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EFFECTIVE RESISTANCE OF RANDOM TREES

BY LOUIGI ADDARIO-BERRY,1 NICOLAS BROUTIN AND GÁBOR LUGOSI2

Université de Montréal, INRIA Rocquencourt and
ICREA Pompeu Fabra University

We investigate the effective resistance Rn and conductance Cn between
the root and leaves of a binary tree of height n. In this electrical network,
the resistance of each edge e at distance d from the root is defined by re =
2dXe where the Xe are i.i.d. positive random variables bounded away from
zero and infinity. It is shown that ERn = nEXe − (Var(Xe)/EXe) lnn +
O(1) and Var(Rn) = O(1). Moreover, we establish sub-Gaussian tail bounds
for Rn. We also discuss some possible extensions to supercritical Galton–
Watson trees.

1. Introduction. Electric networks have been known to be closely related to
random walks and their investigation often offers an elegant and effective way
of studying properties of random walks. See Doyle and Snell [9] and Lyons and
Peres [15] for very nice introductions to the subject. For the better understanding
of certain random walks in random environments, it is natural to study random
electric networks, that is, electric networks in which edges are equipped with in-
dependent random resistances. This model was studied by Benjamini and Rossig-
nol [5] who considered the case of the cubic lattice Z

d where the resistance of each
edge is an independent copy of a Bernoulli random variable. Using an inequality of
Falik and Samorodnitsky [11], they proved that point-to-point effective resistance
has submean variance in Z

2, whereas the variance is of the order of the mean when
d ≥ 3. In this paper, we study the corresponding problem for binary trees.

An electric network is a locally finite connected graph G = (V ,E) with vertex
set V and edge set E such that each edge e ∈ E is equipped with a number re ≥ 0
called resistance. (In this paper we only consider finite graphs.) Alternatively, an
edge is associated with a conductance ce = 1/re. The effective resistance between
two disjoint sets of vertices A,B ⊂ V is defined as follows: assign “voltage” (or
potential) U(u) = 1 to each vertex u ∈ A and U(v) = 0 for all v ∈ B . If G is
finite then the function U can be extended, in a unique way, to all vertices in V

according to two basic laws given by Ohm’s law and Kirchhoff’s node law. In
order to describe these laws, we need the notion of current. Given two vertices
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u, v ∈ V joined by and edge e ∈ E, the current flowing from u to v is a real number
i(u, v). Ohm’s law states that for each edge of the graph, i(u, v)re = U(u)−U(v).
Kirchhoff’s node law postulates that for any vertex u /∈ A∪B ,

∑
v : v∼u i(u, v) = 0.

(For the proof that these two laws uniquely determine the function U :V → [0,1],
see [9] or [15].) Now the effective conductance between the vertex sets A and B is
defined as the total current flowing into the network, that is,

C(A ↔ B) = ∑
u∈A

∑
v : v∼u

i(u, v).

The effective resistance between A and B is R(A ↔ B) = 1/C(A ↔ B).
Several useful tricks of network reduction are known that help simplify resis-

tance calculations. Since in this paper we focus on trees, it suffices to recall two
of the simplest rules. One of them states that two resistors in series are equiva-
lent to a single resistor whose resistance is the sum of the original resistances. The
other rule states that two conductors in parallel are equivalent to a single conductor
whose conductance is the sum of the original conductances. Apart from these two
simple rules, a formula called Thomson’s principle will be useful for our purposes.
Thomson’s principle gives an explicit expression for the effective resistance. It
states that

R(A ↔ B) = inf
�∈F

∑
e∈E

re�(e)2,(1)

where the infimum is taken over the set F of all unit flows. A unit flow is a func-
tion � over the set of oriented edges {(u, v) :u ∼ v} which is antisymmetric [i.e.,
�(u,v) = −�(v,u)], satisfies

∑
v : v∼u �(u, v) = 0 for any vertex u /∈ A∪B , and

has ∑
u∈A

∑
v /∈A : v∼u

�(u, v) = ∑
v∈B

∑
u/∈B : u∼v

�(u, v) = 1.

It can be shown that the unique unit flow �∗ which attains the above infimum is
proportional to the current i(u, v) (see, e.g., Doyle and Snell [9], page 50).

In this paper we consider the case of a complete infinite binary tree T with
root r . (All results carry over trivially to infinite b-ary trees for integers b > 2.)
The depth d(v) of a node v in T is the number of edges on the path from the root
to v. We say that an edge e has depth d if there are d edges on the path starting
with edge e and ending at the root. The resistance of an edge e at depth d is defined
by 2d−1Xe where the Xe are independent copies of some strictly positive random
variable with finite mean. This exponential weighting corresponds to the “critical”
(with respect to transience/recurrence) case of the biased random walk in random
environment obtained by traversing an edge e, starting from either endpoint, with
probability proportional to its conductance (the inverse of its resistance). This type
of exponential scaling of resistances was considered, for example, by Lyons [13].
He showed that in an infinite rooted tree with branching number b, if the (de-
terministic) resistance of an edge equals λd then the effective resistance between
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the root and “infinity” is infinite if λ > b and finite if λ < b. Thus, our choice of
scaling corresponds to the critical case. Similar biased random walks have been
studied in depth by Pemantle [17], Lyons [13] and Lyons and Pemantle [14], who
beautifully characterize the type of such random walks in many situations. (How-
ever, our model does not quite fit within their framework, as the transition prob-
abilities fail to satisfy a certain independence requirement.) Unfortunately, we do
not immediately see how to translate our results into results about biased random
walks or random walks in random environments. Also, it is likely that such results
would only be new if we could also extend our results to the more general setting
of Galton–Watson trees. For more background on the connection between effec-
tive resistance of networks and random walks, see Doyle and Snell [9], Lyons and
Peres [15], Peres [18] or Soardi [19].

For a random network such as that described in the previous paragraph, inter-
esting and nontrivial behavior emerges. Let Rn be the effective resistance between
the root r and the set of vertices at depth n, and let μ and σ 2 be the mean and vari-
ance of Xe, respectively. The primary results of our paper are that as long as Xe is
bounded away from both zero and infinity,

ERn = μn − σ 2

μ
lnn + O(1) and E[|Rn − ERn|q] = O(1) for all q ≥ 1.

(These results are contained in Theorems 5 and 7.) We also derive correspond-
ingly precise results about the conductance Cn = 1/Rn. Interestingly, in order to
estimate the expected resistance, our main tool is a sharp upper bound for the vari-
ance of the conductance (and thereby for the variance of the resistance). Intuitively,
concentration of the conductance implies that the behavior of the electric network
is not very different from the one with deterministic resistances 2dμ. Thus, Sec-
tion 2 is devoted to the variance of the conductance Cn. In particular, we show
that Var[Cn] = O(n−4). In Section 3 we derive the bounds for the expected resis-
tance and conductance mentioned above. In Section 4 we establish sub-Gaussian
tail bounds for Rn. The proof is based on Thomson’s formula (1) and relies on an
exponential concentration inequality due to Boucheron et al. [7].

Finally, in Section 5 we briefly discuss the ways in which one might attempt
to extend our results to supercritical Galton–Watson processes (in this case the
appropriate scaling for the resistances is [EZ1]d for edges at depth d , where Z1
is the number of offspring of the root). In the Galton–Watson setting, it makes
sense to first condition on the tree, then study the conditional behavior of the ef-
fective resistance and of �∗. In Section 5 we shall also observe that if the random
variable Xe is constant then the “scaled analogue” of Question 4.1 from Lyons,
Pemantle and Peres [16] is easily answered; motivated by this, we suggest a more
general question.

From this point on, we assume Xe is any random variable taking values in some
interval [a, b] with 0 < a < b. Most our arguments rely on a recursive decomposi-
tion of the tree. This decomposition is made easier by rooting the tree at an edge
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FIG. 1. Rooting the binary tree rooted at an edge instead of a vertex simplifies the recursive de-
composition.

instead of at a vertex; this trick was also used in [16] to facilitate conductance
computations. More precisely, for n ≥ 1 we define the tree Tn as follows: the root
has one single child whose subtree is a complete binary tree with n − 1 levels (so
2n−1 leaves). Then, Tn decomposes exactly into a single edge connected (in series)
to two independent copies of Tn−1 (in parallel) as shown in Figure 1. We let Rn be
the effective resistance of Tn taken between the root and the leaves. Let Cn = 1/Rn

be the corresponding effective conductance, so in particular R1 is distributed as X

and C1 is distributed as 1/X. The difference between Rn and the effective resis-
tance of the complete binary tree of height n − 1 is at most b, so bounds on the
moments of the former immediately imply corresponding bounds for the latter.

We close this introduction by noting that the results of Benjamini and Rossig-
nol [5] are proved by adapting an argument first used by Benjamini, Kalai and
Schramm [6] to prove submean variance bounds for first-passage percolation
on Z

2. Addario-Berry and Reed [1] have studied first-passage percolation on su-
percritical Galton–Watson processes; though their approach is entirely different
from ours, their result is strikingly similar: under suitable assumptions on the edge
lengths (which in their case are i.i.d.), the height of the first-passage percolation
cluster of (weighted) diameter n has expected value αn − β lnn + O(1), for com-
putable constants α and β , and has bounded variance. We are not sure whether this
similarity is more than a coincidence.

2. The variance of the conductance. The purpose of this section is to de-
rive an upper bound for the variance of the conductance Cn. We start by noticing
that Rn and Cn admit the following scalings.

LEMMA 1. When a ≤ X ≤ b, we have an ≤ Rn ≤ bn and 1/b ≤ nCn ≤ 1/a,
for all n ≥ 1.
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The lemma follows from Rayleigh’s monotonicity law (see [9], page 53) by
bounding the resistance of Tn between that of two deterministic networks in which
the random variables either always take their minimum value a or their maximum
value b. We first derive a bound on Var[Cn]. Using Chebyshev’s inequality, this
bound yields a quadratically decaying tail bound for Rn.

THEOREM 2. There exists a constant K depending only on a and b such that
Var[C1] ≤ K,Var[R1] ≤ K and for all integers n ≥ 2,

Var[Cn] ≤ K ·
(

n−1∑
i=1

21−i

(n − i)4 + 1

2n−1

)
≤ 210K

n4 and Var[Rn] ≤ K.

Our main tool in proving Theorem 2 is the Efron–Stein inequality, which pro-
vides an upper bound on the variance of functions of independent random vari-
ables.

THEOREM 3 (Efron and Stein [10], Steele [20]). Let Yi , i ≥ 1, be independent
random variables, and let f : Rn �→ R be a measurable function of n variables.
Then,

Var[f (Y1, . . . , Yn)]

≤ 1

2
·

n∑
i=1

E
[(

f (Y1, . . . , Yi, . . . , Yn) − f (Y1, . . . , Y
′
i , . . . , Yn)

)2]
,

where Y ′
i , i ≥ 0, are independent copies of Yi , i ≥ 0.

PROOF OF THEOREM 2. It clearly suffices to treat the case n ≥ 2. We decom-
pose Tn into three independent conductors C1, Cn,1 and Cn,2 as shown in Figure 2.
Then, Cn is a function of these three independent random variables:

Cn = C1 · (Cn,1 + Cn,2)

C1 + Cn,1 + Cn,2
.(2)

By the Efron–Stein inequality and the symmetry of Cn,1 and Cn,2, we have

Var[Cn] ≤ E
[(

C1 · (Cn,1 + Cn,2)

C1 + Cn,1 + Cn,2
− C1 · (C′

n,1 + Cn,2)

C1 + C′
n,1 + Cn,2

)2]
(3)

+ 1

2
· E

[(
C1 · (Cn,1 + Cn,2)

C1 + Cn,1 + Cn,2
− C′

1 · (Cn,1 + Cn,2)

C′
1 + Cn,1 + Cn,2

)2]
,

where C′
n,1 is an independent copy of Cn,1. Letting α = Cn,1 + Cn,2, the second

term of (3) reduces to

E
[(

C1α

C1 + α
− C′

1α

C′
1 + α

)2]
.
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FIG. 2. The decomposition of Tn into three conductors C1, Cn,1 and Cn,2 at the origin of our
recurrence relations.

Observe that, since 1/b ≤ C1,C
′
1 ≤ 1/a, we have∣∣∣∣ C1α

C1 + α
− C′

1α

C′
1 + α

∣∣∣∣ =
∣∣∣∣ α2(C1 − C′

1)

(C1 + α)(C′
1 + α)

∣∣∣∣
≤ b2α2

(
1

a
− 1

b

)
.

Hence

1

2
E

[(
C1α

C1 + α
− C′

1α

C′
1 + α

)2]
≤ b4

(
1

b
− 1

a

)2 1

2
E[(Cn,1 + Cn,2)

4].

Since both Cn,1 and Cn,2 are distributed as Cn−1/2, by Lemma 1, we have Cn,1 +
Cn,2 ≤ 1/(a(n − 1)), and this yields

1

2
E

[(
C1α

C1 + α
− C′

1α

C′
1 + α

)2]
≤ 1

2

(
b

a

)4(
1

b
− 1

a

)2 1

(n − 1)4

(4)
def= K0

(n − 1)4 .

We now use the first term on the right-hand side of (3) to devise a recurrence. We
have ∣∣∣∣ C1(Cn,1 + Cn,2)

C1 + Cn,1 + Cn,2
− C1(C

′
n,1 + Cn,2)

C1 + C′
n,1 + Cn,2

∣∣∣∣
= C2

1 |Cn,1 − C′
n,1|

(C1 + Cn,1 + Cn,2)(C1 + C′
n,1 + Cn,2)

≤ |Cn,1 − C′
n,1|.
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Accordingly,

E
[(

C1(Cn,1 + Cn,2)

C1 + Cn,1 + Cn,2
− C1(C

′
n,1 + Cn,2)

C1 + C′
n,1 + Cn,2

)2]
≤ E[(Cn,1 − C′

n,1)
2]

= 2 · Var[Cn,1]
= 1

2
· Var[Cn−1].

Therefore, letting K1 = max{K0,Var[C1]} and recalling (4) we have the following
recurrence relation:

Var[Cn] ≤ K1

(n − 1)4 + 1

2
· Var[Cn−1].

Expanding the recurrence yields readily

Var[Cn] ≤ K1 ·
n−1∑
i=1

21−i

(n − i)4 + 1

2n−1 Var[C1] ≤ K ·
n−1∑
i=1

21−i

(n − i)4 + K

2n−1 .

Since

n−1∑
i=1

21−i

(n − i)4 + 1

2n−1 ≤

n/2�∑
i=1

21−i

(n − i)4 +
n−1∑

i=
n/2�+1

21−i

(n − i)4 + 1

2n−1

≤ 25

n4

∑
i≥1

2−i + 21−
n/2� ∑
i≥1

2−i ≤ 210

n4 ,

the claimed bound on the variance holds as long as K ≥ K1. Finally, for all n, by
Lemma 1 we have

Var[Rn] ≤ E
[(

Rn − 1

E[Cn]
)2]

= E
[(

E[Cn] − Cn

CnE[Cn]
)2]

(5)
≤ b4n4 Var[Cn],

so letting K = max{b4,1} · K1, the proof is complete. �

We remark that this theorem is tight up to a constant factor unless X is determin-
istic (in which case Var[Cn] = 0). Indeed, by considering equation (2), since Cn,1

and Cn,2 are both of order n−1, we see that fluctuations of constant size in the value
of C1 change Cn by order n−2. Such fluctuations occur with positive probability,
so we must have that Var[Cn] ≥ εn−4 for some ε > 0 depending on X.

By Chebyshev’s inequality, (5) also implies tail bounds on the probability that
the resistance Rn deviates from 1/ECn.
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COROLLARY 4. There exists a constant K , such that for all t > 0 and n ≥ 1,
we have {∣∣∣∣Rn − 1

ECn

∣∣∣∣ > t

}
≤ K

t2 .

It follows that E|Rn − 1/ECn| ≤ 1 + K .

PROOF. The first claim is immediate using (5) and Chebyshev’s inequality; to
see the second claim, observe that

E|Rn − 1/ECn| ≤ 1 +
∫ ∞

1
{|Rn − 1/ECn| ≥ x}dx ≤ 1 + K

∫ ∞
1

dx

x2 = 1 + K.

�

3. The expected resistance and conductance. In this section we give precise
locations for the expected values ECn and ERn, respectively. Let σ 2 = Var[X] and
let μ = EX.

THEOREM 5. There exist constants M1 and M2 depending only on a and b

such that for all integers n ≥ 2,∣∣∣∣ERn − μn + σ 2

μ
lnn

∣∣∣∣ ≤ M1 and
∣∣∣∣ECn − 1

μn
− σ 2 lnn

μ3n2

∣∣∣∣ ≤ M2

n2 .

We remark that since Var[Rn] is certainly bounded from below by a positive
constant (unless X is deterministic, in which case we know Rn precisely), we have
determined the value of ERn up to the order of its standard deviation. Furthermore,
since Var[Cn] is of order n−4, we have likewise determined ECn up to the order
of its standard deviation.

The techniques we use to handle the recurrence relation have been used
by de Bruijn [8] to analyze slowly converging sequences and by Flajolet and
Odlyzko [12] in the context of heights of simple trees.

PROOF OF THEOREM 5. We focus on ECn. By Corollary 4, bounds on ECn

immediately yield bounds on ERn. As in the proof of Theorem 2, we decompose
Tn+1 into three independent conductors C1, Cn+1,1 and Cn+1,2 (see Figure 2). Let
Cn and C′

n be independent copies of the conductance between the root and level n.
Since

Cn+1 = C1 · (Cn+1,1 + Cn+1,2)

C1 + Cn+1,1 + Cn+1,2
,

Cn+1,1 and Cn+1,2 are both distributed as Cn/2, and C1 is distributed as 1/X, we
have, in distribution,

Cn+1 = Cn + C′
n

2
· 1

1 + X((Cn + C′
n)/2)

,(6)
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where X is independent of all the other random variables appearing in (6). The
second factor in (6) can be rewritten as

1

1 + X((Cn + C′
n)/2)

= 1 − X

(
Cn + C′

n

2

)
+ X2 ·

(
Cn + C′

n

2

)2

(7)

− X3 ·
(

Cn + C′
n

2

)3

· 1

1 + X((Cn + C′
n)/2)

.

Using the equality (7) to replace the term 1/(1 +X(Cn + C′
n)/2) in (6) and taking

expectations, we obtain

ECn+1 = ECn − EX

2
· (E[C2

n] + [ECn]2)

+ E[X2]
4

· (E[C3
n] + 3E[C2

n]ECn)(8)

− E
[

X3(Cn + C′
n)

4

16(1 + X((Cn + C′
n)/2))

]
,

where we have used the equalities E[(Cn + C′
n)

2] = 2(E[C2
n] + [ECn]2) and

E[(Cn + C′
n)

3] = 2(E[C3
n] + 3E[C2

n]ECn). By Lemma 1, we have deterministi-
cally

a3

b4n4 · 1

1 + b/(an)
≤ X3(Cn + C′

n)
4

16(1 + X((Cn + C′
n)/2))

≤ b3

a4n4 ,

so (8) yields

E[Cn+1] = E[Cn] − EX

2
· (E[C2

n] + [ECn]2)

(9)

+ E[X2]
4

· (E[C3
n] + 3E[C2

n]ECn) + O(n−4),

where the order notation O(·) depends only on a and b. We observe that, by The-
orem 2,

E[C2
n] + [ECn]2 = Var[Cn] + 2[ECn]2 = 2[ECn]2 + O(n−4).(10)

Furthermore, since E[(Cn−ECn)
3] = O(n−1) ·Var[Cn] = O(n−5) by Theorem 2,

we have

E[C3
n] = E[(Cn − ECn)

3] + 3E[C2
n]ECn − 3[ECn]3 + [ECn]3

= O(n−5) + 3(Var[Cn] + [ECn]2)ECn − 2[ECn]3

= 3 Var[Cn]ECn + [ECn]3 + O(n−5)

= E[Cn]3 + O(n−5),
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so

E[C3
n] + 3E[C2

n]ECn = 4E[Cn]3 + 6 Var[Cn]ECn + O(n−5)

= 4E[Cn]3 + O(n−5).

Combining (9), (10) and (11), we obtain

ECn+1 = ECn − EX[ECn]2 + EX2[ECn]3 + O(n−4).

Dividing through by ECn+1ECn and letting xn = 1/ECn gives

xn = xn+1 − EX · xn+1

xn

+ E[X2] · xn+1

x2
n

+ O(n−2).(11)

We let δn = xn+1/xn − 1 and let εn = xn+1/x
2
n , and remark that δn and εn are both

O(n−1). Summing (11) gives

xn+1 = nEX + EX ·
n∑

i=1

δi − E[X2]
n∑

i=1

εi + O(1).(12)

Since both δi and εi are O(i−1), (12) immediately yields the bound

xn+1 = nEX + O(lnn) = (n + 1)EX + O(lnn),(13)

a bound we will bootstrap to prove the theorem. From (11) we have

xn+1

xn

= 1 + EX + EX · δn − E[X2] · εn

xn

+ O(n−3),

so since xn+1/xn also equals 1 + δn, solving for δn we obtain

δn = EX − E[X2]εn

xn − EX
+ O(n−3) = EX

xn − EX
+ O(n−2)(14)

as long as n is large enough to ensure that xn − EX does not happen to be zero
(say n ≥ n0 for some fixed n0 depending only on a and b). Similarly,

εn = 1

xn

· xn+1

xn

= 1

xn

+ δn

xn

= 1

xn

+ O(n−2)(15)

for all n ≥ 1. Combining (12), (14) and (15) gives the identity

xn+1 − nEX = [EX]2
n∑

i=n0

1

xi − EX
− E[X2]

n∑
i=n0

1

xi

+ O(1)

= [EX]3
n∑

i=n0

1

xi(xi − EX)
− Var[X]

n∑
i=n0

1

xi

+ O(1)(16)

= −Var[X]
n∑

i=n0

1

xi

+ O(1).
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Since xi = iEX + O(ln i) by (13), we have
n∑

i=n0

1

xi

=
n∑

i=n0

1

iEX + O(ln i)
=

n∑
i=n0

(
1

iEX
+ O(ln i)

(iEX)2

)
= lnn

EX
+ O(1),

so (16) yields

xn+1 − nEX = Var[X]
EX

lnn + O(1).

The first assertion of the theorem follows immediately, and second assertion of the
theorem follows since xn+1 = ERn+1 + O(1) by Corollary 4. �

4. Sub-Gaussian tails bounds for the resistance. In this section we show
that the resistance Rn does not only have a bounded variance but all its moments
are also bounded and satisfies a sub-Gaussian tail inequality. In order to show this,
we use a strengthening of the Efron–Stein inequality developed by Boucheron
et al. [7], together with Thomson’s formula. This flow-based formulation of the
resistance was used by Benjamini and Rossignol [5] to show submean variance
bounds for the random resistance in Z

2. Given a graph G, let E(G) be the set of
edges of G. Recall that if F denotes the set of unit flows from the root r to depth n

in Tn, then

Rn = inf
�∈F

{ ∑
e∈E(Tn)

re�(e)2
}
.(17)

Furthermore, there is a unique unit flow �∗ which attains the above infimum. As
observed by Benjamini and Rossignol [5], it is a straightforward consequence of
the Efron–Stein inequality that

Var[Rn] ≤ (b − a)2

2

∑
e∈E(Tn)

E[�∗(e)4].(18)

We now describe the result we use from [7] and how it can be combined with
Thomson’s formula to obtain a sub-Gaussian tail bound for Rn.

Suppose we are given independent random variables U = (U1, . . . ,Um) and a
real-valued function Z = f (U1, . . . ,Um). For integers i = 1, . . . ,m, let U ′

i be an
independent copy of u, and let Z′

i = f (U1, . . . ,Ui−1,U
′
i ,Ui+1, . . . ,Um). Let

V + =
m∑

i=1

(Z − Z′
i)

2+ and let V − =
m∑

i=1

(Z − Z′
i )

2−,

where (·)+ and (·)− denote the positive and negative parts, respectively. Boucheron
et al. [7] prove that if there exists a constant C such that V+ ≤ C almost surely,
then

{Z > EZ + t} ≤ e−t2/4C,
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and if V− ≤ C almost surely, then

{Z < EZ − t} ≤ e−t2/4C.

We shall apply these bounds with U = (Xe)e∈E(Tn) and Z = Rn. From now on, X′
e

denotes an independent copy of Xe, and R
(e)′
n denotes the resistance of Tn when Xe

is replaced by X′
e while all other resistances are kept unchanged. If �∗ denotes the

unit flow attaining the infimum in the expression of Rn by Thomson’s formula, and
�∗,e is the minimizing unit flow when Xe is replaced by X′

e, then by Thomson’s
formula and the deterministic bound |Xe − X′

e| ≤ 2d(e)(b − a),

(
Rn − R(e)

n

)
+ ≤ (Xe − X′

e)+ · �∗,e(e)2,

≤ (b − a)2d(e)�∗,e(e)2

and similarly,
(
Rn − R(e)

n

)
− ≤ (b − a)2d(e)�∗(e)2.

Thus,

V+ ≤ (b − a)2
∑

e∈E(Tn)

22d(e)�∗,e(e)4 and V− ≤ (b − a)2
∑

e∈E(Tn)

22d(e)�∗(e)4.

The key argument is the following deterministic bound.

LEMMA 6. The optimal unit flow of any edge e ∈ E(Tn) satisfies, determinis-
tically,

�∗(e) ≤ bn

a(n − d(e) + 1)2d(e)−1 .

PROOF. Let v denote the endpoint of e ∈ E(Tn) closer to the root r of Tn. If
U(v) is the voltage at vertex v when the unit current �∗ flows from the root r to
the leaves and the leaves have voltage 0, then by Ohm’s law,

Rn,e�
∗(e) = U(v) ≤ U(r) = Rn ≤ bn,

where Rn,e is the effective resistance of the subtree rooted at v. On the other hand,
by Rayleigh’s monotonicity law (see [9], page 53) and since all Xe’s are at least a,
we have

Rn,e ≥ a
(
n − d(e) + 1

)
2d(e)−1.

Comparing the two bounds, we obtain the bound of the lemma. �
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Since the upper bound of Lemma 6 does not depend on the random values
of the resistances Xe, the same inequality holds for �∗,e(e) as well. Thus, we
have

V+ ≤ 24b4(b − a)2

a4

∑
e∈E(Tn)

(
n

n − d(e) + 1

)4

2−2d(e)

= 24b4(b − a)2

a4

n∑
i=1

(
n

n + 1 − i

)4

2−i

and the same upper bound applies to V− as well. Since the sum on the right-hand
side is bounded, there exists a constant C = C(a, b) such that both V+ ≤ C and
V− ≤ C. As a consequence, we have the following sub-Gaussian concentration
inequality.

THEOREM 7. There exists a constant C depending on a and b only such that
for every t > 0,

{|Rn − ERn| > t} ≤ 2e−t2/4C.

5. Concluding remarks. We conclude by discussing some possible exten-
sions to branching random networks. When discussing the possible analogues
of our results for branching processes, the following formulation of branching
processes is useful. We start from a single “root edge” uv and let v be the root
of a supercritical branching process with branching distribution B that satisfies
{B = 0} = 0. We use T to refer to this edge-rooted branching process. We say
that a node w �= u has depth i if there are i edges on the path from v to w (v
has depth 0). For i ≥ 0, we let Zi be the number of nodes of T at depth i—so in
particular Z0 = 1.

A branching random network is simply an edge-rooted branching process T as
above. To each edge e at depth d , we assign a random resistance re = [EB]dXe,
where the Xe are independent, identically distributed positive random variables
taking values in [a, b] as in the binary case. As before, we let Cn (resp., Rn) be the
effective conductance (resp., effective resistance) from the root to depth n. As in
the binary case, the above scaling most naturally corresponds to the critical case of
a random walk in a random environment on branching processes with push-back.
In particular, if B is deterministically 2 then we recover the model of the previous
sections.

It is easily seen that Cn is not concentrated. Let B1 be the number of children of
the root—then as in the case of binary branching, we may first decompose Tn into
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independent conductors C1 and Cn,1, . . . ,Cn,B1 , so that

Cn = C1(Cn,1 + · · · + Cn,B1)

C1 + Cn,1 + · · · + Cn,B1

.

If Cn is concentrated, then Cn,1 +· · ·+Cn,B1 is well approximated by B1 ·ECn−1/

EB1, so Cn is close to

C1 · B1 · ECn−1/EB1

C1 + B1 · ECn−1/EB1
= ECn−1

EB1
·
(

1

B1
+ ECn−1

C1 · EB1

)−1

.

But the latter expression is not concentrated—a constant change in B1 changes
this expression by a constant factor. This should not be surprising: if the root has
many offspring, the conductance is likely to be much (a constant factor) higher
than if the root has a single child. It seems likely that at least the first-order be-
havior of Cn and Rn is governed by W = limn→∞ Zn/[EB]n. If the resistance
random variable X is constant (say X = 1) then this is easily seen: the series-
parallel laws give Rn = ∑n

i=0[EB]i/Zi , and EBi/Zi tends to 1/W T -a.s., so
Rn/n tends to 1/W T -a.s. If we additionally assume that B has finite variance
then this convergence is also in expectation [2], Theorem I.6.2, and it immedi-
ately follows that Cn/ECn tends to W/EW a.s. and in expectation. In particular,
this implies that limn→∞ Cn/ECn has absolutely continuous distribution (as long
as B is not constant; see [2], Theorem I.10.4), which is the “scaled analogue”
of Question 4.1 from Lyons, Pemantle and Peres [16] mentioned in the Introduc-
tion.

We would expect that even when X is not constant, for any λ with 1 ≤ λ ≤
EB , in the network where the resistances of edges at depth i are scaled by λi ,
limn→∞ Cn/ECn has an absolutely continuous distribution. In the special case that
λ = EB , we would venture that Rn/n tends to EX/W , T -a.s. and in expectation.
However, we were unable to extend the arguments used to prove Theorems 2 and 5
to the branching process. In particular, once we condition on T , our techniques for
manipulating (3) and (6) in order to devise recurrences fail, most notably because
in this setting the identical distribution of subtrees at equal depth is lost. It seems
plausible that as in the case of binary branching Rn − W · (nEX) is O(lnn), again
T -a.s. and in expectation, but the coefficient of lnn also seems likely to depend
on T and the precise nature of this dependence is unclear to us.

Finally, observe that Barndorff-Nielsen [3] and Barndorff-Nielsen and Koudou
[4] have noticed an interesting link between inverse Gaussian (or reciprocal in-
verse Gaussian) random variables and effective resistances of random networks:
if resistances of the edges are distributed like i.i.d. inverse Gaussian random vari-
ables, then the effective resistance of the entire tree is distributed like a reciprocal
inverse Gaussian.
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