the European Union, as well the United
States Environmental Protection Agency, have set limit values for some
pollutants in the ambient air that have been shown to have adverse effects
on human and environmental health. It is therefore important to identify
regions where the probability of exceeding those limits is high. We propose
a two-step procedure for estimating the probability of exceeding the legal
limits that combines smoothing in the time domain with spatial interpo-
lation. For illustration, we show an application to particulate matter with
diameter less than 10 microns (PM10) in the North-Italian region Piemonte.

AMS 2000 subject classifications: primary 62-09; secondary 62G99.
Keywords and phrases: threshold exceedanceprobability,PM10, smooth-
ing, spatial interpolation, spatial time series, visualization.

Received June 2008.

1. Introduction

For many physical processes, it is important to model the probability of ex-
ceeding specific thresholds, above which negative effects on human health and
the environment have been observed. Examples include climatological processes
(temperature, precipitation), and air pollution processes (ozone, fine particles).

One way of estimating exceedances over high thresholds is given by method-
ology using extreme value theory. A review of statistical techniques for analyzing
extreme values can be found in Smith (1989), together with a detailed analysis
of ozone time series. Davison and Smith (1990) analyze the generalized Pareto
distribution used for modeling exceedances over high thresholds, and give ap-
plications to river flows and wave heights. Tawn (1992) uses a modified version
of the joint probabilities method for the analysis of extremes of non-stationary
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sequences, with an illustration on estimation of extreme sea levels exceeded by
the annual maximum hourly sea height with a prescribed probability. Niu (1997)
discusses extremal properties of non-stationary time series, and shows an ap-
plication to stratospheric ozone in Chicago, concerning the exceedance of daily
maxima over the national standard. Piegorsch et al. (1998) present a thorough
overview of statistical methodology for extreme values and rare events with
focus on environmental applications. Chavez-Demoulin and Embrechts (2004)
describe smooth non-stationary generalized additive models for extremes, and
incorporate splines in a model for exceedances over high thresholds applied to
finance and insurance problems.

An alternative, more general approach for modeling exceedances, is via method-
ology in time series and spatial statistics for probability distribution functions
and quantiles. Also, it is often the case that environmental data have large tem-
poral coverage (hourly or daily measurements over long periods), and smaller
spatial coverage (a relatively small number of monitoring locations). Such data
can be viewed as a collection of long time series that are spatially correlated.
The problem of interest is to map the exceedance probabilities over a fixed
threshold. Many times, the observed time series display different patterns at
the different monitoring sites, and show significant departures from stationarity
and Gaussianity.

In this note we introduce a two-stage exploratory technique that combines
smoothing in the time domain with spatial interpolation, to produce maps of ex-
ceedance probabilities for the spatial domain of interest. Motivated by the good
temporal coverage of the data, and in order to provide a flexible, comprehensive
approach, we start by smoothing the observed 0 or 1 exceedance probabilities,
then interpolate the resulting estimates by using a parametric spatial covariance
function.

A flexible way to characterize complex temporal dependence, is via a time-
varying transformation G(t, Zt) of a stationary process Zt. The physical evo-
lution of many real-life processes makes this a plausible working assumption.
As the unknown transformation G is allowed to vary with time, the probability
distribution function of the resulting process may also change, and therefore
the process may not be stationary. Ghosh et al. (1997) studied the asymptotic
properties of a nonparametric estimator of the marginal probability distribu-
tion function in this setting, where the underlying process Zt was assumed to
be Gaussian and having long memory. A similar estimator was analyzed in
Draghicescu (2003), Draghicescu and Ghosh (2003) for the case when the un-
derlying Gaussian process has short memory (under the general assumption that
the correlations are summable). A data-driven procedure for optimal bandwidth
selection for these kernel estimators was proposed in Ghosh and Draghicescu
(2002), and discussed in detail in Draghicescu (2003). A new kernel distribution
function estimator was recently discussed in Swanepoel and Van Graan (2005),
where a data-based choice of bandwidth was also proposed. The method holds
for independent, identically distributed (iid) data, and can be extended for
weakly dependent observations. Bosq (1998) provides a comprehensive overview
of nonparametric methods for stochastic processes. However, there are many
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open problems regarding spatial modeling of distribution functions. One imme-
diate, albeit naive approach, is given by the so-called indicator kriging (Chilès
and Delfiner 1999, page 383), which is an adaptation of universal kriging (spatial
interpolation). Recently Short et al. (2005) introduced a fully hierarchical ap-
proach for modeling distribution functions for bivariate spatial processes, using
a Bayesian framework implemented via MCMC methods.

The Commission of the European Union, as well as the United States Envi-
ronmental Protection Agency, have set limit values for some pollutants in the
ambient air, that were proved to have a negative impact on human and envi-
ronmental health. In particular, recent studies linked traffic-related pollutants
to increased risks of morbidity and mortality due to respiratory and cardiovas-
cular illness (see for example Samet et al. 2000 and the references therein). It is
therefore important to identify regions where the probability of exceeding these
legal limits is high.

In this paper, we focus on particulate matter with diameter less than 10
microns (PM10). Exploratory analyses and basic statistical models for this pollu-
tant are employed in McKendry (2000), Ignaccolo and Nicolis (2005),
Rajsic et al. (2004), among others. A review of recent studies on particulate
matter is given in Schimek (2003), where a semi-parametric model including
weather information is used to link particulate matter to hospital admissions in
a regional study, controlling for potential spatial dependencies. In contrast to
these studies, where PM10 is modeled directly, we focus on the probability of ex-
ceeding the legal limit. We use a two-stage procedure to estimate the space-time
exceedance probability over a given threshold. The paper is organized as follows.
The data set that motivated this study is described in Section 2. Section 3 is
devoted to statistical methodology, followed by Monte Carlo simulations in Sec-
tion 4, and an application to air pollution data in Section 5. A brief discussion
is given is Section 6.

2. A motivating data set

We analyze daily PM10 concentrations (in µg/m3) during 2004 at 22 sites in
the North-Italian region Piemonte. The data were collected through the infor-
mation system AriaWeb Regione Piemonte. A detailed description of this mon-
itoring network can be found in Ignaccolo and Nicolis (2005). The 22 records
used in this study were selected from Low Volume Gravimetric (LVG) monitors,
such that the amount of missing data did not exceed 10%. The missing values
were imputed by using kernel regression smoothing with adaptive plug-in band-
width (Gasser et al. 1991). The maximum allowable number of days to exceed
50 µg/m3 is 35, and therefore 50 µg/m3 is the threshold corresponding to the
0.904 quantile during one year. Detailed explanations of the European norms for
air pollution are given in van Aalst et al. (1998). Figure 1 shows the locations
of these 22 sites, together with the respective 0.904 quantiles.

It can be observed that the sites near the Alps have lower PM10 values,
whereas higher pollution levels are detected in the valleys, closer to urban ar-
eas. Regarding the temporal variations of this pollutant, we found that the
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Fig 1. Locations of 22 air pollution monitoring stations in Piemonte; superimposed 2004
annual 0.904 quantiles of daily PM10 (µg/m3).

behavior of PM10 has different patterns at different locations, yielding different
patterns in the behavior of the probability of exceeding 50 µg/m3. Given the
good temporal coverage of the data, we employ smoothing in the time domain
to first model these exceedance probabilities in a flexible and comprehensive
way. For an illustration, we show in Figure 2 the series of daily PM10 concen-
trations for year 2004 at three locations, the corresponding 0 or 1 probabilities
of exceeding 50 µg/m3, and the associated smoothed exceedance probabilities.

With respect to the temporal dependence structure, these 22 time series
displayed short-range dependence, as shown by the boxplots of their autocorre-
lation functions in Figure 3.

The same data set is used in Bande, Ignaccolo and Nicolis (2006), where ad-
ditional meteorological and geographical information is included in a model
for the space-time PM10 trend (mean function). With regard to modeling the
probability of exceeding the cutoff PM10 legal value, the preliminary study
Draghicescu and Ignaccolo (2005) proposes a sequential modeling technique for
the maps of exceedance probabilities in the same region, using data from 17
monitors for the year 2003. This method will be briefly described in Section 4,
and used for comparisons in the simulations and applications.
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Fig 2. Time series of daily PM10 concentrations, year 2004 (left), corresponding 0 or 1
series representing the 50 µg/m3 exceedance probabilities (middle), and smoothed exceedance
probabilities (right) at station 5 (top), station 19 (middle), and station 11, (bottom).

3. Theoretical framework

Assume that at each location s ∈ D (for some domain D ∈ R2) we ob-
serve a temporal process of the form Xs(t) = Gs(t, Zs(t)), where Gs is an
unknown transformation, Zs is a standardized stationary Gaussian process with
γs(l) := cov(Zs(t), Zs(t+l)), such that

∑∞
l=−∞ |γs(l)| < ∞. This general class of

processes includes non-stationary and non-Gaussian situations, and is therefore
suitable to model complex environmental data sets. Also note that no paramet-
ric assumptions are made on the temporal covariance structure of the process.
For fixed x0 ∈ R, define the exceedance probability Px0

(t, s) = P (Xs(t) ≥ x0).
By using the axioms of probability, it is immediate to see that Px0

(t, s) takes
values in [0, 1] and is non-increasing in x0. The problem of interest is to predict
Px0

(t, s∗) at location s∗ ∈ D where there are no observations, and at any time t,
based on observations of the process Xs(t) at n time points t1, . . . , tn, and at m
spatial locations s1, . . . , sm. Typically m is much smaller than n. Furthermore,
for fixed t, these exceedance probabilities are assumed to be isotropic in space,
meaning that their spatial covariances depend only on the Euclidean distance
between the respective locations.
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Fig 3. Boxplots (over the 22 locations) of the empirical autocorrelation functions for the time
series of daily PM10 at these locations, year 2004.

The method we propose consists of two steps. We start by modeling the tem-
poral exceedance probabilities for any location where the process is observed.
Let Xs(t1), . . . , Xs(tn) be the daily PM10 observed concentrations, assumed to
be realizations of a process Xs(t) = Gs(t, Zs(t)), and x0 the PM10 legal limit.
We stress again that the true exceedance probability may change with time and
space. Therefore the empirical estimator Pn,m(x0) := 1

nm

∑n
i=1

∑m
j=1 1{Xsj

(ti)≥x0}

(analogous to the empirical distribution function) is too rough, and cannot cap-
ture such changes, making it necessary to consider different weights, that should
depend on the local behavior of the process. As the problem of interest is not to
assess the mean function of the process, but the exceedance probability over the
given threshold x0, we focus on the indicator process 1{Xs(t)≥x0}. We assume
further that the changes of this indicator process with time are smooth for all
s ∈ D, namely that 1{Xs(ti)≥x0}−Px0

(ti, s) =
∑∞

k=1 ck,s,x0
(ti)Hk(Zs(ti)), where

ti = i
n

are rescaled time points, Hk denotes the Hermite polynomial of degree k,
and the coefficients ck,s,x0

are twice continuously differentiable with respect to t,
and continuous with respect to s and x0. For examples of time-varying transfor-
mations of Gaussian processes and detailed explanations of assumptions similar
to the ones above, we refer to Draghicescu (2003). In the second step we use
spatial interpolation to predict the exceedance probability over the specified
threshold at any location in the region of interest.
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3.1. Estimation of temporal exceedance probabilities

In the initial step we model the temporal risks non-parametrically, by using the
Nadaraya-Watson kernel estimator

P̂x0
(t, s) =

∑n

i=1 K
(

ti−t
bt

)

1{Xs(ti)≥x0}
∑n

i=1 K
(

ti−t
bt

) , (1)

where K is a kernel function. For details on kernel smoothing we refer to
Wand and Jones (1995). Note that the temporal bandwidth bt should not de-
pend on the threshold x0, in order for the resulting estimator to be non-increasing.
In what follows, to keep notation simple, we write b instead of bt.

Theorem 3.1. In the above notation, if ∂2

∂t2

[

Px0
(t, s)

]

exist a.e. in [0, 1] and if
∂2

∂t2

[

V ar
(

1{Xs(t)≥x0}

)]

< ∞, as n → ∞, b → 0 and nb → ∞, for all s ∈ D and
fixed x0 ∈ R, for the estimator (1) we have

(a) Consistency:

MSE
(

P̂x0
(t, s)

)

= O

(

max

(

b4,
1

nb

))

. (2)

(b) Asymptotic normality:

P̂x0
(t, s) − EP̂x0

(t, s)
√

V ar
(

P̂x0
(t, s)

)

−→d N(0, 1). (3)

Sketch of the proof. By using Taylor expansions and integral approxima-
tions of the sums over the kernel function, it follows that Bias

(

P̂x0
(t, s)

)

=

EP̂x0
(t, s)−Px0

(t, s) = B(t, s, x0)b
2+o(b2), where B(t, s, x0) = 1

2
∂2

∂t2

[

Px0
(t, s)

]

∗
intu2K(u)du. Also, V ar

(

P̂x0
(t, s)

)

= 1
(nb)2 V (t, s, x0)+o

(

1
(nb)2

)

, where V (t, s, x0)

is bounded. Specifically, Ghosh and Draghicescu (2002) prove that there exist a
temporal covariance function with the lag-k covariance denoted by g(k, t, t′) such

that V (t, s, x0) =
∑n

i=1

∑n

j=1 K
(

ti−t
b

)

K
( tj−t′

b

)

g(|i − j|, t, t′). Consistency then
follows from Chebyshev’s inequality. The asymptotic normality is an immediate
application of results in Breuer and Major (1983).

Remark 3.1. Estimator (1) has the same rate of convergence as in the iid case.

Remark 3.2. An optimal bandwidth can be obtained by minimizing the mean
squared error of the estimator (2). Note that, as in the iid case, bopt ∼ Cn− 1

5 .
In practice, an optimal bandwidth (local or global) can be obtained by using
plug-in estimators (approximations) of the bias and variance (see for example
Ghosh and Draghicescu 2002, Draghicescu 2003). While local (time-dependent)
bandwidths have the advantage of dealing with edge effects (at the ends of the
time interval), it is often the case that global (integrated over time) bandwidths
considerably decrease computational time, without significant change in the
resulting estimators.
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Remark 3.3. In practice V ar
(

P̂x0
(t, s)

)

can be estimated by smoothing the
empirical covariances, that provide good approximations for the above g(k, t, t′),
and used to produce confidence bands based on the asymptotic normality of
P̂x0

(t, s). In our preliminary analyses of the PM10 data, this approach yielded
very narrow bands.

3.2. Spatial interpolation

In the second step, we use use spatial interpolation (universal kriging) to predict
the exceedance probability field at a location s∗ ∈ D where there are no obser-
vations, under the assumption of space-time separability. We model the spatial
covariances Ct(||si−sj ||) := Cov

(

P̂(t, si), P̂(t, sj)
)

parametrically, by using the
Matèrn stationary covariance model

Ct(||si − sj ||) =
σt

2νt−1Γ(νt)

(

2
√

νt||si − sj ||
ρt

)νt

Kνt

(

2
√

νt||si − sj ||
ρt

)

(4)

for fixed t. Our analyses did not detect major violations of spatial isotropy
(that is, the spatial correlations only depend on distance, and not on direc-
tion). The threshold x0 is also fixed. To keep notation simple, we omitted it
in expression (4). Γ(·) is the usual gamma function and Kνt

(·) is the modified
Bessel function of the third kind of order νt (Abramowitz and Stegun 1972).
The parameter νt > 0 characterizes the smoothness of the process, σt denotes
the variance of the transformed random field, and ρt measures how quickly the
correlations of this field decay with distance. These parameters are estimated
by maximum likelihood. Then, the best linear unbiased predictor (BLUP) of
the exceedance probability field at s0 ∈ D, is given by a linear combination
P̂∗(t, s0) =

∑m
i=1 λiP̂(t, si), where the weights λi, 1 ≤ i ≤ m are completely

determined by the covariance parameters νt, ρt, and σt. The standard error of
P̂∗(t, s0) can be also expressed in terms of the interpolation parameters λi.
This procedure is known as universal kriging (Stein 1999), and implemented in
many software packages. In practice, the covariance parameters are estimated
from the same data. To account for their uncertainty, the standard errors of
P̂∗(t, s0) need to be adjusted. This can be done by using conditional simulation
techniques (Stein 1999, Chapter 6), or resampling schemes (Lahiri 2003).

Remark 3.4. Linear interpolation does not guarantee that the resulting ex-
ceedance probability estimator/predictor takes values in the interval [0, 1]. A
1 : 1 transformation (such as x ↔ ex

1+ex ) can be used first, then perform inter-
polation on the transformed field, and finally invert to obtain the desired ex-
ceedance probabilities. However, this technical detail did not provide improved
maps for the present study.

4. Numerical simulations

In this section we present a simulation study that was carried out in order
to analyze the performance of the exceedance probability estimator P̂∗

x0
(t, s0)
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Fig 4. One realization of the simulated spatial field at fixed time point t = 100 (left), su-
perimposed locations of 25 randomly chosen sites; one realization of the process at location
marked “X” (right).

introduced in Section 3. We simulated stationary isotropic space-time processes
on a 20 × 20 grid and 200 time points. We considered a separable covariance
model factorized as a Whittle-Matèrn spatial covariance by a stable temporal

covariance, C(u, h) = CT (u)CS(h) = σ2
T exp(−uα) ∗ σ2

S
21−γ

Γ(γ)
hγKγ(h), where

u = |tl − tk| is the time lag and h = ||si − sj || is the spatial distance between
two sites, Γ(·) is the usual gamma function, and Kγ(·) is the modified Bessel
function of the third kind of order γ. The computations were done in R, using
the function GaussRF in the library RandomFields. We used σ2

T = 0.7, σ2
S = 1.3,

α = 0.2, and γ = 0.5. One realization of the process is shown in Figure 4.
In order to assess the performance of the mapping procedure described in Sec-

tion 3, we used the following three methods. They are all sequential, the second
step being the same in all three cases (universal kriging with Matèrn covariance
function). First method is indicator kriging, that is spatial interpolation of the
empirical exceedance probabilities. It will be referred to as IND. The next ap-
proaches require a preliminary smoothing step in the temporal domain. Thus,
the second method, referred to as EDF, is the two-step procedure introduced in
Draghicescu and Ignaccolo (2005). For every time point ti, a weight is assigned
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Table 1

Means and standard deviations over 100 simulations of root mean squared errors
√

∑200

i=1

(P̂∗

x0
(ti,s0)−P

∗

x0
(ti,s0))2

200
at location marked “X” in Figure 4, based on data at the

randomly selected sites (m=24), and on data on the whole grid (m=400). Method IND:
spatial interpolation of the observed 0 and 1 exceedance probabilities; method EDF: spatial
interpolation of smoothed exceedance probabilities with weights proportional to the empirical

distribution function; method KER: spatial interpolation of estimated exceedance
probabilities obtained by kernel smoothing

x0 = 0 x0 = 2
m = 24 m = 400 m = 24 m = 400

IND 0.772 (0.0698) 0.0154 (0.1320) 0.1001 (0.0759) 0.078 (0.0521)
EDF 0.0095 (0.0983) 0.0098 (0.7095) 0.0542 (0.0930) 0.0327 (0.0198)
KER 0.0083 (0.0572) 0.0071 (0.0352) 0.0493 (0.0087) 0.0278 (0.0065)

to the observed exceedance probability 0 or 1, corresponding to the order of the
quantile of the PM10 observation for that time point (i.e. the empirical distri-
bution function EDF). For example, if the observed value is 80, and 75% of the
data are less than 80, the respective weight will be 0.75, that is EDF(80). Then
the exceedance probability is estimated by a weighted average of the observed
exceedances on a time window centered at ti. In the simulations, applications
and validation study in next section, the window width was fixed and equal to
7 time points. The third method, called KER is based on kernel smoothing, as
described in detail in Section 3.

Table 1 shows the means and standard deviations over 100 simulations of

the root mean squared errors

√

∑200
i=1

(P̂∗

x0
(ti,s0)−P∗

x0
(ti,s0))2

200 at location marked
“X” in Figure 4, for two thresholds, x0 = 0 (corresponding to the median), and
x0 = 2 (corresponding to the 0.9 quantile). For each time point ti, the predictor

P̂∗
x0

(ti, s0) was computed based on data at the randomly selected sites (m=24),
as well as on data on the whole grid (m=400). It can be seen that for both
thresholds these root mean squared errors are lowest for KER and largest for
IND.

5. Maps of exceedance probabilities for PM10 in Piemonte

We applied the three methods previously described to the Piemonte PM10 data.
We estimated the 50 µg/m3 exceedance probabilities for each day of the year
2004.

Figure 5 displays these exceedance probabilities on February 18, 2004 (left),
and February 19, 2004 (right), based on the aforementioned methods. On Febru-
ary 18 the maximum value of PM10 for 2004 was observed at all sites, with a
large decrease the following day. In this case IND does not seem to work well,
the maps are very rough, and there is an abrupt change from a day to the next.
The unshaded region on the February 19 map is due to negative values of the
predicted exceedance probabilities, that, for the applied goal of this study, can
be viewed as zeros. EDF yields maps with high values on almost all the region,
while KER shows higher values around the Torino area. As observations outside
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Fig 5. Estimated 50µg/m3 exceedance probabilities on February 18, 2004 (left) and February
19, 2004 (right); IND (top), EDF (middle), KER (bottom).
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Fig 6. Estimated 50µg/m3 exceedance probabilities averaged over summer (left) and winter
(right); IND (top), EDF (middle), KER (bottom).
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Fig 7. Boxplots (over the 22 locations) of the root mean squaerd prediction errors for 50
µg/m3 exceeding probabilities: IND (left), EDF (middle), KER (right).

Piemonte were not available, the estimated exceedance probabilities near the
boundaries tend to have larger errors.

While these methods provide maps of point estimates, and could give a good
understanding of the process (by using animation techniques for example), it is
often the case that transformations of point estimates are also of interest. For
instance, seasonal averages are very informative summaries for both scientists
and policy makers. Figure 6 shows estimated exceedance probabilities over 50
µg/m3 averaged over summer (left) and winter (right), obtained through the
three methods. Summer is considered the period between April 1 and September
30. From a geographical prospective these methods yield maps that are not
very different. However, from a statistical point of view, EDF or KER have the
advantage of making use of all the information in the data. As expected, in both
seasons the highest risks are around the Torino area, with larger values during
the winter.

To assess the performance of these methods, we carried out a cross-validation
study. We used the leave-one-out principle and estimated the daily 50 µg/m3

exceedance probabilities at each site, based on observations at the remaining
21 sites for each day. The boxplots in Figure 7 display the root mean squared
prediction errors obtained by leaving out that site, computed as the square root
of the averages (over the 366 days of the year 2004) of the differences in squared
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exceedance probabilities (“observed” - predicted). Here, the “observed” values
are 0 or 1 for IND, and the corresponding smoothed values (after first step) for
EDF and KER, respectively. As expected, IND performs the worst, while KER
yields the smallest errors.

6. Discussion

The methodology proposed in this paper provides a good descriptive and visual
tool for modeling threshold exceedance probabilities based on space-time data
with large temporal and relatively small spatial coverage. It is statistically accu-
rate, computationally fast, and flexible enough to be suitable for processes with
complex space-time dependencies in many applied fields, such as environmental
science and management, atmospheric sciences, ecology, epidemiology, finance,
medicine. The method KER, involving kernel smoothing in time, followed by
spatial interpolation, was proved to provide the most accurate and informative
maps of exceedance probabilities.
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