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Performance evaluation of nursing homes is usually accomplished by the
repeated administration of questionnaires aimed at measuring the health sta-
tus of the patients during their period of residence in the nursing home. We
illustrate how a latent Markov model with covariates may effectively be used
for the analysis of data collected in this way. This model relies on a not di-
rectly observable Markov process, whose states represent different levels of
the health status. For the maximum likelihood estimation of the model we
apply an EM algorithm implemented by means of certain recursions taken
from the literature on hidden Markov chains. Of particular interest is the es-
timation of the effect of each nursing home on the probability of transition
between the latent states. We show how the estimates of these effects may be
used to construct a set of scores which allows us to rank these facilities in
terms of their efficacy in taking care of the health conditions of their patients.
The method is used within an application based on data concerning a set of
nursing homes located in the Region of Umbria, Italy, which were followed
for the period 2003–2005.

1. Introduction. Both in European countries and in the United States, elderly
people with chronic conditions or functional limitations can access nursing homes
whenever they are no longer able or choose not to remain in their own homes.
These facilities provide a diverse array of services such as housing, support sys-
tems, nursing and medical care for a sustained period of time. These services range
from minimal personal assistance to virtually total care for the patients. The chal-
lenge for the nursing homes is to provide the opportunity for elderly people to
live with dignity even though they may be physically or cognitively impaired. The
quality of the assistance and the efficiency of the facilities play a crucial role in
restoring this sense of dignity and also in providing physical safety for the resi-
dents.

In the last decades, the increasing requirement for health assistance due to the
population aging makes the quality of care in nursing homes an ever-pressing issue
for policy makers. In the medical literature, there is also a great debate about the
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construction of indicators which measure nursing home performance and the use
of these indicators to rank facilities in a certain geographical region; see Phillips
et al. (2007) and the references therein. The indicators currently used to evaluate
nursing home performance reflect physical conditions of elderly people and are
based on data coming from surveys which are periodically carried out by public
institutions; see, among others, Hirdes et al. (1998) and Mor et al. (2003). Often,
a ranking of the nursing homes based on these indicators is publicly available [see
Harrington et al. (2003)]. This kind of literature is strongly related to that on the
evaluation of medical and health care institutions on the basis of indicators such
as mortality rates. Important contributions in this literature, which are somehow
related to the approach presented in this paper, are represented by the funnel plot
method [see Spiegelhalter (2005)] and the hierarchical and random-effects models
introduced by Normand, Glickman and Gatsonis (1997) and Ohlssen, Sharples and
Spiegelhalter (2007a, 2007b).

A peculiar aspect of the surveys carried out to evaluate nursing home perfor-
mance is that the same patients are usually observed at several occasions due to
their long stay in the same facility. Then, we can observe how patients in each
nursing home evolve in their health conditions and this is an important indicator
of the performance of this facility. This aspect is not captured by the tools and
the statistical models which are usually adopted for assessing nursing homes and
medical care institutions.

Motivated by an application based on data coming from the Region of Um-
bria, Italy, in this paper we propose the use of the latent Markov (LM) model
for the analysis of data on nursing homes collected by the repeated administra-
tion of questionnaires made of dichotomously-scored items. These questionnaires
concern several aspects related to the health conditions of an individual. The LM
model, introduced by Wiggins (1973), is a standard tool for the analysis of binary
longitudinal data when the interest is in describing individual changes with respect
to a certain latent status [for a review see Langeheine and van de Pol (2002)].
The latent status is represented by a latent process assumed to follow a first-order
Markov chain. In the present framework, the latent status of interest is the health
condition of a patient. Our approach attempts to explain: (i) how this condition
changes over time depending on observable covariates and (ii) how it depends
on belonging to different nursing homes. For this aim, we consider a version of
the LM model where both the initial and the transition probabilities of the latent
process depend on time-constant and time-varying covariates, such as gender and
age [see also Vermunt, Langeheine and Böckenholt (1999)]; the model also has
some connection with the mixture of experts model dealt with by Jacobs et al.
(1991). Among the individual covariates, we include dummy variables for belong-
ing to a certain nursing home. Then, the model also takes into account the multi-
level structure of the data using fixed-effects, rather than random-effects, to capture
the influence of each facility on the health status. This is made possible because
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in our application the number of nursing homes is not large. Moreover, the esti-
mates of these effects allow us to construct a system of bidimensional scores for
the performance evaluation of the nursing homes in taking care of the health con-
ditions of their patients. Obviously, this evaluation is specially concerned with the
capability of these facilities in delaying the worsening of the patient’s conditions
due to aging. However, these scores only provide a partial ordering for the nurs-
ing homes. Then, we also suggest a system of unidimensional scores which gives
rise to a complete ordering. For the maximum likelihood estimation of the LM
model illustrated in this paper we outline an EM algorithm [Dempster, Laird and
Rubin (1977)] based on results well known in the hidden Markov literature [Mac-
Donald and Zucchini (1997)] and further developed by Bartolucci (2006). We also
deal in detail with model selection and the assessment of the goodness-of-fit and
goodness-of-classification provided by the model.

It is worth noting that latent variable models are commonly used for the analy-
sis of data derived from studies about living conditions; see, for instance, Mesbah,
Cole and Lee (2002) and Forcina and Bartolucci (2004). However, adopting LM
models in this field seems to be rather new. One of the few applications of this type
is illustrated in Bartolucci, Pennoni and Lupparelli (2008), but that work is based
on an LM model which is much simpler than the one dealt with in the present
paper and has a different prospective from that of the performance evaluation of
nursing homes. A related paper is also that of Bartolucci, Pennoni and Francis
(2007) who applied a multivariate LM model to analyze a dataset based on the
criminal histories of a cohort of people living in England and Wales. The aim was
that of studying how the tendency to commit specific categories of crimes depends
on age. Compared to the model proposed in this work, the one used in Bartolucci,
Pennoni and Francis (2007) is simpler since it only allows for categorical covari-
ates and assumes that all subjects in the sample are observed at the same occasions.

The remainder of this paper is organized as follows. Section 2 describes the
dataset concerning the nursing homes located in the Region of Umbria, where the
population aging is particularly evident. Section 3 describes the LM model with
covariates and Section 4 describes its maximum likelihood estimation. Finally, in
Section 5 we show the results of the application of the proposed approach to the
dataset described in Section 2 and we conclude with a discussion in Section 6.

2. The dataset. In order to illustrate how the proposed approach may effec-
tively be used to evaluate the performance of nursing homes, we consider a dataset
derived from a longitudinal survey on the nursing homes operating in Umbria
about the assistance level they provide to their patients. The survey is carried out
since 2003 through the repeated administration of a questionnaire which is filled up
by the nursing assistant of each patient and concerns several aspects of the every-
day life of elderly people: cognitive conditions, ability in activity of daily living,
continence self-control, disease diagnoses, skin conditions, nutritional status and
the need of special treatments and medicines. In particular, we focus on the survey
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TABLE 1
Summary statistics about the sample of 1,093 elderly people admitted in 11 nursing homes in

Umbria; n.patients stands for the number of patients who were observed in the same nursing home,
% males is the corresponding percentage of males and n.occasions stands for the number of

occasions of administration of the questionnaire to the same patient

Variable Min Mean Max

n.patients 55.00 99.36 177.00
% males 20.30 33.58 40.70
Age 32.00 80.69 102.00
n.occasions 1.00 4.67 20.00

period 2003–2005 and consider 11 nursing homes among those located in Umbria.
The resulting sample includes 1,093 residents. Summary statistics for this sample
are reported in Table 1.

We also focused on a reduced set of dichotomously-scored items which are for-
mulated so that responding 1 to any of them indicates the presence of a certain
cognitive or physical limitation. This set was selected by discarding from the full
questionnaire the items which: (i) do not provide any information on the physical
and mental conditions which are relevant for the performance evaluation of nursing
homes; (ii) have frequency of response 1 too low or too high (i.e., lower than 10%
or greater than 90%). The latter follows from a standard practice in the literature
on Item Response Theory [IRT; see Hambleton and Swaminathan (1985)]. Over-
all, we considered 9 items which are clustered in 3 groups regarding the following
aspects: cognitive conditions (CC), activities of daily living (ADL) and skin con-
ditions (SC). These items are listed in Table 2 which, for each of them, also shows
the percentage of response 1 at the first occasion of administration to the same
patient.

The interval of time between consecutive occasions at which the questionnaire
was administered is in general equal to three months, but there are several excep-
tions for mainly two reasons: (i) each individual could be repeatedly charged and
discharged in the same nursing home; (ii) an additional follow-up occurred when-
ever special treatments were required according to the patient’s condition; for the
same reasons, the number of these occasions is not constant across patients. This
may clearly be deduced from Table 1 which shows that the number of occasions
per patient ranges from 1 to 20. It is also worth mentioning that a set of personal
characteristics was recorded for each patient, such as gender, date of birth, date of
admission and demission and each date of administration of the questionnaire.

A preliminary assessment of the performance of the nursing homes in taking
care of their patients may be based on a score assigned to each subject at each oc-
casion of interview and defined as the percentage of item responses equal to 1. For
subject i observed at occasion t , this score is denoted by ait and, for the subjects
in the same nursing home h, the evolution of the score may be summarized by the
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TABLE 2
The items selected for evaluating the performance of the nursing homes. Last column shows the

percentage of response 1 to each item at the first occasion

Item %

1 [CC1] Does the patient show problems in recalling what
recently happened (5 minutes)? 72.6

2 [CC2] Does the patient show problems in making decisions
regarding tasks of daily life? 64.2

3 [CC3] Does the patient have problems in being understood? 43.9
4 [ADL1] Does the patient need support in moving to/from lying position,

turning side to side and positioning body while in bed? 54.4
5 [ADL2] Does the patient need support in moving to/from bed, chair,

wheelchair and standing position? 59.0
6 [ADL3] Does the patient need support for eating? 28.7
7 [ADL4] Does the patient need support for using the toilet room? 63.5
8 [SC1] Does the patient show presence of pressure ulcers? 15.4
9 [SC2] Does the patient show presence of other ulcers? 23.1

average

āh =
∑

i:Ti>1 bhi

∑Ti−1
t=1 (ai,t+1 − ait )∑

i:Ti>1 bhi(Ti − 1)
.

In the above expression, the outer sum is extended to all subjects observed at least
twice, Ti is the number of response occasions for subject i, and bhi is a dummy
variable equal to 1 if subject i is hosted by nursing home h and to 0 otherwise.
A negative value of āh means that the conditions of the patients in facility h tend
to improve over time, whereas a positive value means that these conditions tend
to worsen. Then, these average scores allow us to rank the nursing homes accord-
ing to their performance. Further information on this ranking are provided by the
variability of the differential scores measured by the index

sh =
√√√√∑

i:Ti>1 bhi

∑Ti−1
t=1 [(ai,t+1 − ait ) − āh]2∑

i:Ti>1 bhi(Ti − 1)
.

The results obtained from the application of the indices āh and sh to the avail-
able dataset are summarized in Table 3.

Two groups of nursing homes may be singled out. The first contains facilities
4, 5, 6 and 7 which have a positive effect on the health conditions of their pa-
tients. The second group contains the other facilities which, instead, admit patients
whose conditions tend to worsen during time. Considering the variability of the
differential scores, we can also clearly distinguish nursing homes for which this
variability is low, and then their effect does not considerably vary between patients
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TABLE 3
Preliminary evaluation of the performance of each nursing home (h) on the basis of the average

differential scores (āh) and the corresponding standard deviations (sh)

h āh Rank sh

1 0.07 (5) 91.74
2 0.93 (10) 138.27
3 0.51 (7) 57.43
4 −1.20 (4) 133.20
5 −3.90 (2) 193.36
6 −1.96 (3) 85.17
7 −4.38 (1) 275.40
8 0.96 (11) 132.50
9 0.65 (8) 242.75

10 0.89 (9) 47.16
11 0.50 (6) 71.56

and occasions, from those for which this variability is high. Actually, a negative
average differential score āh jointly with a low standard deviation sh denotes a
very good evaluation for a nursing home whose effect is positive for most of the
patients. However, we can observe that the variability tends to increase as the per-
formance improves; in fact, the highest variability is observed for facility 7, which
also attains the best score.

The above analysis is only based on the observed values of the response vari-
ables and does not take into account the individual covariates and the conditions
at admission and that the items may be differently related to the health status. On
the other hand, the approach that will be described in the following sections takes
these aspects into account. We pay particular attention to the nursing home effect
in improving the health conditions of the patients or delaying the worsening of
these conditions. For this aim, a nursing home may adopt special procedures, such
as skin treatments for pressure ulcers, and may use special settings to support the
locomotion and the ADL self-performance. We expect that the items we selected
can provide an effective measure of the efficacy of these interventions.

3. The latent Markov model with covariates. Let Yijt denote the binary re-
sponse variable for the j th item administered at the t th occasion to the ith subject
in the sample, with i = 1, . . . , n, j = 1, . . . , J and t = 1, . . . , Ti . For the same sub-
ject let Yit be the vector with elements Yijt , with j = 1, . . . , J , let si be the vector
of time-constant covariates and let zit be the vector of time-varying covariates, so
that xit = (s′

i z′
it )

′ is the vector of all the covariates for this subject at occasion t . In
our application, we take the dummy variables for coding the patient’s gender and
those for coding the nursing home to which the subject belongs as time-constant
covariates and age and time interval between occasions as time-varying covariates.
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FIG. 1. Path diagram representing the multivariate LM model with covariates for a given subject.

Following an LM approach, we represent the health status of the ith patient
at time t by a discrete latent variable Cit with k support points, coded from 1
to k. The sequence of latent variables Ci1, . . . ,CiTi

is assumed to follow a first-
order Markov chain. It is also assumed that the response variables in each vector
Yit are conditionally independent given Cit and that the vectors Yi1, . . . ,YiTi

are
conditionally independent given Ci1, . . . ,CiTi

. In the latent variable literature, this
assumption is usually referred to as local independence and, as will be clear in
the following, it has important implications on the way of deriving the distribu-
tion of the response variables. Moreover, considering that our aim is the perfor-
mance evaluation of nursing homes, we formulate the following assumptions on
the conditional distribution of each Yijt given Cit and the initial and the transition
probabilities of the latent process. The resulting model is represented by the path
diagram in Figure 1.

• Conditional distribution of Yijt given Cit . Since we want the response variables
to depend only on the latent status, we assume that

p(Yijt = 1|Cit = c,xit ) = λj (c)

for each i, j , t and c = 1, . . . , k. Moreover, we require these conditional proba-
bilities to satisfy the constraint

λj (1) ≤ λj (2) ≤ · · · ≤ λj (k), j = 1, . . . , J,(3.1)

so that the latent states result ordered. Since in our dataset responding 1 to an
item is a sign of bad health condition, the previous constraint implies that the
latent states are decreasing ordered in terms of this individual characteristic. In
particular, subjects in the first state are those with the best and subjects in the last
state are those with the worst health status. Note that assuming that the latent
states are ordered is necessary in our context since, otherwise, it would be im-
possible to provide an evaluation of the nursing home effect on the probability
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that the health condition of a patient improves or worsens during time. In the lit-
erature on latent variable models, this is an usual assumption already adopted in
similar contexts [see Forcina and Bartolucci (2004) and Bartolucci and Forcina
(2005)].

• Initial probabilities of the latent process. Let πi(c) = p(Ci1 = c|xi1) and let π i

be the initial probability vector, that is, the column vector with elements πi(c)

for c = 1, . . . , k. We allow these probabilities to depend on the individual covari-
ates implementing in this way a sort of risk adjustment, that is, an adjustment for
the differences between the patients at the admission in nursing homes in terms
of their health conditions; for a discussion related to this point, see Normand
and Shahian (2007). In particular, since the latent states are ordered, we allow
these probabilities to depend on the time-constant and time-varying covariates
through a parameterization which is typically adopted in regression models for
ordinal variables and, in particular, in the proportional odds model of McCul-
lagh (1980). We assume that

log
πi(c + 1) + · · · + πi(k)

πi(1) + · · · + πi(c)
= (u′

c x′
i1 )β,

(3.2)
i = 1, . . . , n, c = 1, . . . , k − 1,

where uc is a column vector of dimension k − 2 with all elements equal to zero
apart from the (c − 1)th element equal to 1 when c ≥ 2. This parametrization
is based on cumulative (or global) logits which have a natural interpretation for
ordinal variables. Also note that when the number of latent states increases by
one, only one parameter is added to the model; this parameter corresponds to
the intercept for the new state. This is because the regression coefficients for
the covariates are the same for all the states and this allows the model to be
parsimonious even with a large k.

• Transition probabilities of the latent process. Let πit (d|c) = p(Cit = d|Ci,t−1 =
c,xit ) and let �it denote the corresponding transition probability matrix with
elements πit (d|c) for c, d = 1, . . . , k. Considering that the latent process repre-
senting the health status of an elderly patient is expected to be highly persistent,
we constrain the transition matrices to be tridiagonal. With k = 5, for instance,
we have

�it =

⎛
⎜⎜⎜⎜⎝

πit (1|1) πit (2|1) 0 0 0
πit (1|2) πit (2|2) πit (3|2) 0 0

0 πit (2|3) πit (3|3) πit (4|3) 0
0 0 πit (3|4) πit (4|4) πit (5|4)

0 0 0 πit (4|5) πit (5|5)

⎞
⎟⎟⎟⎟⎠ .

This is equivalent to assuming that πit (d|c) is equal to 0 for d /∈ {c}∪Kc, where
K1 = {2}, Kk = {k − 1} and Kc = {c − 1, c + 1} for c = 2, . . . , k − 1. This has
an advantage in terms of parsimony of the model, which becomes more and
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more evident as the number of states increases. Moreover, taking into account
the individual covariates, we parameterize the transition probabilities as follows:

log
πit (d|c)
πit (c|c) = x′

itγ cd ,

(3.3)
i = 1, . . . , n, t = 2, . . . , Ti, c = 1, . . . , k, d ∈ Kc.

A version of the parametrization, which is even more parsimonious, is based on
the constraints

γ c,c−1 = γ 1, c = 2, . . . , k,(3.4)

and

γ c,c+1 = γ 2, c = 1, . . . , k − 1,(3.5)

so that the transition probabilities from state c to c − 1 and from state c to c + 1
(when these transitions are admissible) do not depend on c.

In the following, we indicate by M1 the model with tridiagonal transition ma-
trices and by M2 the constrained version of M1 based on (3.4) and (3.5).

The above assumptions imply that the conditional distribution of the individual
response vector Yit given Cit = c may be expressed as

mit (y|c) = p(Yit = y|Cit = c,xit ) = ∏
j

λj (c)
yj [1 − λj (c)]1−yj ,

where y = (y1, . . . , yJ )′ denotes a possible realization of Yit . Moreover, the man-
ifest distribution of Yi1, . . . ,YiTi

can be obtained on the basis of the factorization
of the joint distribution of a first-order Markov chain as

qi(y1, . . . ,yTi
) = p(Yi1 = y1, . . . ,YiTi

= yTi
|xi1, . . . ,xiTi

)

= ∑
c1

mi1(y1|c1)πi(c1)
∑
c2

mi2(y2|c2)πi2(c2|c1) · · ·(3.6)

× ∑
cTi

miTi
(yTi

|cTi
)πiTi

(cTi
|cTi−1).

It has to be clear that both mit (y|c) and qi(y1, . . . ,yTi
) depend on the covariates.

However, we consider these covariates as given and then we avoid to explicitly in-
dicate them. A similar convention is adopted throughout the paper as, for instance,
when we denote the initial probabilities by πi(c) and the transition probabilities
by πit (d|c).

The context of application of our LM model is very different from the context of
application of a hidden Markov model since the former is suitable for the analysis
of data deriving from the observation of several statistical units at a limited num-
ber of occasions, whereas the latter is suitable for the analysis of one or few long
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series of data. However, the two models share their basic probabilistic assumptions
and this implies that efficient computation of the probability in (3.6) may be per-
formed by exploiting a forward recursion available in the hidden Markov literature
[see Baum et al. (1970), Levinson, Rabiner and Sondhi (1983) and MacDonald and
Zucchini (1997)]. As in Bartolucci (2006), it is convenient to express this recur-
sion by using the matrix notation on the basis of the initial probability vectors π i

and transition probability matrices �it . For this aim, consider the column vector
qit (y1, . . . ,yt ) with elements p(Cit = c,Yi1 = y1, . . . ,Yit = yt |xi1, . . . ,xit ) for
c = 1, . . . , k. This vector may be computed by using the following recursion:

qit (y1, . . . ,yt ) =
{

diag[mi1(y1)]π i , if t = 1,

diag[mit (yt )]�′
itqi,t−1(y1, . . . ,yt−1), otherwise,

(3.7)

where mit (yt ) is the column vector with elements mit (yt |c) for c = 1, . . . , k. Once
this recursion has been performed for t = 1, . . . , Ti , we may obtain qi(y1, . . . ,yTi

)

as qiTi
(y1, . . . ,yTi

)′1k , with 1k denoting a column vector with k elements equal
to 1.

An issue related to the previous one is the efficient computation of the condi-
tional probabilities p(Ci,t−1 = c,Cit = d|xi1, . . . ,xiTi

,Yi1 = y1, . . . ,YiTi
= yTi

).
Let Rit (y1, . . . ,yTi

) denote the matrix containing these probabilities for c, d =
1, . . . , k. By exploiting a recursion similar to the above one, this matrix may be
computed, for t = 2, . . . , Ti , as

Rit (y1, . . . ,yTi
)

(3.8)

= diag[qi,t−1(y1, . . . ,yt−1)]�it diag[mit (yt )]diag[rit (yt+1, . . . ,yTi
)]

p(y1, . . . ,yTi
)

,

where the vector rit (yt+1, . . . ,yTi
) is computed by the backward recursion

rit (yt+1, . . . ,yTi
)

=
{

1k, if t = Ti ,
�i,t+1 diag[mi,t+1(yt+1)]ri,t+1(yt+2, . . . ,yTi

), otherwise.

This recursion will be used to implement the estimation algorithm illustrated in the
following section.

4. Maximum likelihood inference. With reference to a sample of n subjects,
let yit denote the observed realization of the response vector Yit , i = 1, . . . , n,
t = 1, . . . , Ti . Assuming that the response vectors referred to different patients are
independent given the covariates, the log-likelihood of the model illustrated above
is

�(θ) = ∑
i

log[qi(yi1, . . . ,yiTi
)],
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where qi(yi1, . . . ,yiTi
) is computed by using recursion (3.7). Moreover, θ denotes

the complete parameter vector made of the subvectors β (for the initial proba-
bilities of the latent process), γ (containing the parameters γ cd for the transition
probabilities of the latent process) and λ [containing the conditional probabilities
λj (c)].

As we describe below, this log-likelihood is exploited to estimate the parameters
and for model selection.

4.1. Estimation. In order to estimate θ , we maximize �(θ) by an EM algo-
rithm [Dempster, Laird and Rubin (1977)] which is based on the complete data
log-likelihood, that is, the log-likelihood that we could compute if we knew the
latent state of each subject at every occasion. This function may be expressed as

�∗(θ) = ∑
i

∑
c

∑
t

wit (c) log[mit (yit |c)p(Cit = c|xi1, . . . ,xit )],

where wit (c) is a dummy variable equal to 1 if subject i belongs to latent state c at
time t , that is, Cit = c. The EM algorithm alternates the following two steps until
convergence in �(θ):

• E-step: compute the conditional expectation of �∗(θ) given the observed data
and the current value of θ ;

• M-step: maximize the above expected value with respect to θ , so that this para-
meter vector results updated.

In order to implement these steps, it is convenient to decompose the complete
data log-likelihood as �∗(θ) = �∗

1(β) + �∗
2(γ ) + �∗

3(λ) with

�∗
1(β) = ∑

i

∑
c

wi1(c) log[πi(c)],(4.1)

�∗
2(γ ) = ∑

i

∑
c

∑
d

∑
t>1

wit (c, d) log[πit (d|c)],(4.2)

�∗
3(λ) = ∑

i

∑
c

∑
t>1

wit (c) log[mit (yit |c)],(4.3)

where wit (c, d) = wi,t−1(c)wit (d) is a dummy variable equal to 1 if subject i

moves from state c to state d at time t and to 0 otherwise. The above decomposi-
tion implies that performing the E-step is equivalent to computing the conditional
expected value of each dummy variable in (4.1), (4.2) and (4.3), given the observed
data. Since these expected values correspond to the probabilities included in the
matrices Rit (yi1, . . . ,yiTi

), or to suitable marginalizations of these probabilities,
this step may be efficiently performed by exploiting recursion (3.8).

Once the dummy variables wit (c) and wit (c, d) have been replaced by their
conditional expected values, we obtain the expected value of �∗(θ), which is indi-
cated by �̃∗(θ). The M-step updates the estimate of θ by separately maximizing the
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components �̃∗
1(β), �̃∗

2(γ ) and �̃∗
3(λ) of �̃∗(θ), which are defined according to (4.1),

(4.2) and (4.3), respectively. In particular, being based on a simple logit parameteri-
zation, �̃∗

1(β) and �̃∗
2(γ ) are maximized by standard Newton–Raphson algorithms.

On the other hand, to take into account the ordering between the probabilities
λj (c) defined in (3.1), maximization of �̃∗

3(λ) requires a constrained version of the
Newton–Raphson algorithm which may be implemented along the same lines as
in Dardanoni and Forcina (1998).

We take the value at convergence of the EM algorithm as the maximum like-
lihood estimate of θ . This is denoted by θ̂ and is made of the subvectors β̂ , γ̂
and λ̂. As will be clear in Section 5, for each nursing home we compute a score
on the basis of the elements of γ̂ corresponding to the dummy for being in this
facility. These scores measure the effect of the nursing homes on the evolution of
the health status of a patient and allow us to rank these facilities on the basis of
their performance in taking care of their patients.

Finally, it is worth mentioning that the likelihood of the model described in Sec-
tion 2 is typically multimodal and has a number of local maxima which increases
with the number of states, but typically decreases with the sample size. The strat-
egy that we adopt to cope with this problem is based on a preliminary exploration
of the parameter space which consists of randomly selecting different points from
this space and, starting from each of them, running a limited number of EM steps.
Among the parameter estimates obtained in this way, the one which gives the high-
est likelihood is adopted to initialize the EM algorithm. Similar strategies have
shown themselves successful in estimating models related to the model presented
here; see, for instance, Biernacki, Celeux and Govaert (2003).

4.2. Model selection. A crucial point concerns the choice of the number of
states of the LM model adopted in the analysis. This problem is very similar to
that of the choice of the number of components of a finite mixture model, which
has been deeply discussed in the statistical literature. Fundamental contributions in
this sense are those of Leroux (1992) and Keribin (2000) who studied, in particular,
the properties of penalized likelihood criteria. Among these criteria, that based on
the Bayesian Information Criterion (BIC) seems to be preferable since, as proved
by Keribin (2000), under certain conditions it leads to consistent estimation of the
number of mixture components as the sample size goes to infinity. This criterion
has also interesting finite sample properties; see Chapter 6 of McLachlan and Peel
(2000). The use of BIC is also discussed in the hidden Markov literature and,
even if its theoretical properties are not so clear, this criterion is known to perform
well in choosing the number of states of a hidden Markov model; see Celeux and
Durand (2008) and Boucheron and Gassiat (2007).

Taking the above considerations into account, we rely on the BIC for model
selection. Using the previous notation and denoting the number of non-redundant
parameters of the model of interest by v, we can express the index on which BIC
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is based as

BIC = −2�(θ̂) + v log(n),(4.4)

where the penalization term increases with the complexity of the model, which
is measured by the number of its parameters. In particular, in order to select a
model for our application, we adopt a backward strategy starting from model M1,
which is the largest among the models described in Section 3. Following a standard
practice, we fit this model for increasing values of k, the number of latent states,
until we find the minimum of the BIC index. Then, with a similar criterion, we
try to simplify model M1 and model M2, based on constraints (3.4) and (3.5), and
then to reduce the set of covariates included into the model until it is not possible
to reduce further the value of the BIC index. In doing this we always retain the
number of latent states chosen under model M1. This strategy may miss the best
among the available models. However, it is computationally efficient and we can
expect the selected model to be reasonably close, when not identical, to the best
model.

In assessing the quality of the model to be adopted, two other aspects that
need to be taken into consideration are the goodness-of-fit and the goodness-of-
classification. We measure the goodness-of-fit by the index

R2 = 1 − exp{2[�̂0 − �(θ̂)]/(nJ )},
where �̂0 is the maximum likelihood of the independence model, which corre-
sponds to the proposed LM model with k = 1 and then has J non-redundant pa-
rameters. This index may be interpreted as the average improvement of the model
of interest, with respect to the independence model, in predicting each sequence
of the observed responses; see also Cox and Snell (1989) and Pongsapukdee
and Sukgumphaphan (2007). Similar to other indices for the goodness-of-fit of
a model, R2 is a relative index which ranges from 0 to 1, with higher values corre-
sponding to a better fit. Notice that R2 mainly differs from the BIC index defined
in (4.4) because it does not include a term for the model complexity and then it is
suitable for measuring the overall fit rather than for comparing different models.

Finally, considering that a natural criterion to classify subjects in the latent states
is based on the posterior probabilities

p(Cit = c|xi1, . . . ,xiTi
,yi1, . . . ,yiTi

),(4.5)

we measure the quality of the classification by the index

S =
∑n

i=1
∑Ti

t=1(r
∗
it − 1/k)

(1 − 1/k)
∑n

i=1 Ti

,

where, for every i and t , r∗
it is the maximum with respect to c of the probability

in (4.5). The reasoning behind this index is that when all the probabilities r∗
it are

close to 1, the classification provided by the model relies on well separated latent
states. In this situation, index S will attain a value close to its maximum which
is equal to 1. On the other hand, when classes are not well separated, most of
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the probabilities r∗
it will be close to 1/k and then S will attain a value close to

its minimum, which is equal to 0. An alternative index to measure the quality of
classification could be based on the entropy, as suggested in a related context by
Celeux and Soromenho (1996) and Biernacki, Celeux and Govaert (1999).

5. Application to the dataset about nursing homes in Umbria. In this sec-
tion, we illustrate the results obtained from the application of the proposed ap-
proach to the dataset about elderly people described in Section 2. Proceeding as
described in Section 4.2, we preliminary selected the number of latent states of the
LM model and then we tried to simplify this model by adopting certain constraints
on its parameters. We recall that we used the following covariates for modeling the
initial probabilities of the latent process through (3.2): gender (coded by a dummy
equal to 1 for a female and 0 for a male); age (in years); nursing home (coded by
a suitable set of dummies). With the addition of time between occasions (in days),
the same covariates are used to model the transition probabilities through (3.3).

For a number of latent states (k) between 1 and 8, Table 4 displays the maximum
log-likelihood (�̂) of the unrestricted LM model, indicated by M1, together with
the number of parameters (v) and the value attained by the BIC index. The table

TABLE 4
Results from a preliminary fitting of the LM model with different values of k and different

restrictions. The maximum log-likelihood of each model is denoted by �̂, v is the number of
parameters and k is the number of latent states

Model k v �̂ BIC R2 S

M1: unrestricted LM model 1 9 −27,824 55,769 – –
2 59 −18,992 38,397 0.834 0.989
3 97 −17,126 34,931 0.886 0.987
4 135 −15,880 32,705 0.912 0.979
5 173 −15,188 31,586 0.923 0.969
6 211 −14,893 31,262 0.928 0.967
7 249 −14,660 31,063 0.931 0.963
8 287 −14,568 31,143 0.932 0.952

M2: based on restrictions (3.4) and (3.5) 7 109 −14,868 30,499 0.928 0.957

M3: M2 + no gender effect on initial prob. 7 108 −14,870 30,495 0.928 0.957
M4: M2 + no age effect on initial prob. 7 108 −14,888 30,531 0.928 0.958
M5: M2 + no nursing home effect on initial prob. 7 99 −14,926 30,544 0.927 0.945

M6: M2 + no gender effect on transition prob. 7 107 −14,870 30,490 0.928 0.957
M7: M2 + no age effect on transition prob. 7 107 −14,870 30,489 0.928 0.957
M8: M2 + no time effect on transition prob. 7 107 −14,885 30,518 0.928 0.957
M9: M2 + no nursing home effect on transition prob. 7 89 −14,982 30,587 0.927 0.946

M10: M2 + restrictions defining M3, M6, M7 7 104 −14,875 30,478 0.928 0.957
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also displays the value of the indices R2 and S for assessing the quality of the fit
and that of the classification provided by the model. We can observe that model
M1 attains the lowest value of BIC when k = 7. With this number of states, the
model also shows a high value of R2 and a very high value of S. On the other
hand, good values of these indices are observed even with a smaller number of
states, confirming the adequacy of the proposed approach for the data at hand.

We then considered several models with 7 latent states which are nested in M1.
The first of these models, M2, uses only two blocks of parameters, γ 1 and γ 2, for
the transition probabilities between latent states; see equations (3.4) and (3.5). In
our application, a latent state with a smaller index corresponds to subjects in better
health conditions. Then, γ̂ 1 contains the parameters for the probabilities of moving
to a better state and γ̂ 2 contains the parameters for the probabilities of moving to
a worse state. On the basis of the results in Table 4, model M2 is preferable to the
unrestricted model with the same number of latent states. Proceeding in a similar
way, we fitted models M3–M9 which are particular cases of M2 in which certain
covariates are assumed to not affect either the initial or the transition probabilities
of the latent process. By comparing these models with M2, we can conclude that
gender does not have a significant effect on these probabilities. Moreover, age does
not show a significant effect on the transition probabilities. The model formulated
by removing these covariates, which is indicated by M10, attains the lowest BIC,
equal to 30,478, among all the fitted models. Under this model, the maximum log-
likelihood is equal to −14,875 with 104 parameters and we have very good values
of the indices R2 and S. Since further simplifications considerably increase the
value of the BIC index, we take M10 as our final model.

The estimates of the conditional probabilities λj (c) under the selected model
are reported in Table 5 for each latent state c and each item j among those listed
in Table 2. Seven ordered latent states result which represent different levels of the
health status of a patient. State 1 corresponds to people in quite good conditions.
States 2 and 3 correspond to patients which mainly suffer from problems related

TABLE 5
Estimates of the conditional probabilities λj (c) under model M10

Latent
state (c)

Item (j )

1-CC1 2-CC2 3-CC3 4-ADL1 5-ADL2 6-ADL3 7-ADL4 8-SC1 9-SC2

State 1 0.000 0.000 0.000 0.027 0.016 0.000 0.036 0.023 0.068
State 2 0.747 0.000 0.000 0.027 0.016 0.011 0.089 0.026 0.068
State 3 0.747 0.725 0.290 0.027 0.016 0.011 0.199 0.026 0.089
State 4 0.747 0.725 0.290 0.824 0.950 0.273 0.968 0.117 0.224
State 5 0.997 0.999 0.982 0.824 0.950 0.273 0.997 0.117 0.224
State 6 0.997 0.999 0.982 1.000 1.000 0.927 0.997 0.117 0.250
State 7 0.997 0.999 0.982 1.000 1.000 0.927 0.997 1.000 1.000
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TABLE 6
Estimates of the parameters (collected in β) affecting the initial probabilities with the

corresponding standard errors (s.e.), Wald test statistics (t-stat.) and p-values

Estimate s.e. t-stat. p-value

Intercept 1 −0.393 0.054 −7.306 0.000
Intercept 2 −1.584 0.093 −16.960 0.000
Intercept 3 −2.865 0.121 −23.765 0.000
Intercept 4 −3.488 0.131 −26.589 0.000
Intercept 5 −4.731 0.162 −29.188 0.000
Age 0.040 0.006 7.208 0.000
Dummy 1 −1.190 0.443 −2.685 0.007
Dummy 2 −1.006 0.482 −2.084 0.037
Dummy 3 −1.172 0.501 −2.338 0.019
Dummy 4 −1.234 0.483 −2.554 0.011
Dummy 5 −0.965 0.481 −2.007 0.045
Dummy 6 −0.801 0.510 −1.572 0.116
Dummy 7 −1.229 0.531 −2.315 0.021
Dummy 8 −1.859 0.466 −3.989 0.000
Dummy 9 −0.369 0.465 −0.794 0.427
Dummy 10 −2.538 0.519 −4.893 0.000
Dummy 11 −1.208 0.485 −2.490 0.013

to their cognitive status. The condition of people in states 4 and 5 is aggravated
by their daily activity limitations and similarly for state 6. Finally, in state 7 there
are people in worst conditions because they also present problems related to the
skin conditions. It may be observed that many conditional probabilities in Table 5
are equal across two or more consecutive states. This is a consequence of con-
straint (3.1) which is often used in the latent variable literature and, in our case,
is necessary to ensure the usefulness of the results for performance evaluation.
The classification of the residents in the nursing homes provided by the estimated
conditional probabilities in Table 5 recalls that proposed by other authors. In par-
ticular, Kane (1998) conjectured that there exist at least five distinct groups of resi-
dents who have different needs and suffer from cognitive impairment and physical
limitations at different levels. Among these groups, Kane (1998) included that of
subjects who are terminally ill. In our classification, patients who are terminally ill
are included among those in latent states 6 and 7.

Table 6 displays the estimates of the regression coefficients for the initial prob-
abilities of the latent Markov process, which are collected in the vector β , together
with the corresponding standard errors, Wald test statistics and p-values. These pa-
rameter estimates can be interpreted on the basis of assumption (3.2). In particular,
there are 5 ordered intercepts, corresponding to the shift that the linear predictor
has from the second to the sixth global logit, the coefficient for the covariate age
and 11 coefficients for the dummies used to account for the effect of the nursing
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homes. Standard errors for these parameter estimates are obtained from the ob-
served information matrix which is computed as minus the numerical derivative of
the score vector. The latter may be simply obtained from the EM algorithm. Note,
however, that the p-value associated to a dummy variable is not valid to test the
hypothesis that the corresponding nursing home has an effect equal to the average
effect on the health conditions of their patients. In order to test this hypothesis, a
transformation of the parameter estimates similar to that we will discussed later is
required (see Table 8).

On the basis of the estimates in Table 6 we can conclude that older people have
a greater probability, compared to younger people, to be in worse health conditions
at admission in the nursing home. A certain heterogeneity between nursing homes
is also observed for what concerns the type of patients they admit. For instance,
nursing home 10 tends to admit patients in better health conditions, whereas nurs-
ing home 9 tends to admit patients in worse conditions. These parameter estimates
correspond to the following vector of initial probabilities π i averaged over all the
subjects in the sample:

(0.133, 0.048, 0.217, 0.282, 0.111, 0.134, 0.073 )′ .
The latent state which, at admission, has the largest dimension is the fourth, which
corresponds to subjects with some cognitive and daily activity limitations. This
latent state corresponds to the 28.2% of patients and, together with the third and
the fifth latent states, it amounts to more than 60% of patients. On the other hand,
at the admission in the nursing home, a very low percentage of patients belongs to
the latent state corresponding to the worst health conditions.

In Table 7 we show the estimates of the regression coefficients for the covari-
ates affecting the transition probabilities of the latent Markov process which are
collected in γ 1 (improvement effect) and γ 2 (worsening effect). In particular, each
vector contains the coefficient for the time between occasions and 11 coefficients
for the dummies used to account for the effect of the nursing homes. The interpre-
tation of these parameters may be deduced from (3.3)–(3.5).

The most interesting estimates in Table 7 are those for the dummies correspond-
ing to the nursing homes. These estimates allow us to derive a system of scores
which may be used to evaluate and compare these facilities in terms of capability
of taking care of the health conditions of their patients. In particular, for each nurs-
ing home h, let a∗

1h denote the deviation with respect to the unweighted average
of the estimate of the parameter in γ 1 which measures the effect of this facility
on the probability of improving. In a similar way we define a∗

2h on the basis of
the estimates of the parameters in γ 2 for the probability of worsening. We then
have a couple of scores (a∗

1h, a
∗
2h), the first of which will be referred to as improve-

ment score and the second will be referred to as worsening score. For each nursing
home in the sample, the scores (a∗

1h, a
∗
2h) are shown in Table 8 together with the

corresponding standard errors and Wald test statistics and p-values for the hypoth-
esis that the nursing home effect (on the probability of improving or worsening)
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TABLE 7
Estimates of the parameters (collected in γ 1 and γ 2) affecting the transition probabilities with the

corresponding standard errors (s.e.), Wald test statistics (t-stat.) and p-values

Improvement effect (γ 1) Worsening effect (γ 2)

Estimate s.e. t-stat. p-value Estimate s.e. t-stat. p-value

Time −0.009 0.002 −5.121 0.000 −0.003 0.002 −2.020 0.043
Dummy 1 −3.295 0.372 −8.869 0.000 −3.317 0.304 −10.903 0.000
Dummy 2 −3.677 0.352 −10.447 0.000 −2.632 0.201 −13.076 0.000
Dummy 3 −2.703 0.270 −10.004 0.000 −2.876 0.258 −11.161 0.000
Dummy 4 −2.218 0.326 −6.794 0.000 −3.393 0.487 −6.964 0.000
Dummy 5 −0.112 0.298 −0.378 0.705 −1.053 0.363 −2.902 0.004
Dummy 6 −0.282 0.383 −0.735 0.462 −1.094 0.448 −2.445 0.014
Dummy 7 0.025 0.346 0.074 0.941 −0.925 0.384 −2.410 0.016
Dummy 8 −4.123 0.638 −6.463 0.000 −3.092 0.330 −9.378 0.000
Dummy 9 −1.990 0.338 −5.883 0.000 −1.686 0.243 −6.942 0.000
Dummy 10 −2.951 1.037 −2.846 0.004 −2.436 0.560 −4.346 0.000
Dummy 11 −3.025 0.503 −6.018 0.000 −2.427 0.316 −7.675 0.000

is equal to the average effect. These scores are also represented in Figure 2 and,
together with the 95% ellipsoidal confidence regions, in Figure 3.

To interpret the results we have to consider that if a nursing home has, with re-
spect to another nursing home, a higher improvement score and a lower worsening
score, the former is surely better than the latter. Therefore, each facility represented
in Figure 2 is better than all the facilities located to its North West. For instance,

TABLE 8
Improvement and worsening scores for each nursing home (h) with the corresponding standard

errors (s.e.), Wald test statistics (t-stat.) and p-values

Improvement score (a∗
1) Worsening score (a∗

2)

h Estimate s.e. t-stat. p-value Estimate s.e. t-stat. p-value

1 −0.789 0.334 −2.363 0.018 −0.909 0.254 −3.585 0.000
2 −1.173 0.340 −3.448 0.001 −0.224 0.193 −1.161 0.246
3 −0.198 0.308 −0.642 0.521 −0.468 0.263 −1.779 0.075
4 0.288 0.320 0.900 0.368 −0.985 0.442 −2.230 0.026
5 2.393 0.262 9.147 0.000 1.355 0.289 4.687 0.000
6 2.224 0.352 6.340 0.000 1.313 0.366 3.585 0.000
7 2.531 0.322 7.867 0.000 1.483 0.327 4.535 0.000
8 −1.618 0.529 −3.061 0.002 −0.684 0.255 −2.680 0.007
9 0.515 0.302 1.707 0.088 0.722 0.205 3.522 0.000

10 −0.445 0.975 −0.457 0.648 −0.028 0.495 −0.057 0.955
11 −0.520 0.476 −1.092 0.275 −0.019 0.293 −0.066 0.948
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FIG. 2. Plot of the scores (a∗
1h, a∗

2h) reported in Table 8, together with the quadrant numbering.
The first score is represented on the x-axis and the second on the y-axis.

facility 4 is surely better than facilities 1, 2, 3, 8, 10, 11. Moreover, being displayed
in the fourth quadrant (see Figure 2 for the indication of the quadrant numbering),
it also has a better effect than the average in taking care of the health conditions
of its patients. On the other hand, there are no nursing homes displayed in the
second quadrant which would definitely perform worse than the average. Another
aspect to take into account is that when both improvement and worsening scores
are positive, a nursing home induces a lower persistence on the health condition
of a patient with respect to the average. This is the case of facilities 5, 6, 7 and
9 which are displayed in the first quadrant. In contrast, patients admitted in nurs-
ing homes 1, 2 and 8, which are displayed in the third quadrant, seem to induce a
higher persistence. Finally, facilities 3, 10 and 11 show a performance very close to
the average effect. In fact, for these facilities, the ellipsoids in Figure 3 include the
origin (0,0). These ellipsoids are also useful to assess the precision of the scores
associated to each facility. For instance, we can observe that the largest ellipse is
that for facility 10 for which we observe the smallest number of patients.

A drawback of the system of bidimensional scores described above is that it al-
lows us to define just a partial ordering between the nursing homes. For instance, it
is not possible to rank facilities 4 and 6 since the former has a lower improvement
score, but the latter has a higher worsening score. To face this problem, we can
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FIG. 3. The 95% ellipsoidal confidence region for the couple of scores (a∗
1h, a∗

2h) of each nursing
home.

assume that nursing homes displayed around the diagonal line in Figure 2 deserve
the same evaluation because for these facilities the improvement effect is com-
pletely balanced by the worsening effect. Then, the facilities displayed below the
diagonal line necessarily have a good evaluation because the positive effect on the
probability of improving or the negative effect on that of worsening in the health
status are predominant. In contrast, the facilities displayed over this line have a bad
evaluation.

Taking into account the above arguments, we provide a system of unidimen-
sional scores defined as ā∗

h = a∗
1h − a∗

2h. These scores give rise to a complete or-
dering of the facilities. In particular, a negative (positive) score implies a nega-
tive (positive) evaluation for the facility and corresponds to a point displayed over
(below) the diagonal line in Figure 2. Moreover, the absolute value |ā∗

h| is pro-
portional to the Euclidean distance of each point (a∗

1h, a
∗
2h) from this line. Then,

the proposed system of unidimensional scores also has a geometric interpretation:
a greater distance of each point displayed over (below) the diagonal line leads to
a worse (better) evaluation for the nursing home. The unidimensional scores com-
puted for the nursing homes in the sample are reported in Table 9 and represented,
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TABLE 9
Unidimensional score for each nursing home (h) with the corresponding standard errors (s.e.),

Wald test statistic (t-stat.) and p-value

Unidimensional score (ā∗)

h Estimate s.e. t-stat. p-value

1 0.120 0.412 0.291 0.771
2 −0.947 0.379 −2.500 0.012
3 0.271 0.385 0.704 0.481
4 1.273 0.528 2.409 0.016
5 1.039 0.342 3.034 0.002
6 0.911 0.457 1.994 0.046
7 1.049 0.385 2.722 0.006
8 −0.933 0.577 −1.619 0.106
9 −0.206 0.341 −0.604 0.546

10 −0.417 1.078 −0.387 0.699
11 −0.500 0.529 −0.946 0.344

together with the corresponding confidence intervals, in Figure 4. In the latter,
nursing homes are ordered according to the score and, then, this figure directly
gives the final ranking of these facilities based on the proposed approach.

We can easily realize that nursing home 4 has the best performance in terms of
taking care of the health conditions of a patient. However, its score is very close
to that for nursing homes 5, 6 and 7. In fact these four facilities are displayed
below the same diagonal line in Figure 2 and have a similar distance from this
line. In terms of unidimensional score, these facilities are also well separated from
the other ones which perform considerably worse, in particular for what concerns
facilities 2 and 8. This conclusion is in partial agreement with the one reached in
Section 2 on the basis of the preliminary ranking reported in Table 3. Differences
are due to taking into account the admission conditions of the patients and their
personal characteristics. A final comment concerns the confidence intervals shown
in Figure 4. We can observe that these intervals have a similar width with the
exception of that for nursing home 10 which is clearly the widest, indicating a
small precision of the unidimensional score for this facility. This is in accordance
with what was observed about the precision of the bidimensional scores on the
basis of the ellipsoids in Figure 3.

6. Discussion. We proposed a latent Markov model [Wiggins (1973)] with
covariates as a tool for evaluating the performance of nursing homes in taking care
of the health status of their patients. This model is used for the analysis of a lon-
gitudinal dataset derived from the repeated administration of a questionnaire to a
sample of patients admitted in different nursing homes in the Region of Umbria,
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FIG. 4. The 95% confidence interval for each unidimensional score ā∗
h .

Italy. The items contained in the questionnaire are aimed at observing several as-
pects related to the physical and mental conditions of elderly people in order to
assess their health status. The data on which our application is based have a longi-
tudinal structure at individual level. This is a peculiar aspect of the data used in the
evaluation of nursing home performance which derives from the long stay of the
patients in the same facility. Typically, this does not happen for patients of other
health and medical care institutions.

By assuming the existence of a latent Markov chain for the health condition
dynamics, our approach allows us to model the probability of individual changes
over time. In the application, we also assumed that both the initial and the tran-
sition probabilities of the latent process depend on a set of individual covariates
such as gender and age. The performance of nursing homes is evaluated by includ-
ing, among the covariates, dummy variables indicating the facility hosting each
patient. It is worth noting that, in contrast to other approaches for performance
evaluation, our approach provides an evaluation based on how the health condi-
tions of the patients evolve over time. Moreover, as in other approaches adopted
in similar contexts [see, e.g., Normand and Shahian (2007) and Ohlssen, Sharples
and Spiegelhalter (2007b)], our model has a multilevel structure which, however,
is based on fixed rather than random effects. Consider also that, allowing the ini-
tial probabilities of the latent process to depend on the individual covariates, we
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reduce the impact of the selection bias due to possible differences between the
nursing homes in terms of the characteristics of the patients they admit.

The model we adopt for performance evaluation also provides a classification
of individuals in several groups corresponding to their health conditions. In our ap-
plication, in particular, we found evidence of seven groups, ranging from subjects
in good conditions to subjects who are cognitively impaired and have severe func-
tional limitations. This classification is in agreement with that proposed by Kane
(1998) who conjectured the existence of at least five distinct groups of residents
in the nursing homes. The performance evaluation of each nursing home depends
on how the facility affects the way in which its patients move between groups, and
then improve or worsen in their health conditions. Our model also allows to esti-
mate the dimension of each group and to predict the group to which every patient
belongs at a given occasion and then to dynamically assess the evolution of his/her
health status.

Our application mainly shows how it is possible to define a set of scores for
assessing and comparing the performance of nursing homes. In particular, we dis-
cussed two different criteria. The first relies on a system of bidimiensional scores
representing each nursing home effect on the probability of improving and on that
of worsening in the health status. This solution also provides a graphical represen-
tation of the performance of the nursing homes (see Figure 2), but it merely de-
fines a partial ordering between the facilities. Nursing homes belonging to the same
quadrant have effects of the same direction on these probabilities and then we have
a good evaluation for nursing homes displayed in the fourth quadrant since, with
respect to the average, their patients have a higher probability of improving and
a lower probability of worsening in their health conditions. In contrast, we have
a bad evaluation for nursing homes displayed in the second quadrant. However,
there is not any evident reason for preferring nursing homes in the first quadrant to
those displayed in the third quadrant. Obviously, the resulting partial ordering may
be difficult to use in certain situations, such as when it is necessary to decide the
amount of financial support to be provided to these facilities. Thus, combining the
two different effects, we proposed a system of unidimensional scores which also
have a geometric interpretation. These scores may be represented in a plot (see
Figure 4) which recalls similar plots adopted for the evaluation of medical care
institutions on the basis of indicators such as the standardized mortality ratio; see,
for instance, Spiegelhalter (2003). This solution allows us to define a complete
ordering of the nursing homes in terms of their performance, which necessarily
implies a certain loss of information compared to the bidimensional system. In
our application based on the data collected in the Region of Umbria, through this
system we identified the worst and the best nursing homes. The utility of singling
out facilities with such extreme performance has been advocated by Phillips et al.
(2007) as the main goal that the evaluation of nursing home performance must
have.
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The approach proposed in this paper can be adopted in different contexts when-
ever a set of items, aimed at measuring a certain latent status, is repeatedly ad-
ministered to the same subjects, and these subjects are grouped according to some
criteria. Consider, for instance, the problem of evaluating the health status of pa-
tients admitted in different hospitals, the productivity level of employees working
in different offices, the customer satisfaction for certain products sold by different
shops, and so on. However, in the presence of a large number of clusters, dummy
variables for evaluating the cluster effect do not provide a parsimonious solution
and a multilevel approach based on random-effects may be required. Moreover,
following a standard practice in meta-analysis, a multilevel approach could be
combined with an empirical Bayes approach. However, the approach based on
the latent Markov model has the advantage of taking explicitly into account the
dynamic nature of the health status, which is the main aspect to consider for the
performance evaluation of nursing homes.
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SUPPLEMENTARY MATERIAL

Matlab functions for LM models with covariates (DOI: 10.1214/08-
AOAS230SUPP; .zip). The approach described in this paper has been implemented
in a series of Matlab functions which are available from Bartolucci, Lupparelli and
Montanari (2009).

REFERENCES

BARTOLUCCI, F. (2006). Likelihood inference for a class of latent Markov models under linear
hypotheses on the transition probabilities. J. Roy. Statist. Soc. Ser. B 68 155–178. MR2188980

BARTOLUCCI, F. and FORCINA, A. (2005). Likelihood inference on the underlying structure of IRT
models. Psychometrika 70 31–43. MR2272473

BARTOLUCCI, F., PENNONI, F. and FRANCIS, B. (2007). A latent Markov model for detecting
patterns of criminal activity. J. Roy. Statist. Soc. Ser. A 170 115–132. MR2339101

BARTOLUCCI, F., LUPPARELLI, M. and MONTANARI, G. E. (2009). Supplement to “Latent
Markov model for longitudinal binary data: An application to the performance evaluation of nurs-
ing homes.” DOI: 10.1214/08-AOAS230SUPP.

BARTOLUCCI, F., PENNONI, F. and LUPPARELLI, M. (2008). Likelihood inference for the latent
Markov Rasch model. In Mathematical Methods for Survival Analysis, Reliability and Quality of
Life (C. Huber, N. Limnios, M. Mesbah and M. Nikulin, eds.) 239–254. Wiley, London.

BAUM, L. E., PETRIE, T., SOULES, G. and WEISS, N. (1970). A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41 164–
171. MR0287613

BIERNACKI, C., CELEUX, G. and GOVAERT, G. (1999). An improvement of the NEC criterion for
assessing the number of clusters in a mixture model. Pattern Recognition Letters 20 267–272.

http://dx.doi.org/10.1214/08-AOAS230SUPP
http://www.ams.org/mathscinet-getitem?mr=2188980
http://www.ams.org/mathscinet-getitem?mr=2272473
http://www.ams.org/mathscinet-getitem?mr=2339101
http://dx.doi.org/10.1214/08-AOAS230SUPP
http://www.ams.org/mathscinet-getitem?mr=0287613
http://dx.doi.org/10.1214/08-AOAS230SUPP


EVALUATION OF NURSING HOMES VIA LATENT MARKOV MODEL 635

BIERNACKI, C., CELEUX, G. and GOVAERT, G. (2003). Choosing starting values for the EM algo-
rithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Statist.
Data Anal. 41 561–575. MR1968069

BOUCHERON, S. and GASSIAT, E. (2007). An information-theoretic perspective on order estimation.
In Inference in Hidden Markov Models (O. Cappé, E. Moulines and T. Rydén, eds.) 565–602.
Springer, New York.

CELEUX, G. and DURAND, J.-B. (2008). Selecting hidden Markov chain states number with cross-
validation likelihood. Comput. Statist. Data Anal. 23 541–564.

CELEUX, G. and SOROMENHO, G. (1996). An entropy criterion for assessing the number of clusters
in a mixture model. J. Classification 13 195–212. MR1421665

COX, D. R. and SNELL, E. G. (1989). The Analysis of Binary Data, 2nd ed. Chapman and Hall,
London. MR1014891

DARDANONI, V. and FORCINA, A. (1998). A unified approach to likelihood inference on stochastic
orderings in a nonparametric context. J. Amer. Statist. Assoc. 93 1112–1123. MR1649205

DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1–38. MR0501537

FORCINA, A. and BARTOLUCCI, F. (2004). Modelling quality of life variables with non-parametric
mixtures. Environmetrics 15 519–528.

HAMBLETON, R. K. and SWAMINATHAN, H. (1985). Item Response Theory: Principles and Appli-
cations. Kluwer, Boston.

HARRINGTON, C., COLLIER, E., O’MEARA, J., KITCHENER, M., SIMON, L. P. and SCHNELLE,
J. F. (2003). Federal and state nursing facility websites: Just what the consumer needs? Amer. J.
Med. Quality 18 21–37.

HIRDES, J. P., ZIMMERMAN, D., HALLMAN, K. G. and SOUCIE, P. S. (1998). Use of the MDS
quality indicators to assess quality of care in institutional settings. Canadian Journal for Quality
in Health Care 14 5–11.

JACOBS, R., JORDAN, M. I., NOWLAN. S. J. and HINTON, G. E. (1991). Adaptive mixtures of
local experts. Neural Computation 3 79–87.

KANE, R. L. (1998). Assuring quality in nursing homes care. Journal of the American Geriatrics
Society 46 232–237. MR1622333

KERIBIN, C. (2000). Consistent estimation of the order of mixture models. Sankhyā Ser. A 62 49–66.
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