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Comment on article by Sansó et al.

Dave Higdon∗ and James Gattiker†

Sansó, Forest and Zantedeschi (SFZ) have presented an excellent analysis that com-
bines limited computer simulations with historical observations to provide inference
about key climate system parameters. The Bayesian formulation used in this analysis
allows the incorporation of a number of different sources of uncertainty in the final
inference. We appreciate such a collaboration requires a substantial amount of effort
from all involved. There is not much to criticize here. Most of our comments, which
are motivated by the case study, apply generally to analyses involving the calibration
of a physics-based simulation model using physical observations.

Detailed versus reduced simulation models

This analysis purposely uses a fairly aggregated model that assumes the physical system
is constant along a given latitude band. Contrast this with a very detailed global
circulation model which takes months to run. Our experience is that such reduced
dimension computer models are very common in a variety of physics applications and
offer a number of important advantages:

• they often lead to more direct and accurate inference about aggregate entities such
as trends or inventories;

• their speed makes them amenable to analyses (such as this one) that require
ensembles of simulation runs be carried out;

• they can often incorporate more realistic physics models that larger-scale simula-
tion models cannot afford;

• they are often applicable to a wider variety of data types or sources.

Relative pros and cons regarding large scale global circulation models are considered in
Shackley et al. (1998).

Not only is the simulation model reduced, but so too are the historic data records.
The data are temporally and spatially aggregated, as well as differenced. This choice of
how to use the data is important. One would like to keep the features in the data that
are important and that the simulator can accurately model, while ignoring features of
the data that are either uninformative or cannot be well modeled. In particular, the
use of differencing in this analysis makes the results insensitive to constant shifts in the
simulation output – it is simulating the trends in the historic data that is important.
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A shortcoming of such models is their perceived (real or imagined) distance from
the actual physical system of interest. How are policy makers going to treat results
from an analysis based on an earth whose climate is constant along latitude bands? We
certainly feel that reduced models can play a very important role in guiding decisions
and policy. How can we help bridge this gap?

Connecting simulations with reality

The authors assume δ – the term for model discrepancy – is zero, so that the difference
between the model η(θ) and the observations is controlled by the error term ξ. This term
is modeled as independent N(0,Σi) for the three data sources: upper air temperature
changes Z1; surface temperature change Z2; and deep ocean temperature trend Z3.
Hence, whatever model discrepancy there is in this application is absorbed by these
error terms.

Our experience at LANL has been that model inadequacies can greatly affect the
resulting posterior distribution for the model parameters θ. Hence it is important to
account for such a possibility in the analysis. When allowing for such a term, it is also
very helpful to inform the analysis as much as possible about the error in the observed
data. Our feeling is that it is important to include important terms in the model (such
as discrepancy), even if we don’t feel there is sufficient information in the data or priors
to remove potential degeneracies. Without such terms, there is the danger of obtaining
unrealistically precise posteriors for the model parameters.

As a crude attempt to explore the consistency of the climate simulation model here
we carried out a set of analyses using a similar modeling framework for combining
simulations and physical observations which is described in Higdon et al. (2008). The
resulting posterior distribution for the model parameters is shown in Figure 2. While the
posteriors appear similar to those shown in Figure 6 of SFZ, these model formulations
have a number of differences which make direct comparison difficult without additional
work. The point here is to show how modifying this new model formulation can lead to
qualitatively different inferences.

This model, like that of SFZ, assumes a common set of parameters is appropriate
for modeling the three different data sources (Figure 1). If this is true, then separate
calibrations to each of the data sources should be consistent. The posteriors from three
separate analyses, one conditioning on Z1, one on Z2, and one on Z3 are shown in
Figure 3. One could combine these data sources by using a hierarchical model (Figure
1, right side), rather than a common model. Our hierarchical model links the common
parameters from each data source θij (i indexes data source, j indexes parameter) with
independent normal distributions so that

θij ∼ N(θ0j , σ
2
j )

where the parameters θ0j and σ2
j are estimated in the analysis. Figure 4 shows the

resulting posterior for θ0. Because the separate calibrations are not entirely consistent,
there is substantial spread in the posterior distribution for θ0.
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Figure 1: An alternative to constraining the model parameters θ under a common
model formulation (left) used in this article is a hierarchical formulation (right). This
hierarchical formulation allows a separate calibration of the model parameters for each
of the three historical records – upper air temperature changes Z1, surface temperature
change Z2 and deep ocean temperature trend Z3 – and links these parameters with
a hierarchical model. The resulting posteriors for the model parameters are given in
Figures 2 – 4.

We are not making the claim that this wider posterior resulting from the hierarchical
formulation is more appropriate for this application, rather we are pointing out that
alternative, plausible formulations can substantially impact the resulting inference. The
choice between various formulations is partly one statistics can answer, but it must also
be informed by the science of the application. The form and magnitude of observation
errors and discrepancies are important to consider here. See Goldstein and Rougier
(2007) and the accompanying discussion for other perspectives on the topic of calibration
and making the connection between computer models and reality.

In conclusion, we thank the authors for an interesting and well thought out analysis.
We feel that the general field of simulation-aided inference will play an ever more promi-
nent role in statistics, as well as in a broad range of application areas in the physical
and engineering sciences. This paper makes an excellent contribution to the field.
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Figure 2: Posterior distribution for the calibration parameters using a common model
formulation similar to the one used in SFZ.

and concepts of good science in climate change modelling: Are GCMs the best tools?”
Climatic Change, 38: 159–205.
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Figure 3: Posterior distributions obtained from fitting separate models to each of the
three data sources – upper air temperature changes Z1, surface temperature change Z2

and deep ocean temperature trend Z3.
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Figure 4: Posterior distribution for the common hierarchical calibration parameters θ0

from the hierarchical model formulation. The resulting parameter uncertainty is much
larger than it is under the common model formulation, which points to the possibility
that the data are less informative than the original SFZ analysis suggests.


